1
|
Karjalainen SK, Anttila J, Maanavilja L, Hamedianfar A, Laine AM. Carbon dioxide and methane gas exchange following sphagnum moss harvesting in boreal peatland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123357. [PMID: 39603099 DOI: 10.1016/j.jenvman.2024.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Understanding the impacts of Sphagnum moss harvesting on peatland carbon (C) balance is crucial due to its potential rise as an anthropogenic land use. We studied eight nutrient-poor peatlands in Finland, harvested between 2015 and 2021, focusing on net ecosystem exchange of CO2 (NEE) and methane (CH4) emissions. The greenhouse gas fluxes were measured to evaluate the sustainability of harvesting practices. Results showed significant variability in Sphagnum regeneration, with wet strip-harvested sites achieving 2-28% re-establishment in 2-8 years, while drier clear-harvested sites saw minimal spontaneous regeneration in 1-6 years. In addition to vegetation succession, GHG emissions were moisture dependent. In wet sites CH4 emissions increased along with time since harvesting and Eriophorum vaginatum (L.) cover, while dry sites exhibited overall lower CH4 fluxes. Younger (1-2 years post-harvest), dry sites were significant CO2 sources due to low photosynthetic activity. Older dry site with sparse ericoid shrub vegetation acted as CO2 sink. Wet sites initially had lower CO2 sink capacity, but this increased as E. vaginatum spread, and reached a plateau when Sphagnum mosses emerged, highlighting the importance of suitable water table levels for efficient CO2 sequestration.
Collapse
Affiliation(s)
- Satu K Karjalainen
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland.
| | - Jani Anttila
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Liisa Maanavilja
- Geological Survey of Finland (GTK), Vuorimiehentie 5, 02151 Espoo, Finland
| | | | - Anna M Laine
- Geological Survey of Finland (GTK), Vuorimiehentie 5, 02151 Espoo, Finland; University of Eastern Finland (UEF), Tulliportinkatu 1, 80130 Joensuu, Finland
| |
Collapse
|
2
|
Avolio ML, Koerner SE. Seven years of chronic fertilization affects how plant functional types respond to drought, but not plant production. Oecologia 2024; 207:14. [PMID: 39706900 DOI: 10.1007/s00442-024-05648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Nitrogen deposition continues to change grassland plant community composition particularly in more mesic systems; however, whether these altered plant communities will respond differently to other global change factors remains to be seen. Here, we explore how nutrient-altered tallgrass prairie responds to drought. Seven years of nutrient treatments (control, nitrogen (N), phosphorus (P), and N + P) resulted in significantly different plant communities. Within this experimental context we imposed a 3-year drought followed by 3 years of recovery from drought. The response of plant functional types depended on the nutrient treatment. During recovery years, C4 grasses recovered in the first year in all treatments but the N + P treatment, where instead annual grasses increased. These differential responses during recovery resulted in greater shifts in community composition in the N + P treatment compared with the controls. Despite the effects on community composition, we found no interaction between nutrient treatment and drought treatment on species richness or evenness and standing biomass during drought or recovery. We found drought induced shifts in plant functional groups led to the composition of previously droughted N + P plot becoming more dominated by annual grasses during the recovery years, likely creating a lasting legacy of drought.
Collapse
Affiliation(s)
- Meghan L Avolio
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Sally E Koerner
- Department of Biology, University of North Carolina, Greensboro, Greensboro, NC, USA
| |
Collapse
|
3
|
Mironov VL, Linkevich EV. Effects of the lunar cycle on ecosystem and heterotrophic respiration in a boreal Sphagnum-dominated peatland. Chronobiol Int 2024; 41:929-940. [PMID: 38888285 DOI: 10.1080/07420528.2024.2365825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
The growth of Sphagnum is influenced by the lunar cycle, which suggests a corresponding carbon (C) accumulation rhythm in peatlands. However, this rhythm can only occur if C accumulation from Sphagnum growth is not offset by its total losses through respiration and other processes. To address the uncertainty, through correlation-regression analysis we examine the influence of the lunar cycle on recent measurements of ecosystem (ER) and heterotrophic (Rh) respiration conducted by Järveoja and colleagues on the oligotrophic peatland of Degerö Stormyr. We found that ER and Rh accelerated near the full moon and slowed down near the new moon. The response of the hourly ER to the lunar cycle is significant from 22:00 to 8:00 and is not significant beyond this range. This response was concentrated in the initial and finished phases of the season, but during the middle of the season it disappeared. This behavior could potentially be caused by the high sensitivity of the Sphagnum cover to moonlight, as well as the sensitivity to the lunar cycle of only the nocturnal component ER. During most of the day, the lunar cycle had a significant effect on hourly Rh, with the highest impact observed between 5:00 and 10:00 and at 20:00. The greatest impact occurs during those hours when ER declines, and possibly Sphagnum photosynthetic productivity peaks. The findings suggest a circalunar rhythm of C accumulation in peatlands due to the opposite trends between C accumulation during Sphagnum growth and C losses with respiration during the lunar cycle.
Collapse
Affiliation(s)
- Victor L Mironov
- Department of Multidisciplinary Scientific Research of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| | - Elizaveta V Linkevich
- Department of Multidisciplinary Scientific Research of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
4
|
Robroek BJM, Devilee G, Telgenkamp Y, Härlin C, Steele MN, Barel JM, Lamers LPM. More is not always better: peat moss mixtures slightly enhance peatland stability. Proc Biol Sci 2024; 291:20232622. [PMID: 38196366 PMCID: PMC10777156 DOI: 10.1098/rspb.2023.2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Terrestrial wetland ecosystems challenge biodiversity-ecosystem function theory, which generally links high species diversity to stable ecosystem functions. An open question in ecosystem ecology is whether assemblages of co-occurring peat mosses contribute to the stability of peatland ecosystem processes. We conducted a two-species (Sphagnum cuspidatum, Sphagnum medium) replacement series mesocosm experiment to evaluate the resistance, resilience, and recovery rates of net ecosystem CO2 exchange (NEE) under mild and deep water table drawdown. Our results show a positive effect of mild water table drawdown on NEE with no apparent role for peat moss mixture. Our study indicates that the carbon uptake capacity by peat moss mixtures is rather resilient to mild water table drawdown, but seriously affected by deeper drought conditions. Co-occurring peat moss species seem to enhance the resilience of the carbon uptake function (i.e. ability of NEE to return to pre-perturbation levels) of peat moss mixtures only slightly. These findings suggest that assemblages of co-occurring Sphagnum mosses do only marginally contribute to the stability of ecosystem functions in peatlands under drought conditions. Above all, our results highlight that predicted severe droughts can gravely affect the sink capacity of peatlands, with only a small extenuating role for peat moss mixtures.
Collapse
Affiliation(s)
- Bjorn J. M. Robroek
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Giulia Devilee
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
- Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics (IBED-ELD), University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Yvet Telgenkamp
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Carina Härlin
- Länsstyrelsen i Jönköpings län, Store Mosse Nationalpark, 335 74 Hillerstorp, Sweden
| | - Magdalena N. Steele
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Janna M. Barel
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Leon P. M. Lamers
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
5
|
Sytiuk A, Hamard S, Céréghino R, Dorrepaal E, Geissel H, Küttim M, Lamentowicz M, Tuittila ES, Jassey VEJ. Linkages between Sphagnum metabolites and peatland CO 2 uptake are sensitive to seasonality in warming trends. THE NEW PHYTOLOGIST 2023; 237:1164-1178. [PMID: 36336780 PMCID: PMC10108112 DOI: 10.1111/nph.18601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Plants produce a wide diversity of metabolites. Yet, our understanding of how shifts in plant metabolites as a response to climate change feedback on ecosystem processes remains scarce. Here, we test to what extent climate warming shifts the seasonality of metabolites produced by Sphagnum mosses, and what are the consequences of these shifts for peatland C uptake. We used a reciprocal transplant experiment along a climate gradient in Europe to simulate climate change. We evaluated the responses of primary and secondary metabolites in five Sphagnum species and related their responses to gross ecosystem productivity (GEP). When transplanted to a warmer climate, Sphagnum species showed consistent responses to warming, with an upregulation of either their primary or secondary metabolite according to seasons. Moreover, these shifts were correlated to changes in GEP, especially in spring and autumn. Our results indicate that the Sphagnum metabolome is very plastic and sensitive to warming. We also show that warming-induced changes in the seasonality of Sphagnum metabolites have consequences on peatland GEP. Our findings demonstrate the capacity for plant metabolic plasticity to impact ecosystem C processes and reveal a further mechanism through which Sphagnum could shape peatland responses to climate change.
