1
|
Masum MHU, Mahdeen AA, Barua A. Revolutionizing Chikungunya Vaccines: mRNA Breakthroughs With Molecular and Immune Simulations. Bioinform Biol Insights 2025; 19:11779322251324859. [PMID: 40182080 PMCID: PMC11967231 DOI: 10.1177/11779322251324859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/14/2025] [Indexed: 04/05/2025] Open
Abstract
With the ability to cause massive epidemics that have consequences on millions of individuals globally, the Chikungunya virus (CHIKV) emerges as a severe menace. Developing an effective vaccine is urgent as no effective therapeutics are available for such viral infections. Therefore, we designed a novel mRNA vaccine against CHIKV with a combination of highly antigenic and potential MHC-I, MHC-II, and B-cell epitopes from the structural polyprotein. The vaccine demonstrated well-characterized physicochemical properties, indicating its solubility and potential functional stability within the body (GRAVY score of -0.639). Structural analyses of the vaccine revealed a well-stabilized secondary and tertiary structure (Ramachandran score of 82.8% and a Z-score of -4.17). Docking studies of the vaccine with TLR-2 (-1027.7 KJ/mol) and TLR-4 (-1212.4 KJ/mol) exhibited significant affinity with detailed hydrogen bond interactions. Molecular dynamics simulations highlighted distinct conformational dynamics among the vaccine, "vaccine-TLR-2" and "vaccine-TLR-4" complexes. The vaccine's ability to elicit both innate and adaptive immune responses, including the presence of memory B-cells and T-cells, persistent B-cell immunity for a year, and the activation of TH cells leading to the release of IFN-γ and IL-2, has significant implications for its potential effectiveness. The CHIKV vaccine developed in this study shows promise as a potential candidate for future vaccine production against CHIKV, suggesting its suitability for further clinical advancement, including in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Md. Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abanti Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
2
|
Knoblauch S, Mukaratirwa RT, Pimenta PFP, de A Rocha AA, Yin MS, Randhawa S, Lautenbach S, Wilder-Smith A, Rocklöv J, Brady OJ, Biljecki F, Dambach P, Jänisch T, Resch B, Haddawy P, Bärnighausen T, Zipf A. Urban Aedes aegypti suitability indicators: a study in Rio de Janeiro, Brazil. Lancet Planet Health 2025; 9:e264-e273. [PMID: 40252673 DOI: 10.1016/s2542-5196(25)00049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Controlling Aedes aegypti stands as the primary strategy in curtailing the global threat of vector-borne viral infections such as dengue fever, which is responsible for around 400 million infections and 40 000 fatalities annually. Effective interventions require a precise understanding of Ae aegypti spatiotemporal distribution and behaviour, particularly in urban settings where most infections occur. However, conventionally applied sample-based entomological surveillance systems often fail to capture the high spatial variability of Ae aegypti that can arise from heterogeneous urban landscapes and restricted Aedes flight range. METHODS In this study, we aimed to address the challenge of capturing the spatial variability of Ae aegypti by leveraging emerging geospatial big data, including openly available satellite and street view imagery, to locate common Ae aegypti breeding habitats. These data enabled us to infer the seasonal suitability for Ae aegypti eggs and larvae at a spatial resolution of 200 m within the municipality of Rio de Janeiro, Brazil. FINDINGS The proposed microhabitat and macrohabitat indicators for immature Ae aegypti explained the distribution of Ae aegypti ovitrap egg counts by up to 72% (95% CI 70-74) and larval counts by up to 74% (72-76). Spatiotemporal interpolations of ovitrap counts, using suitability indicators, provided high-resolution insights into the spatial variability of urban immature Ae aegypti that could not be captured with sample-based surveillance techniques alone. INTERPRETATION The potential of the proposed method lies in synergising entomological field measurements with digital indicators on urban landscape to guide vector control and address the prevailing spread of Ae aegypti-transmitted viruses. Estimating Ae aegypti distributions considering habitat size is particularly important for targeting novel vector control interventions such as Wolbachia. FUNDING German Research Foundation and Austrian Science Fund.
