1
|
Perez CR, Garmilla A, Nilsson A, Baghdassarian HM, Gordon KS, Lima LG, Smith BE, Maus MV, Lauffenburger DA, Birnbaum ME. Library-based single-cell analysis of CAR signaling reveals drivers of in vivo persistence. Cell Syst 2025:101260. [PMID: 40215972 DOI: 10.1016/j.cels.2025.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/27/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
The anti-tumor function of engineered T cells expressing chimeric antigen receptors (CARs) is dependent on signals transduced through intracellular signaling domains (ICDs). Different ICDs are known to drive distinct phenotypes, but systematic investigations into how ICD architectures direct T cell function-particularly at the molecular level-are lacking. Here, we use single-cell sequencing to map diverse signaling inputs to transcriptional outputs, focusing on a defined library of clinically relevant ICD architectures. Informed by these observations, we functionally characterize transcriptionally distinct ICD variants across various contexts to build comprehensive maps from ICD composition to phenotypic output. We identify a unique tonic signaling signature associated with a subset of ICD architectures that drives durable in vivo persistence and efficacy in liquid, but not solid, tumors. Our findings work toward decoding CAR signaling design principles, with implications for the rational design of next-generation ICD architectures optimized for in vivo function.
Collapse
Affiliation(s)
- Caleb R Perez
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Andrea Garmilla
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore; Program in Immunology, Harvard Medical School, Boston, MA, USA; Kranz Family Center for Cancer Research and Cellular Immunotherapy Program, Massachusetts General Hospital, Charlestown, MA, USA
| | - Avlant Nilsson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hratch M Baghdassarian
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Louise G Lima
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake E Smith
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Kranz Family Center for Cancer Research and Cellular Immunotherapy Program, Massachusetts General Hospital, Charlestown, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore; Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Zhang A, Yang X, Zhang Y, Yu X, Mu W, Wei J. Unlocking the Potential of CAR-NK Cell Therapy: Overcoming Barriers and Challenges in the Treatment of Myeloid Malignancies. Mol Cancer Ther 2025; 24:536-549. [PMID: 39834301 DOI: 10.1158/1535-7163.mct-24-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Myeloid malignancies include various types of cancers that arise from the abnormal development or proliferation of myeloid cells within the bone marrow. Chimeric antigen receptor (CAR) T cell treatments, which show great potential for B cell and plasma cell cancers, face major challenges when used for myeloid malignancies. CAR natural killer (NK) cell-based immunotherapy encounters several challenges in treating myeloid cancers, including (i) poor gene transfer efficiency and expansion platforms in vitro, (ii) limited proliferation and persistence in vivo, (iii) antigenic heterogeneity, and (iv) an immunosuppressive tumor microenvironment. Despite these hurdles, "off-the-shelf" CAR-NK treatments showed encouraging results, marked by enhanced proliferation, prolonged persistence, enhanced tumor infiltration, and improved adaptability. This review offers a summary of the biological traits and cellular sources of NK cells along with a discussion of contemporary CAR designs. Furthermore, it addresses the challenges observed in preclinical research and clinical trials related to CAR-NK cell therapy for myeloid cancers, suggesting enhancement strategies.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoxuan Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
3
|
Lin MH, Hu LJ, Miller JS, Huang XJ, Zhao XY. CAR-NK cell therapy: a potential antiviral platform. Sci Bull (Beijing) 2025; 70:765-777. [PMID: 39837721 DOI: 10.1016/j.scib.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Viral infections persist as a significant cause of morbidity and mortality worldwide. Conventional therapeutic approaches often fall short in fully eliminating viral infections, primarily due to the emergence of drug resistance. Natural killer (NK) cells, one of the important members of the innate immune system, possess potent immunosurveillance and cytotoxic functions, thereby playing a crucial role in the host's defense against viral infections. Chimeric antigen receptor (CAR)-NK cell therapy has been developed to redirect the cytotoxic function of NK cells specifically towards virus-infected cells, further enhancing their cytotoxic efficacy. In this manuscript, we review the role of NK cells in antiviral infections and explore the mechanisms by which viruses evade immune detection. Subsequently, we focus on the optimization strategies for CAR-NK cell therapy to address existing limitations. Furthermore, we discuss significant advancements in CAR-NK cell therapy targeting viral infections, including those caused by severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, hepatitis B virus, human cytomegalovirus, and Epstein-Barr virus.
Collapse
Affiliation(s)
- Ming-Hao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, 55455, USA.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China.
| |
Collapse
|
4
|
Yi E, Lee E, Park HJ, Lee HH, Yun SH, Kim HS. A chimeric antigen receptor tailored to integrate complementary activation signals potentiates the antitumor activity of NK cells. J Exp Clin Cancer Res 2025; 44:86. [PMID: 40045373 PMCID: PMC11884141 DOI: 10.1186/s13046-025-03351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Chimeric antigen receptors (CARs) are synthetic receptors that reprogram the target specificity and functions of CAR-expressing effector cells. The design of CAR constructs typically includes an extracellular antigen-binding moiety, hinge (H), transmembrane (TM), and intracellular signaling domains. Conventional CAR constructs are primarily designed for T cells but have been directly adopted for other effector cells, including natural killer (NK) cells, without tailored optimization. Given the benefits of CAR-NK cells over CAR-T cells in terms of safety, off-the-shelf utility, and antigen escape, there is an increasing emphasis on tailoring them to NK cell activation mechanisms. METHODS We first have taken a stepwise approach to modifying CAR components such as the combination and order of the H, TM, and signaling domains to achieve such tailoring in NK cells. Functionality of NK-tailored CARs were evaluated in vitro and in vivo in a model of CD19-expressing lymphoma, along with their expression and signaling properties in NK cells. RESULTS We found that NK-CAR driven by the synergistic combination of NK receptors NKG2D and 2B4 rather than DNAM-1 and 2B4 induces potent activation in NK cells. Further, more effective CAR-mediated cytotoxicity was observed following the sequential combination of DAP10, but not NKG2D TM, with 2B4 signaling domain despite the capacity of NKG2D TM to recruit endogenous DAP10 for signaling. Accordingly, an NK-CAR incorporating DAP10, 2B4, and CD3ζ signaling domains coupled to CD8α H and CD28 TM domains was identified as the most promising candidate to improve CAR-mediated cytotoxicity. This NK-tailored CAR provided more potent antitumor activity than a conventional T-CAR when delivered to NK cells both in vitro and in vivo. CONCLUSIONS Hence, NK receptor-based domains hold great promise for the future of NK-CAR design with potentially significant therapeutic benefits.
Collapse
Affiliation(s)
- Eunbi Yi
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunbi Lee
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jin Park
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeon Ho Lee
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - So Hyeon Yun
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Zhang R, Zhao Y, Chai X, Wang Y, Zhao M, Guo S, Zhang Y, Zhao M. Modified CD15/CD16-CLL1 inhibitory CAR-T cells for mitigating granulocytopenia toxicities in the treatment of acute myeloid leukemia. Transl Oncol 2025; 52:102225. [PMID: 39647325 PMCID: PMC11667018 DOI: 10.1016/j.tranon.2024.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
CLL1 Chimeric antigen receptor T-cell (CAR-T) therapy, as a promising immunotherapeutic approach, has demonstrated its potential to enhance the prognosis of patients diagnosed with acute myeloid leukemia (AML). However, due to the overexpression of CLL1 on neutrophils, CAR-T cells not only eliminated tumor cells but also eradicated neutrophils simultaneously, resulting in severe granulocytopenia and subsequent infections. Considering the distinct expression levels of CD15/CD16 on neutrophils and AML blasts, we have devised novel modified CD15 /CD16-CLL1 iCAR structures incorporating diverse inhibitory elements. Through extensive screening of structural optimization, we have successfully identified CD16-CLL1 iCAR-T cells that combine PD1 and 2B4 blockade, as well as a single VHH fragment replacing the entire CD16 scFv recognition domain. These modified cells demonstrate enhanced cytotoxicity against blasts while minimizing neutrophil elimination. Furthermore, their functionality has been effectively validated through both in vitro and in vivo experiments. In conclusion, we have successfully engineered innovative CD16-CLL1 iCAR-T cells, which preserves the cytotoxicity against tumor cells while preventing elimination of neutrophils, thereby significantly reducing the incidence of granulocytopenia during CAR-T therapy. Furthermore, our future objectives encompass the meticulous validation of both the efficacy and safety profile of this groundbreaking CAR-T therapy in clinical trials, as well as a comprehensive assessment of its potential to enhance the prognosis of patients diagnosed with AML.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300380, China
| | - Yifan Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin 300380, China
| | - Xiao Chai
- The First Central Clinical College of Tianjin Medical University, Tianjin 300380, China
| | - Yingshuai Wang
- Department of Internal Medicine III, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Mohan Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin 300380, China
| | - Shujing Guo
- The First Central Clinical College of Tianjin Medical University, Tianjin 300380, China
| | - Yu Zhang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300380, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300380, China.
| |
Collapse
|
7
|
Karamivandishi A, Hatami A, Eslami MM, Soleimani M, Izadi N. Chimeric antigen receptor natural killer cell therapy: A systematic review of preclinical studies for hematologic and solid malignancies. Hum Immunol 2025; 86:111207. [PMID: 39667204 DOI: 10.1016/j.humimm.2024.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Advancements in the field of CAR-T therapy have brought about a revolution in the treatment of numerous types of cancer in the past ten years. However, despite the remarkable success achieved thus far, certain barriers impede the widespread implementation of this therapy such as intricate manufacturing processes and treatment-associated toxicities. As an alternative, chimeric antigen receptor-engineered natural killer cell (CAR-NK) therapy presents a viable opportunity for a simpler and more cost-effective "off-the-shelf" treatment option, which is likely to result in fewer adverse reactions. A total of 71 studies were included in this review. Eligible studies were searched and reviewed from the databases of PubMed, Web of Science and Scopus. Based on data extracted from articles, we concluded that CAR-NK cell efficiency can vary considerably depending on factors such as tumor model, dosage, CAR generation and expansion method. Furthermore, investigating consequences of utilizing various constructs and generations of CAR-NK cells on their anti-tumor activity examined in this review.
