1
|
Chen C, Wang R, Liu Y, Fan L, Ma N, Yan Q, Wang W, Ren Z, Ning X, Ku T. "Iron -free" CdSe/ZnS quantum dots disrupt neural differentiation of embryonic stem cells via the induction of ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126378. [PMID: 40339883 DOI: 10.1016/j.envpol.2025.126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/15/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Exposure to Cadmium-based quantum dots (QDs) is becoming a growing threat to human health, necessitating a deeper understanding of their intracellular behavior and the associated toxic effects. Among the various domains of nanosafety assessment, the impact of these QDs on the nervous system is particularly critical; however, the potential effects on neurodevelopment and the underlying mechanisms remain largely unexplored. The current study explores the neural developmental toxicities associated with exposure to QDs made of cadmium selenide (CdSe) and encapsulated within a zinc sulfide (ZnS) shell using mouse embryonic stem cells (mESCs). Exposure to CdSe/ZnS QDs was found to impair the neural differentiation of mESCs via a novel mechanism of programmed cell death known as ferroptosis. Specifically, the CdSe/ZnS QDs were found to be internalized by cells, with a substantial fraction remaining within the cells even after a 24 h clearance period. Furthermore, nanoparticle internalization induced significant ROS/MDA elevation, mitochondrial depolarization and intracellular iron overload, collectively triggering ferroptosis and consequent tricarboxylic acid (TCA) cycle dysfunction. Importantly, the application of ferroptosis inhibitors was found to alleviate the disruption in the TCA cycle induced by CdSe/ZnS QDs and restore neural differentiation. Additionally, ferroptosis was established as a common form of cell death triggered by nanoparticles. These findings underscore the urgent need for further investigations into the safety profiles of CdSe/ZnS QDs in a neurological context, as an understanding of the underlying mechanisms can facilitate informed risk assessments and guide the development of safer nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Chen Chen
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yutong Liu
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Lifan Fan
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Nanxin Ma
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Qiqi Yan
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Wenhao Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Zhihua Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Tingting Ku
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
2
|
Liu C, Yu J, Song A, Wang M, Hu J, Chen P, Zhao J, Li G. Histone H1 facilitates restoration of H3K27me3 during DNA replication by chromatin compaction. Nat Commun 2023; 14:4081. [PMID: 37429872 DOI: 10.1038/s41467-023-39846-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
During cell renewal, epigenetic information needs to be precisely restored to maintain cell identity and genome integrity following DNA replication. The histone mark H3K27me3 is essential for the formation of facultative heterochromatin and the repression of developmental genes in embryonic stem cells. However, how the restoration of H3K27me3 is precisely achieved following DNA replication is still poorly understood. Here we employ ChOR-seq (Chromatin Occupancy after Replication) to monitor the dynamic re-establishment of H3K27me3 on nascent DNA during DNA replication. We find that the restoration rate of H3K27me3 is highly correlated with dense chromatin states. In addition, we reveal that the linker histone H1 facilitates the rapid post-replication restoration of H3K27me3 on repressed genes and the restoration rate of H3K27me3 on nascent DNA is greatly compromised after partial depletion of H1. Finally, our in vitro biochemical experiments demonstrate that H1 facilitates the propagation of H3K27me3 by PRC2 through compacting chromatin. Collectively, our results indicate that H1-mediated chromatin compaction facilitates the propagation and restoration of H3K27me3 after DNA replication.
Collapse
Affiliation(s)
- Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Aoqun Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jiansen Hu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 100101, Beijing, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, 100069, Beijing, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
3
|
Li S, Ma J, Pang X, Liang Y, Li X, Wang M, Yuan J, Pan Y, Fu Y, Laher I. Time-dependent Effects of Moderate- and High-intensity Exercises on Myocardial Transcriptomics. Int J Sports Med 2022; 43:1214-1225. [PMID: 36063823 DOI: 10.1055/a-1885-4115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heart is a highly adaptable organ that responds to changes in functional requirements due to exposure to internal and external stimuli. Physical exercise has unique stimulatory effects on the myocardium in both healthy individuals and those with health disorders, where the effects are primarily determined by the intensity and recovery time of exercise. We investigated the time-dependent effects of different exercise intensities on myocardial transcriptional expression in rats. Moderate intensity exercise induced more differentially expressed genes in the myocardium than high intensity exercise, while 16 differentially expressed genes were down-regulated by moderate intensity exercise but up-regulated by high intensity exercise at 12 h post- exercise. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that moderate intensity exercise specifically regulated gene expression related to heart adaptation, energy metabolism, and oxidative stress, while high intensity exercise specifically regulated gene expression related to immunity, inflammation, and apoptosis. Moreover, there was increased expression of Tbx5, Casq1, Igsf1, and Ddah1 at all time points after moderate intensity exercise, while there was increased expression of Card9 at all time points after high intensity exercise. Our study provides a better understanding of the intensity dependent effects of physical exercise of the molecular mechanisms of cardiac adaptation to physical exercise.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaole Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Liu W, Zhao Y, Liu X, Zhang X, Ding J, Li Y, Tian Y, Wang H, Liu W, Lu Z. A Novel Meiosis-Related lncRNA, Rbakdn, Contributes to Spermatogenesis by Stabilizing Ptbp2. Front Genet 2021; 12:752495. [PMID: 34707642 PMCID: PMC8542969 DOI: 10.3389/fgene.2021.752495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Spermatocyte meiosis is the cornerstone of mammalian production. Thousands of long noncoding RNAs (lncRNAs) have been reported to be functional in various cellular processes, but the function of lncRNAs in meiosis remains largely unknown. Here, we profiled lncRNAs in spermatocytes at stage I of meiosis and identified a testis-specific lncRNA, Rbakdn, as a vital regulator of meiosis. Rbakdn is dynamically expressed during meiosis I, and Rbakdn knockdown inhibits meiosis in vitro. Furthermore, Rbakdn knockdown in testes in mice by intratesticular injection disturbs meiosis, reduces testicular volume, and increases apoptosis of spermatocytes, resulting in vacuolation of the seminiferous tubules. Rbakdn can bind to Ptbp2, an RNA-binding protein that is important in the regulation of the alternative splicing of many genes in spermatogenesis. Rbakdn knockdown leads to a decrease in Ptbp2 through the ubiquitination degradation pathway, indicating that Rbakdn maintains the stability of Ptbp2. In conclusion, our study identified an lncRNA, Rbakdn, with a crucial role in meiosis.