Collapse
Affiliation(s)
- Steffen Knoblauch
- GIScience Research Group, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany; Interdisciplinary Centre of Scientific Computing, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany; HeiGIT, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.
| | - Rutendo T Mukaratirwa
- HeiGIT, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany; Department of Remote Sensing, University of Würzburg, Germany
| | - Paulo F P Pimenta
- Oswaldo Cruz Foundation, René Rachou Research Institute, Belo Horizonte, Brazil
| | | | - Myat Su Yin
- Faculty of ICT, Mahidol University, Nakhon Pathom, Thailand
| | - Sukanya Randhawa
- HeiGIT, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Sven Lautenbach
- HeiGIT, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | | | - Joacim Rocklöv
- Interdisciplinary Centre of Scientific Computing, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany; Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany; Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Oliver J Brady
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Department of Infectious Disease Epidemiology and Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Filip Biljecki
- Department of Architecture, National University of Singapore, Singapore; Department of Real Estate, National University of Singapore, Singapore
| | - Peter Dambach
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Thomas Jänisch
- Center for Global Health and Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Bernd Resch
- Interdisciplinary Transformation University Austria, Linz, Austria; Center for Geographic Analysis, Harvard University, Cambridge, MA, USA
| | - Peter Haddawy
- Faculty of ICT, Mahidol University, Nakhon Pathom, Thailand; Bremen Spatial Cognition Center, University of Bremen, Bremen, Germany
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany; Department of Global Health and Population, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA; Africa Health Research Institute, Durban, South Africa
| | - Alexander Zipf
- GIScience Research Group, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany; Interdisciplinary Centre of Scientific Computing, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany; HeiGIT, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany; Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Liang X, Zhou Y, Yang Y, Li Q, Wang J, Li B, Yang H, Tang C, Yu W, Wang H, Huang Q, Chen H, Yan Y, An R, Lin D, Quan W, Zhang Y, Li Y, Du X, Yuan Y, Yuan L, Zhou J, Sun Q, Wang Y, Lu S. CHIKV mRNA vaccines encoding conserved structural/envelope proteins confer broad cross-lineage protection against infection. Signal Transduct Target Ther 2025; 10:98. [PMID: 40148284 PMCID: PMC11950367 DOI: 10.1038/s41392-025-02182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
With the broad spread of the chikungunya virus (CHIKV), there is an increasing demand for more effective and broadly protective vaccines. Here, we designed CHIKV mRNA vaccines containing full-length structural proteins or part of structural proteins (envelope proteins) based on conserved sequences from 769 viral strains encompassing four lineages. The vaccine induced strong cellular and humoral immune responses in BALB/c mice and provided robust protection. Immunization of BALB/c mice with either of the two vaccines induced high levels of neutralizing antibodies against pseudoviruses from four distinct lineages, highlighting their potential for broad cross-lineage protective efficacy. Immunoglobulin repertoire analysis revealed two important BCR V-J gene combinations, IgHV1-4-IgHJ3 and IgHV1-4-IgHJ2, and lineage-specific immunity analysis revealed significant upregulation of TCRs containing V19 and V20. BCR and TCR immunodiversity may be a potential reason for the broad-spectrum protection against CHIKV afforded by the vaccine. In A129 mice, it elicited lower levels of neutralizing antibodies but prevented mouse mortality and cleared chronic infection. In the rhesus macaque model, both vaccines elicited a certain level of humoral and cellular immune responses and protected the rhesus macaques from the CHIKV challenge. In conclusion, the results from both mouse and rhesus macaque models indicate that the vaccine could be a candidate for clinical use against CHIKV.
Collapse
Affiliation(s)
- Xiaoming Liang
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yanan Zhou
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yun Yang
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qianqian Li
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Junbin Wang
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Bai Li
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hao Yang
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Cong Tang
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenhai Yu
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Haixuan Wang
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qing Huang
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hongyu Chen
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuhuan Yan
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ran An
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Dongdong Lin
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenqi Quan
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yong Zhang
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yanwen Li
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xuena Du
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuxia Yuan
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Longhai Yuan
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jian Zhou
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qiangming Sun
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Kunming, China.
| | - Youchun Wang
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
| | - Shuaiyao Lu
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Kunming, China.
| |
Collapse
|
4
|
Pereira CADM, Mendes RPG, da Silva PG, Chaves EJF, Pena LJ. Vaccines Against Urban Epidemic Arboviruses: The State of the Art. Viruses 2025; 17:382. [PMID: 40143310 PMCID: PMC11945797 DOI: 10.3390/v17030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Arboviruses represent a contemporary global challenge, prompting coordinated efforts from health organizations and governments worldwide. Dengue, chikungunya, and Zika viruses have become endemic in the tropics, resulting in the so-called "triple arbovirus epidemic". These viruses are transmitted typically through the bites of infected mosquitoes, especially A. aegypti and A. albopictus. These mosquito species are distributed across all continents and exhibit a high adaptive capacity in diverse environments. When combined with unplanned urbanization, uncontrolled population growth, and international travel-the so-called "triad of the modern world"-the maintenance and spread of these pathogens to new areas are favored. This review provides updated information on vaccine candidates targeting dengue, chikungunya, and Zika viruses. Additionally, we discuss the challenges, perspectives, and issues associated with their successful production, testing, and deployment within the context of public health.