Collapse
Affiliation(s)
- Anna Sytiuk
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Ellen Dorrepaal
- Department of Ecology and Environmental Science, Climate Impacts Research CentreUmeå UniversitySE‐981 07AbiskoSweden
| | - Honorine Geissel
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and HealthTallinn UniversityUus‐Sadama 510120TallinnEstonia
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological SciencesAdam Mickiewicz University in PoznańBogumiła Krygowskiego 1061‐680PoznańPoland
| | - Eeva Stiina Tuittila
- School of Forest SciencesUniversity of Eastern FinlandJoensuu CampusFI‐80100JoensuuFinland
| | - Vincent E. J. Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| |
Collapse
|
6
|
Dong X, Qu L, Dong G, Legesse TG, Akram MA, Tong Q, Jiang S, Yan Y, Xin X, Deng J, Shao C. Mowing mitigated the sensitivity of ecosystem carbon fluxes responses to heat waves in a Eurasian meadow steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158610. [PMID: 36089030 DOI: 10.1016/j.scitotenv.2022.158610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 05/28/2023]
Abstract
The heat waves (HW) will be more frequent and intense in the future with increased human activity and uncertain implications for ecosystem carbon fluxes. The semi-arid Eurasian grassland is sensitive to climate change and under frequent HWs attacks. Mowing as one of the most common human practices in this region, combining with HW can have comprehensive effects on plant communities, biomass, and nutrient cycling. Hence, a 3-year (2019-2021) field manipulation experiment was conducted to assess how mowing influenced the carbon cycling under HWs, and the interactions between HWs and mowing on carbon fluxes at the community and ecosystem levels in a Eurasian meadow steppe. Over the three years, HW significantly reduced net ecosystem CO2 exchange (NEE) and gross ecosystem production (GEP) by 28 % and 8 % (P < 0.05), respectively, whereas ecosystem respiration (Re) did not show significant changes. Moderate mowing (stubble height was set at 6-8 cm) for harvest effectively mitigated ecosystem sensitivity to HWs and significantly increased ecosystem carbon fluxes (NEE, Re, and GEP), biomass and the number of species. Mowing reduced the negative impact of HWs on ecosystem carbon fluxes by about 15 % compared to HWs alone, contributing to the invasion of species such as Thalictrum squarrosum and Vicia amoena, and increased the indirect effect of HW on NEE in the structural equation model. In addition, the higher soil water content (SWC) was another effective way to reduce the impact of HWs. Therefore, mowing and higher SWC would be effective ways to counteract the negative effects of HWs on carbon fluxes in future grassland management.
Collapse
Affiliation(s)
- Xiaobing Dong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Luping Qu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Isotope Research Center, Fujian Normal University, Fuzhou 350002, China
| | - Gang Dong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Tsegaye Gemechu Legesse
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qi Tong
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shicheng Jiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yuchun Yan
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Xin
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Changliang Shao
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Qian R, Hao Y, Li L, Zheng Z, Wen F, Cui X, Wang Y, Zhao T, Tang Z, Du J, Xue K. Joint control of seasonal timing and plant function types on drought responses of soil respiration in a semiarid grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:974418. [PMID: 36046587 PMCID: PMC9421296 DOI: 10.3389/fpls.2022.974418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Globally, droughts are the most widespread climate factor impacting carbon (C) cycling. However, as the second-largest terrestrial C flux, the responses of soil respiration (Rs) to extreme droughts co-regulated by seasonal timing and PFT (plant functional type) are still not well understood. Here, a manipulative extreme-duration drought experiment (consecutive 30 days without rainfall) was designed to address the importance of drought timing (early-, mid-, or late growing season) for Rs and its components (heterotrophic respiration (Rh) and autotrophic respiration (Ra)) under three PFT treatments (two graminoids, two shrubs, and their combination). The results suggested that regardless of PFT, the mid-drought had the greatest negative effects while early-drought overall had little effect on Rh and its dominated Rs. However, PFT treatments had significant effects on Rh and Rs in response to the late drought, which was PFT-dependence: reduction in shrubs and combination but not in graminoids. Path analysis suggested that the decrease in Rs and Rh under droughts was through low soil water content induced reduction in MBC and GPP. These findings demonstrate that responses of Rs to droughts depend on seasonal timing and communities. Future droughts with different seasonal timing and induced shifts in plant structure would bring large uncertainty in predicting C dynamics under climate changes.
Collapse
Affiliation(s)
- Ruyan Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linfeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fuqi Wen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tong Zhao
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyang Tang
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Jianqing Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Xue
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Laine AM, Korrensalo A, Tuittila ES. Plant functional traits play the second fiddle to plant functional types in explaining peatland CO 2 and CH 4 gas exchange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155352. [PMID: 35460776 DOI: 10.1016/j.scitotenv.2022.155352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/21/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Peatlands constitute a significant soil carbon (C) store, yet the C gas flux components show distinct spatial variation both between and within peatlands. Determining the controls on this variability could aid in our understanding of the response of peatlands to global changes. In this study, we assess the usefulness of different vegetation related parameters to explain spatial variation in peatland C gas flux components. We hypothesise that spatial variation is best explained by trait-based indices (similarly to other terrestrial ecosystems), and that the impact of soil physicochemical properties, such as nitrogen (N) content or water level, can be manifested through the traits. Furthermore, we expect that the spatial variability associated with each of the C gas flux components can be explained by a distinct set of traits. To address our aim, we used a successional peatland chronosequence from wet meadows to a bog, along which all variables were recorded with similar methods and under similar climatic conditions. We observed spatial variability with all measured gas fluxes, with carbon dioxide (CO2) fluxes showing significant variability between sites, while within site variability was more important for methane (CH4) fluxes. As expected, our results show that the impacts of physicochemical conditions were directed via vegetation. However, the cover of functional plant types that capture multiple traits proved to be more powerful in explaining gas flux variability compared to functional trait-based indices. Our findings imply that for future gas flux modelling purposes, rather than attempting to use individual traits - as is the ongoing trend in ecology - it might be more useful to refine plant functional groupings and ensure they are based on a set of plant traits relevant for the studied ecosystem process. This could be facilitated by the collation of a large data set of traits measured from peatlands.
Collapse
Affiliation(s)
- Anna M Laine
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, FI-90014, Finland; Geological Survey of Finland, P.O Box 1237, FI-70211 Kuopio, Finland(1).
| | - Aino Korrensalo
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; Natural Resources Institute Finland (LUKE), Yliopistokatu 6 B, FI-80100 Joensuu, Finland; Department of Environmental and Biological Sciences, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Eeva-Stiina Tuittila
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
9
|
Antala M, Juszczak R, van der Tol C, Rastogi A. Impact of climate change-induced alterations in peatland vegetation phenology and composition on carbon balance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154294. [PMID: 35247401 DOI: 10.1016/j.scitotenv.2022.154294] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Global climate is changing faster than humankind has ever experienced. Model-based predictions of future climate are becoming more complex and precise, but they still lack crucial information about the reaction of some important ecosystems, such as peatlands. Peatlands belong to one of the largest carbon stores on the Earth. They are mostly distributed in high latitudes, where the temperature rises faster than in the other parts of the planet. Warmer climate and changes in precipitation patterns cause changes in the composition and phenology of peatland vegetation. Peat mosses are becoming less abundant, vascular plants cover is increasing, and the vegetation season and phenophases of vascular plants start sooner. The alterations in vegetation cause changes in the carbon assimilation and release of greenhouse gases. Therefore, this article reviews the impact of climate change-induced alterations in peatland vegetation phenology and composition on future climate and the uncertainties that need to be addressed for more accurate climate prediction.