Collapse
Affiliation(s)
- Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Hatami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Masoud Eslami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Neda Izadi
- Research Center for Social Determinants of Health,Research institute for metabolic and obesity disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Wang X, Yang T, Shi X. NK cell-based immunotherapy in hepatocellular carcinoma: An attractive therapeutic option for the next decade. Cell Signal 2024; 124:111405. [PMID: 39260532 DOI: 10.1016/j.cellsig.2024.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Hepatocellular carcinoma (HCC), a major subtype of liver cancer, poses significant therapeutic challenges due to its late diagnosis and rapid progression. The evolving landscape of immunotherapy offers a beacon of hope, with natural killer (NK) cells emerging as pivotal players in combating HCC. NK cells are unique cytotoxic lymphocytes that are essential in the fight against infections and malignancies. Phenotypic and functional NK cell abnormalities have been shown in HCC patients, indicating their significance as a component of the innate immune system against cancer. This review elucidates the critical role of NK cells in combating HCC, focusing on their interaction with the tumor microenvironment, the development of NK cell-based therapies, and the innovative strategies to enhance their efficacy in the immunosuppressive milieu of HCC. The review delves into the various therapeutic strategies, including autologous and allogeneic NK cell therapies, genetic engineering to improve NK cell resilience and targeting, and the integration of NK cells with other immunotherapeutic approaches like checkpoint inhibitors and oncolytic virotherapy. By highlighting recent advancements and the ongoing challenges in the field, this review sets the stage for future research directions that could unlock the full potential of NK cell-based immunotherapy for HCC, offering a beacon of hope for patients battling this formidable cancer.
Collapse
Affiliation(s)
- Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Tianye Yang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Xiaoli Shi
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province 210029, China; Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
9
|
Liu Y, Zhang M, Shen X, Xia C, Hu F, Huang D, Weng Q, Zhang Q, Liu L, Zhu Y, Wang L, Hao J, Zhang M, Wang T, Wang J. Mesothelin CAR-engineered NK cells derived from human embryonic stem cells suppress the progression of human ovarian cancer in animals. Cell Prolif 2024; 57:e13727. [PMID: 39136096 PMCID: PMC11628735 DOI: 10.1111/cpr.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 12/11/2024] Open
Abstract
CAR-NK cell therapy does not require HLA matching and has minimal side effects. However, traditional methods of engineering CARs into human tissue-derived NK cells exhibit heterogeneity, low transduction efficiency, and high manufacturing costs. Here, we provide a reliable approach for generating large-scale and cryopreserved mesothelin (MSLN) CAR-NK cells from human embryonic stem cells (hESCs) as an alternative cell source. We first constructed MSLN CAR-expressing hESCs to reduce CAR engineering costs and subsequently differentiated these stem cells into MSLN CAR-NK cells via an efficient organoid induction system. The MSLN CAR-NK cells exhibit the typical expression patterns of activating receptors, inhibitory receptors, and effector molecules of NK cells. In the presence of tumour cells, the MSLN CAR-NK cells show increased secretion of IFN-γ and TNF-α, as well as elevated CD107a expression level compared with induced NK cells. We cryopreserved the MSLN CAR-NK cells in liquid nitrogen using a clinical-grade freezing medium (CS10) for more than 6 months to mimic an off-the-shelf CAR-NK cell product. The thawed MSLN CAR-NK cells immediately recovered after 48-72-h culture and effectively eliminated ovarian tumour cells, including human primary ovarian tumour cells from patients. The thawed MSLN CAR-NK cells efficiently suppressed ovarian tumour development in vivo and prolonged the survival of tumour-bearing mice. Our study provides insights into the clinical translation of hESC-derived MSLN CAR-NK cells as a promising off-the-shelf cell product.
Collapse
Affiliation(s)
- Yanhong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Min Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Xiaoyan Shen
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingChina
| | - Chengxiang Xia
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Fangxiao Hu
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Dehao Huang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qitong Weng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qi Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Lijuan Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Yanping Zhu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Lei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- National Stem Cell Resource Center, Chinese Academy of SciencesBeijingChina
| | - Jie Hao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- National Stem Cell Resource Center, Chinese Academy of SciencesBeijingChina
| | - Mengyun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Tongjie Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Jinyong Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Lead contact
| |
Collapse
|
10
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Couzinet A, Suzuki T, Nakatsura T. Progress and challenges in glypican-3 targeting for hepatocellular carcinoma therapy. Expert Opin Ther Targets 2024; 28:895-909. [PMID: 39428649 DOI: 10.1080/14728222.2024.2416975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Glypican-3 (GPC3) is a cell membrane-anchored heparan sulfate proteoglycan that has recently garnered attention as a cancer antigen owing to its high expression in numerous cancers, particularly hepatocellular carcinoma (HCC), and to limited expression in adult normal tissue. AREAS COVERED Here, we propose the potential of GPC3 as a cancer antigen based on our experience with the GPC3 peptide vaccine against HCC, having developed a vaccine that progressed from preclinical studies to first-in-human clinical trials. In this review, we present a summary of the current status and future prospects of immunotherapies targeting GPC3 by focusing on clinical trials; peptide vaccines, mRNA vaccines, antibody therapy, and chimeric antigen receptor/T-cell receptor - T-cell therapy and discuss additional strategies for effectively eliminating HCC through immunotherapy. EXPERT OPINION GPC3 is an ideal cancer antigen for HCC immunotherapy. In resectable HCC, immunotherapies that leverage physiological immune surveillance, immune checkpoint inhibitors, and GPC3-target cancer vaccines appear promising in preventing recurrence and could be considered as a prophylactic adjuvant therapy. However, in advanced HCC, clinical trials have not demonstrated sufficient anti-tumor efficacy, in contrast with preclinical studies. Reverse translation, bedside-to-bench research, is crucial to identify the factors that have hindered GPC3 target immunotherapies.
Collapse
Affiliation(s)
- Arnaud Couzinet
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
12
|
Dong B, Obermajer N, Tsuji T, Matsuzaki J, Bonura CM, Sander C, Withers H, Long MD, Chavel C, Olejniczak SH, Minderman H, Kirkwood JM, Edwards RP, Storkus WJ, Romero P, Kalinski P. NK Receptor Signaling Lowers TCR Activation Threshold, Enhancing Selective Recognition of Cancer Cells by TAA-Specific CTLs. Cancer Immunol Res 2024; 12:1421-1437. [PMID: 38949179 PMCID: PMC11706306 DOI: 10.1158/2326-6066.cir-24-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Cytotoxic CD8+ T lymphocyte (CTL) recognition of non-mutated tumor-associated antigens (TAA), present on cancer cells and also in healthy tissues, is an important element of cancer immunity, but the mechanism of its selectivity for cancer cells and opportunities for its enhancement remain elusive. In this study, we found that CTL expression of the NK receptors (NKR) DNAM1 and NKG2D was associated with the effector status of CD8+ tumor-infiltrating lymphocytes and long-term survival of patients with melanoma. Using MART1 and NY-ESO-1 as model TAAs, we demonstrated that DNAM1 and NKG2D regulate T-cell receptor (TCR) functional avidity and set the threshold for TCR activation of human TAA-specific CTLs. Superior co-stimulatory effects of DNAM1 over CD28 involved enhanced TCR signaling, CTL killer function, and polyfunctionality. Double transduction of human CTLs with TAA-specific TCR and NKRs resulted in strongly enhanced antigen sensitivity, without a reduction in antigen specificity and selectivity of killer function. In addition, the elevation of NKR ligand expression on cancer cells due to chemotherapy also increased CTL recognition of cancer cells expressing low levels of TAAs. Our data help explain the ability of self-antigens to mediate tumor rejection in the absence of autoimmunity and support the development of dual-targeting adoptive T-cell therapies that use NKRs to enhance the potency and selectivity of recognition of TAA-expressing cancer cells.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Melanoma/immunology
- Melanoma/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Cell Line, Tumor
- MART-1 Antigen/immunology
- MART-1 Antigen/metabolism
- Cytotoxicity, Immunologic
- T Lineage-Specific Activation Antigen 1
Collapse
Affiliation(s)
- Bowen Dong
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
- Department of Medicine, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Nataša Obermajer
- Department of Surgery, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Takemasa Tsuji
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Junko Matsuzaki
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Cindy M. Bonura
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Cindy Sander
- Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Henry Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Colin Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Scott H. Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Hans Minderman
- Department of Flow and Immune Analysis Shared Resource, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - John M. Kirkwood
- Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Robert P. Edwards
- Department of OB-GYN, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Walter J. Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Pedro Romero
- University of Lausanne and Ludwig Institute for Cancer Research; Lausanne, Switzerland
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
- Department of Medicine, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
- Department of Surgery, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| |
Collapse
|
13
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
14
|
Tsiverioti CA, Gottschlich A, Trefny M, Theurich S, Anders HJ, Kroiss M, Kobold S. Beyond CAR T cells: exploring alternative cell sources for CAR-like cellular therapies. Biol Chem 2024; 405:485-515. [PMID: 38766710 DOI: 10.1515/hsz-2023-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has led to remarkable clinical outcomes in the treatment of hematological malignancies. However, challenges remain, such as limited infiltration into solid tumors, inadequate persistence, systemic toxicities, and manufacturing insufficiencies. The use of alternative cell sources for CAR-based therapies, such as natural killer cells (NK), macrophages (MΦ), invariant Natural Killer T (iNKT) cells, γδT cells, neutrophils, and induced pluripotent stem cells (iPSC), has emerged as a promising avenue. By harnessing these cells' inherent cytotoxic mechanisms and incorporating CAR technology, common CAR-T cell-related limitations can be effectively mitigated. We herein present an overview of the tumoricidal mechanisms, CAR designs, and manufacturing processes of CAR-NK cells, CAR-MΦ, CAR-iNKT cells, CAR-γδT cells, CAR-neutrophils, and iPSC-derived CAR-cells, outlining the advantages, limitations, and potential solutions of these therapeutic strategies.