Collapse
Affiliation(s)
| | | | | | | | - Lindomar José Pena
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Brazil; (C.A.d.M.P.); (R.P.G.M.); (P.G.d.S.); (E.J.F.C.)
| |
Collapse
|
5
|
Fatima M, An T, Park PG, Hong KJ. Advancements and Challenges in Addressing Zoonotic Viral Infections with Epidemic and Pandemic Threats. Viruses 2025; 17:352. [PMID: 40143281 PMCID: PMC11946417 DOI: 10.3390/v17030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Zoonotic viruses have significant pandemic potential, as evidenced by the coronavirus pandemic, which underscores that zoonotic infections have historically caused numerous outbreaks and millions of deaths over centuries. Zoonotic viruses induce numerous types of illnesses in their natural hosts. These viruses are transmitted to humans via biological vectors, direct contact with infected animals or their bites, and aerosols. Zoonotic viruses continuously evolve and adapt to human hosts, resulting in devastating consequences. It is very important to understand pathogenesis pathways associated with zoonotic viral infections across various hosts and develop countermeasure strategies accordingly. In this review, we briefly discuss advancements in diagnostics and therapeutics for zoonotic viral infections. It provides insight into recent outbreaks, viral dynamics, licensed vaccines, as well as vaccine candidates progressing to clinical investigations. Despite advancements, challenges persist in combating zoonotic viruses due to immune evasion, unpredicted outbreaks, and the complexity of the immune responses. Most of these viruses lack effective treatments and vaccines, relying entirely on supportive care and preventive measures. Exposure to animal reservoirs, limited vaccine access, and insufficient coverage further pose challenges to preventive efforts. This review highlights the critical need for ongoing interdisciplinary research and collaboration to strengthen preparedness and response strategies against emerging infectious threats.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Marques ETA, Dhalia R. Chikungunya vaccine VLA1553 induces sustained protective antibody concentrations. THE LANCET. INFECTIOUS DISEASES 2024; 24:1298-1299. [PMID: 39146947 DOI: 10.1016/s1473-3099(24)00432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Ernesto T A Marques
- Department of Virology and Experimental Therapeutics, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz - FIOCRUZ, Recife, Brazil; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, 1526 PA, USA.
| | - Rafael Dhalia
- Department of Virology and Experimental Therapeutics, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz - FIOCRUZ, Recife, Brazil
| |
Collapse
|
7
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
8
|
Weber WC, Streblow DN, Coffey LL. Chikungunya Virus Vaccines: A Review of IXCHIQ and PXVX0317 from Pre-Clinical Evaluation to Licensure. BioDrugs 2024; 38:727-742. [PMID: 39292392 PMCID: PMC11530495 DOI: 10.1007/s40259-024-00677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Chikungunya virus is an emerging mosquito-borne alphavirus that causes febrile illness and arthritic disease. Chikungunya virus is endemic in 110 countries and the World Health Organization estimates that it has caused more than 2 million cases of crippling acute and chronic arthritis globally since it re-emerged in 2005. Chikungunya virus outbreaks have occurred in Africa, Asia, Indian Ocean islands, South Pacific islands, Europe, and the Americas. Until recently, no specific countermeasures to prevent or treat chikungunya disease were available. To address this need, multiple vaccines are in human trials. These vaccines use messenger RNA-lipid nanoparticles, inactivated virus, and viral vector approaches, with a live-attenuated vaccine VLA1553 and a virus-like particle PXVX0317 in phase III testing. In November 2023, the US Food and Drug Administration (FDA) approved the VLA1553 live-attenuated vaccine, which is marketed as IXCHIQ. In June 2024, Health Canada approved IXCHIQ, and in July 2024, IXCHIQ was approved by the European Commission. On August 13, 2024, the US FDA granted priority review for PXVX0317. The European Medicine Agency is considering accelerated assessment review of PXVX0317, with potential for approval by both agencies in 2025. In this review, we summarize published data from pre-clinical and clinical trials for the IXCHIQ and PXVX0317 vaccines. We also discuss unanswered questions including potential impacts of pre-existing chikungunya virus immunity on vaccine safety and immunogenicity, whether long-term immunity can be achieved, safety in children, pregnant, and immunocompromised individuals, and vaccine efficacy in people with previous exposure to other emerging alphaviruses in addition to chikungunya virus.