Collapse
Affiliation(s)
- Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Radoslaw Juszczak
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Christiaan van der Tol
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, the Netherlands
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland; Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
10
|
Kuiper JJ, Kooi BW, Peterson GD, Mooij WM. Bridging Theories for Ecosystem Stability Through Structural Sensitivity Analysis of Ecological Models in Equilibrium. Acta Biotheor 2022; 70:18. [PMID: 35737146 PMCID: PMC9225980 DOI: 10.1007/s10441-022-09441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Ecologists are challenged by the need to bridge and synthesize different approaches and theories to obtain a coherent understanding of ecosystems in a changing world. Both food web theory and regime shift theory shine light on mechanisms that confer stability to ecosystems, but from different angles. Empirical food web models are developed to analyze how equilibria in real multi-trophic ecosystems are shaped by species interactions, and often include linear functional response terms for simple estimation of interaction strengths from observations. Models of regime shifts focus on qualitative changes of equilibrium points in a slowly changing environment, and typically include non-linear functional response terms. Currently, it is unclear how the stability of an empirical food web model, expressed as the rate of system recovery after a small perturbation, relates to the vulnerability of the ecosystem to collapse. Here, we conduct structural sensitivity analyses of classical consumer-resource models in equilibrium along an environmental gradient. Specifically, we change non-proportional interaction terms into proportional ones, while maintaining the equilibrium biomass densities and material flux rates, to analyze how alternative model formulations shape the stability properties of the equilibria. The results reveal no consistent relationship between the stability of the original models and the proportionalized versions, even though they describe the same biomass values and material flows. We use these findings to critically discuss whether stability analysis of observed equilibria by empirical food web models can provide insight into regime shift dynamics, and highlight the challenge of bridging alternative modelling approaches in ecology and beyond.
Collapse
Affiliation(s)
- Jan J Kuiper
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, SE 10691, Stockholm, Sweden.
- Department of Aquatic Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
| | - Bob W Kooi
- Faculty of Science, VU University, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Garry D Peterson
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, SE 10691, Stockholm, Sweden
| | - Wolf M Mooij
- Department of Aquatic Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
11
|
Le TB, Wu J, Gong Y. Vascular plants regulate responses of boreal peatland Sphagnum to climate warming and nitrogen addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152077. [PMID: 34856288 DOI: 10.1016/j.scitotenv.2021.152077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Boreal peatland Sphagnum may be affected by climate warming and elevated nitrogen availability directly and indirectly via altering vascular plant interaction. Here, we used a field experiment of nitrogen addition, warming, and vascular plant removal to investigate the effects of these factors on Sphagnum in a Canadian blanket boreal peatland. We revealed that significant effects of warming and nitrogen addition on Sphagnum were regulated by vascular plant interaction. The intense competition of vascular plants accelerated an adverse effect of warming on Sphagnum, while facilitation of vascular plants reduced detrimental losses of the Sphagnum due to high dose of nitrogen addition and both warming and the nitrogen addition. These findings indicate the crucial role of vascular plants in regulating the effects of environmental changes on existing Sphagnum in boreal peatlands.
Collapse
Affiliation(s)
- Thuong Ba Le
- Environment and Sustainability, School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; Graduate Program in Environmental Science, Memorial University of Newfoundland, St. John's, NL, Canada; Vietnam National University of Forestry, Hanoi, Viet Nam
| | - Jianghua Wu
- Environment and Sustainability, School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; Graduate Program in Environmental Science, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Yu Gong
- Environment and Sustainability, School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; Graduate Program in Environmental Science, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
12
|
Salimi S, Berggren M, Scholz M. Response of the peatland carbon dioxide sink function to future climate change scenarios and water level management. GLOBAL CHANGE BIOLOGY 2021; 27:5154-5168. [PMID: 34157201 DOI: 10.1111/gcb.15753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Stress factors such as climate change and drought may switch the role of temperate peatlands from carbon dioxide (CO2 ) sinks to sources, leading to positive feedback to global climate change. Water level management has been regarded as an important climate change mitigation strategy as it can sustain the natural net CO2 sink function of a peatland. Little is known about how resilient peatlands are in the face of future climate change scenarios, as well as how effectively water level management can sustain the CO2 sink function to mitigate global warming. The authors assess the effect of climate change on CO2 exchange of south Swedish temperate peatlands, which were either unmanaged or subject to water level regulation. Climate chamber simulations were conducted using experimental peatland mesocosms exposed to current and future representative concentration pathway (RCP) climate scenarios (RCP 2.6, 4.5 and 8.5). The results showed that all managed and unmanaged systems under future climate scenarios could serve as CO2 sinks throughout the experimental period. However, the 2018 extreme drought caused the unmanaged mesocosms under the RCP 4.5 and RCP 8.5 switch from a net CO2 sink to a source during summer. Surprisingly, the unmanaged mesocosms under RCP 2.6 benefited from the warmer climate, and served as the best sink among the other unmanaged systems. Water level management had the greatest effect on the CO2 sink function under RCP 8.5 and RCP 4.5, which improved their CO2 sink capability up to six and two times, respectively. Under the current climate scenario, water level management had a negative effect on the CO2 sink function, and it had almost no effect under RCP 2.6. Therefore, the researchers conclude that water level management is necessary for RCP 8.5, beneficial for RCP 4.5 and unimportant for RCP 2.6 and the current climate.
Collapse
Affiliation(s)
- Shokoufeh Salimi
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Martin Berggren
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Miklas Scholz
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, Lund, Sweden
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
- Department of Town Planning, Engineering Networks and Systems, South Ural State University (National Research University), Chelyabinsk, The Russian Federation
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
13
|
Zhou Y, Huang Y, Peng X, Xu J, Hu Y. Sphagnum response to nitrogen deposition and nitrogen critical load: A meta-analysis. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Li L, Zheng Z, Biederman JA, Qian R, Ran Q, Zhang B, Xu C, Wang F, Zhou S, Che R, Dong J, Xu Z, Cui X, Hao Y, Wang Y. Drought and heat wave impacts on grassland carbon cycling across hierarchical levels. PLANT, CELL & ENVIRONMENT 2021; 44:2402-2413. [PMID: 32275067 DOI: 10.1111/pce.13767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Droughts and heat waves are increasing in magnitude and frequency, altering the carbon cycle. However, understanding of the underlying response mechanisms remains poor, especially for the combination (hot drought). We conducted a 4-year field experiment to examine both individual and interactive effects of drought and heat wave on carbon cycling of a semiarid grassland across individual, functional group, community and ecosystem levels. Drought did not change below-ground biomass (BGB) or above-ground biomass (AGB) due to compensation effects between grass and non-grass functional groups. However, consistently decreased BGB under heat waves limited such compensation effects, resulting in reduced AGB. Ecosystem CO2 fluxes were suppressed by droughts, attributed to stomatal closure-induced reductions in leaf photosynthesis and decreased AGB of grasses, while CO2 fluxes were little affected by heat waves. Overall the hot drought produced the lowest leaf photosynthesis, AGB and ecosystem CO2 fluxes although the interactions between heat wave and drought were usually not significant. Our results highlight that the functional group compensatory effects that maintain community-level AGB rely on feedback of root system responses, and that plant adjustments at the individual level, together with shifts in composition at the functional group level, co-regulate ecosystem carbon sink strength under climate extremes.
