1
|
Luo X, Chen Y, Jiang Z, Wu H, McClements DJ, Zhang C, Zhou Y, Fu H, Yin X, Huang W, Wang Z, Yu L, Tang X, Li K, Zhu K. Maltodextrin vitamin E succinate: A novel antioxidant emulsifier for formulating functional nanoemulsions. Food Chem 2025; 465:141991. [PMID: 39566310 DOI: 10.1016/j.foodchem.2024.141991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
A new multifunctional emulsifier was synthesized by coupling maltodextrin with a dextrose equivalent of 19 to vitamin E succinate. Two emulsifiers with varying degrees of vitamin E succinate substitution were prepared based on different mass ratios of vitamin E succinate to maltodextrin. The molecular structure and purity of these emulsifiers were analyzed. Nanoemulsions were prepared using octenyl succinic anhydride modified starch as a control to investigate the physical stability, antioxidant capacity, oxidative stability, and in vitro simulated digestive properties of the nanoemulsions. The emulsifying and antioxidant activity of the maltodextrin-vitamin E succinate conjugate was significantly superior to that of octenyl succinic anhydride modified starch, demonstrating good physical and oxidative stability. Additionally, they were rapidly digested under simulated small intestinal conditions. This new emulsifier shows broad application potential for the encapsulation, protection, and delivery of hydrophobic bioactive substances in the fields of medicine, food, and healthcare products.
Collapse
Affiliation(s)
- Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Yuanyuan Chen
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China; School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Zhe Jiang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Hongze Wu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Chang Zhang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Hongliang Fu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Xuguang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Wenna Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Zhixin Wang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Lemao Yu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Kangli Li
- Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312000, PR China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| |
Collapse
|
2
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2025; 14:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
3
|
Hou X, Zhang H. Research Progress of Hyaluronic Acid-Coated Nanocarriers in Targeted Cancer Therapy. Cancer Biother Radiopharm 2024. [PMID: 39611654 DOI: 10.1089/cbr.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Background: Hyaluronic acid (HA), as a critical ingredient of extracellular matrix (ECM) and synovial fluid, has attracted extensive attention in targeted tumor thearpy. The superiority of HA is reflected as its great biocompatibility, biodegradability and special binding ability to CD44 receptor. Moreover, CD44 receptor proteins are overexpressed in many kinds of tumor cells and cancer stem cells (CSCs). Therefore, HA is commonly used as ligands for the surface modification of versatile nanocarriers applied in various tumor therapy approaches. Methods: We reviewed a large amount of literature and summarized the unique properties of HA, the rationale for the use of HA as tumor-specific carrier for drug delivery, catabolism of HA coated nanocarriers and research achievements of frequently-used HA-modified organic and inorganic nanocarries. Results: We concluded the significant applications of HA coated nanocarriers in tumor Chemotherapy and chemoresistance, Combination therapy and Cancer theranostics. Conclusion: The application prospect of HA-coated nanocarriers will be more extensive for various targeting combination therapy and theranostics. was concluded so as to provide some potential thoughts for targeted tumor thearpy and even diagnosis.
Collapse
Affiliation(s)
- Xinxin Hou
- School of Medicine of Henan Polytechnic University, Jiaozuo, P.R. China
| | - Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Sichuan, China
| |
Collapse
|
4
|
Yoo SY, Kim HY, Kim DH, Shim WS, Lee SM, Lee DH, Koo JM, Yoo JH, Koh S, Park JC, Yu J, Jeon JS, Baek MJ, Kim DD, Lee JY, Oh SJ, Kim SK, Lee JY, Kang KW. Laser-responsive erastin-loaded chondroitin sulfate nanomedicine targeting CD44 and system x c- in liver cancer: A non-ferroptotic approach. J Control Release 2024; 375:574-588. [PMID: 39293529 DOI: 10.1016/j.jconrel.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Erastin, a ferroptosis-inducing system xc- inhibitor, faces clinical challenges due to suboptimal physicochemical and pharmacokinetic properties, as well as relatively low potency and off-target toxicity. Addressing these, we developed ECINs, a novel laser-responsive erastin-loaded nanomedicine utilizing indocyanine green (ICG)-grafted chondroitin sulfate A (CSA) derivatives. Our aim was to improve erastin's tumor targeting via CSA-CD44 interactions and enhance its antitumor efficacy through ICG's photothermal and photodynamic effects in the laser-on state while minimizing off-target effects in the laser-off state. ECINs, with their nanoscale size of 186.7 ± 1.1 nm and high erastin encapsulation efficiency of 93.0 ± 0.8%, showed excellent colloidal stability and sustained drug release up to 120 h. In vitro, ECINs demonstrated a mechanism of cancer cell inhibition via G1-phase cell cycle arrest, indicating a non-ferroptotic action. In vivo biodistribution studies in SK-HEP-1 xenograft mice revealed that ECINs significantly enhanced tumor distribution of erastin (1.9-fold greater than free erastin) while substantially reducing off-target accumulation in the lungs and spleen by 203-fold and 19.1-fold, respectively. Combined with laser irradiation, ECINs significantly decreased tumor size (2.6-fold, compared to free erastin; 2.4-fold, compared to ECINs without laser irradiation) with minimal systemic toxicity. This study highlights ECINs as a dual-modality approach for liver cancer treatment, demonstrating significant efficacy against tumors overexpressing CD44 and system xc-.
