1
|
Langendorf RE, Estes JA, Watson JC, Kenner MC, Hatfield BB, Tinker MT, Waddle E, DeMarche ML, Doak DF. Dynamic and context-dependent keystone species effects in kelp forests. Proc Natl Acad Sci U S A 2025; 122:e2413360122. [PMID: 40030028 PMCID: PMC11912371 DOI: 10.1073/pnas.2413360122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/11/2024] [Indexed: 03/19/2025] Open
Abstract
Sea otters are an iconic keystone predator that can maintain kelp forests by preying on grazing invertebrates such as sea urchins. However, the effects of sea otters on kelp forests vary over their geographic range. Here, we analyze two 30-y datasets on kelp forest communities during the reintroduction of sea otters along the west coast of Vancouver Island, BC, Canada, and around San Nicolas Island, CA. We developed a community model to estimate species interactions as dynamic rates, varying with community state. We find evidence of a classic trophic cascade off Vancouver Island; the arrival of otters quickly led to depletion of urchins and recovery of kelp. However, this cascade was muted around San Nicolas Island, with otters, urchins, and kelp all coexisting at intermediate densities for multiple years. Our models show that this difference came from a pulse of strong otter impacts on urchins following recolonization off Vancouver Island, but not off San Nicolas Island. The mean effects of otters on urchins and urchins on kelp were not stronger in the north, indicating that interaction dynamics and not average interaction strength are key to explaining differences in community trajectories. We also find stronger multistep interaction chains in the south, arising from competitive interactions that indirectly buffered otter effects. These findings shed light on long-standing hypotheses about how interspecific interactions can alter the function of keystone species across community contexts. More broadly, we show how community change can be more accurately predicted by considering dynamic interaction strengths.
Collapse
Affiliation(s)
- Ryan E. Langendorf
- Department of Environmental Studies, University of Colorado, Boulder, CO80309
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
| | - James A. Estes
- United States Geological Survey, Western Ecological Research Center, Santa Cruz, CA95060
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060
| | - Jane C. Watson
- Biology Department, Vancouver Island University, Nanaimo, BCV9R 5S5, Canada
| | - Michael C. Kenner
- United States Geological Survey, Western Ecological Research Center, Santa Cruz, CA95060
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060
| | - Brian B. Hatfield
- United States Geological Survey, Western Ecological Research Center, Santa Cruz, CA95060
| | - M. Tim Tinker
- United States Geological Survey, Western Ecological Research Center, Santa Cruz, CA95060
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060
- Nhydra Ecological Consulting, Head of St. Margaret’s Bay, NSB3Z 2G6, Canada
| | - Ellen Waddle
- Department of Environmental Studies, University of Colorado, Boulder, CO80309
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80303
| | | | - Daniel F. Doak
- Department of Environmental Studies, University of Colorado, Boulder, CO80309
| |
Collapse
|
2
|
Meunier ZD, Hacker SD, Menge BA. Regime shifts in rocky intertidal communities associated with a marine heatwave and disease outbreak. Nat Ecol Evol 2024; 8:1285-1297. [PMID: 38831017 DOI: 10.1038/s41559-024-02425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Long-term, large-scale experimental studies provide critical information about how global change influences communities. When environmental changes are severe, they can trigger abrupt transitions from one community type to another leading to a regime shift. From 2014 to 2016, rocky intertidal habitats in the northeast Pacific Ocean experienced extreme temperatures during a multi-year marine heatwave (MHW) and sharp population declines of the keystone predator Pisaster ochraceus due to sea star wasting disease (SSWD). Here we measured the community structure before, during and after the MHW onset and SSWD outbreak in a 15-year succession experiment conducted in a rocky intertidal meta-ecosystem spanning 13 sites on four capes in Oregon and northern California, United States. Kelp abundance declined during the MHW due to extreme temperatures, while gooseneck barnacle and mussel abundances increased due to reduced predation pressure after the loss of Pisaster from SSWD. Using several methods, we detected regime shifts from substrate- or algae-dominated to invertebrate-dominated alternative states at two capes. After water temperatures cooled and Pisaster population densities recovered, community structure differed from pre-disturbance conditions, suggesting low resilience. Consequently, thermal stress and predator loss can result in regime shifts that fundamentally alter community structure even after restoration of baseline conditions.
Collapse
Affiliation(s)
- Zechariah D Meunier
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.
| | - Sally D Hacker
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
3
|
Lin J, He S, Liu X, Huang Z, Li M, Chen B, Hu W. Identifying conservation and restoration priorities for degraded coastal wetland vegetations: Integrating species distribution model and GeoDetector. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167491. [PMID: 37778559 DOI: 10.1016/j.scitotenv.2023.167491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/20/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The ongoing degradation of seagrass and seaweed is of global concern. Comprehending the spatial distribution of these wetland vegetation types and the threats they face becomes critical for effective conservation and restoration efforts. In this study, we combined a species distribution model and geographical detector to propose a novel framework for mapping the distribution and disturbance of degraded coastal wetland vegetation in sparsely recorded areas and identifying conservation and restoration priorities. Guangxi is a province in China known for its extensive coastal wetland vegetation. In our study of Guangxi, habitats suitable for two degraded vegetation types, i.e., seagrass and seaweed, were mapped using the maximum entropy model; 669.44 km2 of seagrass habitat and 929.69 km2 of seaweed habitat were identified. The geographical detector model was used to analyze anthropogenic disturbance caused by four local disturbance factors: shoreline development, fisheries, waterways, and ports and anchorages. Shoreline development was identified as the disturbance factor with the strongest impact on potential habitats of both vegetation types. According to these findings, 48.40 %-64.23 % of the vegetation habitats suffered from high anthropogenic disturbance. Preexisting nature reserves had not effectively protected wetland vegetation from human disturbance. Based on the spatial pattern of vegetation habitat and comprehensive anthropogenic disturbance, conservation and restoration priorities for seagrasses and seaweeds covering an area of 302.26 km2 were further mapped. Our results thus help improve wetland vegetation conservation by providing basic information, and they provide a tool to support site planning for seagrass and seaweed conservation and restoration.
Collapse
Affiliation(s)
- Jinlan Lin
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Guangxi Academy of Oceanography, Nanning 530022, China
| | - Sixuan He
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinming Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | | | - Meng Li
- Guangxi Academy of Oceanography, Nanning 530022, China
| | - Bin Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Wenjia Hu
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
4
|
Xu C, Silliman BR, Chen J, Li X, Thomsen MS, Zhang Q, Lee J, Lefcheck JS, Daleo P, Hughes BB, Jones HP, Wang R, Wang S, Smith CS, Xi X, Altieri AH, van de Koppel J, Palmer TM, Liu L, Wu J, Li B, He Q. Herbivory limits success of vegetation restoration globally. Science 2023; 382:589-594. [PMID: 37917679 DOI: 10.1126/science.add2814] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
Restoring vegetation in degraded ecosystems is an increasingly common practice for promoting biodiversity and ecological function, but successful implementation is hampered by an incomplete understanding of the processes that limit restoration success. By synthesizing terrestrial and aquatic studies globally (2594 experimental tests from 610 articles), we reveal substantial herbivore control of vegetation under restoration. Herbivores at restoration sites reduced vegetation abundance more strongly (by 89%, on average) than those at relatively undegraded sites and suppressed, rather than fostered, plant diversity. These effects were particularly pronounced in regions with higher temperatures and lower precipitation. Excluding targeted herbivores temporarily or introducing their predators improved restoration by magnitudes similar to or greater than those achieved by managing plant competition or facilitation. Thus, managing herbivory is a promising strategy for enhancing vegetation restoration efforts.
Collapse
Affiliation(s)
- Changlin Xu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Jianshe Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Xincheng Li
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Mads S Thomsen
- Marine Ecology Research Group and Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Qun Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Juhyung Lee
- Marine Science Center, Northeastern University, Nahant, MA, USA
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jonathan S Lefcheck
- Tennenbaum Marine Observatories Network and MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, USA
- University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP, CONICETC, Mar del Plata, Argentina
| | - Brent B Hughes
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | - Holly P Jones
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA
| | - Rong Wang
- School of Ecological and Environmental Sciences, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, East China Normal University, Shanghai, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Carter S Smith
- Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Xinqiang Xi
- Department of Ecology, School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Johan van de Koppel
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, Yerseke, Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Todd M Palmer
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Bo Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Qiang He
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Currie-Olsen D, Hesketh AV, Grimm J, Kennedy J, Marshall KE, Harley CDG. Lethal and sublethal implications of low temperature exposure for three intertidal predators. J Therm Biol 2023; 114:103549. [PMID: 37244058 DOI: 10.1016/j.jtherbio.2023.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/29/2023]
Abstract
Benthic invertebrate predators play a key role in top-down trophic regulation in intertidal ecosystems. While the physiological and ecological consequences of predator exposure to high temperatures during summer low tides are increasingly well-studied, the effects of cold exposure during winter low tides remain poorly understood. To address this knowledge gap, we measured the supercooling points, survival, and feeding rates of three intertidal predator species in British Columbia, Canada - the sea stars Pisaster ochraceus and Evasterias troschelii and the dogwhelk Nucella lamellosa - in response to exposure to sub-zero air temperatures. Overall, we found that all three predators exhibited evidence of internal freezing at relatively mild sub-zero temperatures, with sea stars exhibiting an average supercooling point of -2.50 °C, and the dogwhelk averaging approximately -3.99 °C. None of the tested species are strongly freeze tolerant, as evidenced by moderate-to-low survival rates after exposure to -8 °C air. All three predators exhibited significantly reduced feeding rates over a two-week period following a single 3-h sublethal (-0.5 °C) exposure event. We also quantified variation in predator body temperature among thermal microhabitats during winter low tides. Predators that were found at the base of large boulders, on the sediment, and within crevices had higher body temperatures during winter low tides, as compared to those situated in other microhabitats. However, we did not find evidence of behavioural thermoregulation via selective microhabitat use during cold weather. Since these intertidal predators are less freeze tolerant than their preferred prey, winter low temperature exposures can have important implications for organism survival and predator-prey dynamics across thermal gradients at both local (habitat-driven) and geographic (climate-driven) scales.
