1
|
Zuo M, Li T, Wang Z, Xiang Y, Chen S, Liu Y. Research progress on platelets in glioma. Chin Med J (Engl) 2025; 138:28-37. [PMID: 39252160 PMCID: PMC11717503 DOI: 10.1097/cm9.0000000000003282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 09/11/2024] Open
Abstract
ABSTRACT Gliomas are the most common primary neuroepithelial tumors of the central nervous system in adults, of which glioblastoma is the deadliest subtype. Apart from the intrinsically indestructible characteristics of glioma (stem) cells, accumulating evidence suggests that the tumor microenvironment also plays a vital role in the refractoriness of glioblastoma. The primary functions of platelets are to stop bleeding and regulate thrombosis under physiological conditions. Furthermore, platelets are also active elements that participate in a variety of processes of tumor development, including tumor growth, invasion, and chemoresistance. Glioma cells recruit and activate resting platelets to become tumor-educated platelets (TEPs), which in turn can promote the proliferation, invasion, stemness, and chemoresistance of glioma cells. TEPs can be used to obtain genetic information about gliomas, which is helpful for early diagnosis and monitoring of therapeutic effects. Platelet membranes are intriguing biomimetic materials for developing efficacious drug carriers to enhance antiglioma activity. Herein, we review the recent research referring to the contribution of platelets to the malignant characteristics of gliomas and focusing on the molecular mechanisms mediating the interaction between TEPs and glioma (stem) cells, as well as present the challenges and opportunities in targeting platelets for glioma therapy.
Collapse
Affiliation(s)
- Mingrong Zuo
- Department of Pediatric Neurosurgery, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tengfei Li
- Department of Pediatric Neurosurgery, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Chowdhury MG, Kapoor S, Muthukumar V, Chatterjee DR, Shard A. Development of novel tetrazole-based pyruvate kinase M2 inhibitors targeting U87MG glioblastoma cells. Bioorg Chem 2025; 154:108029. [PMID: 39693922 DOI: 10.1016/j.bioorg.2024.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Glioblastoma (GB), the most aggressive and life-threatening primary brain tumor in adults, poses significant therapeutic challenges. Tumor pyruvate kinase M2 (PKM2) has been implicated in the proliferation and survival of glioma cells. In this study, we designed and synthesized a series of 23 novel tetrazole-based derivatives. The compounds were thoroughly characterized using 1H, 13C, 19F NMR, along with HRMS analysis. Among them, 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(5-(naphthalen-2-yl)-2H-tetrazol-2-yl)ethan-1-one (9b) exhibited potent and selective antiproliferative activity against U87MG glioma cells, with minimal effects on bEnd (brain endothelial cell line) non-glioma cells. It emerged as a potent PKM2 inhibitor, with an IC50 of 0.307 µM. Apoptosis assays and cell cycle analysis revealed that compound 9b induced early apoptosis and caused G1 phase arrest. A significant decrease in pyruvate concentration further suggested PKM2 inhibition. In silico studies confirmed the binding affinity to the PKM2 inhibitory site, and RT-PCR data demonstrated its inhibitory activity against PKM2. Additionally, it reduced lactate levels, indicating its potential impact on cellular metabolism. Collectively, these findings suggest that the most potent compound holds promise as a therapeutic candidate against GB.