Collapse
Affiliation(s)
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Lindwurmstr. 2a, 80337 Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Marchioninstr. 15, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
| | - Marcel Trefny
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Lindwurmstr. 2a, 80337 Munich, Germany
| | - Sebastian Theurich
- Department of Medicine III, University Hospital, LMU Munich, Marchioninstr. 15, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
- 74939 German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University Hospital of the LMU , Marchioninstr. 15, 81377 Munich, Germany
- Cancer and Immunometabolism Research Group, 74939 Gene Center LMU , Feodor-Lynen Str. 25, 81377 Munich, Germany
| | - Hans-Joachim Anders
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstr. 5, 80336 Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstr. 5, 80336 Munich, Germany
- Division of Endocrinology and Diabetes, Department of Medicine, University Hospital, University of Würzburg, Josef-Schneider-Str, 9780 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str. 6, 9780 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Lindwurmstr. 2a, 80337 Munich, Germany
- 74939 German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University Hospital of the LMU , Marchioninstr. 15, 81377 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
15
|
Ali FEM, Ibrahim IM, Althagafy HS, Hassanein EHM. Role of immunotherapies and stem cell therapy in the management of liver cancer: A comprehensive review. Int Immunopharmacol 2024; 132:112011. [PMID: 38581991 DOI: 10.1016/j.intimp.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Liver cancer (LC) is the sixth most common disease and the third most common cause of cancer-related mortality. The WHO predicts that more than 1 million deaths will occur from LC by 2030. Hepatocellular carcinoma (HCC) is a common form of primary LC. Today, the management of LC involves multiple disciplines, and multimodal therapy is typically selected on an individual basis, considering the intricate interactions between the patient's overall health, the stage of the tumor, and the degree of underlying liver disease. Currently, the treatment of cancers, including LC, has undergone a paradigm shift in the last ten years because of immuno-oncology. To treat HCC, immune therapy approaches have been developed to enhance or cause the body's natural immune response to specifically target tumor cells. In this context, immune checkpoint pathway inhibitors, engineered cytokines, adoptive cell therapy, immune cells modified with chimeric antigen receptors, and therapeutic cancer vaccines have advanced to clinical trials and offered new hope to cancer patients. The outcomes of these treatments are encouraging. Additionally, treatment using stem cells is a new approach for restoring deteriorated tissues because of their strong differentiation potential and capacity to release cytokines that encourage cell division and the formation of blood vessels. Although there is no proof that stem cell therapy works for many types of cancer, preclinical research on stem cells has shown promise in treating HCC. This review provides a recent update regarding the impact of immunotherapy and stem cells in HCC and promising outcomes.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan.
| | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
16
|
Perez CR, Garmilla A, Nilsson A, Baghdassarian HM, Gordon KS, Lima LG, Smith BE, Maus MV, Lauffenburger DA, Birnbaum ME. Library-based single-cell analysis of CAR signaling reveals drivers of in vivo persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591541. [PMID: 38746119 PMCID: PMC11092467 DOI: 10.1101/2024.04.29.591541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The anti-tumor function of engineered T cells expressing chimeric antigen receptors (CARs) is dependent on signals transduced through intracellular signaling domains (ICDs). Different ICDs are known to drive distinct phenotypes, but systematic investigations into how ICD architectures direct T cell function-particularly at the molecular level-are lacking. Here, we use single-cell sequencing to map diverse signaling inputs to transcriptional outputs, focusing on a defined library of clinically relevant ICD architectures. Informed by these observations, we functionally characterize transcriptionally distinct ICD variants across various contexts to build comprehensive maps from ICD composition to phenotypic output. We identify a unique tonic signaling signature associated with a subset of ICD architectures that drives durable in vivo persistence and efficacy in liquid, but not solid, tumors. Our findings work toward decoding CAR signaling design principles, with implications for the rational design of next-generation ICD architectures optimized for in vivo function.
Collapse
|
17
|
Page A, Chuvin N, Valladeau-Guilemond J, Depil S. Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol 2024; 21:315-331. [PMID: 38443448 PMCID: PMC10978891 DOI: 10.1038/s41423-024-01145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Natural killer (NK) cell-based immunotherapies are attracting increasing interest in the field of cancer treatment. Early clinical trials have shown promising outcomes, alongside satisfactory product efficacy and safety. Recent developments have greatly increased the therapeutic potential of NK cells by endowing them with enhanced recognition and cytotoxic capacities. This review focuses on surface receptor engineering in NK cell therapy and discusses its impact, challenges, and future directions.Most approaches are based on engineering with chimeric antigen receptors to allow NK cells to target specific tumor antigens independent of human leukocyte antigen restriction. This approach has increased the precision and potency of NK-mediated recognition and elimination of cancer cells. In addition, engineering NK cells with T-cell receptors also mediates the recognition of intracellular epitopes, which broadens the range of target peptides. Indirect tumor peptide recognition by NK cells has also been improved by optimizing immunoglobulin constant fragment receptor expression and signaling. Indeed, engineered NK cells have an improved ability to recognize and destroy target cells coated with specific antibodies, thereby increasing their antibody-dependent cellular cytotoxicity. The ability of NK cell receptor engineering to promote the expansion, persistence, and infiltration of transferred cells in the tumor microenvironment has also been explored. Receptor-based strategies for sustained NK cell functionality within the tumor environment have also been discussed, and these strategies providing perspectives to counteract tumor-induced immunosuppression.Overall, receptor engineering has led to significant advances in NK cell-based cancer immunotherapies. As technical challenges are addressed, these innovative treatments will likely reshape cancer immunotherapy.
Collapse
Affiliation(s)
- Audrey Page
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
| | | | - Jenny Valladeau-Guilemond
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
- ErVimmune, Lyon, France.
- Centre Léon Bérard, Lyon, France.
- Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
18
|
Saadh MJ, Rasulova I, Khalil M, Farahim F, Sârbu I, Ciongradi CI, Omar TM, Alhili A, Jawad MJ, Hani T, Ali T, Lakshmaiya N. Natural killer cell-mediated immune surveillance in cancer: Role of tumor microenvironment. Pathol Res Pract 2024; 254:155120. [PMID: 38280274 DOI: 10.1016/j.prp.2024.155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/29/2024]
Abstract
In the immunological surveillance against cancer, natural killer (NK) cells are essential effectors that help eradicate altered cells. The complex interactions that occur between NK cells and the tumor microenvironment (TME) are thoroughly examined in this review. The review examines how cytokine stimulation affects NK cell activation, focusing on the dynamic modulation of NK cell function within the TME. It looks at NK cell-related biomarkers such as PD-1/PD-L1, methylation HOXA9 (Homeobox A9), Stroma AReactive Invasion Front Areas (SARIFA), and NKG2A/HLA-E, providing critical information about prognosis and treatment outcomes. The changing landscape of immunotherapies-including checkpoint inhibitors, CAR-NK cells, and cytokine-based interventions-is examined in the context of enhancing NK cell activity. The review highlights the potential pathways for precision medicine going forward, focusing on customized immunotherapies based on unique biomarker profiles and investigating combination medicines to produce more robust anti-tumor responses.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | - Irodakhon Rasulova
- MD, PhD, Senior Researcher, School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent, 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | | | - Farha Farahim
- Department of Nursing, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Talat Ali
- Department of Basic Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| |
Collapse
|
19
|
Esmaeilzadeh A, Hadiloo K, Jabbari M, Elahi R. Current progress of chimeric antigen receptor (CAR) T versus CAR NK cell for immunotherapy of solid tumors. Life Sci 2024; 337:122381. [PMID: 38145710 DOI: 10.1016/j.lfs.2023.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Equipping cancer-fighting immune cells with chimeric antigen receptor (CAR) has gained immense attention for cancer treatment. CAR-engineered T cells (CAR T cells) are the first immune-engineered cells that have achieved brilliant results in anti-cancer therapy. Despite promising anti-cancer features, CAR T cells could also cause fatal side effects and have shown inadequate efficacy in some studies. This has led to the introduction of other candidates for CAR transduction, e.g., Natural killer cells (NK cells). Regarding the better safety profile and anti-cancer properties, CAR-armored NK cells (CAR NK cells) could be a beneficial and suitable alternative to CAR T cells. Since introducing these two cells as anti-cancer structures, several studies have investigated their efficacy and safety, and most of them have focused on hematological malignancies. Solid tumors have unique properties that make them more resistant and less curable cancers than hematological malignancies. In this review article, we conduct a comprehensive review of the structure and properties of CAR NK and CAR T cells, compare the recent experience of immunotherapy with CAR T and CAR NK cells in various solid cancers, and overview current challenges and future solutions to battle solid cancers using CARNK cells.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kaveh Hadiloo
- Student Research Committee, Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marjan Jabbari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
20
|
Zhang B, Yang M, Zhang W, Liu N, Wang D, Jing L, Xu N, Yang N, Ren T. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: from bench to bedside. Cell Death Dis 2024; 15:50. [PMID: 38221520 PMCID: PMC10788349 DOI: 10.1038/s41419-024-06438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Immunotherapy has rapidly evolved in the past decades in the battle against cancer. Chimeric antigen receptor (CAR)-engineered T cells have demonstrated significant success in certain hematologic malignancies, although they still face certain limitations, including high costs and toxic effects. Natural killer cells (NK cells), as a vital component of the immune system, serve as the "first responders" in the context of cancer development. In this literature review, we provide an updated understanding of NK cell development, functions, and their applications in disease therapy. Furthermore, we explore the rationale for utilizing engineered NK cell therapies, such as CAR-NK cells, and discuss the differences between CAR-T and CAR-NK cells. We also provide insights into the key elements and strategies involved in CAR design for engineered NK cells. In addition, we highlight the challenges currently encountered and discuss the future directions in NK cell research and utilization, including pre-clinical investigations and ongoing clinical trials. Based on the outstanding antitumor potential of NK cells, it is highly likely that they will lead to groundbreaking advancements in cancer treatment in the future.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
| | - Mengzhe Yang
- Graduate School of Capital Medical University, Beijing, 100069, China
| | - Weiming Zhang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Ning Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liangfang Jing
- Department of Neonatology, Women and Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Ning Xu
- Department of Clinical Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Yunnan, 650101, China.
| | - Tao Ren
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
21
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Dong B, Obermajer N, Tsuji T, Matsuzaki J, Bonura C, Withers H, Long M, Chavel C, Olejniczak SH, Minderman H, Edwards RP, Storkus WJ, Romero P, Kalinski P. NK Receptors Replace CD28 As the Dominant Source of Signal 2 for Cognate Recognition of Cancer Cells by TAA-specific Effector CD8 + T Cells. RESEARCH SQUARE 2023:rs.3.rs-3399211. [PMID: 37886562 PMCID: PMC10602189 DOI: 10.21203/rs.3.rs-3399211/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
CD28-driven "signal 2" is critical for naïve CD8+ T cell responses to dendritic cell (DC)-presented weak antigens, including non-mutated tumor-associated antigens (TAAs). However, it is unclear how DC-primed cytotoxic T lymphocytes (CTLs) respond to the same TAAs presented by cancer cells which lack CD28 ligands. Here, we show that NK receptors (NKRs) DNAM-1 and NKG2D replace CD28 during CTL re-activation by cancer cells presenting low levels of MHC I/TAA complexes, leading to enhanced proximal TCR signaling, immune synapse formation, CTL polyfunctionality, release of cytolytic granules and antigen-specific cancer cell killing. Double-transduction of T cells with recombinant TCR and NKR constructs or upregulation of NKR-ligand expression on cancer cells by chemotherapy enabled effective recognition and killing of poorly immunogenic tumor cells by CTLs. Operational synergy between TCR and NKRs in CTL recognition explains the ability of cancer-expressed self-antigens to serve as tumor rejection antigens, helping to develop more effective therapies.
Collapse
Affiliation(s)
- Bowen Dong
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nataša Obermajer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Takemasa Tsuji
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Junko Matsuzaki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Cindy Bonura
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Henry Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Colin Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Scott H. Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Hans Minderman
- Flow and Immune Analysis Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Robert P. Edwards
- Department of OB-GYN, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Walter J. Storkus
- Department of Dermatology , University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pedro Romero
- University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology , University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Gao X, Zuo S. Immune landscape and immunotherapy of hepatocellular carcinoma: focus on innate and adaptive immune cells. Clin Exp Med 2023; 23:1881-1899. [PMID: 36773210 PMCID: PMC10543580 DOI: 10.1007/s10238-023-01015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is responsible for roughly 90% of all cases of primary liver cancer, and the cases are on the rise. The treatment of advanced HCC is a serious challenge. Immune checkpoint inhibitor (ICI) therapy has marked a watershed moment in the history of HCC systemic treatment. Atezolizumab in combination with bevacizumab has been approved as a first-line treatment for advanced HCC since 2020; however, the combination therapy is only effective in a limited percentage of patients. Considering that the tumor immune microenvironment (TIME) has a great impact on immunotherapies for HCC, an in-depth understanding of the immune landscape in tumors and the current immunotherapeutic approaches is extremely necessary. We elaborate on the features, functions, and cross talk of the innate and adaptive immune cells in HCC and highlight the benefits and drawbacks of various immunotherapies for advanced HCC, as well as future projections. HCC consists of a heterogeneous group of cancers with distinct etiologies and immune microenvironments. Almost all the components of innate and adaptive immune cells in HCC have altered, showing a decreasing trend in the number of tumor suppressor cells and an increasing trend in the pro-cancer cells, and there is also cross talk between various cell types. Various immunotherapies for HCC have also shown promising efficacy and application prospect. There are multilayered interwoven webs among various immune cell types in HCC, and emerging evidence demonstrates the promising prospect of immunotherapeutic approaches for HCC.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China.
- Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
24
|
Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered natural killer cells for cancer therapy. Exp Hematol Oncol 2023; 12:70. [PMID: 37563648 PMCID: PMC10413722 DOI: 10.1186/s40164-023-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiangping Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Hematology Research Laboratory, Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
25
|
Jin M, Kim CA, Bae DJ, Kim SY, Kim TY, Kim WB, Shong YK, Kim WG, Jeon MJ. Changes in peripheral blood immune cell population in thyroid cancer patients treated with lenvatinib. Sci Rep 2023; 13:12765. [PMID: 37550394 PMCID: PMC10406916 DOI: 10.1038/s41598-023-39503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
This study evaluated changes in the peripheral blood immune cell population in patients with advanced thyroid cancer receiving lenvatinib treatment to confirm the immune-modulatory effect of lenvatinib. After obtaining informed consent from patients, we prospectively collected 20 ml of whole blood at 2-3 months intervals 2-4 times from each patient; peripheral blood mononuclear cells (PBMCs) were separated, and the Maxpar Direct Immune Profiling Assay was performed. A total of 10 patients were enrolled, and 31 blood samples were obtained. The median age of patients was 65 years, and all patients showed durable responses to the lenvatinib treatment. When we compared the PBMC profiles between the pre-treatment, on-treatment, and off-treatment samples, the peripheral natural killer (NK) cell proportion differed significantly. The proportion of NK cells among total live cells significantly increased from 9.3 ± 4.5 (%) in the pre-treatment samples to 20.8 ± 7.9 (%) in the on-treatment samples (P = 0.009) and decreased to 13.3 ± 3.1 (%) in the off-treatment samples (P = 0.07). There was a significant increase in the peripheral NK cell population with lenvatinib treatment in advanced thyroid cancer patients. This finding confirms the immune-modulatory effect of lenvatinib.