Collapse
Affiliation(s)
- Danja Currie-Olsen
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Amelia V Hesketh
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jaime Grimm
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jessica Kennedy
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher D G Harley
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Estes JA, Vermeij GJ. History's legacy: Why future progress in ecology demands a view of the past. Ecology 2022; 103:e3788. [PMID: 35718755 DOI: 10.1002/ecy.3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
History has profoundly affected the composition, distribution, and abundances of species in contemporary ecosystems. A full understanding of how ecosystems work and change must therefore take history into account. We offer four well-studied examples illustrating how a knowledge of history has strengthened interpretations of modern systems: the development of molluscan antipredatory defenses in relation to shell-breaking predators; the North Pacific kelp ecosystem with sea otters, smaller predators, sea urchins, and large herbivores; estuarine ecosystems affected by the decline in oysters and other suspension feeders; and the legacy of extinct large herbivores and frugivores in tropical American forests. Many current ecological problems would greatly benefit from a historical perspective. We highlight four of these: soil depletion and tree stunting in forests related to the disappearance of large consumers; the spread of anoxic dead zones in the ocean, which we argue could be mitigated by restoring predator and suspension-feeding guilds; ocean acidification, which would be alleviated by more nutrient recycling by consumers in the aerobic ecosystem; and the relation between species diversity and keystone predators, a foundational concept that is complicated by simplified trophic relationships in modern ecosystems.
Collapse
Affiliation(s)
- James A Estes
- Ecology and Evolutionary Biology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Geerat J Vermeij
- Earth and Planetary Science, University of California-Davis, Davis, California, USA
| |
Collapse
|
7
|
Starko S, Neufeld CJ, Gendall L, Timmer B, Campbell L, Yakimishyn J, Druehl L, Baum JK. Microclimate predicts kelp forest extinction in the face of direct and indirect marine heatwave effects. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2673. [PMID: 35584048 DOI: 10.1002/eap.2673] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Marine heatwaves threaten the persistence of kelp forests globally. However, the observed responses of kelp forests to these events have been highly variable on local scales. Here, we synthesize distribution data from an environmentally diverse region to examine spatial patterns of canopy kelp persistence through an unprecedented marine heatwave. We show that, although often overlooked, temperature variation occurring at fine spatial scales (i.e., a few kilometers or less) can be a critical driver of kelp forest persistence during these events. Specifically, though kelp forests nearly all persisted toward the cool outer coast, inshore areas were >3°C warmer at the surface and experienced extensive kelp loss. Although temperatures remained cool at depths below the thermocline, kelp persistence in these thermal refugia was strongly constrained by biotic interactions, specifically urchin populations that increased during the heatwave and drove transitions to urchin barrens in deeper rocky habitat. Urchins were, however, largely absent from mixed sand and cobble benthos, leading to an unexpected association between bottom substrate and kelp forest persistence at inshore sites with warm surface waters. Our findings demonstrate both that warm microclimates increase the risk of habitat loss during marine heatwaves and that biotic interactions modified by these events will modulate the capacity of cool microclimates to serve as thermal refugia.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Christopher J Neufeld
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Lianna Gendall
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Brian Timmer
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Lily Campbell
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Jennifer Yakimishyn
- Pacific Rim National Park Reserve of Canada, Ucluelet, British Columbia, Canada
| | - Louis Druehl
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Canadian Kelp Resources, Bamfield, British Columbia, Canada
| | - Julia K Baum
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
8
|
Smith JG, Tinker MT. Alternations in the foraging behaviour of a primary consumer drive patch transition dynamics in a temperate rocky reef ecosystem. Ecol Lett 2022; 25:1827-1838. [PMID: 35767228 PMCID: PMC9546210 DOI: 10.1111/ele.14064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
Understanding the role of animal behaviour in linking individuals to ecosystems is central to advancing knowledge surrounding community structure, stability and transition dynamics. Using 22 years of long-term subtidal monitoring, we show that an abrupt outbreak of purple sea urchins (Strongylocentrotus purpuratus), which occurred in 2014 in southern Monterey Bay, California, USA, was primarily driven by a behavioural shift, not by a demographic response (i.e. survival or recruitment). We then tracked the foraging behaviour of sea urchins for 3 years following the 2014 outbreak and found that behaviour is strongly associated with patch state (forest or barren) transition dynamics. Finally, in 2019, we observed a remarkable recovery of kelp forests at a deep rocky reef. We show that this recovery was associated with sea urchin movement from the deep reef to shallow water. These results demonstrate how changes in grazer behaviour can facilitate patch dynamics and dramatically restructure communities and ecosystems.
Collapse
Affiliation(s)
- Joshua G. Smith
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- National Center for Ecological Analysis and SynthesisUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - M. Tim Tinker
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
9
|
Knight CJ, Dunn RP, Long JD. Conspecific cues, not starvation, mediate barren urchin response to predation risk. Oecologia 2022; 199:859-869. [PMID: 35907124 DOI: 10.1007/s00442-022-05225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Prey state and prey density mediate antipredator responses that can shift community structure and alter ecosystem processes. For example, well-nourished prey at low densities (i.e., prey with higher per capita predation risk) should respond strongly to predators. Although prey state and density often co-vary across habitats, it is unclear if prey responses to predator cues are habitat-specific. We used mesocosms to compare the habitat-specific responses of purple sea urchins (Strongylocentrotus purpuratus) to waterborne cues from predatory lobsters (Panulirus interruptus). We predicted that urchins from kelp forests (i.e., in well-nourished condition) tested at low densities typically observed in this habitat would respond more strongly to predation risk than barren urchins (i.e., in less nourished condition) tested at high densities typically observed in this habitat. Indeed, when tested at densities associated with respective habitats, urchins from forests, but not barrens, reduced kelp grazing by 69% when exposed to lobster risk cues. Barren urchins that were unresponsive to predator cues at natural, high densities suddenly responded strongly to lobster cues when conspecific densities were reduced. Strong responses of low densities of barren urchins persisted across feeding history (i.e. 0-64 days of starvation). This suggests that barren urchins can respond to predators but typically do not because of high conspecific densities. Because high densities of urchins in barrens should weaken the non-consumptive effects of lobsters, urchins in these habitats may continue to graze in the presence of predators thereby providing a feedback that maintains urchin barrens.
Collapse
Affiliation(s)
- Christopher J Knight
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, San Diego, CA, 92182, USA.
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA, 93950, USA.
| | - Robert P Dunn
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, San Diego, CA, 92182, USA
- North Inlet-Winyah Bay National Estuarine Research Reserve, Georgetown, SC, 29440, USA
- Baruch Marine Field Laboratory, University of South Carolina, 2306 Crabhall Road Georgetown, Columbia, SC, 29440, USA
| | - Jeremy D Long
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, San Diego, CA, 92182, USA
| |
Collapse
|
10
|
Randell Z, Kenner M, Tomoleoni J, Yee J, Novak M. Kelp-forest dynamics controlled by substrate complexity. Proc Natl Acad Sci U S A 2022; 119:e2103483119. [PMID: 35181602 PMCID: PMC8872774 DOI: 10.1073/pnas.2103483119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
The factors that determine why ecosystems exhibit abrupt shifts in state are of paramount importance for management, conservation, and restoration efforts. Kelp forests are emblematic of such abruptly shifting ecosystems, transitioning from kelp-dominated to urchin-dominated states around the world with increasing frequency, yet the underlying processes and mechanisms that control their dynamics remain unclear. Here, we analyze four decades of data from biannual monitoring around San Nicolas Island, CA, to show that substrate complexity controls both the number of possible (alternative) states and the velocity with which shifts between states occur. The superposition of community dynamics with reconstructions of system stability landscapes reveals that shifts between alternative states at low-complexity sites reflect abrupt, high-velocity events initiated by pulse perturbations that rapidly propel species across dynamically unstable state-space. In contrast, high-complexity sites exhibit a single state of resilient kelp-urchin coexistence. Our analyses suggest that substrate complexity influences both top-down and bottom-up regulatory processes in kelp forests, highlight its influence on kelp-forest stability at both large (island-wide) and small (<10 m) spatial scales, and could be valuable for holistic kelp-forest management.
Collapse
Affiliation(s)
- Zachary Randell
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331;
| | - Michael Kenner
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060
| | - Joseph Tomoleoni
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060
| | - Julie Yee
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060
| | - Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
11
|
Gorra TR, Garcia SCR, Langhans MR, Hoshijima U, Estes JA, Raimondi PT, Tinker MT, Kenner MC, Kroeker KJ. Southeast Alaskan kelp forests: inferences of process from large-scale patterns of variation in space and time. Proc Biol Sci 2022; 289:20211697. [PMID: 35042419 PMCID: PMC8767212 DOI: 10.1098/rspb.2021.1697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022] Open
Abstract
Humans were considered external drivers in much foundational ecological research. A recognition that humans are embedded in the complex interaction networks we study can provide new insight into our ecological paradigms. Here, we use time-series data spanning three decades to explore the effects of human harvesting on otter-urchin-kelp trophic cascades in southeast Alaska. These effects were inferred from variation in sea urchin and kelp abundance following the post fur trade repatriation of otters and a subsequent localized reduction of otters by human harvest in one location. In an example of a classic trophic cascade, otter repatriation was followed by a 99% reduction in urchin biomass density and a greater than 99% increase in kelp density region wide. Recent spatially concentrated harvesting of otters was associated with a localized 70% decline in otter abundance in one location, with urchins increasing and kelps declining in accordance with the spatial pattern of otter occupancy within that region. While the otter-urchin-kelp trophic cascade has been associated with alternative community states at the regional scale, this research highlights how small-scale variability in otter occupancy, ostensibly due to spatial variability in harvesting or the risk landscape for otters, can result in within-region patchiness in these community states.