Collapse
Affiliation(s)
- Wensheng Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yinan Zhao
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Xiaoya Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jiancheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yingpu Tian
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhongxian Lu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Nasser MI, Qi X, Zhu S, He Y, Zhao M, Guo H, Zhu P. Current situation and future of stem cells in cardiovascular medicine. Biomed Pharmacother 2020; 132:110813. [PMID: 33068940 DOI: 10.1016/j.biopha.2020.110813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Currently, many methods have been proposed by researchers for the prevention and treatment of CVD; among them, stem cell-based therapies are the most promising. As the cells of origin for various mature cells, stem cells have the ability to self-renew and differentiate. Stem cells have a powerful ability to regenerate biologically, self-repair, and enhance damaged functional tissues or organs. Allogeneic stem cells and somatic stem cells are two types of cells that can be used for cardiac repair. Theoretically, dilated cardiomyopathy and acute myocardial infarction can be treated with such cells. In addition, stem cell transplantation procedures, including intravenous, epicardial, cardiac, and endocardial injections, have been reported to provide significant benefits in clinical practice; however, there are still a number of issues that need further study and consideration, such as the form and quantity of transplanted cells and post-transplantation health. The goal of this analysis was to summarize the recent advances in stem cell-based therapies and their efficacy in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Xiao Qi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Yin He
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China.
| |
Collapse
|
6
|
Witt G, Keminer O, Leu J, Tandon R, Meiser I, Willing A, Winschel I, Abt JC, Brändl B, Sébastien I, Friese MA, Müller FJ, Neubauer JC, Claussen C, Zimmermann H, Gribbon P, Pless O. An automated and high-throughput-screening compatible pluripotent stem cell-based test platform for developmental and reproductive toxicity assessment of small molecule compounds. Cell Biol Toxicol 2020; 37:229-243. [PMID: 32564278 PMCID: PMC8012336 DOI: 10.1007/s10565-020-09538-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022]
Abstract
The embryonic stem cell test (EST) represents the only validated and accepted in vitro system for the detection and classification of compounds according to their developmental and reproductive teratogenic potency. The widespread implementation of the EST, however, in particular for routine application in pharmaceutical development, has not been achieved so far. Several drawbacks still limit the high-throughput screening of potential drug candidates in this format: The long assay period, the use of non-homogeneous viability assays, the low throughput analysis of marker protein expression and the compatibility of the assay procedures to automation. We have therefore introduced several advancements into the EST workflow: A reduction of the assay period, an introduction of homogeneous viability assays, and a straightforward analysis of marker proteins by flow cytometry and high content imaging to assess the impact of small molecules on differentiation capacity. Most importantly, essential parts of the assay procedure have been adapted to lab automation in 96-well format, thus enabling the interrogation of several compounds in parallel. In addition, extensive investigations were performed to explore the predictive capacity of this next-generation EST, by testing a set of well-known embryotoxicants that encompasses the full range of chemical-inherent embryotoxic potencies possible. Due to these significant improvements, the augmented workflow provides a basis for a sensitive, more rapid, and reproducible high throughput screening compatible platform to predict in vivo developmental toxicity from in vitro data which paves the road towards application in an industrial setting. •The embryonic stem cell test to predict teratogenicity was made automation-compatible. •Several key improvements to the assay procedure have been introduced to increase performance. •The workflow was adapted to human iPS cells and isogenic fibroblast donor cells. ![]()
Collapse
Affiliation(s)
- Gesa Witt
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Oliver Keminer
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Jennifer Leu
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Rashmi Tandon
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Ina Meiser
- Fraunhofer IBMT, 66280, Sulzbach, Saar, Germany
| | - Anne Willing
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ingo Winschel
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jana-Christin Abt
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Björn Brändl
- Christian-Albrechts-Universität zu Kiel, ZIP gGmbH, 24105, Kiel, Germany
| | | | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Franz-Josef Müller
- Christian-Albrechts-Universität zu Kiel, ZIP gGmbH, 24105, Kiel, Germany
| | | | - Carsten Claussen
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Heiko Zimmermann
- Fraunhofer IBMT, 66280, Sulzbach, Saar, Germany.,Lehrstuhl für Molekulare und Zelluläre Biotechnologie, Universität des Saarlandes, 66123, Saarbrücken, Germany.,Fakultät für Meereswissenschaften, Universidad Católica del Norte, CL-1781421, Coquimbo, Chile
| | - Philip Gribbon
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany.
| |
Collapse
|
7
|
Loeliger BW, Hanu C, Panyutin IV, Maass-Moreno R, Wakim P, Pritchard WF, Neumann RD, Panyutin IG. Effect of Ionizing Radiation on Transcriptome during Neural Differentiation of Human Embryonic Stem Cells. Radiat Res 2020; 193:460-470. [PMID: 32216708 DOI: 10.1667/rr15535.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human embryonic brain development is highly sensitive to ionizing radiation. However, detailed information on the mechanisms of this sensitivity is not available due to limited experimental data. In this study, differentiation of human embryonic stem cells (hESCs) to neural lineages was used as a model for early embryonic brain development to assess the effect of exposure to low (17 mGy) and high (572 mGy) doses of radiation on gene expression. Transcriptomes were assessed using RNA sequencing during neural differentiation at three time points in control and irradiated samples. The first time point was when the cells were still pluripotent (day 0), the second time point was during the stage of embryoid body formation (day 6), and the third and final time point was during the stage of neural rosette formation (day 10). Analysis of the transcriptomes revealed neurodifferentiation in both the control and irradiated cells. Low-dose irradiation did not result in changes in gene expression at any of the time points, whereas high-dose irradiation resulted in downregulation of some major neurodifferentiation markers on days 6 and 10. Gene ontology analysis showed that pathways related to nervous system development, neurogenesis and generation of neurons were among the most affected. Expression of such key regulators of neuronal development as NEUROG1, ARX, ASCL1, RFX4 and INSM1 was reduced more than twofold. In conclusion, exposure to a 17 mGy low dose of radiation was well tolerated by hESCs while exposure to 572 mGy significantly affected their genetic reprogramming into neuronal lineages.