Collapse
Affiliation(s)
- Linfeng Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Australia
| | - Zhenzhen Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Joel A Biederman
- Southwest Watershed Research Center, Agricultural Research Service, Tucson, Arizona, USA
| | - Ruyan Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qinwei Ran
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Biao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Australia
| | - Shutong Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Institude of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, China
| | - Junfu Dong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Australia
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
15
|
Salimi S, Almuktar SAAAN, Scholz M. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112160. [PMID: 33611067 DOI: 10.1016/j.jenvman.2021.112160] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.
Collapse
Affiliation(s)
- Shokoufeh Salimi
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden.
| | - Suhad A A A N Almuktar
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden; Department of Architectural Engineering, Faculty of Engineering, The University of Basrah, Al Basrah, Iraq.
| | - Miklas Scholz
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden; Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, PO Box 524, Aukland Park 2006, Johannesburg, South Africa; Department of Town Planning, Engineering Networks and Systems, South Ural State University (National Research University), 76, Lenin prospekt, Chelyabinsk, 454080, Russian Federation.
| |
Collapse
|
16
|
Ritson JP, Alderson DM, Robinson CH, Burkitt AE, Heinemeyer A, Stimson AG, Gallego-Sala A, Harris A, Quillet A, Malik AA, Cole B, Robroek BJM, Heppell CM, Rivett DW, Chandler DM, Elliott DR, Shuttleworth EL, Lilleskov E, Cox F, Clay GD, Diack I, Rowson J, Pratscher J, Lloyd JR, Walker JS, Belyea LR, Dumont MG, Longden M, Bell NGA, Artz RRE, Bardgett RD, Griffiths RI, Andersen R, Chadburn SE, Hutchinson SM, Page SE, Thom T, Burn W, Evans MG. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning - A research agenda. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143467. [PMID: 33199011 DOI: 10.1016/j.scitotenv.2020.143467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.
Collapse
Affiliation(s)
- Jonathan P Ritson
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Danielle M Alderson
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Clare H Robinson
- Department of Earth & Environmental Sciences, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | | | - Andreas Heinemeyer
- Stockholm Environment Institute, Department of Environment & Geography, York YO10 5NG, UK
| | - Andrew G Stimson
- North Pennines AONB Partnership, Weardale Business Centre, The Old Co-op building, 1 Martin Street, Stanhope, County Durham DL13 2UY, UK
| | - Angela Gallego-Sala
- Department of Geography, University of Exeter, Laver, North Park Road, Exeter EX4 4QE, UK
| | - Angela Harris
- Department of Geography, The University of Manchester, Manchester M13 9PL, UK
| | - Anne Quillet
- Department of Geography and Environmental Science, University of Reading, Whiteknights RG6 6AB, UK
| | - Ashish A Malik
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Beth Cole
- School of Geography, Geology and the Environment, University of Leicester, LE1 7RH, UK
| | - Bjorn J M Robroek
- Dept. of Aquatic Ecology & Environmental Biology, Institute for Water and Wetlands Research, Radboud University, Nijmegen, the Netherlands
| | - Catherine M Heppell
- School of Geography, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Damian W Rivett
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Dave M Chandler
- Moors for the Future Partnership, The Moorland Centre, Fieldhead, Edale, Derbyshire S33 7ZA, UK
| | - David R Elliott
- Environmental Sustainability Research Centre, University of Derby, Derby DE22 1GB, UK
| | - Emma L Shuttleworth
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Erik Lilleskov
- USDA Forest Service, Northern Research Station, Houghton, MI 49931, USA
| | - Filipa Cox
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK
| | - Gareth D Clay
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Iain Diack
- Natural England, Parkside Court, Hall Park Way, Telford, Shropshire TF3 4LR, UK
| | - James Rowson
- Department of Geography and Geology, Edge Hill University, St Helens Road, Ormskirk Lancs L39 4QP, UK
| | - Jennifer Pratscher
- School of Energy, Geoscience, Infrastructure and Society, The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AP, UK
| | - Jonathan R Lloyd
- Department of Earth & Environmental Sciences, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | | | - Lisa R Belyea
- School of Geography, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mike Longden
- Lancashire Wildlife Trust, 499-511 Bury new road, Bolton Bl2 6DH, UK
| | - Nicholle G A Bell
- School of Chemistry, University of Edinburgh, King's Buildings, David Brewster Road, Edinburgh EH93FJ, UK
| | - Rebekka R E Artz
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Richard D Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, UK
| | | | - Roxane Andersen
- Environmental Research Institute, University of the Highlands and Islands, Castle St., Thurso KW14 7JD, UK
| | - Sarah E Chadburn
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Simon M Hutchinson
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| | - Susan E Page
- School of Geography, Geology and the Environment, University of Leicester, LE1 7RH, UK
| | - Tim Thom
- Yorkshire Peat Partnership, Yorkshire Wildlife Trust, Unit 23, Skipton Auction Mart, Gargrave Road, Skipton, North Yorkshire BD23 1UD, UK
| | - William Burn
- Stockholm Environment Institute, Department of Environment & Geography, York YO10 5NG, UK
| | - Martin G Evans
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
17
|
Li L, Zheng Z, Wang W, Biederman JA, Xu X, Ran Q, Qian R, Xu C, Zhang B, Wang F, Zhou S, Cui L, Che R, Hao Y, Cui X, Xu Z, Wang Y. Terrestrial N 2 O emissions and related functional genes under climate change: A global meta-analysis. GLOBAL CHANGE BIOLOGY 2020; 26:931-943. [PMID: 31554024 DOI: 10.1111/gcb.14847] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 05/18/2023]
Abstract
Nitrous oxide (N2 O) emissions from soil contribute to global warming and are in turn substantially affected by climate change. However, climate change impacts on N2 O production across terrestrial ecosystems remain poorly understood. Here, we synthesized 46 published studies of N2 O fluxes and relevant soil functional genes (SFGs, that is, archaeal amoA, bacterial amoA, nosZ, narG, nirK and nirS) to assess their responses to increased temperature, increased or decreased precipitation amounts, and prolonged drought (no change in total precipitation but increase in precipitation intervals) in terrestrial ecosystem (i.e. grasslands, forests, shrublands, tundra and croplands). Across the data set, temperature increased N2 O emissions by 33%. However, the effects were highly variable across biomes, with strongest temperature responses in shrublands, variable responses in forests and negative responses in tundra. The warming methods employed also influenced the effects of temperature on N2 O emissions (most effectively induced by open-top chambers). Whole-day or whole-year warming treatment significantly enhanced N2 O emissions, but daytime, nighttime or short-season warming did not have significant effects. Regardless of biome, treatment method and season, increased precipitation promoted N2 O emission by an average of 55%, while decreased precipitation suppressed N2 O emission by 31%, predominantly driven by changes in soil moisture. The effect size of precipitation changes on nirS and nosZ showed a U-shape relationship with soil moisture; further insight into biotic mechanisms underlying N2 O emission response to climate change remain limited by data availability, underlying a need for studies that report SFG. Our findings indicate that climate change substantially affects N2 O emission and highlights the urgent need to incorporate this strong feedback into most climate models for convincing projection of future climate change.