Collapse
Affiliation(s)
- Torrey R. Gorra
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sabrina C. R. Garcia
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Michael R. Langhans
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Umihiko Hoshijima
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - James A. Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Pete T. Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - M. Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Michael C. Kenner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Kristy J. Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
12
|
Wilman EA. Kelp Forests: Catastrophes, Resilience, and Management. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.674792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Resilient kelp forests provide foundation habitat for marine ecosystems and are indicators of the ecosystems’ sustainable natural capital. Loss of resilience and imperfectly reversible catastrophic shifts from kelp forests to urchin barrens, due to pollution or loss of a top predator, are part of an ecological tipping point phenomenon, and involve a loss in sustainable natural capital. Management controls to prevent or reverse these shifts and losses are classified in a number of ways. Systemic controls eliminate the cause of the problem. Symptomatic controls use leverage points for more direct control of the populations affected, urchin harvesting or culling, or kelp enhancement. There is a distinction between ongoing structural (press) controls versus temporary or intermittent perturbation (pulse) controls, and one between shift preventing versus shift reversing or restorative controls. Adaptive management and the options it creates both focus on reductions in uncertainty and control policies with the flexibility to take advantage of those reductions. The various management distinctions are most easily understood by modeling the predator-urchin-kelp marine ecosystem. This paper develops a mathematical model of the ecosystem that has the potential for two different catastrophic shifts between equilibria. Pulse disturbances, originating from exogenous abiotic factors or population dynamics elsewhere in the metacommunity, can activate shifts. A measure of probabilistic resilience is developed and used as part of an assessment of the ecosystem’s sustainable stock of natural capital. With perturbation outcomes clustered around the originating equilibrium, hysteresis is activated, resulting imperfect reversibility of catastrophic shifts, and a loss in natural capital. The difficulty of reversing a shift from kelp forest to urchin barren, with an associated loss in sustainable natural capital, is an example. Management controls are modeled. I find that systemic and symptomatic, and press and pulse, controls can be complementary. Restorative controls tend to be more difficult or costly than preventative ones. Adaptive management, favoring flexible, often preventative, controls, creates option value, lowering control costs and/or losses in sustainable natural capital. Two cases are used to illustrate, Tasmania, Australia and Haida Gwaii, Canada.
Collapse
|
13
|
Falkenberg LJ, Scanes E, Ducker J, Ross PM. Biotic habitats as refugia under ocean acidification. CONSERVATION PHYSIOLOGY 2021; 9:coab077. [PMID: 34540232 PMCID: PMC8445512 DOI: 10.1093/conphys/coab077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Habitat-forming organisms have an important role in ameliorating stressful conditions and may be of particular relevance under a changing climate. Increasing CO2 emissions are driving a range of environmental changes, and one of the key concerns is the rapid acceleration of ocean acidification and associated reduction in pH. Such changes in seawater chemistry are anticipated to have direct negative effects on calcifying organisms, which could, in turn, have negative ecological, economic and human health impacts. However, these calcifying organisms do not exist in isolation, but rather are part of complex ecosystems. Here, we use a qualitative narrative synthesis framework to explore (i) how habitat-forming organisms can act to restrict environmental stress, both now and in the future; (ii) the ways their capacity to do so is modified by local context; and (iii) their potential to buffer the effects of future change through physiological processes and how this can be influenced by management adopted. Specifically, we highlight examples that consider the ability of macroalgae and seagrasses to alter water carbonate chemistry, influence resident organisms under current conditions and their capacity to do so under future conditions, while also recognizing the potential role of other habitats such as adjacent mangroves and saltmarshes. Importantly, we note that the outcome of interactions between these functional groups will be context dependent, influenced by the local abiotic and biotic characteristics. This dependence provides local managers with opportunities to create conditions that enhance the likelihood of successful amelioration. Where individuals and populations are managed effectively, habitat formers could provide local refugia for resident organisms of ecological and economic importance under an acidifying ocean.
Collapse
Affiliation(s)
- Laura J Falkenberg
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - James Ducker
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
14
|
Steyn C, Shannon L, Blamey L. Changes in food-web structure and energy flow in kelp forest ecosystems on the south-west coast of South Africa following the invasion of Jasus lalandii. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Chi X, Yang M, Hu F, Huang X, Yu Y, Chang Y, Wang Q, Zhao C. Foraging behavior of the sea urchin Mesocentrotus nudus exposed to conspecific alarm cues in various conditions. Sci Rep 2021; 11:15654. [PMID: 34341391 PMCID: PMC8329164 DOI: 10.1038/s41598-021-94969-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Conspecific alarm cues crushed from Mesocentrotus nudus prevent sea urchins from foraging the kelp, but do not repel them far away from the kelp. However, it remains largely unknown of whether this phenomenon was affected by conspecific alarm cues or by the attraction of the kelp. The present study found no significant difference in the duration in the danger area with or without the kelp around conspecific alarm cues. This suggests that the phenomenon is the strategy of sea urchins but not by the attraction of kelp. We found that conspecific alarm cues appearing between the kelp and sea urchins significantly affected foraging behavior of sea urchins fasted for 21 days. This indicates that conspecific alarm cues can effectively prevent fasted sea urchins from foraging the kelp. Further, there was no correlation between foraging velocity and the duration in the danger area. Pearson correlation analysis revealed no significant correlation between foraging velocity and the duration in the safety area close to different amounts of conspecific alarm cues, suggesting that conspecific alarm cues prevent sea urchins with strong foraging ability to forage. Collectively, the present results indicate that conspecific alarm cues as highly available biological barriers are cost-effective approaches to preventing overgrazing of sea urchins in the protection of kelp beds ecosystems. Notably, the present study is a short-term laboratory investigation that does not consider the complexity of natural conditions. Future studies are essential to test the present findings in the field.
Collapse
Affiliation(s)
- Xiaomei Chi
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Mingfang Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Fangyuan Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Xiyuan Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yushi Yu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Qingzhi Wang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
16
|
Tinker MT, Bodkin JL, Bowen L, Ballachey B, Bentall G, Burdin A, Coletti H, Esslinger G, Hatfield BB, Kenner MC, Kloecker K, Konar B, Miles AK, Monson DH, Murray MJ, Weitzman BP, Estes JA. Sea otter population collapse in southwest Alaska: assessing ecological covariates, consequences, and causal factors. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Martin Tim Tinker
- U.S. Geological Survey Western Ecological Research Center 2885 Mission St. Santa Cruz California 95060 USA
| | - James L. Bodkin
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - Lizabeth Bowen
- U.S. Geological Survey Western Ecological Research Center 3020 State University Drive Sacramento California 95819 USA
| | - Brenda Ballachey
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - Gena Bentall
- Sea Otter Savvy 1961 Main St. 199 Watsonville California 95076 USA
| | - Alexander Burdin
- Kamchatka Branch of Pacific Geographical Institute FED Russian Academy of Sciences Partizanskaya, 6 Petropavlovsk‐Kamchatsky 683000 Russia
| | - Heather Coletti
- Southwest Alaska Inventory and Monitoring Network National Park Service 4175 Geist Rd. Fairbanks Alaska 99709 USA
| | - George Esslinger
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - Brian B. Hatfield
- U.S. Geological Survey Western Ecological Research Center 2885 Mission St. Santa Cruz California 95060 USA
| | - Michael C. Kenner
- U.S. Geological Survey Western Ecological Research Center 2885 Mission St. Santa Cruz California 95060 USA
| | - Kimberly Kloecker
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - Brenda Konar
- College of Fisheries and Ocean Sciences University of Alaska Fairbanks PO Box 757220 Fairbanks Alaska 99775 USA
| | - A. Keith Miles
- U.S. Geological Survey Western Ecological Research Center 3020 State University Drive Sacramento California 95819 USA
| | - Daniel H. Monson
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | | | - Benjamin P. Weitzman
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - James A. Estes
- Department of Ecology and Evolutionary Biology University of California 130 McAllister Way Santa Cruz California 95060 USA
| |
Collapse
|
17
|
Koffel T, Daufresne T, Klausmeier CA. From competition to facilitation and mutualism: a general theory of the niche. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thomas Koffel
- W. K. Kellogg Biological Station Michigan State University Hickory Corners Michigan 49060 USA
- Program in Ecology, Evolution and Behavior Departments of Plant Biology and Integrative Biology Michigan State University East Lansing Michigan 48824 USA
| | - Tanguy Daufresne
- Department of Soil Ecology UMR 210 Eco&Sols INRA Montpellier 34060 France
| | - Christopher A. Klausmeier
- W. K. Kellogg Biological Station Michigan State University Hickory Corners Michigan 49060 USA
- Program in Ecology, Evolution and Behavior Departments of Plant Biology and Integrative Biology Michigan State University East Lansing Michigan 48824 USA
| |
Collapse
|
18
|
Thierry H, Parrott L, Robinson B. Next steps for ecosystem service models: integrating complex interactions and beneficiaries. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accounting for ecosystem services (ES)—the ways in which society and people directly benefit from ecological processes and functions—is crucial for developing sustainable landscape management approaches that consider the interrelationship between people and nature. Previous research has produced models that estimate the provision of potential ES by landscapes to help inform policy and stakeholder decision-making. However, most modelling efforts do not consider the delivery of ES to specific human populations or communities, making it difficult to evaluate any possible human welfare implications from alternative land use planning scenarios. In this paper, we first explore the recent state of science of ES modelling from the perspective of ES provision and delivery to the people that benefit from them. Second, we propose the addition of some essential aspects of complexity using the classic social–ecological system framework, crucial for developing models to inform pragmatic decision-making. Our propositions are illustrated using simplified examples inspired by sea otter conservation in the seascapes of British Columbia. Integrating these concepts in future ES models should serve as a baseline for future management approaches that more adequately capture the important implications of landscape scenarios on human well-being.