Collapse
Affiliation(s)
- Meihua Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Division of Endocrinology and Metabolism, Dankook University College of Medicine, Cheonan, 3116, Korea
| | - Chae A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong Jun Bae
- PrismCDX Co., Ltd., 593-16, Dongtan Giheung-ro, Hwaseoung-si, 18469, Gyeonggi-do, Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Tae Yong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Won Bae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young Kee Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Won Gu Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min Ji Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
26
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
27
|
Xiong Q, Zhu J, Zhang Y, Deng H. CAR-NK cell therapy for glioblastoma: what to do next? Front Oncol 2023; 13:1192128. [PMID: 37404752 PMCID: PMC10315652 DOI: 10.3389/fonc.2023.1192128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Glioblastoma is a malignant tumor with the highest morbidity and mortality in the central nervous system. Conventional surgical resection combined with radiotherapy or chemotherapy has a high recurrence rate and poor prognosis. The 5-year survival rate of patients is less than 10%. In tumor immunotherapy, CAR-T cell therapy represented by chimeric antigen receptor-modified T cells has achieved great success in hematological tumors. However, the application of CAR-T cells in solid tumors such as glioblastoma still faces many challenges. CAR-NK cells are another potential adoptive cell therapy strategy after CAR-T cells. Compared with CAR-T cell therapy, CAR-NK cells have similar anti-tumor effects. CAR-NK cells can also avoid some deficiencies in CAR-T cell therapy, a research hotspot in tumor immunity. This article summarizes the preclinical research status of CAR-NK cells in glioblastoma and the problems and challenges faced by CAR-NK in glioblastoma.
Collapse
|
28
|
Neo SY, Xu S, Chong J, Lam KP, Wu J. Harnessing novel strategies and cell types to overcome immune tolerance during adoptive cell therapy in cancer. J Immunother Cancer 2023; 11:jitc-2022-006434. [PMID: 37100458 PMCID: PMC10151952 DOI: 10.1136/jitc-2022-006434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
Cell therapy encompasses an expanding spectrum of cell-based regimes for the treatment of human ailments, such as the use of immune cells, in particular T cells, for combating tumors and the modulation of inflammatory immune responses. In this review, we focus on cell therapy in the immuno-oncology space, which is largely driven by interests and demands from the clinics for better solutions to target various hard-to-treat cancers. We discuss recent advances in various types of cell therapies, including T cell receptor-T cells, chimeric antigen receptor (CAR)-T cells, tumor-infiltrating lymphocytes and natural killer cells. Particularly, the present review focuses on the strategies to improve therapeutic responses by either enhancing tumor recognition or the resilience of infused immune cells within tumor microenvironment. Finally, we discuss the potential of other innate or innate-like immune cell types currently being explored as promising CAR-cell alternatives that seek to address the limitations of conventional adoptive cell therapies.
Collapse
Affiliation(s)
- Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Joni Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| |
Collapse
|
29
|
Jin G, Chang Y, Harris J, Bao X. Adoptive Immunotherapy: A Human Pluripotent Stem Cell Perspective. Cells Tissues Organs 2023; 212:439-467. [PMID: 36599319 PMCID: PMC10318121 DOI: 10.1159/000528838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
The past decade has witnessed significant advances in cancer immunotherapy, particularly through the adoptive transfer of engineered T cells in treating advanced leukemias and lymphomas. Despite these excitements, challenges remain with scale, cost, and ensuring quality control of engineered immune cells, including chimeric antigen receptor T, natural killer cells, and macrophages. The advent of human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, has transformed immunotherapy by providing a scalable, off-the-shelf source of any desired immune cells for basic research, translational studies, and clinical interventions. The tractability of hPSCs for gene editing could also generate homogenous, universal cellular products with custom functionality for individual or combinatory therapeutic applications. This review will explore various immune cell types whose directed differentiation from hPSCs has been achieved and recently adapted for translational immunotherapy and feature forward-looking bioengineering techniques shaping the future of the stem cell field.
Collapse
Affiliation(s)
- Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jackson Harris
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
30
|
Xiong Q, Zhang H, Ji X, Zhang Y, Shi G, Dai L, Cheng F, Wang H, Luo J, Xu J, Ji Y, Su X, Yang W, Zhang L, Deng H. A novel membrane-bound interleukin-2 promotes NK-92 cell persistence and anti-tumor activity. Oncoimmunology 2022; 11:2127282. [PMID: 36185809 PMCID: PMC9519007 DOI: 10.1080/2162402x.2022.2127282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A major challenge in natural killer (NK) cell immunotherapy is the limited persistence of NK cells in vivo. However, the proliferation of NK cells is dependent on cytokines such as interleukin-2 (IL-2). Although IL-2 is a critical cytokine for NK cell activation and survival, IL-2 administration in adoptive NK cell therapy can induce adverse toxicities. To improve the persistence of NK cells and attenuate the systemic toxicity of IL-2, we constructed a cell-restricted artificial IL-2, named membrane-bound IL-2 (mbIL-2), comprising human IL-2 and human IL-2Rα joined by a classic linker. We found that mbIL-2-activated NK-92 cells can survive and proliferate in vitro and in vivo, independent of exogenous IL-2, while mbIL-2-expressing NK-92 cells do not support bystander cell survival or proliferation. Additionally, mbIL-2 enhanced NK-92 cell-mediated antitumor activity by tuning the IL-2 receptor downstream signals and NK cell receptor repertoire expression. To conclude, our novel mbIL-2 improves NK-92 cell persistence and enhances NK-92 cell-mediated antitumor activity. NK-92 cells genetically modified to express the novel mbIL-2 with potential significance for clinical development.
Collapse
Affiliation(s)
- Qi Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Hantao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Xuanle Ji
- The College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Jieyan Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Jia Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Yanhong Ji
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Weixiao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Lin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
- Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
31
|
Ghaedrahmati F, Esmaeil N, Abbaspour M. Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Commun (Lond) 2022; 43:177-213. [PMID: 36585761 PMCID: PMC9926962 DOI: 10.1002/cac2.12394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-viral and anti-tumor responses. Thus, they might hold great potential for cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency in the treatment of solid tumors, possibly due in part to the immunosuppressive tumor microenvironment (TME), which reduces NK cell immunotherapy's efficiencies. It is known that immune checkpoints play a prominent role in creating an immunosuppressive TME, leading to NK cell exhaustion and tumor immune escape. Therefore, NK cells must be reversed from their dysfunctional status and increased in their effector roles in order to improve the efficiency of cancer immunotherapy. Blockade of immune checkpoints can not only rescue NK cells from exhaustion but also augment their robust anti-tumor activity. In this review, we discussed immune checkpoint blockade strategies with a focus on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Nafiseh Esmaeil
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran,Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Abbaspour
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
32
|
Liu S, Nguyen K, Park D, Wong N, Wang A, Zhou Y. Harnessing natural killer cells to develop next-generation cellular immunotherapy. Chronic Dis Transl Med 2022; 8:245-255. [PMID: 36420177 PMCID: PMC9676120 DOI: 10.1002/cdt3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/07/2022] Open
Abstract
Cellular immunotherapy harnesses the body's own immune system to fight cancer by using engineered T cells, macrophages, or natural killer (NK) cells. Compared to chimeric antigen receptor T (CAR-T) cells that are commonly used to treat hematological malignancies, CAR-NK cells have shown remarkable therapeutic effectiveness while exhibiting enhanced safety, reduced risk of graft-versus-host disease, fewer side effects, and amplified antitumor efficacy. Preclinical trials have unveiled the high potential of adoptive CAR-NK cell therapy to curtail or even eliminate both hematological malignancies and solid tumors in animal models. We brought forth herein the design principle of CAR-NK cells, highlighted the latest progress in the preclinical testing and clinical trials of CAR-NK cells, briefly delved into discussed major roadblocks in CAR-NK therapy, and discussed potential solutions to surmount these challenges. Given the accelerated progress in both basic and translational studies on immune cell engineering, CAR-NK cell therapy promises to become a serious contender and important addition to the next-generation cell-based immunotherapy.
Collapse
Affiliation(s)
- Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Kaycee Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Dongyong Park
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Nelson Wong
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Anson Wang
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
- Department of Translational Medical Sciences, School of MedicineTexas A&M UniversityHoustonTexasUSA
| |
Collapse
|
33
|
Xiao J, Zhang T, Gao F, Zhou Z, Shu G, Zou Y, Yin G. Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox. Cancers (Basel) 2022; 14:cancers14225657. [PMID: 36428748 PMCID: PMC9688567 DOI: 10.3390/cancers14225657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As an important component of the innate immune system, natural killer (NK) cells have gained increasing attention in adoptive cell therapy for their safety and efficacious tumor-killing effect. Unlike T cells which rely on the interaction between TCRs and specific peptide-MHC complexes, NK cells are more prone to be served as "off-the-shelf" cell therapy products due to their rapid recognition and killing of tumor cells without MHC restriction. In recent years, constantly emerging sources of therapeutic NK cells have provided flexible options for cancer immunotherapy. Advanced genetic engineering techniques, especially chimeric antigen receptor (CAR) modification, have yielded exciting effectiveness in enhancing NK cell specificity and cytotoxicity, improving in vivo persistence, and overcoming immunosuppressive factors derived from tumors. In this review, we highlight current advances in NK-based adoptive cell therapy, including alternative sources of NK cells for adoptive infusion, various CAR modifications that confer different targeting specificity to NK cells, multiple genetic engineering strategies to enhance NK cell function, as well as the latest clinical research on adoptive NK cell therapy.