Collapse
Affiliation(s)
- Linfeng Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Zhenzhen Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weijin Wang
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
- Department of Environment and Science, Brisbane, Qld, Australia
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Joel A Biederman
- Southwest Watershed Research Center, Agricultural Research Service, Tucson, AZ, USA
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qinwei Ran
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruyan Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Biao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Shutong Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
18
|
Teemusk A, Kull A, Kanal A, Mander Ü. Environmental factors affecting greenhouse gas fluxes of green roofs in temperate zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133699. [PMID: 31756825 DOI: 10.1016/j.scitotenv.2019.133699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
This paper investigates the full seasonal greenhouse gas (GHG) dynamics of fluxes from three green roof systems (lightweight clay aggregate-based green roof - LR; grass roof - GR; sod roof - SR) and natural control site on shallow Leptosol (NC), using closed static chambers in the period April 2014 to December 2015. CO2, CH4 and N2O fluxes are measured and their relationships to meteorological parameters and substrate physicochemical characteristics are quantified. Median CO2 flux values were 21 (LR), 38 (GR), 62 (SR), and 82 (NC) mg CO2-C m-2 h-1. The results show ecosystem respiration (Reco) clearly increased until July and then decreased until November. Net ecosystem CO2 exchange (NEE) was more variable than Reco, depending on plant growth phase and weather conditions. Median NEE values for study period (from April to November 2015) were -7 (LR), -17 (GR), -136 (SR), and -82 (NC) mg CO2-C m-2 h-1. The percentage of autotrophic respiration (Ra) in Reco showed clear rise from LR (35%) to NC (62%). CH4 consumption dominated resulting in median fluxes as follows: -2 (LR), -1 (GR), -15 (SR), and -23 (NC) μg CH4-C m-2 h-1. N2O flux was low and highly variable in time, with median values varying from -0.07 (GR) to 2.18 (NC) μg N2O-N m-2 h-1. During the maximum vegetation growth, NEE exceeded Reco value. Green roofs are effective CH4 sinks, but they do not significantly affect N2O flux. The main environmental factors determining GHG fluxes in linear models were parameters describing moisture regime, meteorological parameters and soil physical characteristics. These models can be used to predict GHG fluxes from similar green roof systems in analogous climatic conditions. We conclude that green roof technology may be used to mitigate excessive ambient GHG levels in urban areas.
Collapse
Affiliation(s)
- Alar Teemusk
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Estonia.
| | - Ain Kull
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Arno Kanal
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Ülo Mander
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| |
Collapse
|
19
|
Norby RJ, Childs J, Hanson PJ, Warren JM. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecol Evol 2019; 9:12571-12585. [PMID: 31788198 PMCID: PMC6875578 DOI: 10.1002/ece3.5722] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 01/16/2023] Open
Abstract
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8-m-diameter plots were exposed to a range of whole-ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co-occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13-29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow-on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.
Collapse
Affiliation(s)
- Richard J. Norby
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Joanne Childs
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Paul J. Hanson
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jeffrey M. Warren
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
20
|
Varying Vegetation Composition, Respiration and Photosynthesis Decrease Temporal Variability of the CO2 Sink in a Boreal Bog. Ecosystems 2019. [DOI: 10.1007/s10021-019-00434-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
We quantified the role of spatially varying vegetation composition in seasonal and interannual changes in a boreal bog’s CO2 uptake. We divided the spatially heterogeneous site into six microform classes based on plant species composition and measured their net ecosystem exchange (NEE) using chamber method over the growing seasons in 2012–2014. A nonlinear mixed-effects model was applied to assess how the contributions of microforms with different vegetation change temporally, and to upscale NEE to the ecosystem level to be compared with eddy covariance (EC) measurements. Both ecosystem respiration (R) and gross photosynthesis (PG) were the largest in high hummocks, 894–964 (R) and 969–1132 (PG) g CO2 m−2 growing season−1, and decreased toward the wetter microforms. NEE had a different spatial pattern than R and PG; the highest cumulative seasonal CO2 sink was found in lawns in all years (165–353 g CO2 m−2). Microforms with similar wetness but distinct vegetation had different NEE, highlighting the importance of vegetation composition in regulating CO2 sink. Chamber-based ecosystem-level NEE was smaller and varied less interannually than the EC-derived estimate, indicating a need for further research on the error sources of both methods. Lawns contributed more to ecosystem-level NEE (55–78%) than their areal cover within the site (21.5%). In spring and autumn, lawns had the highest NEE, whereas in midsummer differences among microforms were small. The contributions of all microforms to the ecosystem-level NEE varied seasonally and interannually, suggesting that spatially heterogeneous vegetation composition could make bog CO2 uptake temporally more stable.
Collapse
|
21
|
Lamentowicz M, Gałka M, Marcisz K, Słowiński M, Kajukało-Drygalska K, Dayras MD, Jassey VEJ. Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands. Biol Lett 2019; 15:20190043. [PMID: 30940021 PMCID: PMC6501361 DOI: 10.1098/rsbl.2019.0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/06/2019] [Indexed: 11/12/2022] Open
Abstract
Unveiling past tipping points is a prerequisite for a better understanding of how individual species and entire ecosystems will respond to future climate change. Such knowledge is key for the implementation of biodiversity conservation. We identify the relationships between peatland vegetation and hydrological conditions over the past 2000 years using plant macrofossils, testate amoebae-based quantitative hydrological reconstructions and Sphagnum-moss functional traits from seven Polish peatland records. Using threshold indicator taxa analysis, we discovered that plant community composition strongly converged at a water level of ca 11.7 cm, indicating a community-level tipping point. We identified 45 plant taxa that showed either an increase or a decrease in their relative abundance between 8 and 17 cm of water-level depth. Our analysis of Sphagnum community traits further showed that Sphagnum functional diversity was remarkably stable over time despite Sphagnum species sensitivity to hydrological conditions. Our results suggest that past hydrological shifts did not influence major functions of the Sphagnum community, such as photosynthetic capacity, growth and productivity, owing to species replacement with a similar functional space. Although further studies including trait plasticity will be required, our findings suggest that the capacity of the Sphagnum community to gain carbon remained stable despite hydrological changes.
Collapse
Affiliation(s)
- Mariusz Lamentowicz
- Laboratory of Wetland Ecology and Monitoring, Adam Mickiewicz University, 61-680 Poznań, Poland
- Department of Biogeography and Palaeoecology, Adam Mickiewicz University, 61-680 Poznań, Poland
| | - Mariusz Gałka
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Katarzyna Marcisz
- Laboratory of Wetland Ecology and Monitoring, Adam Mickiewicz University, 61-680 Poznań, Poland
- Department of Biogeography and Palaeoecology, Adam Mickiewicz University, 61-680 Poznań, Poland
| | - Michał Słowiński
- Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organisation, Polish Academy of Sciences, 00-818 Warsaw, Poland
| | - Katarzyna Kajukało-Drygalska
- Laboratory of Wetland Ecology and Monitoring, Adam Mickiewicz University, 61-680 Poznań, Poland
- Department of Biogeography and Palaeoecology, Adam Mickiewicz University, 61-680 Poznań, Poland
| | - Milva Druguet Dayras
- Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS-INPT, 31062 Toulouse, France
| | - Vincent E. J. Jassey
- Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS-INPT, 31062 Toulouse, France
| |
Collapse
|
22
|
Reduced Carbon Dioxide Sink and Methane Source under Extreme Drought Condition in an Alpine Peatland. SUSTAINABILITY 2018. [DOI: 10.3390/su10114285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Potential changes in both the intensity and frequency of extreme drought events are vital aspects of regional climate change that can alter the distribution and dynamics of water availability and subsequently affect carbon cycles at the ecosystem level. The effects of extreme drought events on the carbon budget of peatland in the Zoige plateau and its response mechanisms were studied using an in-field controlled experimental method. The results indicated that the peatland ecosystem of the Zoige plateau functioned as a carbon sink while under the control (CK) or extreme drought (D) treatment throughout the entire growing season. Maximum fluxes of methane (CH4) emissions and the weakest carbon sink activity from this ecosystem were in the early growth stage, the most powerful carbon sink activity was during the peak growth stage, while the absorption sink activity of carbon dioxide (CO2) and CH4 was present during the senescence stage. Extreme drought reduced the gross primary productivity (GPP) and ecosystem respiration (Re) of the peatland ecosystem by 14.5% and 12.6%, respectively (p < 0.05) and the net ability to store carbon was reduced by 11.3%. Overall, the GPP was highly sensitive to extreme drought. Moreover, extreme drought significantly reduced the CH4 fluxes of the ecosystem and even changed the peatland from a CH4 emission source to a CH4 sink. Subsequent to drought treatment, extreme drought was also shown to have a carry-over effect on the carbon budget of this ecosystem. Soil water content and soil temperature were the main driving factors of carbon budget change in the peatland of the Zoige plateau, but with the increase in soil depth, these driving forces were decreased. The findings indicated that frequent extreme drought events in the future might reduce the net carbon sink function of peatland areas, with an especially strong influence on CO2.