Collapse
Affiliation(s)
- Hugo Thierry
- Department of Geography, McGill University, Montreal, QC H3A 0B9, Canada
| | - Lael Parrott
- The Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Brian Robinson
- Department of Geography, McGill University, Montreal, QC H3A 0B9, Canada
| |
Collapse
|
19
|
Gregr EJ, Christensen V, Nichol L, Martone RG, Markel RW, Watson JC, Harley CDG, Pakhomov EA, Shurin JB, Chan KMA. Cascading social-ecological costs and benefits triggered by a recovering keystone predator. Science 2020; 368:1243-1247. [PMID: 32527830 DOI: 10.1126/science.aay5342] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 05/05/2020] [Indexed: 01/10/2024]
Abstract
Predator recovery often leads to ecosystem change that can trigger conflicts with more recently established human activities. In the eastern North Pacific, recovering sea otters are transforming coastal systems by reducing populations of benthic invertebrates and releasing kelp forests from grazing pressure. These changes threaten established shellfish fisheries and modify a variety of other ecosystem services. The diverse social and economic consequences of this trophic cascade are unknown, particularly across large regions. We developed and applied a trophic model to predict these impacts on four ecosystem services. Results suggest that sea otter presence yields 37% more total ecosystem biomass annually, increasing the value of finfish [+9.4 million Canadian dollars (CA$)], carbon sequestration (+2.2 million CA$), and ecotourism (+42.0 million CA$). To the extent that these benefits are realized, they will exceed the annual loss to invertebrate fisheries (-$7.3 million CA$). Recovery of keystone predators thus not only restores ecosystems but can also affect a range of social, economic, and ecological benefits for associated communities.
Collapse
Affiliation(s)
- Edward J Gregr
- Institute for Resources Environment, and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada.
- SciTech Environmental Consulting, 2136 Napier St., Vancouver, BC V5L 2N9, Canada
| | - Villy Christensen
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Linda Nichol
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd., Nanaimo, BC V9T 6N7, Canada
| | - Rebecca G Martone
- Institute for Resources Environment, and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Outer Shores Expeditions, P.O. Box 361, Cobble Hill, BC V0R 1L0, Canada
| | - Russell W Markel
- Institute for Resources Environment, and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Outer Shores Expeditions, P.O. Box 361, Cobble Hill, BC V0R 1L0, Canada
| | - Jane C Watson
- Biology Department, Vancouver Island University, 900 5th St. Nanaimo, BC V9R 5S5, Canada
| | - Christopher D G Harley
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
- Hakai Institute, P.O. Box 309, Heriot Bay, BC V0P 1H0, Canada
| | - Evgeny A Pakhomov
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Hakai Institute, P.O. Box 309, Heriot Bay, BC V0P 1H0, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan B Shurin
- Section of Ecology, Behavior and Evolution, University of California, San Diego, 9500 Gilman Dr. #0116, La Jolla, CA 92093, USA
| | - Kai M A Chan
- Institute for Resources Environment, and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
20
|
Burt JM, Wilson ḴBJ, Malchoff T, Mack WA, Davidson SHA, Gitkinjuaas, Salomon AK. Enabling coexistence: Navigating predator‐induced regime shifts in human‐ocean systems. PEOPLE AND NATURE 2020. [DOI: 10.1002/pan3.10090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jenn M. Burt
- School of Resource & Environmental Management Simon Fraser University Burnaby BC Canada
- Hakai Institute Heriot Bay BC Canada
| | | | | | | | | | | | - Anne K. Salomon
- School of Resource & Environmental Management Simon Fraser University Burnaby BC Canada
- Hakai Institute Heriot Bay BC Canada
| |
Collapse
|
21
|
Affiliation(s)
- Margaret A. Malone
- Dept of Biological Sciences, Univ. of Illinois at Chicago 845 West Taylor Street (M/C 066) Chicago IL 60607 USA
- Field Museum of Natural History Chicago IL USA
| | - Abdel H. Halloway
- Dept of Biological Sciences, Univ. of Illinois at Chicago 845 West Taylor Street (M/C 066) Chicago IL 60607 USA
- Dept of Botany and Plant Physiology, Purdue Univ. West Lafayette IN USA
| | - Joel S. Brown
- Dept of Biological Sciences, Univ. of Illinois at Chicago 845 West Taylor Street (M/C 066) Chicago IL 60607 USA
- Integrated Mathematical Oncology, Moffitt Cancer Center Tampa FL USA
| |
Collapse
|
22
|
Shanebeck KM, Lakemeyer J, Siebert U, Lehnert K. Novel infections of Corynosoma enhydri and Profilicollis sp. (Acanthocephala: Polymorphidae) identified in sea otters Enhydra lutris. DISEASES OF AQUATIC ORGANISMS 2020; 137:239-246. [PMID: 32132276 DOI: 10.3354/dao03442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Infectious disease is a major cause of mortality for sea otters Enhydra lutris, a keystone species of continued concern for conservationists. Parasitic infection has long been identified as a cause of mortality in otters in both Alaska and California, USA. Corynosoma enhydri (Acanthocephala) is the only parasite that uses sea otters as its primary definitive host and is highly prevalent in otter populations; however, it is generally considered unimportant both pathologically and ecologically, although this assumption is based on limited empirical knowledge. Research has instead focused on Profilicollis infections (P. major, P. kenti, P. altmani) as a significant source of otter mortality due to associated enteritis and peritonitis, which are threats to otter health. Here we describe acanthocephalan infections in sea otters by Profilicollis spp. and C. enhydri, from a survey comparing C. enhydri infections between northern sea otters E. lutris kenyoni (n = 12) and southern sea otters E. lutris nereis (n = 19). We report a novel infection of C. enhydri in a pup approximately 1 mo of age, which shows that the early introduction to solid food at around 3 wk by their mothers may lead to subsequent infection via infected prey items. We also document the first 2 known cases of Profilicollis infection in northern sea otters, which may present an unknown threat to the Alaskan population, or may be an interesting example of accidental infection.
Collapse
Affiliation(s)
- Kyle M Shanebeck
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Werftstr. 6, 25761 Büsum, Germany
| | | | | | | |
Collapse
|
23
|
Zhadan PM, Vaschenko MA. Long-term study of behaviors of two cohabiting sea urchin species, Mesocentrotus nudus and Strongylocentrotus intermedius, under conditions of high food quantity and predation risk in situ. PeerJ 2019; 7:e8087. [PMID: 31772840 PMCID: PMC6876488 DOI: 10.7717/peerj.8087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Background In the predator–sea urchin–macrophyte trophic cascade, the ecological effect of sea urchins as grazers depends both on their density and the changes in foraging activity, which are influenced by various disturbing factors. However, the complete duration of the alarm reactions of echinoids has not been studied until now. Here, we tested a hypothesis that two cohabiting sea urchins, Mesocentrotus nudus and Strongylocentrotus intermedius, which differ morphologically, might display different behavioral responses to high hydrodynamic activity and predation. Methods We used continuous time-lapse video recording to clarify behavioral patterns of M. nudus and S. intermedius in presence of a large quantity of food (the kelp Saccharina japonica) but under different weather conditions and different types of predation threat: (1) calm weather conditions, (2) stormy weather conditions, (3) predation risk associated with the presence of several sea star species and (4) predation risk associated with an alarm stimulus (crushed conspecifics or heterospecifics). Three separate video recording experiments (134 days in total) were conducted under field conditions. Video recording analysis was performed to determine the number of specimens of each sea urchin species in the cameras’ field of view, size of sea urchins’ groups, movement patterns and the duration of the alarm responses of both sea urchin species. Results We showed that in the presence of kelp, M. nudus and S. intermedius exhibited both similar and different behavioral responses to hydrodynamics and predation threat. Under calm weather, movement patterns of both echinoids were similar but M. nudus exhibited the higher locomotion speed and distance traveled. Furthermore, S. intermedius but not M. nudus tended to group near the food substrate. The stormy weather caused a sharp decrease in movement activity followed by escape response in both echinoids. Six starfish species failed to predate on healthy sea urchins of either species and only a few attacks on ailing S. intermedius specimens were successful. The alarm response of S. intermedius lasted approximately 90 h and 20 h for starfish attacks on ailing conspecifics and for simulated attacks (crushed conspecifics or heterospecifics), respectively and involved several phases: (1) flight response, (2) grouping close to the food, (3) leaving the food and (4) return to the food. Phase three was the more pronounced in a case of starfish attack. M. nudus only responded to crushed conspecifics and exhibited no grouping behavior but displayed fast escape (during 4 h) and prolonged (up to 19 days) avoidance of the food source. This outcome is the longest alarm response reported for sea urchins. Discussion The most interesting finding is that two cohabiting sea urchin species, M. nudus and S. intermedius, display different alarm responses to predation threat. Both alarm responses are interpreted as defensive adaptations against visual predators.