Collapse
Affiliation(s)
- Whitney C Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis One Shields Avenue, Davis One Shields Avenue, 5327 VM3A, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Rosso A, Flacco ME, Cioni G, Tiseo M, Imperiali G, Bianconi A, Fiore M, Calò GL, Orazi V, Troia A, Manzoli L. Immunogenicity and Safety of Chikungunya Vaccines: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2024; 12:969. [PMID: 39340001 PMCID: PMC11436237 DOI: 10.3390/vaccines12090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Several vaccines against chikungunya fever have been developed and tested, and one has been recently licensed. We performed a meta-analysis to estimate the immunogenicity and safety of all chikungunya vaccines that have been progressed to clinical trial evaluation (VLA1553; mRNA-1388/VAL-181388; PXVX0317/VRC-CHKVLP059-00-VP; ChAdOx1 Chik; MV-CHIK). We included trials retrieved from MedLine, Scopus, and ClinicalTrials.gov. The outcomes were the rates of seroconversion/seroresponse and serious adverse events (SAEs) after the primary immunization course. We retrieved a total of 14 datasets, including >4000 participants. All candidate chikungunya vaccines were able to elicit an immunogenic response in ≥96% of vaccinated subjects, regardless of the vaccination schedule and platform used, and the seroconversion/seroresponse rates remained high 6 to 12 months after vaccination for most vaccines. Four of the five candidate vaccines showed a good overall safety profile (no data were available for ChAdOx1 Chik), with no significant increase in the risk of SAEs among the vaccinated, and a low absolute risk of product-related SAEs. Overall, the present findings support the potential use of the candidate vaccines for the prevention of chikungunya and the current indication for use in adult travelers to endemic regions of the licensed VLA 1553 vaccine. In order to extend chikungunya vaccination to a wider audience, further studies are needed on individuals from endemic countries and frail populations.
Collapse
Affiliation(s)
- Annalisa Rosso
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Maria Elena Flacco
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Giovanni Cioni
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Marco Tiseo
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Gianmarco Imperiali
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Alessandro Bianconi
- School of Public Health, Department of Medical and Surgical Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Matteo Fiore
- School of Public Health, Department of Medical and Surgical Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Giovanna Letizia Calò
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Vittorio Orazi
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Anastasia Troia
- School of Public Health, Department of Environmental and Prevention Sciences, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy
| | - Lamberto Manzoli
- School of Public Health, Department of Medical and Surgical Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| |
Collapse
|
10
|
Tretyakova I, Joh J, Gearon M, Kraenzle J, Goedeker S, Pignataro A, Alejandro B, Lukashevich IS, Chung D, Pushko P. Live-attenuated CHIKV vaccine with rearranged genome replicates in vitro and induces immune response in mice. PLoS Negl Trop Dis 2024; 18:e0012120. [PMID: 38648230 PMCID: PMC11075892 DOI: 10.1371/journal.pntd.0012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/07/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. CHIKV is considered a priority pathogen by CEPI and WHO. Despite recent approval of a live-attenuated CHIKV vaccine, development of additional vaccines is warranted due to the worldwide outbreaks of CHIKV. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo. Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. Attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for general safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.