Collapse
Affiliation(s)
- Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Venkatesh Muthukumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Huang PY, Juan YH, Hung TW, Tsai YP, Ting YH, Lee CC, Tsai JP, Hsieh YH. β-Mangostin Alleviates Renal Tubulointerstitial Fibrosis via the TGF-β1/JNK Signaling Pathway. Cells 2024; 13:1701. [PMID: 39451219 PMCID: PMC11505648 DOI: 10.3390/cells13201701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a key role in the pathogenesis of kidney fibrosis, and kidney fibrosis is associated with an adverse renal prognosis. Beta-mangostin (β-Mag) is a xanthone derivative obtained from mangosteens that is involved in the generation of antifibrotic and anti-oxidation effects. The purpose of this study was to examine the effects of β-Mag on renal tubulointerstitial fibrosis both in vivo and in vitro and the corresponding mechanisms involved. As shown through an in vivo study conducted on a unilateral ureteral obstruction mouse model, oral β-Mag administration, in a dose-dependent manner, caused a lesser degree of tubulointerstitial damage, diminished collagen I fiber deposition, and the depressed expression of fibrotic markers (collagen I, α-SMA) and EMT markers (N-cadherin, Vimentin, Snail, and Slug) in the UUO kidney tissues. The in vitro part of this research revealed that β-Mag, when co-treated with transforming growth factor-β1 (TGF-β1), decreased cell motility and downregulated the EMT (in relation to Vimentin, Snail, and N-cadherin) and phosphoryl-JNK1/2/Smad2/Smad3 expression. Furthermore, β-Mag co-treated with SB (Smad2/3 kinase inhibitor) or SP600125 (JNK kinase inhibitor) significantly inhibited the TGF-β1-associated downstream phosphorylation and activation of JNK1/2-mediated Smad2 targeting the Snail/Vimentin axis. To conclude, β-Mag protects against EMT and kidney fibrotic processes by mediating the TGF-β1/JNK/Smad2 targeting Snail-mediated Vimentin expression and may have therapeutic implications for renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Po-Yu Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Ying-Hsu Juan
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yuan-Pei Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-P.T.); (Y.-H.T.)
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-P.T.); (Y.-H.T.)
| | - Chu-Che Lee
- Department of Medicine Research, Buddhist Dalin Tzu Chi Hospital, Chiayi 62247, Taiwan;
| | - Jen-Pi Tsai
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-P.T.); (Y.-H.T.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
4
|
Yang Y, Luo X, Wang Y, Xu A, Peng L, Zhang X, Wang Z, Ying Y, Li K. β-Mangostin targets and suppresses glioma via STING activation and tumor-associated microglia polarization. Biomed Pharmacother 2024; 177:117074. [PMID: 38972149 DOI: 10.1016/j.biopha.2024.117074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Glioma, a common and highly malignant central nervous system tumor, markedly influences patient prognosis via interactions with glioma-associated macrophages. Previous research has revealed the anticancer potential of β-mangostin, a xanthone derivative obtained from the mangosteen fruit. This research investigated the role of β-mangostin on microglia in the glioma microenvironment and evaluated the efficacy of β-mangostin combined with anti-PD-1 antibody (αPD-1) in glioma-bearing mice. The results showed that, β-mangostin attenuated M2 polarization in BV2 cells and promoted M1-related interleukin (IL)-1β and IL-6 secretion, thereby inhibiting glioma invasion. In addition, β-mangostin improved the anti-glioma effects of αPD-1 and increased CD8+T cell and M1-type microglia infiltration. Mechanistically, β-mangostin bound to the stimulator of interferon genes (STING) protein, which is crucial for the anti-tumor innate immune response, and promoted STING phosphorylation in microglia, both in vivo and in vitro. These results provide insights into its mode of action and supporting further investigation into β-mangostin as a therapeutic agent.
Collapse
Affiliation(s)
- Yimin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuling Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yaling Wang
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Aibo Xu
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Lina Peng
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaoting Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang 310063, China.
| | - Youmin Ying
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Kaiqiang Li
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang 310063, China.