Collapse
Affiliation(s)
- Peter M Zhadan
- Department of Geochemistry and Ecology of the Ocean, V. I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| | - Marina A Vaschenko
- Laboratory of Physiology, A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS, Vladivostok, Russia
| |
Collapse
|
24
|
McMahan MD, Grabowski JH. Nonconsumptive effects of a range‐expanding predator on juvenile lobster ( Homarus americanus) population dynamics. Ecosphere 2019. [DOI: 10.1002/ecs2.2867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Marissa D. McMahan
- Marine Science Center Northeastern University 430 Nahant Rd Nahant Massachusetts 01908 USA
- Manomet 14 Maine Street Brunswick Maine 04011 USA
| | - Jonathan H. Grabowski
- Marine Science Center Northeastern University 430 Nahant Rd Nahant Massachusetts 01908 USA
| |
Collapse
|
25
|
Olson AM, Hessing-Lewis M, Haggarty D, Juanes F. Nearshore seascape connectivity enhances seagrass meadow nursery function. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01897. [PMID: 31125160 DOI: 10.1002/eap.1897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/25/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Diverse habitats composing coastal seascapes occur in close proximity, connected by the flux of materials and fauna across habitat boundaries. Understanding how seascape connectivity alters important ecosystem functions for fish, however, is not well established. For a seagrass-dominant seascape, we predicted that configuration and composition of adjacent habitats would alter habitat access for fauna and trophic subsidies, enhancing nursery function for juvenile fish. In an extensive Zostera marina seagrass meadow, we established sites adjacent to (1) highly complex and productive kelp forests (Nereocystis luetkeana), (2) unvegetated sand habitats, and (3) in the seagrass meadow interior. Using SCUBA, we conducted underwater observations of young-of the-year (YOY) rockfish (Sebastes spp.) recruitment across sites. Using generalized linear mixed effects models, we assessed the role of seascape adjacency relative to seagrass provisions (habitat complexity and prey) on YOY recruitment. YOY rockfish collections were used to trace sources of allochthonous vs. autochthonous primary production in the seagrass food web, via a δ13 C and δ15 N isotopic mixing model, and prey consumption using stomach contents. Overall, seagrass nursery function was strongly influenced by adjacent habitats and associated subsidies. Allochthonous N. luetkeana was the greatest source of energy assimilated by YOY rockfish within seagrass sites. In seagrass sites adjacent to N. luetkeana kelp forests, YOYs consumed higher quality prey, which corresponded with better body condition relative to sites adjacent to sand. Moreover, kelp forest adjacency enhanced YOY rockfish recruitment within the seagrass meadow, suggesting that habitat complexity is a key seascape feature influencing the nursery function of nearshore habitats. In general, to promote seascape connectivity, the conservation and restoration of nursery habitats should prioritize the inclusion of habitat mosaics of high structural complexity and productivity. We illustrate and emphasize the importance of using a seascape-level approach that considers linkages among habitats for the management of important nearshore ecosystem functions.
Collapse
Affiliation(s)
- Angeleen M Olson
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
- Hakai Institute, P.O. Box 309, Heriot Bay, British Columbia, V0P 1H0, Canada
| | | | - Dana Haggarty
- Stock Assessment and Research Division, Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
26
|
Levitan DR, Buchwalter R, Hao Y. The evolution of gametic compatibility and compatibility groups in the sea urchin
Mesocentrotus franciscanus
: An avenue for speciation in the sea. Evolution 2019; 73:1428-1442. [DOI: 10.1111/evo.13766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/02/2019] [Accepted: 05/11/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Don R. Levitan
- Department of Biological Science Florida State University Tallahassee Florida 32306
| | - Rebecca Buchwalter
- Department of Biological Science Florida State University Tallahassee Florida 32306
| | - Yueling Hao
- Department of Biological Science Florida State University Tallahassee Florida 32306
| |
Collapse
|
27
|
Christie H, Gundersen H, Rinde E, Filbee‐Dexter K, Norderhaug KM, Pedersen T, Bekkby T, Gitmark JK, Fagerli CW. Can multitrophic interactions and ocean warming influence large-scale kelp recovery? Ecol Evol 2019; 9:2847-2862. [PMID: 30891221 PMCID: PMC6405503 DOI: 10.1002/ece3.4963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/05/2018] [Accepted: 01/08/2019] [Indexed: 11/07/2022] Open
Abstract
Ongoing changes along the northeastern Atlantic coastline provide an opportunity to explore the influence of climate change and multitrophic interactions on the recovery of kelp. Here, vast areas of sea urchin-dominated barren grounds have shifted back to kelp forests, in parallel with changes in sea temperature and predator abundances. We have compiled data from studies covering more than 1,500-km coastline in northern Norway. The dataset has been used to identify regional patterns in kelp recovery and sea urchin recruitment, and to relate these to abiotic and biotic factors, including structurally complex substrates functioning as refuge for sea urchins. The study area covers a latitudinal gradient of temperature and different levels of predator pressure from the edible crab (Cancer pagurus) and the red king crab (Paralithodes camtschaticus). The population development of these two sea urchin predators and a possible predator on crabs, the coastal cod (Gadus morhua), were analyzed. In the southernmost and warmest region, kelp forests recovery and sea urchin recruitment are mainly low, although sea urchins might also be locally abundant. Further north, sea urchin barrens still dominate, and juvenile sea urchin densities are high. In the northernmost and cold region, kelp forests are recovering, despite high recruitment and densities of sea urchins. Here, sea urchins were found only in refuge habitats, whereas kelp recovery occurred mainly on open bedrock. The ocean warming, the increase in the abundance of edible crab in the south, and the increase in invasive red king crab in the north may explain the observed changes in kelp recovery and sea urchin distribution. The expansion of both crab species coincided with a population decline in the top-predator coastal cod. The role of key species (sea urchins, kelp, cod, and crabs) and processes involved in structuring the community are hypothesized in a conceptual model, and the knowledge behind the suggested links and interactions is explored.
Collapse
Affiliation(s)
| | | | - Eli Rinde
- Norwegian Institute for Water ResearchOsloNorway
| | | | - Kjell Magnus Norderhaug
- Department of BiologyUniversity of OsloOsloNorway
- Institute of Marine Research, FlødevigenHisNorway
| | - Torstein Pedersen
- Department of Arctic and Marine BiologyArctic University of NorwayTromsøNorway
| | - Trine Bekkby
- Norwegian Institute for Water ResearchOsloNorway
| | | | | |
Collapse
|
28
|
Dunn RP, Hovel KA. Experiments reveal limited top-down control of key herbivores in southern California kelp forests. Ecology 2019; 100:e02625. [PMID: 30648729 DOI: 10.1002/ecy.2625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/21/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022]
Abstract
Predator responses to gradients in prey density have important implications for population regulation and are a potential structuring force for subtidal marine communities, particularly on rocky reefs where herbivorous sea urchins can drive community state shifts. On rocky reefs in southern California where predatory sea otters have been extirpated, top-down control of sea urchins by alternative predators has been hypothesized but rarely tested experimentally. In laboratory feeding assays, predatory spiny lobsters (Panulirus interruptus) demonstrated a saturating functional response to urchin prey, whereby urchin proportional mortality was inversely density-dependent. In field experiments on rocky reefs near San Diego, California, predators (primarily the labrid fish California sheephead, Semicossyphus pulcher) inflicted highly variable mortality on purple urchin (Strongylocentrotus purpuratus) prey across all density levels. However, at low to moderate densities commonly observed within kelp forests, purple urchin mortality increased to a peak at a density of ~11 urchins/m2 . Above that level, at densities typical of urchin barrens, purple urchin mortality was density-independent. When larger red urchins (Mesocentrotus franciscanus) were offered to predators simultaneously with purple urchins, mortality was density-independent. Underwater videography revealed a positive relationship between purple urchin density and both the number and richness of fish predators, but these correlations were not observed when red urchins were present. Our results demonstrate highly variable mortality rates across prey densities in this system and suggest that top-down control of urchins can occur only under limited circumstances. Our findings provide insight into the dynamics of alternate community states observed on rocky reefs.
Collapse
Affiliation(s)
- Robert P Dunn
- Department of Biology, Coastal and Marine Institute, San Diego State University, San Diego, California, 92182, USA
- Department of Environmental Science and Policy, University of California Davis, Davis, California, 95616, USA
| | - Kevin A Hovel
- Department of Biology, Coastal and Marine Institute, San Diego State University, San Diego, California, 92182, USA
| |
Collapse
|
29
|
Rechsteiner EU, Watson JC, Tinker MT, Nichol LM, Morgan Henderson MJ, McMillan CJ, DeRoos M, Fournier MC, Salomon AK, Honka LD, Darimont CT. Sex and occupation time influence niche space of a recovering keystone predator. Ecol Evol 2019; 9:3321-3334. [PMID: 30962895 PMCID: PMC6434543 DOI: 10.1002/ece3.4953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 11/12/2022] Open
Abstract
Predators exert strong effects on ecological communities, particularly when they re-occupy areas after decades of extirpation. Within species, such effects can vary over time and by sex and cascade across trophic levels. We used a space-for-time substitution to make foraging observations of sea otters (Enhydra lutris) across a gradient of reoccupation time (1-30 years), and nonmetric multidimensional scaling (nMDS) analysis to ask whether (a) sea otter niche space varies as a function of occupation time and (b) whether niche space varies by sex. We found that niche space varied among areas of different occupation times. Dietary niches at short occupation times were dominated by urchins (Mesocentrotus and Strongylocentrotus spp; >60% of diets) in open habitats at 10-40 m depths. At longer occupation times, niches were dominated by small clams (Veneroida; >30% diet), mussels (Mytilus spp; >20% diet), and crab (Decapoda; >10% diet) in shallow (<10 m) kelp habitats. Diet diversity was lowest (H' = 1.46) but energy rich (~37 kcal/min) at the earliest occupied area and highest, but energy poor (H' = 2.63, ~9 kcal/min) at the longest occupied area. A similar transition occurred through time at a recently occupied area. We found that niche space also differed between sexes, with bachelor males consuming large clams (>60%), and urchins (~25%) from deep waters (>40 m), and females and territorial males consuming smaller, varied prey from shallow waters (<10 m). Bachelor male diets were less diverse (H' = 2.21) but more energy rich (~27 kcal/min) than territorial males (H' = 2.54, ~13 kcal/min) and females (H' = 2.74, ~11 kcal/min). Given recovering predators require adequate food and space, and the ecological interactions they elicit, we emphasize the importance of investigating niche space over the duration of recovery and considering sex-based differences in these interactions.