Collapse
|
23
|
Gavazov K, Albrecht R, Buttler A, Dorrepaal E, Garnett MH, Gogo S, Hagedorn F, Mills RTE, Robroek BJM, Bragazza L. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change. GLOBAL CHANGE BIOLOGY 2018; 24:3911-3921. [PMID: 29569798 DOI: 10.1111/gcb.14140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant-removal experiment in two Sphagnum-dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb-14 C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.
Collapse
Affiliation(s)
- Konstantin Gavazov
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Lausanne, Switzerland
- Laboratory of Ecological Systems ECOS, School of Architecture, Civil and Environmental Engineering ENAC, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Department of Ecology and Environmental Science, Climate Impacts Research Centre, Umeå University, Abisko, Sweden
| | - Remy Albrecht
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Lausanne, Switzerland
- Laboratory of Ecological Systems ECOS, School of Architecture, Civil and Environmental Engineering ENAC, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Alexandre Buttler
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Lausanne, Switzerland
- Laboratory of Ecological Systems ECOS, School of Architecture, Civil and Environmental Engineering ENAC, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, UFR des Sciences et Techniques, Université de Franche-Comté, Besançon, France
| | - Ellen Dorrepaal
- Department of Ecology and Environmental Science, Climate Impacts Research Centre, Umeå University, Abisko, Sweden
| | - Mark H Garnett
- NERC Radiocarbon Facility (East Kilbride), East Kilbride, UK
| | - Sebastien Gogo
- ISTO, UMR 7327, Université d'Orléans, Orléans, France
- ISTO, UMR 7327, CNRS, Orléans, France
- ISTO, UMR 7327, BRGM, Orléans, France
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Birmensdorf, Birmensdorf, Switzerland
| | - Robert T E Mills
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Lausanne, Switzerland
- Laboratory of Ecological Systems ECOS, School of Architecture, Civil and Environmental Engineering ENAC, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Bjorn J M Robroek
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Lausanne, Switzerland
- Laboratory of Ecological Systems ECOS, School of Architecture, Civil and Environmental Engineering ENAC, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Biological Sciences, University of Southampton, Southampton, UK
| | - Luca Bragazza
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Lausanne, Switzerland
- Laboratory of Ecological Systems ECOS, School of Architecture, Civil and Environmental Engineering ENAC, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Department of Life Science and Biotechnologies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
24
|
Peichl M, Gažovič M, Vermeij I, de Goede E, Sonnentag O, Limpens J, Nilsson MB. Peatland vegetation composition and phenology drive the seasonal trajectory of maximum gross primary production. Sci Rep 2018; 8:8012. [PMID: 29789673 PMCID: PMC5964230 DOI: 10.1038/s41598-018-26147-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/02/2018] [Indexed: 11/09/2022] Open
Abstract
Gross primary production (GPP) is a key driver of the peatland carbon cycle. Although many studies have explored the apparent GPP under natural light conditions, knowledge of the maximum GPP at light-saturation (GPPmax) and its spatio-temporal variation is limited. This information, however, is crucial since GPPmax essentially constrains the upper boundary for apparent GPP. Using chamber measurements combined with an external light source across experimental plots where vegetation composition was altered through long-term (20-year) nitrogen addition and artificial warming, we could quantify GPPmax in-situ and disentangle its biotic and abiotic controls in a boreal peatland. We found large spatial and temporal variations in the magnitudes of GPPmax which were related to vegetation species composition and phenology rather than abiotic factors. Specifically, we identified vegetation phenology as the main driver of the seasonal GPPmax trajectory. Abiotic anomalies (i.e. in air temperature and water table level), however, caused species-specific divergence between the trajectories of GPPmax and plant development. Our study demonstrates that photosynthetically active biomass constrains the potential peatland photosynthesis while abiotic factors act as secondary modifiers. This further calls for a better representation of species-specific vegetation phenology in process-based peatland models to improve predictions of global change impacts on the peatland carbon cycle.
Collapse
Affiliation(s)
- Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
| | - Michal Gažovič
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Ilse Vermeij
- Plant Ecology and Nature Conservation Group, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Eefje de Goede
- Department of Aquatic Ecology, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands.,Institute of Environmental Sciences, Leiden University, 2333CC, Leiden, The Netherlands
| | - Oliver Sonnentag
- Département de géographie, Université de Montréal, Montréal, QC H2V 2B8, Canada
| | - Juul Limpens
- Plant Ecology and Nature Conservation Group, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| |
Collapse
|
25
|
Radu DD, Duval TP. Precipitation frequency alters peatland ecosystem structure and CO 2 exchange: Contrasting effects on moss, sedge, and shrub communities. GLOBAL CHANGE BIOLOGY 2018; 24:2051-2065. [PMID: 29345034 DOI: 10.1111/gcb.14057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
Climate projections forecast a redistribution of seasonal precipitation for much of the globe into fewer, larger events spaced between longer dry periods, with negligible changes in seasonal rainfall totals. This intensification of the rainfall regime is expected to alter near-surface water availability, which will affect plant performance and carbon uptake. This could be especially important in peatland systems, where large stores of carbon are tightly coupled to water surpluses limiting decomposition. Here, we examined the role of precipitation frequency on vegetation growth and carbon dioxide (CO2 ) balances for communities dominated by a Sphagnum moss, a sedge, and an ericaceous shrub in a cool temperate poor fen. Field plots and laboratory monoliths received one of three rainfall frequency treatments, ranging from one event every three days to one event every 14 days, while total rain delivered in a two-week cycle and the entire season to each treatment remained the same. Separating incident rain into fewer but larger events increased vascular cover in all peatland communities: vascular plant cover increased 6× in the moss-dominated plots, nearly doubled in the sedge plots, and tripled in the shrub plots in Low-Frequency relative to High-Frequency treatments. Gross ecosystem productivity was lowest in moss communities receiving low-frequency rain, but higher in sedge and shrub communities under the same conditions. Net ecosystem exchange followed this pattern: fewer events with longer dry periods increased CO2 flux to the atmosphere from the moss while vascular plant-dominated communities became more of a sink for CO2 . Results of this study suggest that changes to rainfall frequency already occurring and predicted to continue will lead to increased vascular plant cover in peatlands and will impact their carbon-sink function.
Collapse
Affiliation(s)
- Danielle D Radu
- Department of Geography, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Tim P Duval
- Department of Geography, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
26
|
Britton AJ, Mitchell RJ, Fisher JM, Riach DJ, Taylor AFS. Nitrogen deposition drives loss of moss cover in alpine moss-sedge heath via lowered C : N ratio and accelerated decomposition. THE NEW PHYTOLOGIST 2018; 218:470-478. [PMID: 29397029 DOI: 10.1111/nph.15006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
In alpine ecosystems, nitrogen (N) deposition has been linked to plant community composition change, including loss of bryophytes and increase of graminoids. Since bryophyte growth is stimulated by increased N availability, it has been hypothesized that loss of bryophyte cover is driven by enhanced decomposition. As bryophyte mats are a significant carbon (C) store, their loss may impact C storage in these ecosystems. We used an N deposition gradient across 15 sites in the UK to examine effects of N deposition on bryophyte litter quality, decomposition and C and N stocks in Racomitrium moss-sedge heath. Increasing N deposition reduced C : N in bryophyte litter, which in turn enhanced decomposition. Soil N stocks increased significantly in response to increased N deposition, and soil C : N declined. However, depletion of the bryophyte mat and its replacement by graminoids under high N deposition was not associated with a change in total ecosystem C stocks. We conclude that decomposition processes in Racomitrium heath are very sensitive to N deposition and provide a mechanism by which N deposition drives depletion of the bryophyte mat. Nitrogen deposition did not measurably alter C stocks, but changes in soil N stocks and C : N suggest the ecosystem is becoming N saturated.