Collapse
Affiliation(s)
| | - Joongho Joh
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Mary Gearon
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jennifer Kraenzle
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Sidney Goedeker
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Ava Pignataro
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Brian Alejandro
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Donghoon Chung
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Peter Pushko
- Medigen, Inc., Frederick, Maryland, United States of America
| |
Collapse
|
11
|
Principi N, Esposito S. Development of Vaccines against Emerging Mosquito-Vectored Arbovirus Infections. Vaccines (Basel) 2024; 12:87. [PMID: 38250900 PMCID: PMC10818606 DOI: 10.3390/vaccines12010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Among emergent climate-sensitive infectious diseases, some mosquito-vectored arbovirus infections have epidemiological, social, and economic effects. Dengue virus (DENV), West Nile virus (WNV), and Chikungunya virus (CHIKV) disease, previously common only in the tropics, currently pose a major risk to global health and are expected to expand dramatically in the near future if adequate containment measures are not implemented. The lack of safe and effective vaccines is critical as it seems likely that emerging mosquito-vectored arbovirus infections will be con-trolled only when effective and safe vaccines against each of these infections become available. This paper discusses the clinical characteristics of DENV, WNV, and CHIKV infections and the state of development of vaccines against these viruses. An ideal vaccine should be able to evoke with a single administration a prompt activation of B and T cells, adequate concentrations of protecting/neutralizing antibodies, and the creation of a strong immune memory capable of triggering an effective secondary antibody response after new infection with a wild-type and/or mutated infectious agent. Moreover, the vaccine should be well tolerated, safe, easily administrated, cost-effective, and widely available throughout the world. However, the development of vaccines against emerging mosquito-vectored arbovirus diseases is far from being satisfactory, and it seems likely that it will take many years before effective and safe vaccines for all these infections are made available worldwide.
Collapse
Affiliation(s)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
12
|
Mishra P, Balaraman V, Fraser MJ. Maxizyme-mediated suppression of chikungunya virus replication and transmission in transgenic Aedes aegypti mosquitoes. Front Microbiol 2023; 14:1286519. [PMID: 38188571 PMCID: PMC10766806 DOI: 10.3389/fmicb.2023.1286519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne pathogen of significant public health importance. There are currently no prophylactic vaccines or therapeutics available to control CHIKV. One approach to arbovirus control that has been proposed is the replacement of transmission-competent mosquitoes with those that are refractory to virus infection. Several transgene effectors are being examined as potentially useful for this population replacement approach. We previously demonstrated the successful use of hammerhead ribozymes (hRzs) as an antiviral effector transgene to control CHIKV infection of, and transmission by, Aedes mosquitoes. In this report we examine a maxizyme approach to enhance the catalytic activity and prevent virus mutants from escaping these ribozymes. We designed a maxizyme containing minimized (monomer) versions of two hRzs we previously demonstrated to be the most effective in CHIKV suppression. Three versions of CHIKV maxizyme were designed: Active (Mz), inactive (ΔMz), and a connected CHIKV maxizyme (cMz). The maxizymes with their expression units (Ae-tRNA val promoter and its termination signal) were incorporated into lentivirus vectors with selection and visualization markers. Following transformation, selection, and single-cell sorting of Vero cells, clonal cell populations were infected with CHIKV at 0.05 and 0.5 MOI, and virus suppression was assessed using TCID50-IFA, RT-qPCR, and caspase-3 assays. Five transgenic mosquito lines expressing cMz were generated and transgene insertion sites were confirmed by splinkerette PCR. Our results demonstrate that Vero cell clones expressing Mz exhibited complete inhibition of CHIKV replication compared to their respective inactive control version or the two parent hRzs. Upon oral challenge of transgenic mosquitoes with CHIKV, three out of the five lines were completely refractory to CHIKV infection, and all five lines tested negative for salivary transmission. Altogether, this study demonstrates that maxizymes can provide a higher catalytic activity and viral suppression than hRzs.
Collapse
Affiliation(s)
| | | | - Malcolm J. Fraser
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
13
|
Schmitz KS, Comvalius AD, Nieuwkoop NJ, Geers D, Weiskopf D, Ramsauer K, Sette A, Tschismarov R, de Vries RD, de Swart RL. A measles virus-based vaccine induces robust chikungunya virus-specific CD4 + T-cell responses in a phase II clinical trial. Vaccine 2023; 41:6495-6504. [PMID: 37726181 DOI: 10.1016/j.vaccine.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.