| |
Collapse
|
5
|
Chang YY, Wang M, Yeh JH, Tsou SC, Chen TC, Hsu MY, Lee YJ, Wang I, Lin HW. The protective effects of beta-mangostin against sodium iodate-induced retinal ROS-mediated apoptosis through MEK/ERK and p53 signaling pathways. Food Funct 2023; 14:10896-10909. [PMID: 37990840 DOI: 10.1039/d3fo03568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Previous studies have indicated that NaIO3 induces intracellular reactive oxygen species (ROS) production and has been used as a model for age-related macular degeneration (AMD) due to the selective retinal pigment epithelium (RPE) cell damage it induces. Beta-mangostin (BM) is a xanthone-type natural compound isolated from Cratoxylum arborescens. The influence of BM on NaIO3-induced oxidative stress damage in ARPE-19 cells has not yet been elucidated. In this study, we investigated how BM protects ARPE-19 cells from NaIO3-induced ROS-mediated apoptosis. Our results revealed that BM notably improved cell viability and prevented ARPE-19 cell mitochondrial dysfunction mediated-apoptosis induced by NaIO3; it was mediated by significantly reduced NaIO3-upregulated ROS, cellular H2O2 production and improved downregulated glutathione and catalase activities. Furthermore, we found that BM could suppress the expression of Bax, cleaved PARP, and cleaved caspase-3 by decreasing phosphorylation of MEK/ERK and p53 expression in NaIO3-induced ARPE-19 cells. At the same time, we also used MEK inhibitors (PD98059) to confirm the above phenomenon. Moreover, our animal experiments revealed that BM prevented NaIO3 from causing retinal deformation; it led to thicker outer and inner nuclear layers and downregulated cleaved caspase-3 expression compared to the group receiving NaIO3 only. Collectively, these results suggest that BM can protect the RPE and retina from NaIO3-induced apoptosis through ROS-mediated mitochondrial dysfunction involving the MEK/ERK and p53 signaling pathways.
Collapse
Affiliation(s)
- Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Jui-Hsuan Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shang-Chun Tsou
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tzu-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Min-Yen Hsu
- School of Medicine, Chung Shan Medical University and Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, Chung Shan Medical University, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Inga Wang
- Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
6
|
Viwatpinyo K, Mukda S, Warinhomhoun S. Effects of mitragynine on viability, proliferation, and migration of C6 rat glioma, SH-SY5Y human neuroblastoma, and HT22 immortalized mouse hippocampal neuron cell lines. Biomed Pharmacother 2023; 166:115364. [PMID: 37639746 DOI: 10.1016/j.biopha.2023.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Mitragynine (MG) is an indole alkaloid found in the extract of Mitragyna speciosa Korth native to Southeast Asia. Although MG is known for its pain-relieving and psychoactive effects, reports have suggested that it has therapeutic potential against neoplasms and psychiatric disorders. However, no evidence currently exists to support the effect of MG on brain tumors. This study aimed to investigate the antitumor effects of MG in C6 rat glioma and SH-SY5Y human neuroblastoma tumor cell lines compared with those in the non-tumor HT22 mouse hippocampal neuronal cell line. MTT assay for cell viability, clonogenic and wound healing assays for cell migration, Hoechst 33342/propidium iodide staining for nuclear morphology, and cell cycle distribution using flow cytometry were performed. MG at 125.47 μM (50 μg/ml) significantly reduced the viability of all cell lines, and the clonogenicity of C6 glioma cells began decreasing at 75.28 μM (30 μg/ml) of MG. Cell migration was inhibited in C6 and HT22 cells treated with 75.28 μM (30 μg/ml) of MG. Apoptotic nuclear condensation and fragmentation were observed in all cell lines treated with 125.47 μM (50 μg/ml) MG, whereas late-phase apoptotic cells were predominant in the group treated with 250.94 μM (100 μg/ml) of MG. The cell cycle assay results suggest that MG arrested the S phase in the C6 cell line and the G2/M phase in the HT22 cell lines. This study showed that MG induces cell death and cell cycle arrest, disrupting cell migration and reducing the clonogenicity of brain tumor cells.