Collapse
Affiliation(s)
| | | | | | | | - Paul Wakim
- Department of Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
8
|
Zang R, Xin X, Zhang F, Li D, Yang ST. An engineered mouse embryonic stem cell model with survivin as a molecular marker and EGFP as the reporter for high throughput screening of embryotoxic chemicals in vitro. Biotechnol Bioeng 2019; 116:1656-1668. [PMID: 30934112 DOI: 10.1002/bit.26977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell test (EST) is the only generally accepted in vitro method for assessing embryotoxicity without animal sacrifice. However, the implementation and application of EST for regulatory embryotoxicity screening are impeded by its technical complexity, long testing period, and limited endpoint data. In this study, a high throughput embryotoxicity screening based on mouse embryonic stem cells (mESCs) expressing enhanced green fluorescent protein (EGFP) driven by a human survivin promoter and a human cytomegalovirus promoter, respectively, was developed. These EGFP expressing mESCs were cultured in three-dimensional (3D) fibrous scaffolds in microbioreactors on a multiwell plate with EGFP fluorescence signals as cell responses to chemicals monitored noninvasively in a high throughput manner. Nine chemicals with known developmental toxicity were used to validate the survivin-based embryotoxicity assay, which showed that strongly embryotoxic compounds such as 5-fluorouracil, retinoic acid, and methotrexate downregulated survivin expression by more than 50% in 3 days, while weakly embryotoxic compounds such as boric acid, methoxyacetic acid, and tetracyclin showed modest downregulation effect and nonembryotoxic saccharin, penicillin G, and acrylamide had negligible downregulation effect on survivin expression, confirming that survivin can be used as a molecular endpoint for high throughput screening of embryotoxicants. The potential developmental toxicity of three Chinese herbal medicines were also evaluated using this assay, demonstrating its application in in vitro developmental toxicity test for drug safety assessment.
Collapse
Affiliation(s)
- Ru Zang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Xin Xin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Fengli Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Ding Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| |
Collapse
|
9
|
Boshuizen MCS, Steinberg GK. Stem Cell-Based Immunomodulation After Stroke: Effects on Brain Repair Processes. Stroke 2018; 49:1563-1570. [PMID: 29724892 DOI: 10.1161/strokeaha.117.020465] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Marieke C S Boshuizen
- From the Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, CA
| | - Gary K Steinberg
- From the Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, CA.
| |
Collapse
|
10
|
Ge Y, Chen L, Sun X, Yin Z, Song X, Li C, Liu J, An Z, Yang X, Ning H. Lead-induced changes of cytoskeletal protein is involved in the pathological basis in mice brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11746-11753. [PMID: 29442309 DOI: 10.1007/s11356-018-1334-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Lead poisoning is a geochemical disease. On the other hand, lead is highly carcinogenic and exhibits liver and kidney toxicity. This element can also cross the blood-brain barrier, reduce learning and memory ability and damage the structure of the cerebral cortex and hippocampus. To further investigate the mechanism of lead neurotoxicity, 4-week-old Kunming mice were used to explore the effects of different concentrations of Pb2+ (0, 2.4, 4.8 and 9.6 mM) for 9 days. In this study, pathological and ultrastructural changes in brain cells of the treated group were related to damages to mitochondria, chromatin and the nucleus. Lead content in blood was tested by atomic absorption spectroscopy, which showed high lead concentrations in the blood with increasing doses of lead. Distribution of lead in nerve cells was analysed by transmission electron microscopy with energy dispersive spectroscopy. Data showed the presence of lead in nucleopores, chromatin and nuclear membrane of nerve cells in the treatment groups, whereas lead content increased with increasing doses of lead acetate. Finally, microtubule-associated protein 2 (MAP2) mRNA and protein expression levels were detected by real-time PCR and Western blotting, which showed a reduction in MAP2 expression with increasing lead doses in the mouse brain. These findings suggest that acute lead poisoning can cause significant dose-dependent toxic effects on mouse brain function and can contribute to better understanding of lead-induced toxicity.
Collapse
Affiliation(s)
- Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Shanxi Agriculture University, Taigu, 030801, China
| | - Xianghe Sun
- Nanle Buteau of Agriculture and Animal Husbandry, Puyang, 457400, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaochao Song
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Chong Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Junwei Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zhixing An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xuefeng Yang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
11
|
Saito K, Suzuki N, Kobayashi K. [Development of alternatives to animal experiments using pluripotent stem cells]. Nihon Yakurigaku Zasshi 2018; 151:62-68. [PMID: 29415927 DOI: 10.1254/fpj.151.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Animal experiments have occupied an important position in the safety assessment of chemicals. However, due to the rise in animal welfare as seen in the ban of animal experiments in European cosmetic development, the development of alternative methods for animal experiments has become very important in recent years. Development of in vitro tests for local toxicity such as irritation and sensitization tests is preceded. Meanwhile, alternative tests for systemic toxicity such as chronic and developmental toxicities are under development. In developing alternative methods using cultured cells, we have been focusing on pluripotent stem cells such as ES and iPS cells and studying alternatives to developmental toxicity and neurotoxicity. As an alternative test of developmental toxicity, we developed the Hand 1-Luc EST, which is a simple test utilizing cardiomyocyte differentiation process of mouse ES cells, and Tubb 3- and Reln-Luc ESTs using nerve differentiation process. Recently, it was clarified that the combination of the Hand 1-Luc EST and the Tubb 3- and Reln-Luc ESTs improves the prediction of the developmental toxicity. In the study of in vitro neurotoxicity test using neurons derived from mouse ES cells, evaluation methods for neurite outgrowth using high-content imaging technology and for neural function using multi-electrode arrays were developed. In addition, we introduce differentiation methods for retinal tissues from human ES/iPS cells, which are the results as the collaboration with RIKEN and the present state of an in vitro phototoxicity test using retinal pigment epithelial cells (RPE) derived from human ES cells.