Collapse
Affiliation(s)
- Jiani Xiao
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Fei Gao
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhengwei Zhou
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Guang Shu
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410000, China
- Correspondence: (Y.Z.); (G.Y.)
| | - Gang Yin
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Correspondence: (Y.Z.); (G.Y.)
| |
Collapse
|
34
|
Lamers-Kok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, Duru AD, Spanholtz J, Raimo M. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol 2022; 15:164. [DOI: 10.1186/s13045-022-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractNatural killer (NK) cells are unique immune effectors able to kill cancer cells by direct recognition of surface ligands, without prior sensitization. Allogeneic NK transfer is a highly valuable treatment option for cancer and has recently emerged with hundreds of clinical trials paving the way to finally achieve market authorization. Advantages of NK cell therapies include the use of allogenic cell sources, off-the-shelf availability, and no risk of graft-versus-host disease (GvHD). Allogeneic NK cell therapies have reached the clinical stage as ex vivo expanded and differentiated non-engineered cells, as chimeric antigen receptor (CAR)-engineered or CD16-engineered products, or as combination therapies with antibodies, priming agents, and other drugs. This review summarizes the recent clinical status of allogeneic NK cell-based therapies for the treatment of hematological and solid tumors, discussing the main characteristics of the different cell sources used for NK product development, their use in cell manufacturing processes, the engineering methods and strategies adopted for genetically modified products, and the chosen approaches for combination therapies. A comparative analysis between NK-based non-engineered, engineered, and combination therapies is presented, examining the choices made by product developers regarding the NK cell source and the targeted tumor indications, for both solid and hematological cancers. Clinical trial outcomes are discussed and, when available, assessed in comparison with preclinical data. Regulatory challenges for product approval are reviewed, highlighting the lack of specificity of requirements and standardization between products. Additionally, the competitive landscape and business field is presented. This review offers a comprehensive overview of the effort driven by biotech and pharmaceutical companies and by academic centers to bring NK cell therapies to pivotal clinical trial stages and to market authorization.
Collapse
|
35
|
Wang X, Yang X, Yuan X, Wang W, Wang Y. Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp Hematol Oncol 2022; 11:85. [PMID: 36324149 PMCID: PMC9628181 DOI: 10.1186/s40164-022-00341-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cells have obtained prominent achievement in the clinical immunotherapy of hematological malignant tumors, leading to a rapid development of cellular immunotherapy in cancer treatment. Scientists are also aware of the prospective advantages of CAR engineering in cellular immunotherapy. Due to various limitations such as the serious side effects of CAR-T therapy, researchers began to investigate other immune cells for CAR modification. Natural killer (NK) cells are critical innate immune cells with the characteristic of non-specifically recognizing target cells and with the potential to become "off-the-shelf" products. In recent years, many preclinical studies on CAR-engineered NK (CAR-NK) cells have shown their remarkable efficacy in cancer therapy and their superiority over autologous CAR-T cells. In this review, we summarize the generation, mechanisms of anti-tumor activity and unique advantages of CAR-NK cells, and then analyze some challenges and recent clinical trials about CAR-NK cells therapy. We believe that CAR-NK therapy is a promising prospect for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiao Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuejiao Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiang Yuan
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wenbo Wang
- grid.24516.340000000123704535Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yueying Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
36
|
Castiello L, Santodonato L, Napolitano M, Carlei D, Montefiore E, Monque DM, D’Agostino G, Aricò E. Chimeric Antigen Receptor Immunotherapy for Solid Tumors: Choosing the Right Ingredients for the Perfect Recipe. Cancers (Basel) 2022; 14:5351. [PMID: 36358770 PMCID: PMC9655484 DOI: 10.3390/cancers14215351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 10/21/2023] Open
Abstract
Chimeric antigen receptor T cell therapies are revolutionizing the clinical practice of hematological tumors, whereas minimal progresses have been achieved in the solid tumor arena. Multiple reasons have been ascribed to this slower pace: The higher heterogeneity, the hurdles of defining reliable tumor antigens to target, and the broad repertoire of immune escape strategies developed by solid tumors are considered among the major ones. Currently, several CAR therapies are being investigated in preclinical and early clinical trials against solid tumors differing in the type of construct, the cells that are engineered, and the additional signals included with the CAR constructs to overcome solid tumor barriers. Additionally, novel approaches in development aim at overcoming some of the limitations that emerged with the approved therapies, such as large-scale manufacturing, duration of manufacturing, and logistical issues. In this review, we analyze the advantages and challenges of the different approaches under development, balancing the scientific evidences supporting specific choices with the manufacturing and regulatory issues that are essential for their further clinical development.
Collapse
Affiliation(s)
- Luciano Castiello
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Laura Santodonato
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Mariarosaria Napolitano
- Research Coordination and Support Service, Italian National Institute of Health, 00161 Rome, Italy
| | - Davide Carlei
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Enrica Montefiore
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Domenica Maria Monque
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Giuseppina D’Agostino
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Eleonora Aricò
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
37
|
Wang H, Pan W. Challenges of chimeric antigen receptor-T/natural killer cell therapy in the treatment of solid tumors: focus on colorectal cancer and evaluation of combination therapies. Mol Cell Biochem 2022; 478:967-980. [PMID: 36190614 DOI: 10.1007/s11010-022-04568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
Abstract
Colorectal cancer (CRC) is the second most common cancer globally and one of the deadliest human malignancies. Traditional therapies, such as surgery, chemotherapy, and combination therapies have been used to treat patients with CRC. However, recently immunotherapy has been considered a practical and attractive therapeutic approach in various cancers, such as CRC. Among the immunotherapy methods, chimeric antigen receptor (CAR)-T, and CAR-natural killer cells (NK) cells therapy have been significantly successful, mainly in treating hematological malignancies. However, the effectiveness of CAR-T/NK cell therapy in the treatment of solid tumors, such as CRC has been less than blood malignancies due to various challenges, such as the selection of tumor antigens, lack of proper trafficking in tumor tissue, immunosuppressive tumor microenvironment, tumor heterogeneity and, adverse effects during and after CAR-T/NK cell therapy. This review summarized the biological structure of CAR-T/NK cells and their use in various types of human malignancies, particularly CRC, as well as the challenges of this type of treatment and the outcome of related combination therapies.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, 312000, China
| | - Weihuo Pan
- Department of Colorectal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, 568# Zhongxing North Road, Shaoxing, 312000, China.
| |
Collapse
|
38
|
Focaccetti C, Benvenuto M, Pighi C, Vitelli A, Napolitano F, Cotugno N, Fruci D, Palma P, Rossi P, Bei R, Cifaldi L. DNAM-1-chimeric receptor-engineered NK cells, combined with Nutlin-3a, more effectively fight neuroblastoma cells in vitro: a proof-of-concept study. Front Immunol 2022; 13:886319. [PMID: 35967339 PMCID: PMC9367496 DOI: 10.3389/fimmu.2022.886319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Adoptive transfer of engineered NK cells, one of clinical approaches to fight cancer, is gaining great interest in the last decade. However, the development of new strategies is needed to improve clinical efficacy and safety of NK cell-based immunotherapy. NK cell-mediated recognition and lysis of tumor cells are strictly dependent on the expression of ligands for NK cell-activating receptors NKG2D and DNAM-1 on tumor cells. Of note, the PVR/CD155 and Nectin-2/CD112 ligands for DNAM-1 are expressed primarily on solid tumor cells and poorly expressed in normal tissue cells. Here, we generated human NK cells expressing either the full length DNAM-1 receptor or three different DNAM-1-based chimeric receptor that provide the expression of DNAM-1 fused to a costimulatory molecule such as 2B4 and CD3ζ chain. Upon transfection into primary human NK cells isolated from healthy donors, we evaluated the surface expression of DNAM-1 and, as a functional readout, we assessed the extent of degranulation, cytotoxicity and the production of IFNγ and TNFα in response to human leukemic K562 cell line. In addition, we explored the effect of Nutlin-3a, a MDM2-targeting drug able of restoring p53 functions and known to have an immunomodulatory effect, on the degranulation of DNAM-1-engineered NK cells in response to human neuroblastoma (NB) LA-N-5 and SMS-KCNR cell lines. By comparing NK cells transfected with four different plasmid vectors and through blocking experiments, DNAM-1-CD3ζ-engineered NK cells showed the strongest response. Furthermore, both LA-N-5 and SMS-KCNR cells pretreated with Nutlin-3a were significantly more susceptible to DNAM-1-engineered NK cells than NK cells transfected with the empty vector. Our results provide a proof-of-concept suggesting that the combined use of DNAM-1-chimeric receptor-engineered NK cells and Nutlin-3a may represent a novel therapeutic approach for the treatment of solid tumors, such as NB, carrying dysfunctional p53.