Collapse
Affiliation(s)
- Kittikun Viwatpinyo
- School of Medicine, Walailak University, Tha Sala, Nakorn Si Thammarat 80160, Thailand; Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand
| | - Sakan Warinhomhoun
- School of Medicine, Walailak University, Tha Sala, Nakorn Si Thammarat 80160, Thailand; Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
7
|
Zhu Y, Wang S, Niu P, Chen H, Zhou J, Jiang L, Li D, Shi D. Raptor couples mTORC1 and ERK1/2 inhibition by cardamonin with oxidative stress induction in ovarian cancer cells. PeerJ 2023; 11:e15498. [PMID: 37304865 PMCID: PMC10257395 DOI: 10.7717/peerj.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Background A balance on nutrient supply and redox homeostasis is required for cell survival, and increased antioxidant capacity of cancer cells may lead to chemotherapy failure. Objective To investigate the mechanism of anti-proliferation of cardamonin by inducing oxidative stress in ovarian cancer cells. Methods After 24 h of drug treatment, CCK8 kit and wound healing test were used to detect cell viability and migration ability, respectively, and the ROS levels were detected by flow cytometry. The differential protein expression after cardamonin administration was analyzed by proteomics, and the protein level was detected by Western blotting. Results Cardamonin inhibited the cell growth, which was related to ROS accumulation. Proteomic analysis suggested that MAPK pathway might be involved in cardamonin-induced oxidative stress. Western blotting showed that cardamonin decreased Raptor expression and the activity of mTORC1 and ERK1/2. Same results were observed in Raptor KO cells. Notably, in Raptor KO cells, the effect of cardamonin was weakened. Conclusion Raptor mediated the function of cardamonin on cellular redox homeostasis and cell proliferation through mTORC1 and ERK1/2 pathways.
Collapse
|
8
|
Kalick LS, Khan HA, Maung E, Baez Y, Atkinson AN, Wallace CE, Day F, Delgadillo BE, Mondal A, Watanapokasin R, Barbalho SM, Bishayee A. Mangosteen for malignancy prevention and intervention: Current evidence, molecular mechanisms, and future perspectives. Pharmacol Res 2023; 188:106630. [PMID: 36581166 DOI: 10.1016/j.phrs.2022.106630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Mangosteen (Garcinia mangostana L.), also known as the "queen of fruits", is a tropical fruit of the Clusiacea family. While native to Southeast Asian countries, such as Thailand, Indonesia, Malaysia, Myanmar, Sri Lanka, India, and the Philippines, the fruit has gained popularity in the United States due to its health-promoting attributes. In traditional medicine, mangosteen has been used to treat a variety of illnesses, ranging from dysentery to wound healing. Mangosteen has been shown to exhibit numerous biological and pharmacological activities, such as antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, antidiabetic, and anticancer properties. Disease-preventative and therapeutic properties of mangosteen have been ascribed to secondary metabolites called xanthones, present in several parts of the tree, including the pericarp, fruit rind, peel, stem bark, root bark, and leaf. Of the 68 mangosteen xanthones identified so far, the most widely-studied are α-mangostin and γ-mangostin. Emerging studies have found that mangosteen constituents and phytochemicals exert encouraging antineoplastic effects against a myriad of human malignancies. While there are a growing number of individual research papers on the anticancer properties of mangosteen, a complete and critical evaluation of published experimental findings has not been accomplished. Accordingly, the objective of this work is to present an in-depth analysis of the cancer preventive and anticancer potential of mangosteen constituents, with a special emphasis on the associated cellular and molecular mechanisms. Moreover, the bioavailability, pharmacokinetics, and safety of mangosteen-derived agents together with current challenges and future research avenues are also discussed.
Collapse
Affiliation(s)
- Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Hamaad A Khan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Erica Maung
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Yasmany Baez
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Alexa N Atkinson
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carly E Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sandra M Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, São Paulo, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
9
|
A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen ( Garcinia mangostana L.) Pericarps. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248775. [PMID: 36557908 PMCID: PMC9782657 DOI: 10.3390/molecules27248775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Xanthones are significant bioactive compounds and secondary metabolites in mangosteen pericarps. A xanthone is a phenolic compound and versatile scaffold that consists of a tricyclic xanthene-9-one structure. A xanthone may exist in glycosides, aglycones, monomers or polymers. It is well known that xanthones possess a multitude of beneficial properties, including antioxidant activity, anti-inflammatory activity, and antimicrobial properties. Additionally, xanthones can be used as raw material and/or an ingredient in many food, pharmaceutical, and cosmetic applications. Although xanthones can be used in various therapeutic and functional applications, their properties and stability are determined by their extraction procedures. Extracting high-quality xanthones from mangosteen with effective therapeutic effects could be challenging if the extraction method is insufficient. Although several extraction processes are in use today, their efficiency has not yet been rigorously evaluated. Therefore, selecting an appropriate extraction procedure is imperative to recover substantial yields of xanthones with enhanced functionality from mangosteens. Hence, the present review will assist in establishing a precise scenario for finding the most appropriate extraction method for xanthones from mangosteen pericarp by critically analyzing various conventional and unconventional extraction methods and their ability to preserve the stability and biological effects of xanthones.