Collapse
Affiliation(s)
- Koichi Saito
- Advanced Materials Development Laboratory, Sumitomo Chemical Co., Ltd
| | - Noriyuki Suzuki
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Kumiko Kobayashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| |
Collapse
|
12
|
Kobayashi K, Suzuki N, Higashi K, Muroi A, Le Coz F, Nagahori H, Saito K. Editor's Highlight: Development of Novel Neural Embryonic Stem CellTests for High-Throughput Screening of Embryotoxic Chemicals. Toxicol Sci 2017; 159:238-250. [PMID: 28903496 DOI: 10.1093/toxsci/kfx130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a great demand for appropriate alternative methods to rapidly evaluate the developmental and reproductive toxicity of a wide variety of chemicals. We used the differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes as a basis for establishing a rapid and highly reproducible invitro embryotoxicity test known as the Hand1-Luc Embryonic Stem Cell Test (Hand1-Luc EST). In this study, we developed novel neural-Luc ESTs using two marker genes for neural development, tubulin beta-3 (Tubb3) and Reelin (Reln), and evaluated the capacity of these tests to predict developmental toxicity. In addition, we tested whether an integrated approach (a combination of neural-Luc ESTs and the Hand1-Luc EST) improved developmental toxicant detection. To perform our neural-Luc ESTs, we needed to generate stable transgenic mESCs with individual promoters linked to the luciferase gene, and to establish that similar changes in promoter activities and mRNA expression levels occur during neural differentiation. Based on the concentration-response curves of 15 developmental toxicants and 17 non-developmental toxic chemicals, we derived a prediction formula and assessed the capacity of this formula to predict developmental toxicity. Although both were highly sensitive and specific for predicting developmental toxicity, neural-Luc ESTs had similar predictive capacities. In contrast, neural-Luc ESTs and Hand1-Luc EST had significantly different predictive powers. As expected, the combination of these ESTs increased the sensitivity of developmental toxicant detection. These results demonstrate the convenience and the usefulness of this combination of ESTs as an alternative assay system for future toxicological and mechanistic studies of developmental toxicity.
Collapse
Affiliation(s)
- Kumiko Kobayashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd, Osaka 554-8558, Japan
| | - Noriyuki Suzuki
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd, Osaka 554-8558, Japan
| | - Kiyoshi Higashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd, Osaka 554-8558, Japan
| | - Akane Muroi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd, Osaka 554-8558, Japan
| | - Florian Le Coz
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd, Osaka 554-8558, Japan
| | - Hirohisa Nagahori
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd, Osaka 554-8558, Japan
| | - Koichi Saito
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd, Osaka 554-8558, Japan
| |
Collapse
|
13
|
Jiang Y, Wang D, Zhang G, Wang G, Tong J, Chen T. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene. ENVIRONMENTAL TOXICOLOGY 2016; 31:1372-1380. [PMID: 25847060 DOI: 10.1002/tox.22142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/09/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Trichloroethylene (TCE) is ubiquitous in our living environment, and prenatal exposure to TCE is reported to cause congenital heart disease in humans. Although multiple studies have been performed using animal models, they have limited value in predicting effects on humans due to the unknown species-specific toxicological effects. To test whether exposure to low doses of TCE induces developmental toxicity in humans, we investigated the effect of TCE on human embryonic stem cells (hESCs) and cardiomyocytes (derived from the hESCs). In the current study, hESCs cardiac differentiation was achieved by using differentiation medium consisting of StemPro-34. We examined the effects of TCE on cell viability by cell growth assay and cardiac inhibition by analysis of spontaneously beating cluster. The expression levels of genes associated with cardiac differentiation and Ca2+ channel pathways were measured by immunofluorescence and qPCR. The overall data indicated the following: (1) significant cardiac inhibition, which was characterized by decreased beating clusters and beating rates, following treatment with low doses of TCE; (2) significant up-regulation of the Nkx2.5/Hand1 gene in cardiac progenitors and down regulation of the Mhc-7/cTnT gene in cardiac cells; and (3) significant interference with Ca2+ channel pathways in cardiomyocytes, which contributes to the adverse effect of TCE on cardiac differentiation during early embryo development. Our results confirmed the involvement of Ca2+ turnover network in TCE cardiotoxicity as reported in animal models, while the inhibition effect of TCE on the transition of cardiac progenitors to cardiomyocytes is unique to hESCs, indicating a species-specific effect of TCE on heart development. This study provides new insight into TCE biology in humans, which may help explain the development of congenital heart defects after TCE exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1372-1380, 2016.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China
| | - Dan Wang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Guoxing Zhang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Guoqing Wang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jian Tong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Toxicology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Tao Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Toxicology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
14
|
Nagahori H, Suzuki N, Le Coz F, Omori T, Saito K. Prediction of in vivo developmental toxicity by combination of Hand1-Luc embryonic stem cell test and metabolic stability test with clarification of metabolically inapplicable candidates. Toxicol Lett 2016; 259:44-51. [DOI: 10.1016/j.toxlet.2016.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/24/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
|
15
|
Yoshie S, Ogasawara Y, Ikehata M, Ishii K, Suzuki Y, Wada K, Wake K, Nakasono S, Taki M, Ohkubo C. Evaluation of biological effects of intermediate frequency magnetic field on differentiation of embryonic stem cell. Toxicol Rep 2016; 3:135-140. [PMID: 28959531 PMCID: PMC5615788 DOI: 10.1016/j.toxrep.2015.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 01/05/2023] Open
Abstract