Collapse
Affiliation(s)
- Erin U. Rechsteiner
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
| | - Jane C. Watson
- Vancouver Island UniversityNanaimoBritish ColumbiaCanada
| | - M. Tim Tinker
- Department of Ecology and Evolutionary BiologyUniversity of California at Santa CruzSanta CruzCalifornia
- Nhydra Ecological ConsultingSt. Margaret's BayNova ScotiaCanada
| | - Linda M. Nichol
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBritish ColumbiaCanada
| | | | - Christie J. McMillan
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- Marine Education and Research SocietyPort McNeillBritish ColumbiaCanada
| | - Mike DeRoos
- Hakai InstituteHeriot BayBritish ColumbiaCanada
| | | | - Anne K. Salomon
- School of Resource and Environmental ManagementSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Leah D. Honka
- Salmon Watersheds ProgramPacific Salmon FoundationVancouverBritish ColumbiaCanada
| | - Chris T. Darimont
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
| |
Collapse
|
30
|
Macroalgal forests and sea urchin barrens: Structural complexity loss, fisheries exploitation and catastrophic regime shifts. ECOLOGICAL COMPLEXITY 2019. [DOI: 10.1016/j.ecocom.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Shelton AO, Harvey CJ, Samhouri JF, Andrews KS, Feist BE, Frick KE, Tolimieri N, Williams GD, Antrim LD, Berry HD. From the predictable to the unexpected: kelp forest and benthic invertebrate community dynamics following decades of sea otter expansion. Oecologia 2018; 188:1105-1119. [PMID: 30311056 DOI: 10.1007/s00442-018-4263-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
The recovery of predators has the potential to restore ecosystems and fundamentally alter the services they provide. One iconic example of this is keystone predation by sea otters in the Northeast Pacific. Here, we combine spatial time series of sea otter abundance, canopy kelp area, and benthic invertebrate abundance from Washington State, USA, to examine the shifting consequences of sea otter reintroduction for kelp and kelp forest communities. We leverage the spatial variation in sea otter recovery to understand connections between sea otters and the kelp forest community. Sea otter increases created a pronounced decline in sea otter prey-particularly kelp-grazing sea urchins-and led to an expansion of canopy kelps from the late 1980s until roughly 2000. However, while sea otter and kelp population growth rates were positively correlated prior to 2002, this association disappeared over the last two decades. This disconnect occurred despite surveys showing that sea otter prey have continued to decline. Kelp area trends are decoupled from both sea otter and benthic invertebrate abundance at current densities. Variability in kelp abundance has declined in the most recent 15 years, as it has the synchrony in kelp abundance among sites. Together, these findings suggest that initial nearshore community responses to sea otter population expansion follow predictably from trophic cascade theory, but now, other factors may be as or more important in influencing community dynamics. Thus, the utility of sea otter predation in ecosystem restoration must be considered within the context of complex and shifting environmental conditions.
Collapse
Affiliation(s)
- Andrew O Shelton
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA.
| | - Chris J Harvey
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA
| | - Jameal F Samhouri
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA
| | - Kelly S Andrews
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA
| | - Blake E Feist
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA
| | - Kinsey E Frick
- Fisheries Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA
| | - Nick Tolimieri
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA
| | - Gregory D Williams
- Pacific States Marine Fisheries Commission, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA
| | - Liam D Antrim
- Olympic Coast National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, 115 E. Railroad Ave. Suite #301, Port Angeles, WA, 98362, USA
| | - Helen D Berry
- Washington State Department of Natural Resources, 1111 Washington St. SE, Olympia, WA, 98501, USA
| |
Collapse
|
32
|
Lee LC, Thorley J, Watson J, Reid M, Salomon AK. Diverse knowledge systems reveal social–ecological dynamics that inform species conservation status. Conserv Lett 2018. [DOI: 10.1111/conl.12613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Lynn Chi Lee
- School of Resource and Environmental Management Simon Fraser University Burnaby British Columbia Canada
| | - Joe Thorley
- Poisson Consulting Ltd. Nelson British Columbia Canada
| | - Jane Watson
- Biology Department Vancouver Island University Nanaimo British Columbia Canada
| | - Mike Reid
- Heiltsuk Integrated Resource Management Department Bella Bella British Columbia Canada
| | - Anne Katherine Salomon
- School of Resource and Environmental Management Simon Fraser University Burnaby British Columbia Canada
| |
Collapse
|
33
|
McClanahan TR, Muthiga NA. Geographic extent and variation of a coral reef trophic cascade. Ecology 2018; 97:1862-1872. [PMID: 27859162 DOI: 10.1890/15-1492.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/12/2016] [Accepted: 02/10/2016] [Indexed: 11/18/2022]
Abstract
Trophic cascades caused by a reduction in predators of sea urchins have been reported in Indian Ocean and Caribbean coral reefs. Previous studies have been constrained by their site-specific nature and limited spatial replication, which has produced site and species-specific understanding that can potentially preclude larger community-organization nuances and generalizations. In this study, we aimed to evaluate the extent and variability of the cascade community in response to fishing across ~23° of latitude and longitude in coral reefs in the southwestern Indian Ocean. The taxonomic composition of predators of sea urchins, the sea urchin community itself, and potential effects of changing grazer abundance on the calcifying benthic organisms were studied in 171 unique coral reef sites. We found that geography and habitat were less important than the predator-prey relationships. There were seven sea urchin community clusters that aligned with a gradient of declining fishable biomass and the abundance of a key predator, the orange-lined triggerfish (Balistapus undulatus). The orange-lined triggerfish dominated where sea urchin numbers and diversity were low but the relative abundance of wrasses and emperors increased where sea urchin numbers were high. Two-thirds of the study sites had high sea urchin biomass (>2,300 kg/ha) and could be dominated by four different sea urchin species, Echinothrix diadema, Diadema savignyi, D. setosum, and Echinometra mathaei, depending on the community of sea urchin predators, geographic location, and water depth. One-third of the sites had low sea urchin biomass and diversity and were typified by high fish biomass, predators of sea urchins, and herbivore abundance, representing lightly fished communities with generally higher cover of calcifying algae. Calcifying algal cover was associated with low urchin abundance where as noncalcifying fleshy algal cover was not clearly associated with herbivore abundance. Fishing of the orange-lined triggerfish, an uncommon, slow-growing by-catch species with little monetary value drives the cascade and other predators appear unable to replace its ecological role in the presence of fishing. This suggests that restrictions on the catch of this species could increase the calcification service of coral reefs on a broad scale.
Collapse
Affiliation(s)
- T R McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, New York, 10460, USA
| | - N A Muthiga
- Wildlife Conservation Society, Marine Programs, Bronx, New York, 10460, USA.,Wildlife Conservation Society, Marine Programs, POB 99470 - 80107, Mombasa, Kenya
| |
Collapse
|
34
|
Strobel SM, Sills JM, Tinker MT, Reichmuth CJ. Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae. J Exp Biol 2018; 221:221/18/jeb181347. [DOI: 10.1242/jeb.181347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/02/2018] [Indexed: 01/20/2023]
Abstract
ABSTRACT
Sea otters (Enhydra lutris) are marine predators that forage on a wide array of cryptic, benthic invertebrates. Observational studies and anatomical investigations of the sea otter somatosensory cortex suggest that touch is an important sense for detecting and capturing prey. Sea otters have two well-developed tactile structures: front paws and facial vibrissae. In this study, we use a two-alternative forced choice paradigm to investigate tactile sensitivity of a sea otter subject's paws and vibrissae, both in air and under water. We corroborate these measurements by testing human subjects with the same experimental paradigm. The sea otter showed good sensitivity with both tactile structures, but better paw sensitivity (Weber fraction, c=0.14) than vibrissal sensitivity (c=0.24). The sea otter's sensitivity was similar in air and under water for paw (cair=0.12, cwater=0.15) and for vibrissae (cair=0.24, cwater=0.25). Relative to the human subjects we tested, the sea otter achieved similar sensitivity when using her paw and responded approximately 30-fold faster regardless of difficulty level. Relative to non-human mammalian tactile specialists, the sea otter achieved similar or better sensitivity when using either her paw or vibrissae and responded 1.5- to 15-fold faster near threshold. Our findings suggest that sea otters have sensitive, rapid tactile processing capabilities. This functional test of anatomy-based hypotheses provides a mechanistic framework to interpret adaptations and behavioral strategies used by predators to detect and capture cryptic prey in aquatic habitats.