Collapse
|
10
|
Huang LT, Kuo CH, Tseng L, Li YS, Cheng LH, Cheng CY, Sheu SR, Chang WT, Chen CC, Cheng HC. Alpha-Mangostin Reduces Pericellular Fibronectin on Suspended Tumor Cells and Therapeutically, but Not Prophylactically, Suppresses Distant Metastasis. Life (Basel) 2022; 12:life12091375. [PMID: 36143411 PMCID: PMC9503692 DOI: 10.3390/life12091375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/23/2022] Open
Abstract
Major cancer deaths can be ascribed to distant metastasis to which the assembly of pericellular fibronectin (periFN) on suspended tumor cells (STCs) in the bloodstream that facilitate endothelial attachment can lead. Even though mangosteen pericarps (MP) extracts and the major component α-mangostin (α-MG) exhibit potent cancer chemopreventive properties, whether they can prophylactically and therapeutically be used as dietary nutraceuticals to prevent distant metastasis by suppressing periFN assembly on STCs within the circulation remains obscure. Immunofluorescence staining, MTT assays, flow cytometric assays, immunoblotting, and experimental metastasis mouse models were used to detect the effects of MP extracts or α-MG on periFN on STCs, tumor cell proliferation and apoptosis, the AKT activity, and tumor lung metastasis. The periFN assembly on STCs was significantly diminished upon treatments of STCs with either α-MG or MP extracts in a dose-dependent manner without inhibiting cell proliferation and viability due to increased AKT activity. Pretreatment of STCs with α-MG appeared to suppress tumor lung metastasis and prolong mouse survival rates. Oral gavage with MP extracts could therapeutically, but not prophylactically, prevent lung metastasis of STCs. We concluded that MP extracts or the major component α-MG may therapeutically serve as a potent anti-metastatic nutraceutical.
Collapse
Affiliation(s)
- Li-Tzu Huang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chin-Ho Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetology and Health Care, Min-Hwei Junior College of Health Care Management, Tainan 736, Taiwan
| | - Lin Tseng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Yi-Syuan Li
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Li-Hsin Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chin-Yun Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- The Institute of Biotechnology Research Center, Far East University, Tainan 74448, Taiwan
| | - Shane-Rong Sheu
- The Institute of Biotechnology Research Center, Far East University, Tainan 74448, Taiwan
| | - Wen-Tsan Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Hung-Chi Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
12
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Neonatal Oxidative Stress Impairs Cortical Synapse Formation and GABA Homeostasis in Parvalbumin-Expressing Interneurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8469756. [PMID: 35663195 PMCID: PMC9159830 DOI: 10.1155/2022/8469756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
Neonatal brain injury is often caused by preterm birth. Brain development is vulnerable to increased environmental stress, including oxidative stress challenges. Due to a premature change of the fetal living environment from low oxygen in utero into postnatal high-oxygen room air conditions ex utero, the immature preterm brain is exposed to a relative hyperoxia, which can induce oxidative stress and impair neuronal cell development. To simulate the drastic increase of oxygen exposure in the immature brain, 5-day-old C57BL/6 mice were exposed to hyperoxia (80% oxygen) for 48 hours or kept in room air (normoxia, 21% oxygen) and mice were analyzed for maturational alterations of cortical GABAergic interneurons. As a result, oxidative stress was indicated by elevated tyrosine nitration of proteins. We found perturbation of perineuronal net formation in line with decreased density of parvalbumin-expressing (PVALB) cortical interneurons in hyperoxic mice. Moreover, maturational deficits of cortical PVALB+ interneurons were obtained by decreased glutamate decarboxylase 67 (GAD67) protein expression in Western blot analysis and lower gamma-aminobutyric acid (GABA) fluorescence intensity in immunostaining. Hyperoxia-induced oxidative stress affected cortical synaptogenesis by decreasing synapsin 1, synapsin 2, and synaptophysin expression. Developmental delay of synaptic marker expression was demonstrated together with decreased PI3K-signaling as a pathway being involved in synaptogenesis. These results elucidate that neonatal oxidative stress caused by increased oxygen exposure can lead to GABAergic interneuron damage which may serve as an explanation for the high incidence of psychiatric and behavioral alterations found in preterm infants.