The embryotoxic effect of intermediate frequency (IF) magnetic field (MF) was evaluated using murine embryonic stem (ES) cells and fibroblast cells based on the embryonic stem cell test (EST). The cells were exposed to 21 kHz IF-MF up to magnetic flux density of 3.9 mT during the cell proliferation process (7 days) or the cell differentiation process (10 days) during which an embryonic body differentiated into myocardial cells. As a result, there was no significant difference in the cell proliferation between sham- and IF-MF-exposed cells for both ES and fibroblast cells. Similarly, the ratio of the number of ES-derived cell aggregates differentiated to myocardial cells to total number of cell aggregates was not changed by IF-MF exposure. In addition, the expressions of a cardiomyocytes-specific gene, Myl2, and an early developmental gene, Hba-x, in the exposed cell aggregate were not altered. Since the magnetic flux density adopted in this study is much higher than that generated by an inverter of the electrical railway, an induction heating (IH) cooktop, etc. in our daily lives, these results suggested that IF-MF in which the public is exposed to in general living environment would not have embryotoxic effect.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Differentiation
- EB, embryonic body
- ELF, extremely low frequency
- EMF, electromagnetic field
- ES, embryonic stem
- EST, embryonic stem cell test
- Embryonic stem cell
- Gene expression
- ICNIRP, International Commission of Non-Ionizing Radiation Protection
- IF, intermediate frequency
- IH, induction heating
- Intermediate frequency magnetic field
- MF, magnetic field
- RF, radiofrequency
- WHO, World Health Organization
Collapse
Affiliation(s)
- Sachiko Yoshie
- Biotechnology Laboratory, Human Science Division, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
| | - Yuki Ogasawara
- Hygienic Chemistry, Health and Environmental Sciences, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo 204-8588, Japan
| | - Masateru Ikehata
- Biotechnology Laboratory, Human Science Division, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
| | - Kazuyuki Ishii
- Hygienic Chemistry, Health and Environmental Sciences, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo 204-8588, Japan
| | - Yukihisa Suzuki
- Faculty of Electrical & Electronic Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Keiji Wada
- Faculty of Electrical & Electronic Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kanako Wake
- Electromagnetic Compatibility Laboratory, Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
| | - Satoshi Nakasono
- EMF Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan
| | - Masao Taki
- Faculty of Electrical & Electronic Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Chiyoji Ohkubo
- Japan EMF Information Center, 2-9-11 Shiba, Minato-ku, Tokyo 105-0014, Japan
| |
Collapse
|
16
|
Arrigoni F, Romaniello R, Peruzzo D, Righini A, Parazzini C, Colombo P, Bassi MT, Triulzi F, Borgatti R. Aberrant supracallosal longitudinal bundle: MR features, pathogenesis and associated clinical phenotype. Eur Radiol 2015; 26:2587-96. [PMID: 26560723 DOI: 10.1007/s00330-015-4084-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To describe the MRI and structural features of a peculiar malformation of the corpus callosum (CC) in a group of young patients with intellectual disability. METHODS We studied with conventional MRI and DTI a group of subjects showing an aberrant supracallosal bundle, characterized by the presence of a triangle-shaped bulging above the dorsal surface of CC on the midline. Clinical evaluations, CGH-array and instrumental analysis were also collected. RESULTS Among 85 patients with malformed CC, we identified 15 subjects that showed the supracallosal bundle. The CC was thickened in five cases, long and thinned in three cases, short and thinned in three cases and it had a "ribbon-like" appearance in four subjects. Additional brain anomalies were present in eight cases. DTI colour maps and tractography showed that the bundle had an antero-posterior longitudinal orientation and that the tract bifurcated posteriorly, ending in the posterior hippocampi. Patients had different combinations of neurological symptoms, but all showed mild or severe intellectual disability. CONCLUSIONS Combining radiological and genetic data with embryological knowledge of the development of cerebral commissures, we hypothesize that the supracallosal bundle represents a vestigial structure, the dorsal fornix, present during fetal life. Its persistence is associated with intellectual disability. KEY POINTS • An aberrant longitudinal bundle can be detected above corpus callosum. • The presence of the supracallosal bundle is associated with intellectual disability. • The supracallosal bundle may represent a persistent dorsal fornix.
Collapse
Affiliation(s)
- Filippo Arrigoni
- Neuroimaging Laboratory, Scientific Institute IRCCS Eugenio Medea, Via don Luigi Monza 20, 23842, Bosisio Parini, Lecco, Italy.
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Denis Peruzzo
- Neuroimaging Laboratory, Scientific Institute IRCCS Eugenio Medea, Via don Luigi Monza 20, 23842, Bosisio Parini, Lecco, Italy
| | - Andrea Righini
- Department of Pediatric Radiology and Neuroradiology, Children Hospital V. Buzzi, Milano, Italy
| | - Cecilia Parazzini
- Department of Pediatric Radiology and Neuroradiology, Children Hospital V. Buzzi, Milano, Italy
| | - Paola Colombo
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Fabio Triulzi
- Neuroradiology Department, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Renato Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| |
Collapse
|
17
|
Le Coz F, Suzuki N, Nagahori H, Omori T, Saito K. Hand1-Luc embryonic stem cell test (Hand1-Luc EST): a novel rapid and highly reproducible in vitro test for embryotoxicity by measuring cytotoxicity and differentiation toxicity using engineered mouse ES cells. J Toxicol Sci 2015; 40:251-61. [PMID: 25786529 DOI: 10.2131/jts.40.251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The embryonic stem cell test (EST) is a promising alternative method for evaluating embryotoxicity of test chemicals by measuring cytotoxicity and differentiation toxicity using mouse ES cells. Differentiation toxicity is analyzed by microscopically counting the beating of embryonic bodies after 10 days of culture. However, improvements are necessary to reduce the laborious manipulations involved and the time required to obtain results. We have previously reported the successful stable transfection of ES cells (ES-D3) with the heart and neural crest derivatives expressed transcript 1 (Hand1) gene and the establishment of a 96-well multi-plate-based new EST with luciferase reporter assay 6 days after treatment with test chemicals. Now, we propose an even more rapid and easier EST, named Hand1-Luc EST. We established another cell line to monitor the Hand1 gene expression via a luciferase reporter gene. By mRNA analysis and luciferase assay, we examined in detail the luciferase activity during cell differentiation, which allowed us to reduce the time of measurement from day 6 to day 5 (120 hr). Furthermore, the protocol was improved, with, among others, the measurement of cytotoxicity and differentiation toxicity taking place in the same 96-well round bottom plate instead of two different plates. With the positive control, 5-fluorouracil (5-FU), and 9 test chemicals, data with high reproducibility and very low variation (CV < 50%) in the relevant endpoints were obtained. This study shows that the Hand1-Luc EST could provide an accurate and sensitive short-term test for prediction of embryotoxicants by measuring cytotoxicity and differentiation toxicity from the same sample.