Collapse
Affiliation(s)
- Sarah McKay Strobel
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - Jillian M. Sills
- Institute of Marine Sciences, Long Marine Laboratory, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - M. Tim Tinker
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - Colleen J. Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, 115 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
35
|
Hessing-Lewis M, Rechsteiner EU, Hughes BB, Tim Tinker M, Monteith ZL, Olson AM, Henderson MM, Watson JC. Ecosystem features determine seagrass community response to sea otter foraging. MARINE POLLUTION BULLETIN 2018; 134:134-144. [PMID: 29221592 DOI: 10.1016/j.marpolbul.2017.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Comparing sea otter recovery in California (CA) and British Columbia (BC) reveals key ecosystem properties that shape top-down effects in seagrass communities. We review potential ecosystem drivers of sea otter foraging in CA and BC seagrass beds, including the role of coastline complexity and environmental stress on sea otter effects. In BC, we find greater species richness across seagrass trophic assemblages. Furthermore, Cancer spp. crabs, an important link in the seagrass trophic cascade observed in CA, are less common. Additionally, the more recent reintroduction of sea otters, more complex coastline, and reduced environmental stress in BC seagrass habitats supports the hypotheses that sea otter foraging pressure is currently reduced there. In order to manage the ecosystem features that lead to regional differences in top predator effects in seagrass communities, we review our findings, their spatial and temporal constraints, and present a social-ecological framework for future research.
Collapse
Affiliation(s)
| | - Erin U Rechsteiner
- Hakai Institute, PO Box 309, Heriot Bay, BC V0P 1H0, Canada; Applied Conservation Science Lab, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4, Canada
| | - Brent B Hughes
- Institute of Marine Science, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA; Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - M Tim Tinker
- U.S. Geological Survey, Western Ecological Research Center, Long Marine Laboratory, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | | | | | | | - Jane C Watson
- Biology Department, Vancouver Island University, 900 Fifth St., Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
36
|
Shapiro K, Silver M, Byrne BA, Berardi T, Aguilar B, Melli A, Smith WA. Fecal indicator bacteria and zoonotic pathogens in marine snow and California mussels (Mytilus californianus). FEMS Microbiol Ecol 2018; 94:5078863. [DOI: 10.1093/femsec/fiy172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Karen Shapiro
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis,One Shields Ave, CA 95616, USA
- One Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Mary Silver
- Ocean Sciences Department, Institute of Marine Sciences, University of California, 1156 High St., Santa Cruz, CA 95064, USA
| | - Barbara A Byrne
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis,One Shields Ave, CA 95616, USA
| | - Terra Berardi
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis,One Shields Ave, CA 95616, USA
| | - Beatriz Aguilar
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis,One Shields Ave, CA 95616, USA
| | - Ann Melli
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis,One Shields Ave, CA 95616, USA
| | - Woutrina A Smith
- One Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
37
|
Burt JM, Tinker MT, Okamoto DK, Demes KW, Holmes K, Salomon AK. Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts. Proc Biol Sci 2018; 285:20180553. [PMID: 30051864 PMCID: PMC6083256 DOI: 10.1098/rspb.2018.0553] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/04/2018] [Indexed: 11/12/2022] Open
Abstract
While changes in the abundance of keystone predators can have cascading effects resulting in regime shifts, the role of mesopredators in these processes remains underexplored. We conducted annual surveys of rocky reef communities that varied in the recovery of a keystone predator (sea otter, Enhydra lutris) and the mass mortality of a mesopredator (sunflower sea star, Pycnopodia helianthoides) due to an infectious wasting disease. By fitting a population model to empirical data, we show that sea otters had the greatest impact on the mortality of large sea urchins, but that Pycnopodia decline corresponded to a 311% increase in medium urchins and a 30% decline in kelp densities. Our results reveal that predator complementarity in size-selective prey consumption strengthens top-down control on urchins, affecting the resilience of alternative reef states by reinforcing the resilience of kelp forests and eroding the resilience of urchin barrens. We reveal previously underappreciated species interactions within a 'classic' trophic cascade and regime shift, highlighting the critical role of middle-level predators in mediating rocky reef state transitions.
Collapse
Affiliation(s)
- Jenn M Burt
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Hakai Institute, Heriot Bay, British Columbia, Canada V0P 1H0
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Daniel K Okamoto
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Kyle W Demes
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Hakai Institute, Heriot Bay, British Columbia, Canada V0P 1H0
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Keith Holmes
- Hakai Institute, Heriot Bay, British Columbia, Canada V0P 1H0
| | - Anne K Salomon
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Hakai Institute, Heriot Bay, British Columbia, Canada V0P 1H0
| |
Collapse
|
38
|
Spyksma AJP, Shears NT, Taylor RB. Predators indirectly induce stronger prey through a trophic cascade. Proc Biol Sci 2018; 284:rspb.2017.1440. [PMID: 29093219 DOI: 10.1098/rspb.2017.1440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/04/2017] [Indexed: 11/12/2022] Open
Abstract
Many prey species induce defences in direct response to predation cues. However, prey defences could also be enhanced by predators indirectly via mechanisms that increase resource availability to prey, e.g. trophic cascades. We evaluated the relative impacts of these direct and indirect effects on the mechanical strength of the New Zealand sea urchin Evechinus chloroticus We measured crush-resistance of sea urchin tests (skeletons) in (i) two marine reserves, where predators of sea urchins are relatively common and have initiated a trophic cascade resulting in abundant food for surviving urchins in the form of kelp, and (ii) two adjacent fished areas where predators and kelps are rare. Sea urchins inhabiting protected rocky reefs with abundant predators and food had more crush-resistant tests than individuals on nearby fished reefs where predators and food were relatively rare. A six-month long mesocosm experiment showed that while both food supply and predator cues increased crush-resistance, the positive effect of food supply on crush-resistance was greater. Our results demonstrate a novel mechanism whereby a putative morphological defence in a prey species is indirectly strengthened by predators via cascading predator effects on resource availability. This potentially represents an important mechanism that promotes prey persistence in the presence of predators.
Collapse
Affiliation(s)
- Arie J P Spyksma
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Nick T Shears
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Richard B Taylor
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
39
|
Rechsteiner EU, Wickham SB, Watson JC. Predator effects link ecological communities: kelp created by sea otters provides an unexpected subsidy to bald eagles. Ecosphere 2018. [DOI: 10.1002/ecs2.2271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Erin U. Rechsteiner
- Hakai Institute P.O. Box 309 Heriot Bay British Columbia V0P 1H0 Canada
- Applied Conservation Science Lab University of Victoria P.O. Box 3060 STN CSC Victoria British Columbia V8W 3R4 Canada
| | - Sara B. Wickham
- Hakai Institute P.O. Box 309 Heriot Bay British Columbia V0P 1H0 Canada
- School of Environmental Studies University of Victoria P.O. Box 1700 STN CSC Victoria British Columbia V8W 2Y2 Canada
| | - Jane C. Watson
- Biology Department Vancouver Island University 900 Fifth Street Nanaimo British Columbia V9R 5S5 Canada
| |
Collapse
|
40
|
Kenner MC, Tinker MT. Stability and Change in Kelp Forest Habitats at San Nicolas Island. WEST N AM NATURALIST 2018. [DOI: 10.3398/064.078.0407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Michael C. Kenner
- University of California Santa Cruz, Long Marine Laboratory, 115 McAllister Way, Santa Cruz, CA 95060
| | - M. Tim Tinker
- U.S. Geological Survey, Western Ecological Research Center, Long Marine Laboratory, 115 McAllister Way, Santa Cruz, CA 95060
| |
Collapse
|
41
|
Filbee-Dexter K, Wernberg T. Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests. Bioscience 2018. [DOI: 10.1093/biosci/bix147] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Hempson TN, Graham NAJ, MacNeil MA, Hoey AS, Wilson SK. Ecosystem regime shifts disrupt trophic structure. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:191-200. [PMID: 29035010 DOI: 10.1002/eap.1639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/19/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability.
Collapse
Affiliation(s)
- Tessa N Hempson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Nicholas A J Graham
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - M Aaron MacNeil
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- Department of Biology, Ocean Frontier Institute, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Queensland, 4810, Australia
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Marine Science Program, 17 Dick Perry Avenue, Kensington, Perth, Western Australia, 6151, Australia
- Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
43
|
Levitan DR. Do Sperm Really Compete and Do Eggs Ever Have a Choice? Adult Distribution and Gamete Mixing Influence Sexual Selection, Sexual Conflict, and the Evolution of Gamete Recognition Proteins in the Sea. Am Nat 2017; 191:88-105. [PMID: 29244565 DOI: 10.1086/694780] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evolution of gametic compatibility and the effectiveness of compatibility, within and across species, depend on whether sperm from different males directly compete for an egg and whether eggs ever have a choice. Direct sperm competition and egg choice depend on whether sperm from different males arrive at an egg in the brief interval between first sperm contact and fertilization. Although this process may be relevant for all sexually reproducing organisms, it is most easily examined in aquatic external fertilizers. When sperm are released into the sea, packets of seawater at the spatial scale relevant to single eggs might contain sperm from only one male, eliminating the potential for direct sperm competition and egg choice. Field experiments and a simple heuristic model examining the degree of sperm mixing for the sea urchin Strongylocentrotus franciscanus indicate that degree of competitive fertilization depends on density and distribution of competing males and that the nature of this competition influences whether males with high- or low-affinity gamete recognition protein genotypes have higher reproductive success. These results provide a potential explanation for the generation and maintenance of variation in gamete recognition proteins and why effectiveness of conspecific sperm precedence can be density dependent.