Collapse
|
14
|
Daisy Precilla S, Biswas I, Kuduvalli SS, Anitha TS. Crosstalk between PI3K/AKT/mTOR and WNT/β-Catenin signaling in GBM - Could combination therapy checkmate the collusion? Cell Signal 2022; 95:110350. [PMID: 35525406 DOI: 10.1016/j.cellsig.2022.110350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme is one of the calamitous primary glial brain tumors with extensive heterogeneity at cellular and molecular levels. While maximal surgical resection trailed by radio and chemotherapy employing temozolomide remains the gold-standard treatment for malignant glioma patients, the overall prognosis remains dismal and there exists an unmet need for effective therapeutic strategies. In this context, we hypothesize that proper understanding of signaling pathways responsible for glioblastoma multiforme proliferation would be the first trump card while searching for novel targeted therapies. Among the pathways aberrantly activated, PI3K/AKT/mTOR is the most significant pathway, that is clinically implicated in malignancies such as high-grade glioma. Further, the WNT/β-Catenin cascade is well-implicated in several malignancies, while its role in regulating glioma pathogenesis has only emerged recently. Nevertheless, oncogenic activation of both these pathways is a frequent event in malignant glioma that facilitates tumor proliferation, stemness and chemo-resistance. Recently, it has been reported that the cross-talk of PI3K/AKT/mTOR pathway with multiple signaling pathways could promote glioma progression and reduce the sensitivity of glioma cells to the standard therapy. However, very few studies had focused on the relationship between PI3K/AKT/mTOR and WNT/β-Catenin pathways in glioblastoma multiforme. Interestingly, in homeostatic and pathologic circumstances, both these pathways depict fine modulation and are connected at multiple levels by upstream and downstream effectors. Thus, gaining deep insights on the collusion between these pathways would help in discovering unique therapeutic targets for glioblastoma multiforme management. Hence, the current review aims to address, "the importance of inter-play between PI3K/AKT/mTOR and WNT/β-Catenin pathways", and put forward, "the possibility of combinatorially targeting them", for glioblastoma multiforme treatment enhancement.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Indrani Biswas
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - T S Anitha
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India.
| |
Collapse
|
15
|
Zhang D, Wang X, Wang X, Wang Z, Ma S, Zhang C, Li S, Jia W. CPNE3 regulates the cell proliferation and apoptosis in human Glioblastoma via the activation of PI3K/AKT signaling pathway. J Cancer 2022; 12:7277-7286. [PMID: 35003348 PMCID: PMC8734413 DOI: 10.7150/jca.60049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Even with decades of intensive study, the signaling regulative network of the progression of Glioblastoma (GBM) remains unclear, a deeper understanding of the molecular crosstalk with pathways in GBM is needed to identify new potential targets for treatment. Copine-3 (CPNE3) was a member of a Ga2+ -dependent phospholipid-binding protein and was reported to play a role in multiple cancers. Methods: To investigate the expression of CPNE3 in GBM, we applied bioinformatic analysis and clinical samples validation. Then the functional validation of carried out in commercially available glioma cell lines and nude mice model. Also, the GSEA analysis was used to identify the relevant pathways. The role of activated pathway was further validated by pharmacology method. Results: We found that CPNE3 was significantly up-regulated in GBM when compared with adjacent normal tissues, and the overexpression of CPNE3 promoted cell proliferation and inhibiting cell apoptosis in vitro and in vivo. Also, the principal protein markers of PI3K/AKT pathway were found to be phosphorylated by CPNE3 over-expression, and pathway inhibitor, LY294002, alleviated the cell proliferation enhancement induced by CPNE3 over-expression. Conclusion: Our results showed that the expression of CPNE3 promotes cell proliferation by inhibiting cell apoptosis via activating PI3K/AKT pathway. Thereby enhancing the progression of GBM, which suggest that CPNE3 may play as a tumorigenesis gene may become a promising potential therapeutic target for human GBMs.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoyin Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zemin Wang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Shunchang Ma