Collapse
Affiliation(s)
- Florian Le Coz
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | | | | | | | | |
Collapse
|
18
|
Reid KJ, Lang K, Froscio S, Humpage AJ, Young FM. Undifferentiated murine embryonic stem cells used to model the effects of the blue-green algal toxin cylindrospermopsin on preimplantation embryonic cell proliferation. Toxicon 2015; 106:79-88. [PMID: 26403865 DOI: 10.1016/j.toxicon.2015.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
Undifferentiated mouse embryonic stem cell (mES) proliferation in vitro resembles aspects of in vivo pre-implantation embryonic development. mES were used to assess the embryo-toxicity of cylindrospermopsin (CYN), a water contaminant with an Australian Drinking Water Guideline (ADWG) of 1 μg/L. mES exposed to 0-1 μg/mL CYN for 24-168 h were subjected to an optimised crystal violet viability assay. mES exposed to retinoic acid ± 1 μg/L CYN differentiated into neural-like cells confirmed by morphological examination and RT-PCR for Oct4, Brachyury and Nestin. The CYN No Observed Effect Concentration (OEC) was 0.5 μg/mL, the Lowest OEC was 1 μg/mL (p < 0.001, n = 3), and the IC50 was 0.86 μg/mL after 24 h. The ADWG 1 μg/L CYN did not affect differentiation or proliferation after 72 h, but decreased proliferation after 168 h (p < 0.05). We conclude that higher algal bloom-associated CYN concentrations have the potential to impair in vivo pre-implantation development, and the mES crystal violet assay has broad application to screening environmental toxins.
Collapse
Affiliation(s)
- Katherine J Reid
- Department of Medical Biotechnology, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia; Australian Water Quality Centre, SA Water, 250 Victoria Square, Adelaide, South Australia 5001, Australia
| | - Kenneth Lang
- Department of Medical Biotechnology, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia; South Australian Department of Health, Government of South Australia, Adelaide 5000, Australia
| | - Suzanne Froscio
- South Australian Department of Health, Government of South Australia, Adelaide 5000, Australia
| | - Andrew J Humpage
- Australian Water Quality Centre, SA Water, 250 Victoria Square, Adelaide, South Australia 5001, Australia
| | - Fiona M Young
- Department of Medical Biotechnology, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia; Flinders Fertility, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
19
|
Ehashi T, Suzuki N, Ando S, Sumida K, Saito K. Effects of valproic acid on gene expression during human embryonic stem cell differentiation into neurons. J Toxicol Sci 2014; 39:383-90. [PMID: 24849673 DOI: 10.2131/jts.39.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The widely used antiepileptic drug valproic acid (VPA) is known to exhibit teratogenicity in the form of a failure of the neural tube in humans. Embryonic stem cells (ESCs) are reported to be a promising cell source for evaluating chemical teratogenicity, because they are capable of reproducing embryonic developmental model and enable reduction in the number of experimental animals used. We previously investigated 22 genes for which expressions are altered by teratogens, specifically focusing on neural differentiation of mouse ESCs. In the present study, expressions of the investigated genes were evaluated by quantitative real-time PCR and compared during differentiation of human ESCs into neurons with or without VPA. Under the conditions, almost all gene expressions significantly changed in VPA-containing culture. Specifically, in neural development-related genes such as DCX, ARX, MAP2, and NNAT, more than 2-fold expression was observed. The findings suggest that the genes focused on in this study may help to elucidate the teratogenic effects of VPA and might be a useful tool to analyze embryotoxic potential of chemicals in humans.
Collapse
Affiliation(s)
- Tomo Ehashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | | | | | | | | |
Collapse
|
20
|
Higashi K, Asano K, Yagi M, Yamada K, Arakawa T, Ehashi T, Mori T, Sumida K, Kushida M, Ando S, Kinoshita M, Kakehi K, Tachibana T, Saito K. Expression of the clustered NeuAcα2-3Galβ O-glycan determines the cell differentiation state of the cells. J Biol Chem 2014; 289:25833-43. [PMID: 25074924 DOI: 10.1074/jbc.m114.550848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human embryonic stem cells (hESCs) are pluripotent stem cells from early embryos, and their self-renewal capacity depends on the sustained expression of hESC-specific molecules and the suppressed expression of differentiation-associated genes. To discover novel molecules expressed on hESCs, we generated a panel of monoclonal antibodies against undifferentiated hESCs and evaluated their ability to mark cancer cells, as well as hESCs. MAb7 recognized undifferentiated hESCs and showed a diffuse band with molecular mass of >239 kDa in the lysates of hESCs. Although some amniotic epithelial cells expressed MAb7 antigen, its expression was barely detected in normal human keratinocytes, fibroblasts, or endothelial cells. The expression of MAb7 antigen was observed only in pancreatic and gastric cancer cells, and its levels were elevated in metastatic and poorly differentiated cancer cell lines. Analyses of MAb7 antigen suggested that the clustered NeuAcα2-3Galβ O-linked oligosaccharides on DMBT1 (deleted in malignant brain tumors 1) were critical for MAb7 binding in cancer cells. Although features of MAb7 epitope were similar with those of TRA-1-60, distribution of MAb7 antigen in cancer cells was different from that of TRA-1-60 antigen. Exposure of a histone deacetylase inhibitor to differentiated gastric cancer MKN74 cells evoked the expression of MAb7 antigen, whereas DMBT1 expression remained unchanged. Cell sorting followed by DNA microarray analyses identified the down-regulated genes responsible for the biosynthesis of MAb7 antigen in MKN74 cells. In addition, treatment of metastatic pancreatic cancer cells with MAb7 significantly abrogated the adhesion to endothelial cells. These results raised the possibility that MAb7 epitope is a novel marker for undifferentiated cells such as hESCs and cancer stem-like cells and plays a possible role in the undifferentiated cells.