Collapse
Affiliation(s)
- Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Dipartimento Pediatrico Universitario Ospedaliero (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | | | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Dipartimento Pediatrico Universitario Ospedaliero (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Dipartimento Pediatrico Universitario Ospedaliero (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paolo Rossi
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Loredana Cifaldi,
| |
Collapse
|
39
|
Li Y, Song Z, Han Q, Zhao H, Pan Z, Lei Z, Zhang J. Targeted inhibition of STAT3 induces immunogenic cell death of hepatocellular carcinoma cells via glycolysis. Mol Oncol 2022; 16:2861-2880. [PMID: 35665592 PMCID: PMC9348600 DOI: 10.1002/1878-0261.13263] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/15/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
In hepatocellular carcinoma (HCC), the signal transducer and activator of transcription 3 (STAT3) is present in an overactive state that is closely related to tumour development and immune escape. STAT3 inhibition reshapes the tumour immune microenvironment, but the underlying mechanisms have not been fully clarified. We found that STAT3 inhibition could induce immunogenic cell death (ICD) of HCC cells via translocation of the “eat me” molecule calreticulin to the cell surface and a significant reduction in the expression of the “don’t eat me” molecule leucocyte surface antigen CD47. STAT3 inhibition promoted dendritic cell (DC) activation and enhanced the recognition and phagocytosis of HCC cells by macrophages. Furthermore, STAT3 inhibition prevented the expression of key glycolytic enzymes, facilitating the induction of ICD in HCC. Interestingly, STAT3 directly regulated the transcription of CD47 and solute carrier family 2 member 1 (SLC2A1; also known as GLUT1). In subcutaneous and orthotopic transplantation mouse tumour models, the STAT3 inhibitor napabucasin prevented tumour growth and induced the expression of calreticulin and the protein disulfide isomerase family A member 3 (PDIA3; also known as ERp57) but suppressed that of CD47 and GLUT1. Meanwhile, the amount of tumour‐infiltrated DCs and macrophages increased, along with the expression of costimulatory molecules. More CD4+ and CD8+ T cells accumulated in tumour tissues, and CD8+ T cells had lower expression of checkpoint molecules such as lymphocyte activation gene 3 protein (LAG‐3) and programmed cell death protein 1 (PD‐1). Significantly, the antitumour immune memory response was induced by treatment targeting STAT3. These findings provide a new mechanism for targeting STAT3‐induced ICD in HCC, and confirms STAT3 as a potential target for the treatment of HCC via reshaping the tumour immune microenvironment.
Collapse
Affiliation(s)
- Ya Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhaoyi Pan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhengyang Lei
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
40
|
Min J, Long C, Zhang L, Duan J, Fan H, Chu F, Li Z. c-Met specific CAR-T cells as a targeted therapy for non-small cell lung cancer cell A549. Bioengineered 2022; 13:9216-9232. [PMID: 35378051 PMCID: PMC9161852 DOI: 10.1080/21655979.2022.2058149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is considered to be one of the most prevalent and fatal malignancies, with a poor survival rate. Chimeric antigen receptor T cell (CAR-T) cell therapy is one of the most exciting directions in the field of Cellular immunotherapy. Therefore, CAR-T cells that target c-Met have been developed for use in NSCLC therapy and might be a potential therapeutic strategy. The anti c-Met ScFv structure was fused with the transmembrane and intracellular domains. Using a lentiviral vector to load the c-Met CAR gene, then transfected the c-Met CAR lentiviral into human T cells to obtain the second generation c-Met CAR-T expressing CARs stably. In vitro co-culture, experiments revealed that CAR-T cells have high proliferative activity and the potential to secrete cytokines (IL-2, TNF-α, and IFN-γ). c-Met CAR-T cells showed special cellular cytotoxicity in LDH release assay. A subcutaneous tumor model in nude mice was used to test the anticancer effectiveness of c-Met CAR-T cells in vivo. For c-Met positive NSCLC tissue, according to tumor volume, weight, fluorescence intensity, and immunohistochemical detection, c-Met CAR-T cells had stronger tumor growth suppression compared to untransduced T cells. HE staining revealed that c-Met CAR-T cells did not produced side effects in nude mice. Taken together, we provided useful method to generate c-Met CAR- T cells, which exhibit enhanced cytotoxicity against NSCLC cells in vitro and in vivo. Thus, providing a new therapeutic avenue for treating NSCLC clinically. Highlights(1) c-Met CAR-T capable of stably expressing c-Met CARs were constructed. (2) c-Met CAR-T have strong anti-tumor ability and proliferation ability in vitro. (3) c-Met CAR-T can effectively inhibit the growth of A549 cells subcutaneous xenografts.
Collapse
Affiliation(s)
- Jingting Min
- Department of Basic Medical, Bengbu Medical College, Bengbu, AH, China
| | - Chirong Long
- Department of Basic Medical, Bengbu Medical College, Bengbu, AH, China
| | - Lu Zhang
- Department of Life Sciences, Bengbu Medical College, Bengbu, AH, China
| | - Jiakang Duan
- Department of Hepatological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, AH, China
| | - Honglian Fan
- Department of Pharmacy, Bengbu Medical College, Bengbu, AH, China
| | - Fei Chu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, AH, China
| | - Zhenghong Li
- Department of Life Sciences, Bengbu Medical College, Bengbu, AH, China
| |
Collapse
|
41
|
Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res 2022; 10:12. [PMID: 35303962 PMCID: PMC8932134 DOI: 10.1186/s40364-022-00364-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells and manifest rapid and potent cytotoxicity for cancer immunotherapy and pathogen removal without the requirement of prior sensitization or recognition of peptide antigens. Distinguish from the T lymphocyte-based cythotherapy with toxic side effects, chimeric antigen receptor-transduced NK (CAR-NK) cells are adequate to simultaneously improve efficacy and control adverse effects including acute cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GVHD). Moreover, considering the inherent properties of NK cells, the CAR-NK cells are “off-the-shelf” product satisfying the clinical demand for large-scale manufacture for cancer immunotherapy attribute to the cytotoxic effect via both NK cell receptor-dependent and CAR-dependent signaling cascades. In this review, we mainly focus on the latest updates of CAR-NK cell-based tactics, together with the opportunities and challenges for cancer immunotherapies, which represent the paradigm for boosting the immune system to enhance antitumor responses and ultimately eliminate malignancies. Collectively, we summarize and highlight the auspicious improvement in CAR-NK cells and will benefit the large-scale preclinical and clinical investigations in adoptive immunotherapy.
Collapse
Affiliation(s)
- Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui Province, China. .,Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 Donggangxi Road, Chengguan District, Lanzhou City, 730013, Gansu Province, China.
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, 550000, China.
| |
Collapse
|
42
|
Ruppel KE, Fricke S, Köhl U, Schmiedel D. Taking Lessons from CAR-T Cells and Going Beyond: Tailoring Design and Signaling for CAR-NK Cells in Cancer Therapy. Front Immunol 2022; 13:822298. [PMID: 35371071 PMCID: PMC8971283 DOI: 10.3389/fimmu.2022.822298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer immunotherapies utilize the capabilities of the immune system to efficiently target malignant cells. In recent years, chimeric antigen receptor (CAR) equipped T cells showed promising results against B cell lymphomas. Autologous CAR-T cells require patient-specific manufacturing and thus extensive production facilities, resulting in high priced therapies. Along with potentially severe side effects, these are the major drawbacks of CAR-T cells therapies. Natural Killer (NK) cells pose an alternative for CAR equipped immune cells. Since NK cells can be safely transferred from healthy donors to cancer patients, they present a suitable platform for an allogeneic “off-the-shelf” immunotherapy. However, administration of activated NK cells in cancer therapy has until now shown poor anti-cancer responses, especially in solid tumors. Genetic modifications such as CARs promise to enhance recognition of tumor cells, thereby increasing anti-tumor effects and improving clinical efficacy. Although the cell biology of T and NK cells deviates in many aspects, the development of CAR-NK cells frequently follows within the footsteps of CAR-T cells, meaning that T cell technologies are simply adopted to NK cells. In this review, we underline the unique properties of NK cells and their potential in CAR therapies. First, we summarize the characteristics of NK cell biology with a focus on signaling, a fine-tuned interaction of activating and inhibitory receptors. We then discuss why tailored NK cell-specific CAR designs promise superior efficacy compared to designs developed for T cells. We summarize current findings and developments in the CAR-NK landscape: different CAR formats and modifications to optimize signaling, to target a broader pool of antigens or to increase in vivo persistence. Finally, we address challenges beyond NK cell engineering, including expansion and manufacturing, that need to be addressed to pave the way for CAR-NK therapies from the bench to the clinics.
Collapse
Affiliation(s)
- Katharina Eva Ruppel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
- *Correspondence: Dominik Schmiedel,
| |
Collapse
|
43
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
44
|
Schmidt D, Ebrahimabadi S, Gomes KRDS, de Moura Aguiar G, Cariati Tirapelle M, Nacasaki Silvestre R, de Azevedo JTC, Tadeu Covas D, Picanço-Castro V. Engineering CAR-NK cells: how to tune innate killer cells for cancer immunotherapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac003. [PMID: 35919494 PMCID: PMC9327111 DOI: 10.1093/immadv/ltac003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cell therapy is an innovative approach that permits numerous possibilities in the field of cancer treatment. CAR-T cells have been successfully used in patients with hematologic relapsed/refractory. However, the need for autologous sources for T cells is still a major drawback. CAR-NK cells have emerged as a promising resource using allogeneic cells that could be established as an off-the-shelf treatment. NK cells can be obtained from various sources, such as peripheral blood (PB), bone marrow, umbilical cord blood (CB), and induced pluripotent stem cells (iPSC), as well as cell lines. Genetic engineering of NK cells to express different CAR constructs for hematological cancers and solid tumors has shown promising preclinical results and they are currently being explored in multiple clinical trials. Several strategies have been employed to improve CAR-NK-cell expansion and cytotoxicity efficiency. In this article, we review the latest achievements and progress made in the field of CAR-NK-cell therapy.