Collapse
Affiliation(s)
- Andrea J Britton
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Ruth J Mitchell
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Julia M Fisher
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - David J Riach
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Andy F S Taylor
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| |
Collapse
|
27
|
Jassey VEJ, Reczuga MK, Zielińska M, Słowińska S, Robroek BJM, Mariotte P, Seppey CVW, Lara E, Barabach J, Słowiński M, Bragazza L, Chojnicki BH, Lamentowicz M, Mitchell EAD, Buttler A. Tipping point in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. GLOBAL CHANGE BIOLOGY 2018; 24:972-986. [PMID: 28991408 DOI: 10.1111/gcb.13928] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 05/05/2023]
Abstract
Ecosystems are increasingly prone to climate extremes, such as drought, with long-lasting effects on both plant and soil communities and, subsequently, on carbon (C) cycling. However, recent studies underlined the strong variability in ecosystem's response to droughts, raising the issue of nonlinear responses in plant and soil communities. The conundrum is what causes ecosystems to shift in response to drought. Here, we investigated the response of plant and soil fungi to drought of different intensities using a water table gradient in peatlands-a major C sink ecosystem. Using moving window structural equation models, we show that substantial changes in ecosystem respiration, plant and soil fungal communities occurred when the water level fell below a tipping point of -24 cm. As a corollary, ecosystem respiration was the greatest when graminoids and saprotrophic fungi became prevalent as a response to the extreme drought. Graminoids indirectly influenced fungal functional composition and soil enzyme activities through their direct effect on dissolved organic matter quality, while saprotrophic fungi directly influenced soil enzyme activities. In turn, increasing enzyme activities promoted ecosystem respiration. We show that functional transitions in ecosystem respiration critically depend on the degree of response of graminoids and saprotrophic fungi to drought. Our results represent a major advance in understanding the nonlinear nature of ecosystem properties to drought and pave the way towards a truly mechanistic understanding of the effects of drought on ecosystem processes.
Collapse
Affiliation(s)
- Vincent E J Jassey
- Functional Ecology and Environment laboratory, University of Toulouse, CNRS, INP, UPS, Toulouse Cedex, France
- Ecological Systems Laboratory (ECOS), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- WSL-Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Lausanne, Switzerland
| | - Monika K Reczuga
- Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Palaeoecology, Adam Mickiewicz University, Poznań, Poland
| | - Małgorzata Zielińska
- Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Palaeoecology, Adam Mickiewicz University, Poznań, Poland
| | - Sandra Słowińska
- Department of Geoecology and Climatology, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | | | - Pierre Mariotte
- Ecological Systems Laboratory (ECOS), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- WSL-Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Lausanne, Switzerland
| | - Christophe V W Seppey
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Arctic and Marine Biology Department, University of Tromsø, Tromsø, Norway
| | | | - Jan Barabach
- Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Palaeoecology, Adam Mickiewicz University, Poznań, Poland
| | - Michał Słowiński
- Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warszawa, Poland
| | - Luca Bragazza
- Ecological Systems Laboratory (ECOS), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- WSL-Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Lausanne, Switzerland
- Department of Life Science and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Bogdan H Chojnicki
- Meteorology Department, Poznan University of Life Sciences, Poznań, Poland
| | - Mariusz Lamentowicz
- Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Palaeoecology, Adam Mickiewicz University, Poznań, Poland
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Botanical Garden of Neuchâtel, Neuchâtel, Switzerland
| | - Alexandre Buttler
- Ecological Systems Laboratory (ECOS), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- WSL-Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Robroek BJM, Jassey VEJ, Payne RJ, Martí M, Bragazza L, Bleeker A, Buttler A, Caporn SJM, Dise NB, Kattge J, Zając K, Svensson BH, van Ruijven J, Verhoeven JTA. Taxonomic and functional turnover are decoupled in European peat bogs. Nat Commun 2017; 8:1161. [PMID: 29079831 PMCID: PMC5660083 DOI: 10.1038/s41467-017-01350-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/06/2017] [Indexed: 11/09/2022] Open
Abstract
In peatland ecosystems, plant communities mediate a globally significant carbon store. The effects of global environmental change on plant assemblages are expected to be a factor in determining how ecosystem functions such as carbon uptake will respond. Using vegetation data from 56 Sphagnum-dominated peat bogs across Europe, we show that in these ecosystems plant species aggregate into two major clusters that are each defined by shared response to environmental conditions. Across environmental gradients, we find significant taxonomic turnover in both clusters. However, functional identity and functional redundancy of the community as a whole remain unchanged. This strongly suggests that in peat bogs, species turnover across environmental gradients is restricted to functionally similar species. Our results demonstrate that plant taxonomic and functional turnover are decoupled, which may allow these peat bogs to maintain ecosystem functioning when subject to future environmental change. Peatland plant communities are expected to be affected by environmental change, though how assemblages respond is not fully understood. Here, Robroek et al. show that peatland species occur in two distinct clusters, and functional identity and redundancy was maintained under taxonomic turnover.
Collapse
Affiliation(s)
- Bjorn J M Robroek
- Ecology and Biodiversity, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands. .,Biological Sciences, Faculty of Natural and Environmental Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Vincent E J Jassey
- Université de Toulouse, INP, UPS, CNRS, Laboratoire d'Ecologie Fonctionnelle et Environnement (Ecolab), 118 Route de Narbonne, 31062, Toulouse Cedex, France
| | - Richard J Payne
- School of Science and the Environment, Division of Biology and Conservation Ecology, Manchester Metropolitan University, Manchester, M1 5GD, UK.,Environment, University of York, Heslington, York, YO10 5DD, UK
| | - Magalí Martí
- Department of Thematic Studies-Environmental Change, Linköping University, SE-581 83, Linköping, Sweden
| | - Luca Bragazza
- Department of Life Science and Biotechnologies, University of Ferrara, Corso Ercole I d'Este 32, I-44121, Ferrara, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Ecological Systems Laboratory (ECOS), CH-1015, Lausanne, Switzerland.,WSL - Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, CH-1015, Lausanne, Switzerland
| | - Albert Bleeker
- Unit Water, Agriculture and Food, PBL Netherlands Environmental Assessment Agency, PO Box 30314,, NL-2500 GH, The Hague, The Netherlands
| | - Alexandre Buttler
- Department of Life Science and Biotechnologies, University of Ferrara, Corso Ercole I d'Este 32, I-44121, Ferrara, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Ecological Systems Laboratory (ECOS), CH-1015, Lausanne, Switzerland
| | - Simon J M Caporn
- School of Science and the Environment, Division of Biology and Conservation Ecology, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Nancy B Dise
- School of Science and the Environment, Division of Biology and Conservation Ecology, Manchester Metropolitan University, Manchester, M1 5GD, UK.,Centre for Ecology and Hydrology, Edinburgh Bush Estate, Penicuik, EH26 0QB, Edinburgh, UK
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Hans Knöll Straße 10, D-07745, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
| | - Katarzyna Zając
- Limnological Research Station and Department of Hydrology, University of Bayreuth, Universitätsstraße 30, D-95440, Bayreuth, Germany
| | - Bo H Svensson
- Department of Thematic Studies-Environmental Change, Linköping University, SE-581 83, Linköping, Sweden
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation, Wageningen University and Research Centre, PO Box 47, NL-6700 AA, Wageningen, The Netherlands
| | - Jos T A Verhoeven
- Ecology and Biodiversity, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
| |
Collapse
|
29
|
Robroek BJM, Jassey VEJ, Beltman B, Hefting MM. Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170449. [PMID: 29134063 PMCID: PMC5666246 DOI: 10.1098/rsos.170449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/27/2017] [Indexed: 05/13/2023]
Abstract
Global change, like droughts, can destabilize the carbon sink function of peatlands, either directly or indirectly through changes in plant community composition. While the effects of drought and plant community composition on individual carbon (C) related processes are well understood, their effect on multiple C-related processes simultaneously-multifunctionality-is poorly known. We studied the effect of drought on four C-related processes (net and gross CO2 exchange, methane fluxes, and dissolved organic carbon content) in a plant removal experiment. Plant functional type (PFT) removal (graminoids, herbs, Polytrichum spp., incl. combinations) negatively affected multifunctionality; most markedly when all PFTs were removed. Our results corroborate a negative drought effect on C-related multifunctionality. Drought reduced multifunctionality, and this reduction was again largest when all PFTs were removed. Our data further indicate that much of these negative drought effects were carried over and maintained from the initial removal treatment. These results suggest that while a high diversity in plant functional types is associated to high C-related multifunctionality, plant community assembly does not drive the ability of peatlands to withstand the negative impacts of drought on multifunctionality. Hence, to safeguard the carbon cycling function in intact peatlands, the effects of climate change on the functional composition of the peatland plant community needs to be minimized.