Collapse
Affiliation(s)
- Kiyoshi Higashi
- From the Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan,
| | - Kouji Asano
- From the Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Masaki Yagi
- the Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Keita Yamada
- the Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan, and
| | - Tatsuhiko Arakawa
- the Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Tomo Ehashi
- From the Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Takashi Mori
- From the Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Kayo Sumida
- From the Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Masahiko Kushida
- From the Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Satoshi Ando
- From the Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | | | - Kazuaki Kakehi
- the School of Pharmacy, Kinki University, Higashi-Osaka 577-8502, Japan
| | - Taro Tachibana
- the Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Koichi Saito
- From the Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| |
Collapse
|
21
|
Hong EJ, Jeung EB. Assessment of Developmental Toxicants using Human Embryonic Stem Cells. Toxicol Res 2014; 29:221-7. [PMID: 24578791 PMCID: PMC3936173 DOI: 10.5487/tr.2013.29.4.221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 01/16/2023] Open
Abstract
Embryonic stem (ES) cells have potential for use in evaluation of developmental toxicity because they are generated in large numbers and differentiate into three germ layers following formation of embryoid bodies (EBs). In earlier study, embryonic stem cell test (EST) was established for assessment of the embryotoxic potential of compounds. Using EBs indicating the onset of differentiation of mouse ES cells, many toxicologists have refined the developmental toxicity of a variety of compounds. However, due to some limitation of the EST method resulting from species-specific differences between humans and mouse, it is an incomplete approach. In this regard, we examined the effects of several developmental toxic chemicals on formation of EBs using human ES cells. Although human ES cells are fastidious in culture and differentiation, we concluded that the relevancy of our experimental method is more accurate than that of EST using mouse ES cells. These types of studies could extend our understanding of how human ES cells could be used for monitoring developmental toxicity and its relevance in relation to its differentiation progress. In addition, this concept will be used as a model system for screening for developmental toxicity of various chemicals. This article might update new information about the usage of embryonic stem cells in the context of their possible ability in the toxicological fields.
Collapse
Affiliation(s)
- Eui-Ju Hong
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
22
|
Jung EM, Choi YU, Kang HS, Yang H, Hong EJ, An BS, Yang JY, Choi KH, Jeung EB. Evaluation of developmental toxicity using undifferentiated human embryonic stem cells. J Appl Toxicol 2014; 35:205-18. [PMID: 24737281 DOI: 10.1002/jat.3010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 12/23/2022]
Abstract
An embryonic stem cell test (EST) has been developed to evaluate the embryotoxic potential of chemicals with an in vitro system. In the present study, novel methods to screen toxic chemicals during the developmental process were evaluated using undifferentiated human embryonic stem (hES) cells. By using surface marker antigens (SSEA-4, TRA-1-60 and TRA-1-81), we confirmed undifferentiated conditions of the used hES cells by immunocytochemistry. We assessed the developmental toxicity of embryotoxic chemicals, 5-fluorouracil, indomethacin and non-embryotoxic penicillin G in different concentrations for up to 7 days. While expressions of the surface markers were not significantly affected, the embryotoxic chemicals influenced their response to pluripotent ES cell markers, such as OCT-4, NANOG, endothelin receptor type B (EDNRB), secreted frizzled related protein 2 (SFRP2), teratocarcinoma-derived growth factor 1 (TDGF1), and phosphatase and tensin homolog (PTEN). Most of the pluripotent ES cell markers were down-regulated in a dose-dependent manner after treatment with embryotoxic chemicals. After treatment with 5-fluorouracil, indomethacin and penicillin G, we observed a remarkable convergence in the degree of up-regulation of development, cell cycle and apoptosis-related genes by gene expression profiles using an Affymetrix GeneChips. Taken together, these results suggest that embryotoxic chemicals have cytotoxic effects, and modulate the expression of ES cell markers as well as development-, cell cycle- and apoptosis-related genes that have pivotal roles in undifferentiated hES cells. Therefore, we suggest that hES cells may be useful for testing the toxic effects of chemicals that could impact the embryonic developmental stage.
Collapse
Affiliation(s)
- Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zimmer B, Pallocca G, Dreser N, Foerster S, Waldmann T, Westerhout J, Julien S, Krause KH, van Thriel C, Hengstler JG, Sachinidis A, Bosgra S, Leist M. Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery. Arch Toxicol 2014; 88:1109-26. [PMID: 24691702 PMCID: PMC3996367 DOI: 10.1007/s00204-014-1231-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Developmental toxicity in vitro assays have hitherto been established as stand-alone systems, based on a limited number of toxicants. Within the embryonic stem cell-based novel alternative tests project, we developed a test battery framework that allows inclusion of any developmental toxicity assay and that explores the responses of such test systems to a wide range of drug-like compounds. We selected 28 compounds, including several biologics (e.g., erythropoietin), classical pharmaceuticals (e.g., roflumilast) and also six environmental toxicants. The chemical, toxicological and clinical data of this screen library were compiled. In order to determine a non-cytotoxic concentration range, cytotoxicity data were obtained for all compounds from HEK293 cells and from murine embryonic stem cells. Moreover, an estimate of relevant exposures was provided by literature data mining. To evaluate feasibility of the suggested test framework, we selected a well-characterized assay that evaluates ‘migration inhibition of neural crest cells.’ Screening at the highest non-cytotoxic concentration resulted in 11 hits (e.g., geldanamycin, abiraterone, gefitinib, chlorpromazine, cyproconazole, arsenite). These were confirmed in concentration–response studies. Subsequent pharmacokinetic modeling indicated that triadimefon exerted its effects at concentrations relevant to the in vivo situation, and also interferon-β and polybrominated diphenyl ether showed effects within the same order of magnitude of concentrations that may be reached in humans. In conclusion, the test battery framework can identify compounds that disturb processes relevant for human development and therefore may represent developmental toxicants. The open structure of the strategy allows rich information to be generated on both the underlying library, and on any contributing assay.