Collapse
Affiliation(s)
- Dayane Schmidt
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sima Ebrahimabadi
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kauan Ribeiro de Sena Gomes
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Graziela de Moura Aguiar
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariane Cariati Tirapelle
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Nacasaki Silvestre
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Júlia Teixeira Cottas de Azevedo
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Virginia Picanço-Castro
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
45
|
Tang J, Zhu Q, Li Z, Yang J, Lai Y. Natural killer cell-targeted immunotherapy for cancer. Curr Stem Cell Res Ther 2022; 17:513-526. [PMID: 34994316 DOI: 10.2174/1574888x17666220107101722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cells were initially described in the early 1970s as major histocompatibility complex unrestricted killers due to their ability to spontaneously kill certain tumor cells. In the past decade, the field of NK cell-based treatment has been accelerating exponentially, holding a dominant position in cancer immunotherapy innovation. Generally, research on NK cell-mediated antitumor therapies can be categorized into three areas: choosing the optimal source of allogenic NK cells to yield massively amplified "off-the-shelf" products, improving NK cell cytotoxicity and longevity, and engineering NK cells with the ability of tumor-specific recognition. In this review, we focused on NK cell manufacturing techniques, some auxiliary methods to enhance the therapeutic efficacy of NK cells, chimeric antigen receptor NK cells, and monoclonal antibodies targeting inhibitory receptors, which can significantly augment the antitumor activity of NK cells. Notably, emerging evidence suggests that NK cells are a promising constituent of multipronged therapeutic strategies, strengthening immune responses to cancer.
Collapse
Affiliation(s)
- Jingyi Tang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qi Zhu
- Sichuan Fine Arts Institute, Chongqing, China
| | - Zhaoyang Li
- Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Khawar MB, Sun H. CAR-NK Cells: From Natural Basis to Design for Kill. Front Immunol 2022; 12:707542. [PMID: 34970253 PMCID: PMC8712563 DOI: 10.3389/fimmu.2021.707542] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors (CARs) are fusion proteins with an extracellular antigen recognition domain and numerous intracellular signaling domains that have been genetically modified. CAR-engineered T lymphocyte-based therapies have shown great success against blood cancers; however, potential fatal toxicity, such as in cytokine release syndrome, and high costs are some shortcomings that limit the clinical application of CAR-engineered T lymphocytes and remain to overcome. Natural killer (NK) cells are the focal point of current immunological research owing to their receptors that prove to be promising immunotherapeutic candidates for treating cancer. However, to date, manipulation of NK cells to treat malignancies has been moderately successful. Recent progress in the biology of NK cell receptors has greatly transformed our understanding of how NK cells recognize and kill tumor and infected cells. CAR-NK cells may serve as an alternative candidate for retargeting cancer because of their unique recognition mechanisms, powerful cytotoxic effects especially on cancer cells in both CAR-dependent and CAR-independent manners and clinical safety. Moreover, NK cells can serve as an ‘off-the-shelf product’ because NK cells from allogeneic sources can also be used in immunotherapies owing to their reduced risk of alloreactivity. Although ongoing fundamental research is in the beginning stages, this review provides an overview of recent developments implemented to design CAR constructs to stimulate NK activation and manipulate NK receptors for improving the efficiency of immunotherapy against cancer, summarizes the preclinical and clinical advances of CAR-NK cells against both hematological malignancies and solid tumors and confronts current challenges and obstacles of their applications. In addition, this review provides insights into prospective novel approaches that further enhance the efficiency of CAR-NK therapies and highlights potential questions that require to be addressed in the future.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China.,Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan.,Laboratory of Molecular Biology & Genomics, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
47
|
Dai K, Wu Y, She S, Zhang Q. Advancement of chimeric antigen receptor-natural killer cells targeting hepatocellular carcinoma. World J Gastrointest Oncol 2021; 13:2029-2037. [PMID: 35070039 PMCID: PMC8713322 DOI: 10.4251/wjgo.v13.i12.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
With the advance of genome engineering technology, chimeric antigen receptors (CARs)-based immunotherapy has become an emerging therapeutic strategy for tumors. Although initially designed for T cells in tumor immunotherapy, CARs have been exploited to modify the function of natural killer (NK) cells against a variety of tumors, including hepatocellular carcinoma (HCC). CAR-NK cells have the potential to sufficiently kill tumor antigen-expressing HCC cells, independent of major histocompatibility complex matching or prior priming. In this review, we summarize the recent advances in genetic engineering of CAR-NK cells against HCC and discuss the current challenges and prospects of CAR-NK cells as a revolutionary cellular immunotherapy against HCC.
Collapse
Affiliation(s)
- Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yin Wu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Sha She
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qian Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
48
|
Bashiri Dezfouli A, Yazdi M, Pockley AG, Khosravi M, Kobold S, Wagner E, Multhoff G. NK Cells Armed with Chimeric Antigen Receptors (CAR): Roadblocks to Successful Development. Cells 2021; 10:cells10123390. [PMID: 34943898 PMCID: PMC8699535 DOI: 10.3390/cells10123390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, cell-based immunotherapies have demonstrated promising results in the treatment of cancer. Chimeric antigen receptors (CARs) arm effector cells with a weapon for targeting tumor antigens, licensing engineered cells to recognize and kill cancer cells. The quality of the CAR-antigen interaction strongly depends on the selected tumor antigen and its expression density on cancer cells. CD19 CAR-engineered T cells approved by the Food and Drug Administration have been most frequently applied in the treatment of hematological malignancies. Clinical challenges in their application primarily include cytokine release syndrome, neurological symptoms, severe inflammatory responses, and/or other off-target effects most likely mediated by cytotoxic T cells. As a consequence, there remains a significant medical need for more potent technology platforms leveraging cell-based approaches with enhanced safety profiles. A promising population that has been advanced is the natural killer (NK) cell, which can also be engineered with CARs. NK cells which belong to the innate arm of the immune system recognize and kill virally infected cells as well as (stressed) cancer cells in a major histocompatibility complex I independent manner. NK cells play an important role in the host’s immune defense against cancer due to their specialized lytic mechanisms which include death receptor (i.e., Fas)/death receptor ligand (i.e., Fas ligand) and granzyme B/perforin-mediated apoptosis, and antibody-dependent cellular cytotoxicity, as well as their immunoregulatory potential via cytokine/chemokine release. To develop and implement a highly effective CAR NK cell-based therapy with low side effects, the following three principles which are specifically addressed in this review have to be considered: unique target selection, well-designed CAR, and optimized gene delivery.
Collapse
Affiliation(s)
- Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Einstein Str. 25, 81675 Munich, Germany;
- Correspondence: ; Tel.: +49-89-4140-6013
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany; (M.Y.); (E.W.)
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany;
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), 81377 Munich, Germany; (M.Y.); (E.W.)
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Einstein Str. 25, 81675 Munich, Germany;
| |
Collapse
|
49
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Chimeric Antigen Receptor-Engineered Natural Killer (CAR NK) Cells in Cancer Treatment; Recent Advances and Future Prospects. Stem Cell Rev Rep 2021; 17:2081-2106. [PMID: 34472037 PMCID: PMC8410173 DOI: 10.1007/s12015-021-10246-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
Natural Killer (NK) cells are critical members of the innate immunity lymphocytes and have a critical role in host defense against malignant cells. Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) redirects the specificity of the immune cell against a target-specific antigen. ACT has recently created an outstanding opportunity for cancer treatment. Unlike CAR-armored T cells which hadnsome shortcomings as the CAR-receiving construct, Major histocompatibility complex (MHC)-independency, shorter lifespan, the potential to produce an off-the-shelf immune product, and potent anti-tumor properties of the NK cells has introduced NK cells as a potent alternative target for expression of CAR. Here, we aim to provide an updated overview on the current improvements in CAR NK design and immunobiology and describe the potential of CAR-modified NK cells as an alternative “off-the-shelf” carrier of CAR. We also provide lists for the sources of NK cells in the process of CAR NK cell production, different methods for transduction of the CAR genetic sequence to NK cells, the differences between CAR T and CAR NK, and CAR NK-targeted tumor antigens in current studies. Additionally, we provide data on recently published preclinical and clinical studies of CAR NK therapy and a list of finished and ongoing clinical trials. For achieving CAR NK products with higher efficacy and safety, we discuss current challenges in transduction and expansion of CAR NK cells, CAR NK therapy side effects, and challenges that limit the optimal efficacy of CAR NK cells and recommend possible solutions to enhance the persistence, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
|