Collapse
Affiliation(s)
- Bjorn J. M. Robroek
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Author for correspondence: Bjorn J. M. Robroek e-mail:
| | - Vincent E. J. Jassey
- INP, UPS, CNRS, Laboratoire d'Ecologie Fonctionnelle et Environnement (Ecolab), Université de Toulouse, 31062 Toulouse Cedex, France
| | - Boudewijn Beltman
- Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mariet M. Hefting
- Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
30
|
Robroek BJM, Jassey VEJ, Beltman B, Hefting MM. Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170449. [PMID: 29134063 DOI: 10.5061/dryad.g1pk3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/27/2017] [Indexed: 05/27/2023]
Abstract
Global change, like droughts, can destabilize the carbon sink function of peatlands, either directly or indirectly through changes in plant community composition. While the effects of drought and plant community composition on individual carbon (C) related processes are well understood, their effect on multiple C-related processes simultaneously-multifunctionality-is poorly known. We studied the effect of drought on four C-related processes (net and gross CO2 exchange, methane fluxes, and dissolved organic carbon content) in a plant removal experiment. Plant functional type (PFT) removal (graminoids, herbs, Polytrichum spp., incl. combinations) negatively affected multifunctionality; most markedly when all PFTs were removed. Our results corroborate a negative drought effect on C-related multifunctionality. Drought reduced multifunctionality, and this reduction was again largest when all PFTs were removed. Our data further indicate that much of these negative drought effects were carried over and maintained from the initial removal treatment. These results suggest that while a high diversity in plant functional types is associated to high C-related multifunctionality, plant community assembly does not drive the ability of peatlands to withstand the negative impacts of drought on multifunctionality. Hence, to safeguard the carbon cycling function in intact peatlands, the effects of climate change on the functional composition of the peatland plant community needs to be minimized.
Collapse
Affiliation(s)
- Bjorn J M Robroek
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Vincent E J Jassey
- INP, UPS, CNRS, Laboratoire d'Ecologie Fonctionnelle et Environnement (Ecolab), Université de Toulouse, 31062 Toulouse Cedex, France
| | - Boudewijn Beltman
- Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mariet M Hefting
- Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
31
|
Kaštovská E, Straková P, Edwards K, Urbanová Z, Bárta J, Mastný J, Šantrůčková H, Picek T. Cotton-Grass and Blueberry have Opposite Effect on Peat Characteristics and Nutrient Transformation in Peatland. Ecosystems 2017. [DOI: 10.1007/s10021-017-0159-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Bond‐Lamberty B, Epron D, Harden J, Harmon ME, Hoffman F, Kumar J, David McGuire A, Vargas R. Estimating heterotrophic respiration at large scales: challenges, approaches, and next steps. Ecosphere 2016. [DOI: 10.1002/ecs2.1380] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ben Bond‐Lamberty
- Joint Global Change Research Institute Pacific Northwest National Laboratory 5825 University Research Court College Park Maryland 20740 USA
| | - Daniel Epron
- Université de Lorraine UMR INRA‐UL 1137 Ecologie et Ecophysiologie Forestières Vandoeuvre‐les‐Nancy F54500 France
| | - Jennifer Harden
- United States Geological Survey Menlo Park California 94025 USA
| | - Mark E. Harmon
- Department of Forest Ecosystems and Society Oregon State University Corvallis Oregon 97331 USA
| | - Forrest Hoffman
- Oak Ridge National Laboratory Climate Change Science Institute Oak Ridge Tennessee 37831 USA
| | - Jitendra Kumar
- Oak Ridge National Laboratory Climate Change Science Institute Oak Ridge Tennessee 37831 USA
| | - Anthony David McGuire
- United States Geological Survey Alaska Cooperative Fish and Wildlife Research Unit University of Alaska Fairbanks Fairbanks Alaska 99775 USA
| | - Rodrigo Vargas
- Department of Plant and Soil Sciences University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
33
|
Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw AJ, Tuskan GA, Warren JM, Wullschleger SD. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host-microbiome interactions on understanding ecosystem function. PLANT, CELL & ENVIRONMENT 2015; 38:1737-1751. [PMID: 25266403 DOI: 10.1111/pce.12458] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 06/03/2023]
Abstract
Peatlands harbour more than one-third of terrestrial carbon leading to the argument that the bryophytes, as major components of peatland ecosystems, store more organic carbon in soils than any other collective plant taxa. Plants of the genus Sphagnum are important components of peatland ecosystems and are potentially vulnerable to changing climatic conditions. However, the response of Sphagnum to rising temperatures, elevated CO2 and shifts in local hydrology have yet to be fully characterized. In this review, we examine Sphagnum biology and ecology and explore the role of this group of keystone species and its associated microbiome in carbon and nitrogen cycling using literature review and model simulations. Several issues are highlighted including the consequences of a variable environment on plant-microbiome interactions, uncertainty associated with CO2 diffusion resistances and the relationship between fixed N and that partitioned to the photosynthetic apparatus. We note that the Sphagnum fallax genome is currently being sequenced and outline potential applications of population-level genomics and corresponding plant photosynthesis and microbial metabolic modelling techniques. We highlight Sphagnum as a model organism to explore ecosystem response to a changing climate and to define the role that Sphagnum can play at the intersection of physiology, genetics and functional genomics.
Collapse
Affiliation(s)
- David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Collin M Timm
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, 35806, USA
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stan D Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
34
|
Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. GLOBAL CHANGE BIOLOGY 2015; 21:388-95. [PMID: 24957384 DOI: 10.1111/gcb.12643] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/13/2014] [Indexed: 05/03/2023]
Abstract
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.
Collapse
Affiliation(s)
- Catherine M Dieleman
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
35
|
Nijp JJ, Limpens J, Metselaar K, van der Zee SEATM, Berendse F, Robroek BJM. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands? THE NEW PHYTOLOGIST 2014; 203:70-80. [PMID: 24689361 DOI: 10.1111/nph.12792] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such rewetting required for it to be effective remains unknown. We experimentally assessed the importance of precipitation frequency for Sphagnum water supply and carbon uptake during a stepwise decrease in water tables in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species (Sphagnum majus, Sphagnum balticum and Sphagnum fuscum) representative of three hydrologically distinct peatland microhabitats (hollow, lawn and hummock) and expected to differ in their water table-precipitation relationships. Precipitation contributed significantly to peatmoss water supply when the water table was deep, demonstrating the importance of precipitation during drought. The ability to exploit transient resources was species-specific; S. fuscum carbon uptake increased linearly with precipitation frequency for deep water tables, whereas carbon uptake by S. balticum and S. majus was depressed at intermediate precipitation frequencies. Our results highlight an important role for precipitation in carbon uptake by peatmosses. Yet, the potential to moderate the impact of drought is species-specific and dependent on the temporal distribution of precipitation.
Collapse
Affiliation(s)
- Jelmer J Nijp
- Nature Conservation and Plant Ecology Group, Wageningen University, Wageningen, the Netherlands; Soil Physics and Land Management Group, Wageningen University, Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|