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Shaomin Li
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China.,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Wu L, Li Q, Deng J, Shen J, Xu W, Yang W, Chen B, Du Y, Zhang W, Ge F, Lei S, Li K, Wang Z. Platelet-Tumor Cell Hybrid Membrane-Camouflaged Nanoparticles for Enhancing Therapy Efficacy in Glioma. Int J Nanomedicine 2022; 16:8433-8446. [PMID: 35002237 PMCID: PMC8727453 DOI: 10.2147/ijn.s333279] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/05/2021] [Indexed: 01/18/2023] Open
Abstract
Purpose Cell membrane-camouflaged nanoparticles (NPs) are drawing increasing attention because their surfaces acquire some characteristics of the cell membranes, making them a unique class of biomimetic materials for diverse applications. Modification of cell membrane or combination of different types of membranes can enhance their functionality. Methods We prepared platelet and tumor cell membrane camouflaged β-mangostin-loaded NPs, which were synthesized with platelet–C6 hybrid biomimetic coating, poly(lactic-co-glycolic acid), and β-mangostin (β-PCNPs). Then, we evaluated their targeting ability and anticancer activity against glioma in vitro and in vivo. Results Biomimetic coating enhanced active drug targeting and immune escape properties of nanocarrier in C6 and THP-1 cells, respectively, which improved their cytotoxicity. β-PCNPs were characterized to study the inherent properties of both source cells. Compared with bare β-NPs, β-PCNPs exhibited high tumor-targeting capability and induced apoptosis of C6 cells in vitro. Similarly, intravenous administration of drug through β-PCNPs resulted in enhanced tumor-targeting and exhibited excellent rate of inhibition of glioma tumor growth in mice. Moreover, the blood circulation time of drug in mice in the β-PCNP group was markedly prolonged and these mice exhibited better outcome than those in the β-NP group. Conclusion These results provide a new strategy of utilizing PCNPs as carriers for drug delivery, which improves the targeting efficiency and therapeutic efficacy of chemotherapeutic agents for glioma therapy.
Collapse
Affiliation(s)
- Lingling Wu
- Department of Transfusion Medicine, Allergy Center, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China.,Women's Hospital, School Of Medicine, Zhejiang University, Hangzhou, 310014, People's Republic of China
| | - Qin Li
- Department of Transfusion Medicine, Allergy Center, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Junjie Deng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, People's Republic of China.,Oujiang Laboratory, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Jinglan Shen
- Department of Transfusion Medicine, Allergy Center, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Weide Xu
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Bingyu Chen
- Department of Transfusion Medicine, Allergy Center, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Yaoqiang Du
- Department of Transfusion Medicine, Allergy Center, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Wei Zhang
- Hangzhou Chinese Academy of Sciences-Hangzhou Medical College Advanced Medical Technology Institute, Hangzhou, 310014, People's Republic of China
| | - Feihang Ge
- Hangzhou Chinese Academy of Sciences-Hangzhou Medical College Advanced Medical Technology Institute, Hangzhou, 310014, People's Republic of China
| | - Siyun Lei
- Department of Transfusion Medicine, Allergy Center, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Kaiqiang Li
- Department of Transfusion Medicine, Allergy Center, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Zhen Wang
- Department of Transfusion Medicine, Allergy Center, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
17
|
Abate M, Pagano C, Masullo M, Citro M, Pisanti S, Piacente S, Bifulco M. Mangostanin, a Xanthone Derived from Garcinia mangostana Fruit, Exerts Protective and Reparative Effects on Oxidative Damage in Human Keratinocytes. Pharmaceuticals (Basel) 2022; 15:ph15010084. [PMID: 35056141 PMCID: PMC8780152 DOI: 10.3390/ph15010084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