Collapse
Affiliation(s)
| | | | | | - Daryl Geers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Daniela Weiskopf
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a Subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a Subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Kim CL, Agampodi S, Marks F, Kim JH, Excler JL. Mitigating the effects of climate change on human health with vaccines and vaccinations. Front Public Health 2023; 11:1252910. [PMID: 37900033 PMCID: PMC10602790 DOI: 10.3389/fpubh.2023.1252910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Climate change represents an unprecedented threat to humanity and will be the ultimate challenge of the 21st century. As a public health consequence, the World Health Organization estimates an additional 250,000 deaths annually by 2030, with resource-poor countries being predominantly affected. Although climate change's direct and indirect consequences on human health are manifold and far from fully explored, a growing body of evidence demonstrates its potential to exacerbate the frequency and spread of transmissible infectious diseases. Effective, high-impact mitigation measures are critical in combating this global crisis. While vaccines and vaccination are among the most cost-effective public health interventions, they have yet to be established as a major strategy in climate change-related health effect mitigation. In this narrative review, we synthesize the available evidence on the effect of climate change on vaccine-preventable diseases. This review examines the direct effect of climate change on water-related diseases such as cholera and other enteropathogens, helminthic infections and leptospirosis. It also explores the effects of rising temperatures on vector-borne diseases like dengue, chikungunya, and malaria, as well as the impact of temperature and humidity on airborne diseases like influenza and respiratory syncytial virus infection. Recent advances in global vaccine development facilitate the use of vaccines and vaccination as a mitigation strategy in the agenda against climate change consequences. A focused evaluation of vaccine research and development, funding, and distribution related to climate change is required.
Collapse
Affiliation(s)
- Cara Lynn Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Suneth Agampodi
- International Vaccine Institute, Seoul, Republic of Korea
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Madagascar Institute for Vaccine Research, University of Antananarivo, Antananarivo, Madagascar
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
- College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
15
|
Tretyakova I, Joh J, Lukashevich IS, Alejandro B, Gearon M, Chung D, Pushko P. Live-Attenuated CHIKV Vaccine with Rearranged Genome Replicates in vitro and Induces Immune Response in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558061. [PMID: 37745520 PMCID: PMC10516039 DOI: 10.1101/2023.09.16.558061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. There is no approved vaccine and CHIKV is considered a priority pathogen by CEPI and WHO. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo . Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome for improved safety. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. To secure safety profile, attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.
Collapse
|
16
|
Cherian N, Bettis A, Deol A, Kumar A, Di Fabio JL, Chaudhari A, Yimer S, Fahim R, Endy T. Strategic considerations on developing a CHIKV vaccine and ensuring equitable access for countries in need. NPJ Vaccines 2023; 8:123. [PMID: 37596253 PMCID: PMC10439111 DOI: 10.1038/s41541-023-00722-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Chikungunya is an arboviral disease caused by the chikungunya virus (CHIKV) afflicting tropical and sub-tropical countries worldwide. It has been identified as a priority pathogen by the Coalition for Epidemics Preparedness Innovations (CEPI) and as an emerging infectious disease (EID) necessitating further action as soon as possible by the World Health Organization (WHO). Recent studies suggest that disability-adjusted life years (DALYs) due to CHIKV infection are as high as 106,089 DALYs lost globally. Significant progress has been made in the development of several vaccines, aimed at preventing CHIKV infections. This perspective article summarizes CEPI's efforts and strategic considerations for developing a CHIKV vaccine and ensuring equitable access for CHIKV endemic countries.
Collapse
Affiliation(s)
- Neil Cherian
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway.
| | - Alison Bettis
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Arminder Deol
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Arun Kumar
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | | | - Amol Chaudhari
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Solomon Yimer
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Raafat Fahim
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Timothy Endy
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| |
Collapse
|
17
|
Coirada FC, Fernandes ER, Mello LRD, Schuch V, Soares Campos G, Braconi CT, Boscardin SB, Santoro Rosa D. Heterologous DNA Prime- Subunit Protein Boost with Chikungunya Virus E2 Induces Neutralizing Antibodies and Cellular-Mediated Immunity. Int J Mol Sci 2023; 24:10517. [PMID: 37445695 DOI: 10.3390/ijms241310517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Chikungunya virus (CHIKV) has become a significant public health concern due to the increasing number of outbreaks worldwide and the associated comorbidities. Despite substantial efforts, there is no specific treatment or licensed vaccine against CHIKV to date. The E2 glycoprotein of CHIKV is a promising vaccine candidate as it is a major target of neutralizing antibodies during infection. In this study, we evaluated the immunogenicity of two DNA vaccines (a non-targeted and a dendritic cell-targeted vaccine) encoding a consensus sequence of E2CHIKV and a recombinant protein (E2*CHIKV). Mice were immunized with different homologous and heterologous DNAprime-E2* protein boost strategies, and the specific humoral and cellular immune responses were accessed. We found that mice immunized with heterologous non-targeted DNA prime- E2*CHIKV protein boost developed high levels of neutralizing antibodies, as well as specific IFN-γ producing cells and polyfunctional CD4+ and CD8+ T cells. We also identified 14 potential epitopes along the E2CHIKV protein. Furthermore, immunization with recombinant E2*CHIKV combined with the adjuvant AS03 presented the highest humoral response with neutralizing capacity. Finally, we show that the heterologous prime-boost strategy with the non-targeted pVAX-E2 DNA vaccine as the prime followed by E2* protein + AS03 boost is a promising combination to elicit a broad humoral and cellular immune response. Together, our data highlights the importance of E2CHIKV for the development of a CHIKV vaccine.