Collapse
|
44
|
Levine J, Muthukrishna M, Chan KMA, Satterfield T. Sea otters, social justice, and ecosystem-service perceptions in Clayoquot Sound, Canada. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2017; 31:343-352. [PMID: 27406400 DOI: 10.1111/cobi.12795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/02/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
We sought to take a first step toward better integration of social concerns into empirical ecosystem service (ES) work. We did this by adapting cognitive anthropological techniques to study the Clayoquot Sound social-ecological system on the Pacific coast of Canada's Vancouver Island. We used freelisting and ranking exercises to elicit how locals perceive ESs and to determine locals' preferred food species. We analyzed these data with the freelist-analysis software package ANTHROPAC. We considered the results in light of an ongoing trophic cascade caused by the government reintroduction of sea otters (Enhydra lutris) and their spread along the island's Pacific coast. We interviewed 67 local residents (n = 29 females, n = 38 males; n = 26 self-identified First Nation individuals, and n = 41 non-First Nation individuals) and 4 government managers responsible for conservation policy in the region. We found that the mental categories participants-including trained ecologists-used to think about ESs, did not match the standard academic ES typology. With reference to the latest ecological model projections for the region, we found that First Nations individuals and women were most likely to perceive the most immediate ES losses from the trophic cascade, with the most certainty. The inverse was found for men and non-First Nations individuals, generally. This suggests that 2 historically disadvantaged groups (i.e., First Nations and women) are poised to experience the immediate impacts of the government-initiated trophic cascade as yet another social injustice in a long line of perceived inequities. Left unaddressed, this could complicate efforts at multistakeholder ecosystem management in the region.
Collapse
Affiliation(s)
- Jordan Levine
- Institute for Resources, Environment and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Michael Muthukrishna
- Department of Social Psychology, London School of Economics, 3rd Floor Queens House, 55/56 Lincoln's Inn Fields, London, WC2A 3LJ, U.K
| | - Kai M A Chan
- Institute for Resources, Environment and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Terre Satterfield
- Institute for Resources, Environment and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
45
|
Spyksma AJP, Taylor RB, Shears NT. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin. Oecologia 2017; 183:821-829. [PMID: 28091726 DOI: 10.1007/s00442-017-3809-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/03/2017] [Indexed: 11/30/2022]
Abstract
It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.
Collapse
Affiliation(s)
- Arie J P Spyksma
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Auckland, New Zealand.
| | - Richard B Taylor
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Nick T Shears
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Rustici M, Ceccherelli G, Piazzi L. Predator exploitation and sea urchin bistability: Consequence on benthic alternative states. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2016.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Filbee-Dexter K, Scheibling RE. The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins. Ecology 2017; 98:253-264. [PMID: 28052391 DOI: 10.1002/ecy.1638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/27/2016] [Accepted: 10/13/2016] [Indexed: 11/06/2022]
Abstract
Understanding processes that drive sudden shifts in ecosystem structure and function has become an important research focus for coastal management. In kelp bed ecosystems, regime shifts occur when high densities of sea urchins destructively graze kelp and create coralline algal barrens. While the importance of predation and disease in mediating shifts between kelp beds and barrens on shallow rocky reefs has been well documented, little is known about the role of deep-living urchins in these alternative stable-state dynamics. In this study, we test the hypothesis that deep-living urchins along the central Atlantic coast of Nova Scotia move onshore and trigger shifts from kelp beds to barrens on shallow rocky reefs. We documented urchin distribution and abundance using tow-camera surveys down to 140 m depth and spanning 140 km of coast and created a predictive species-distribution model using these observations and spatial data on environmental factors that likely delineate suitable habitat for urchins. We used a random forest model to generate our predictions, which correctly classified 91% of observations into a positive or negative occurrence of urchins. Sea urchins predominantly occurred within 1.5 km of shore, in depressions and flat habitats between 40 and 85 m depth. We found that shallow regions where destructive grazing fronts have been documented over the past four decades were closer to deep-living sea urchin habitats compared to regions that remained in a kelp bed state during the same period. This supports our prediction that deep-living urchins play an important role in driving shallow regime shift dynamics, and indicates that their distribution can help identify areas of coast that are most vulnerable to a collapse to barrens.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Robert E Scheibling
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
48
|
Lee LC, Watson JC, Trebilco R, Salomon AK. Indirect effects and prey behavior mediate interactions between an endangered prey and recovering predator. Ecosphere 2016. [DOI: 10.1002/ecs2.1604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- L. C. Lee
- School of Resource and Environmental Management Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
- Hakai Institute Heriot Bay British Columbia V0P 1H0 Canada
| | - J. C. Watson
- Biology Department Vancouver Island University Nanaimo British Columbia V9R 5S5 Canada
| | - R. Trebilco
- Biology Department Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - A. K. Salomon
- School of Resource and Environmental Management Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
- Hakai Institute Heriot Bay British Columbia V0P 1H0 Canada
| |
Collapse
|
49
|
Krumhansl KA, Okamoto DK, Rassweiler A, Novak M, Bolton JJ, Cavanaugh KC, Connell SD, Johnson CR, Konar B, Ling SD, Micheli F, Norderhaug KM, Pérez-Matus A, Sousa-Pinto I, Reed DC, Salomon AK, Shears NT, Wernberg T, Anderson RJ, Barrett NS, Buschmann AH, Carr MH, Caselle JE, Derrien-Courtel S, Edgar GJ, Edwards M, Estes JA, Goodwin C, Kenner MC, Kushner DJ, Moy FE, Nunn J, Steneck RS, Vásquez J, Watson J, Witman JD, Byrnes JEK. Global patterns of kelp forest change over the past half-century. Proc Natl Acad Sci U S A 2016; 113:13785-13790. [PMID: 27849580 PMCID: PMC5137772 DOI: 10.1073/pnas.1606102113] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.
Collapse
Affiliation(s)
- Kira A Krumhansl
- School of Resource and Environmental Management, Hakai Institute, Simon Fraser University, Burnaby, BC, Canada V5A 1S6;
| | - Daniel K Okamoto
- School of Resource and Environmental Management, Hakai Institute, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Andrew Rassweiler
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - John J Bolton
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, 7701 Rondebosch, South Africa
| | - Kyle C Cavanaugh
- Department of Geography, University of California, Los Angeles, CA 90095
| | - Sean D Connell
- Southern Seas Ecology Laboratories, The Environment Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Craig R Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001 TAS, Australia
| | - Brenda Konar
- College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK 99775
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001 TAS, Australia
| | - Fiorenza Micheli
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950
| | | | - Alejandro Pérez-Matus
- Subtidal Ecology Laboratory and Marine Conservation Center, Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Isabel Sousa-Pinto
- Interdisciplinary Centre for Marine and Environmental Research, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, CA 93106
| | - Anne K Salomon
- School of Resource and Environmental Management, Hakai Institute, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Nick T Shears
- Leigh Marine Laboratory, Institute of Marine Science, The University of Auckland, Auckland 0941, New Zealand
| | - Thomas Wernberg
- Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Robert J Anderson
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, 7701 Rondebosch, South Africa
- Department of Agriculture, Forestry and Fisheries, Roggebaai 8012, South Africa
| | - Nevell S Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001 TAS, Australia
| | - Alejandro H Buschmann
- Centro de Investigación y Desarrollo en Recursos y Ambientes Costeros, Universidad de Los Lagos, Puerto Montt 5480000, Chile
- Centro de Biotecnología y Bioingeniería, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Mark H Carr
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA 93106
| | - Sandrine Derrien-Courtel
- Muséum National d'Histoire Naturelle, Station Marine de Concarneau, 29182 Concarneau Cedex, France
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001 TAS, Australia
| | - Matt Edwards
- Department of Biology, San Diego State University, San Diego, CA 92182
| | - James A Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | - Claire Goodwin
- Centre for Environmental Data and Recording, National Museums Northern Ireland, Holywood, Co. Down BT18 0EU, United Kingdom
| | - Michael C Kenner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | | | | | - Julia Nunn
- Centre for Environmental Data and Recording, National Museums Northern Ireland, Holywood, Co. Down BT18 0EU, United Kingdom
| | - Robert S Steneck
- School of Marine Sciences, University of Maine, Walpole, ME 04573
| | - Julio Vásquez
- Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Jane Watson
- Biology Department, Vancouver Island University, Nanaimo, BC, Canada V9R 5S5
| | - Jon D Witman
- Ecology and Evolutionary Biology, Brown University, Providence, RI 02912
| | | |
Collapse
|
50
|
Novak M, Yeakel JD, Noble AE, Doak DF, Emmerson M, Estes JA, Jacob U, Tinker MT, Wootton JT. Characterizing Species Interactions to Understand Press Perturbations: What Is the Community Matrix? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-032416-010215] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The community matrix is among ecology's most important mathematical abstractions, formally encapsulating the interconnected network of effects that species have on one another's populations. Despite its importance, the term “community matrix” has been applied to multiple types of matrices that have differing interpretations. This has hindered the application of theory for understanding community structure and perturbation responses. Here, we clarify the correspondence and distinctions among the Interaction matrix, the Alpha matrix, and the Jacobian matrix, terms that are frequently used interchangeably as well as synonymously with the term “community matrix.” We illustrate how these matrices correspond to different ways of characterizing interaction strengths, how they permit insights regarding different types of press perturbations, and how these are related by a simple scaling relationship. Connections to additional interaction strength characterizations encapsulated by the Beta matrix, the Gamma matrix, and the Removal matrix are also discussed. Our synthesis highlights the empirical challenges that remain in using these tools to understand actual communities.
Collapse
Affiliation(s)
- Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331
| | - Justin D. Yeakel
- School of Natural Sciences, University of California, Merced, California 95343
- Santa Fe Institute, Santa Fe, New Mexico 87501
| | - Andrew E. Noble
- Department of Environmental Science and Policy, University of California, Davis, California 95616
| | - Daniel F. Doak
- Department of Environmental Studies, University of Colorado, Boulder, Colorado 80309
| | - Mark Emmerson
- School of Biological Sciences, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - James A. Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060
| | - Ute Jacob
- Department of Biology, University of Hamburg, D-22767 Hamburg, Germany
| | - M. Timothy Tinker
- Western Ecological Research Center, US Geological Survey, Santa Cruz, California 95060
| | - J. Timothy Wootton
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|