The fruit of Garcinia mangostana (mangosteen) is known in ancient traditional Asian medicine for its antioxidant, anti-inflammatory, immunomodulatory and anticancer activities. These effects are mainly due to the action of polyphenols known as xanthones, which are contained in the pericarp of the fruit. In recent years, there has been a growing interest from pharmaceutical companies in formulating new topicals based on mangosteen full extracts to prevent skin aging. However, the molecules responsible for these effects and the mechanisms involved have not been investigated so far. Here, the arils and shells of Garcinia mangostana were extracted with chloroform and methanol, and the extracts were further purified to yield 12 xanthone derivatives. Their effects were evaluated using in vitro cultures of human epidermal keratinocytes. After confirming the absence of cytotoxicity, we evaluated the antioxidant potential of these compounds, identifying mangostanin as capable of both protecting and restoring oxidative damage induced by H2O2. We showed how mangostanin, by reducing the generation of intracellular reactive oxygen species (ROS), prevents the activation of AKT (protein kinase B), ERK (extracellular signal-regulated kinase), p53, and other cellular pathways underlying cell damage and apoptosis activation. In conclusion, our study is the first to demonstrate that mangostanin is effective in protecting the skin from the action of free radicals, thus preventing skin aging, confirming a potential toward its development in the nutraceutical and cosmeceutical fields.
Collapse
Affiliation(s)
- Mario Abate
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (M.A.); (M.C.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Milena Masullo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.M.); (S.P.)
| | - Marianna Citro
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (M.A.); (M.C.)
| | - Simona Pisanti
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (M.A.); (M.C.)
- Correspondence: (S.P.); (M.B.); Tel.: +39-081-7462200 (M.B.); Fax: +39-081-7460000 (M.B.)
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.M.); (S.P.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
- Correspondence: (S.P.); (M.B.); Tel.: +39-081-7462200 (M.B.); Fax: +39-081-7460000 (M.B.)
| |
Collapse
|
18
|
Nauman MC, Johnson JJ. The purple mangosteen (Garcinia mangostana): Defining the anticancer potential of selected xanthones. Pharmacol Res 2022; 175:106032. [PMID: 34896543 PMCID: PMC9597473 DOI: 10.1016/j.phrs.2021.106032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
The purple mangosteen (Garcinia mangostana) is a popular Southeast Asian fruit that has been used traditionally for its health promoting benefits for years. Unique to the mangosteen are a class of phytochemicals known as xanthones that have been reported to display significant anti-cancer and anti-tumor activities, specifically through the promotion of apoptosis, targeting of specific cancer-related proteins, or modulation of cell signaling pathways. α-Mangostin, the most abundant xanthone isolated from the mangosteen, has received substantial attention as it has proven to be a potent phytochemical, specifically as an anticancer agent, in numerous different cancer cell studies and cancer animal models. While the mechanisms for these anticancer effects have been reported in many studies, lesser xanthones, including gartanin, β-mangostin, γ-mangostin, garcinone C, and garcinone E, and mangosteen extracts from the pericarp, roots, rind, and stem show promise for their anticancer activity but their mechanisms of action are not as well developed and remain to be determined. Mangosteen products appear safe and have been well tolerated in human clinical trials where they show antioxidant activity, though their clinical anticancer activity has not yet been evaluated. This review summarizes the work that has been done to explore and explain the anticancer and antitumor activities of α-mangostin, lesser xanthones, and mangosteen extracts in vitro, in vivo, and in humans in various cancers.
Collapse
Affiliation(s)
- Mirielle C Nauman
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice, USA
| | - Jeremy J Johnson
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice, USA.
| |
Collapse
|
19
|
de Mello RFA, de Souza Pinheiro WB, Benjamim JKF, de Siqueira FC, Chisté RC, Santos AS. A fast and efficient preparative method for separation and purification of main bioactive xanthones from the waste of Garcinia mangostana L. by high-speed countercurrent chromatography. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|