Collapse
Affiliation(s)
- Fernanda Caroline Coirada
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
| | - Edgar Ruz Fernandes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
| | - Lucas Rodrigues de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04044-020, Brazil
| | - Viviane Schuch
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
| | - Gúbio Soares Campos
- Laboratório de Virologia, Universidade Federal da Bahia (UFBA), Salvador 40110-909, Brazil
| | - Carla Torres Braconi
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia-INCT (III), São Paulo 05403-900, Brazil
| | - Daniela Santoro Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia-INCT (III), São Paulo 05403-900, Brazil
| |
Collapse
|
18
|
Varikkodan MM, Kunnathodi F, Azmi S, Wu TY. An Overview of Indian Biomedical Research on the Chikungunya Virus with Particular Reference to Its Vaccine, an Unmet Medical Need. Vaccines (Basel) 2023; 11:1102. [PMID: 37376491 DOI: 10.3390/vaccines11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is an infectious agent spread by mosquitos, that has engendered endemic or epidemic outbreaks of Chikungunya fever (CHIKF) in Africa, South-East Asia, America, and a few European countries. Like most tropical infections, CHIKV is frequently misdiagnosed, underreported, and underestimated; it primarily affects areas with limited resources, like developing nations. Due to its high transmission rate and lack of a preventive vaccine or effective treatments, this virus poses a serious threat to humanity. After a 32-year hiatus, CHIKV reemerged as the most significant epidemic ever reported, in India in 2006. Since then, CHIKV-related research was begun in India, and up to now, more than 800 peer-reviewed research papers have been published by Indian researchers and medical practitioners. This review gives an overview of the outbreak history and CHIKV-related research in India, to favor novel high-quality research works intending to promote effective treatment and preventive strategies, including vaccine development, against CHIKV infection.
Collapse
Affiliation(s)
- Muhammed Muhsin Varikkodan
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Faisal Kunnathodi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Sarfuddin Azmi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
- R&D Center of Membrane Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
19
|
Mahmoodi S, Amirzakaria JZ, Ghasemian A. In silico design and validation of a novel multi-epitope vaccine candidate against structural proteins of Chikungunya virus using comprehensive immunoinformatics analyses. PLoS One 2023; 18:e0285177. [PMID: 37146081 PMCID: PMC10162528 DOI: 10.1371/journal.pone.0285177] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/16/2023] [Indexed: 05/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an emerging viral infectious agent with the potential of causing pandemic. There is neither a protective vaccine nor an approved drug against the virus. The aim of this study was design of a novel multi-epitope vaccine (MEV) candidate against the CHIKV structural proteins using comprehensive immunoinformatics and immune simulation analyses. In this study, using comprehensive immunoinformatics approaches, we developed a novel MEV candidate using the CHIKV structural proteins (E1, E2, 6 K, and E3). The polyprotein sequence was obtained from the UniProt Knowledgebase and saved in FASTA format. The helper and cytotoxic T lymphocytes (HTLs and CTLs respectively) and B cell epitopes were predicted. The toll-like receptor 4 (TLR4) agonist RS09 and PADRE epitope were employed as promising immunostimulatory adjuvant proteins. All vaccine components were fused using proper linkers. The MEV construct was checked in terms of antigenicity, allergenicity, immunogenicity, and physicochemical features. The docking of the MEV construct and the TLR4 and molecular dynamics (MD) simulation were also performed to assess the binding stability. The designed construct was non-allergen and was immunogen which efficiently stimulated immune responses using the proper synthetic adjuvant. The MEV candidate exhibited acceptable physicochemical features. Immune provocation included prediction of HTL, B cell, and CTL epitopes. The docking and MD simulation confirmed the stability of the docked TLR4-MEV complex. The high-level protein expression in the Escherichia coli (E. coli) host was observed through in silico cloning. The in vitro, in vivo, and clinical trial investigations are required to verify the findings of the current study.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|