Collapse
Affiliation(s)
- B Zimmer
- Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York City, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hou Z, Zhang J, Schwartz MP, Stewart R, Page CD, Murphy WL, Thomson JA. A human pluripotent stem cell platform for assessing developmental neural toxicity screening. Stem Cell Res Ther 2013; 4 Suppl 1:S12. [PMID: 24565336 PMCID: PMC3983661 DOI: 10.1186/scrt373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A lack of affordable and effective testing and screening procedures mean surprisingly little is known about the health hazards of many of the tens of thousands of chemicals in use in the world today. The recent rise in the number of children affected by neurological disorders such as autism has stirred valuable debate about the role chemicals play in our daily life, highlighting the need for improved methods of assessing chemicals for developmental neural toxicity. Current methods of testing chemicals for developmental neural toxicity include animal testing with rats or mice and in vitro testing using cultured primary cells or cell lines. Here, we review the current state of neural toxicity screening, analyze the limitations of these methods and, under the National Institutes of Health's new Microphysiological Systems initiative, describe a human pluripotent stem cell-based platform for developmental neural toxicity screens.
Collapse
|
25
|
Latham KE, Sapienza C, Engel N. The epigenetic lorax: gene-environment interactions in human health. Epigenomics 2012; 4:383-402. [PMID: 22920179 DOI: 10.2217/epi.12.31] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Over the last decade, we have witnessed an explosion of information on genetic factors underlying common human diseases and disorders. This 'human genomics' information revolution has occurred as a backdrop to a rapid increase in the rates of many human disorders and diseases. For example, obesity, Type 2 diabetes, asthma, autism spectrum disorder and attention deficit hyperactivity disorder have increased at rates that cannot be due to changes in the genetic structure of the population, and are difficult to ascribe to changes in diagnostic criteria or ascertainment. A likely cause of the increased incidence of these disorders is increased exposure to environmental factors that modify gene function. Many environmental factors that have epidemiological association with common human disorders are likely to exert their effects through epigenetic alterations. This general mechanism of gene-environment interaction poses special challenges for individuals, educators, scientists and public policy makers in defining, monitoring and mitigating exposures.
Collapse
Affiliation(s)
- Keith E Latham
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
26
|
Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 2012; 31:295-321. [PMID: 22366781 DOI: 10.1007/s10555-012-9346-z] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has been translated into novel therapeutic strategies that target these cell surface receptors in cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the discoidin domain receptors (DDRs) play a key role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to and are activated by collagen. DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell-matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific- and context-dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes and discusses the current knowledge on DDR expression and function in cancer. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Rajeshwari R Valiathan
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
27
|
Sison-Young RLC, Kia R, Heslop J, Kelly L, Rowe C, Cross MJ, Kitteringham NR, Hanley N, Park BK, Goldring CEP. Human pluripotent stem cells for modeling toxicity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 63:207-256. [PMID: 22776643 DOI: 10.1016/b978-0-12-398339-8.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of xenobiotics, driven by the demand for therapeutic, domestic and industrial uses continues to grow. However, along with this increasing demand is the risk of xenobiotic-induced toxicity. Currently, safety screening of xenobiotics uses a plethora of animal and in vitro model systems which have over the decades proven useful during compound development and for application in mechanistic studies of xenobiotic-induced toxicity. However, these assessments have proven to be animal-intensive and costly. More importantly, the prevalence of xenobiotic-induced toxicity is still significantly high, causing patient morbidity and mortality, and a costly impediment during drug development. This suggests that the current models for drug safety screening are not reliable in toxicity prediction, and the results not easily translatable to the clinic due to insensitive assays that do not recapitulate fully the complex phenotype of a functional cell type in vivo. Recent advances in the field of stem cell research have potentially allowed for a readily available source of metabolically competent cells for toxicity studies, derived using human pluripotent stem cells harnessed from embryos or reprogrammed from mature somatic cells. Pluripotent stem cell-derived cell types also allow for potential disease modeling in vitro for the purposes of drug toxicology and safety pharmacology, making this model possibly more predictive of drug toxicity compared with existing models. This article will review the advances and challenges of using human pluripotent stem cells for modeling metabolism and toxicity, and offer some perspectives as to where its future may lie.
Collapse
Affiliation(s)
- R L C Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Suzuki N, Yamashita N, Koseki N, Yamada T, Kimura Y, Aiba S, Toyoizumi T, Watanabe M, Ohta R, Tanaka N, Saito K. Assessment of technical protocols for novel embryonic stem cell tests with molecular markers (Hand1- and Cmya1-ESTs): a preliminary cross-laboratory performance analysis. J Toxicol Sci 2012; 37:845-51. [DOI: 10.2131/jts.37.845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Noriyuki Suzuki
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | | | - Naoteru Koseki
- Safety Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd
| | - Toru Yamada
- Safety Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd
| | - Yutaka Kimura
- Department of Dermatology, Tohoku University Graduate School of Medicine
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine
| | | | - Mika Watanabe
- Hatano Research Institute, Food and Drug Safety Center
| | - Ryo Ohta
- Hatano Research Institute, Food and Drug Safety Center
| | - Noriho Tanaka
- Hatano Research Institute, Food and Drug Safety Center
| | - Koichi Saito
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| |
Collapse
|
29
|
Suzuki N, Ando S, Yamashita N, Horie N, Saito K. Evaluation of Novel High-Throughput Embryonic Stem Cell Tests with New Molecular Markers for Screening Embryotoxic Chemicals In Vitro. Toxicol Sci 2011; 124:460-71. [DOI: 10.1093/toxsci/kfr250] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|