Collapse
Affiliation(s)
- So-Yeol Yoo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Hyun Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wan Seob Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Min Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Hwan Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jang Mo Koo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Hoon Yoo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seokjin Koh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Chan Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Yoon Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Soo Jin Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Li QY, Zhu RR, Yu HY, Liu CL, Diao FY, Jiang YQ, Lin YQ, Li XT, Wang WJ. Multifunctional targeting of docetaxel plus bakuchiol micelles in the treatment of invasion and metastasis of ovarian cancer. Biomed Mater 2024; 19:065002. [PMID: 39208838 DOI: 10.1088/1748-605x/ad7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The invasion and metastasis of tumors pose significant challenges in the treatment of ovarian cancer (OC), making it difficult to cure. One potential treatment approach that has gained attention is the use of matrix metalloproteinase reactive controlled release micelle preparations. In this study, we developed a novel PEG5000-PVGLIG-hyaluronic acid docetaxel/bakuchiol (PP-HA-DTX/BAK) micelles formulation with desirable characteristics such as particle size, narrow polydispersity index, and a ZETA potential of approximately -5 mV. The surface modification with HA facilitates tumor penetration into the tumor interior, while the incorporation of DSPE-PEG2000-PVGLIG-PEG5000helps conceal DSPE-PEG2000-HA, reducing off-target effects and prolonging drug circulation timein vivo. Bothin vitroandin vivoexperiments demonstrated that these micelles effectively inhibit proliferation, invasion, and metastasis of OC cells while promoting apoptosis. Therefore, our findings suggest that PP-HA-DTX/BAK micelles represent a safe and effective therapeutic strategy for treating OC.
Collapse
Affiliation(s)
- Qi-Yan Li
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ri-Ran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong 250011, People's Republic of China
| | - Hai-Ying Yu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Chun-Lin Liu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Fei-Yan Diao
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ya-Qi Jiang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Yong-Qiang Lin
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Xue-Tao Li
- Liaoning University of Traditional Chinese Medicine, School of Pharmacy, Dalian 116600, People's Republic of China
| | - Wei-Jian Wang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| |
Collapse
|
6
|
Yu J, Zhang Y, Xu M, Jiang D, Liu W, Jin H, Chen P, Xu J, Zhang L. Innovative gelatin-based micelles with AS1411 aptamer targeting and reduction responsiveness for doxorubicin delivery in tumor therapy. Biomed Pharmacother 2024; 174:116446. [PMID: 38513599 DOI: 10.1016/j.biopha.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Herein, we constructed innovative reduction-sensitive and targeted gelatin-based micelles for doxorubicin (DOX) delivery in tumor therapy. AS1411 aptamer-modified gelatin-ss-tocopherol succinate (AGSST) and the control GSST without AS1411 modification were synthesized and characterized. Antitumor drug DOX-containing AGSST (AGSST-D) and GSST-D nanoparticles were prepared, and their shapes were almost spherical. Reduction-responsive characteristics of DOX release in vitro were revealed in AGSST-D and GSST-D. Compared with non-targeted GSST-D, AGSST-D demonstrated better intracellular uptake and stronger cytotoxicity against nucleolin-overexpressed A549 cells. Importantly, AGSST-D micelles showed more effective killing activity in A549-bearing mice than GSST-D and DOX⋅HCl. It was revealed that AGSST-D micelles had no obvious systemic toxicity. Overall, AGSST micelles would have the potential to be an effective drug carrier for targeted tumor therapy.
Collapse
Affiliation(s)
- Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yifei Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Meilin Xu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wenbo Liu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Hongguang Jin
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Jing Xu
- Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| |
Collapse
|
7
|
Mahajan K, Bhattacharya S. The Advancement and Obstacles in Improving the Stability of Nanocarriers for Precision Drug Delivery in the Field of Nanomedicine. Curr Top Med Chem 2024; 24:686-721. [PMID: 38409730 DOI: 10.2174/0115680266287101240214071718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Nanocarriers have emerged as a promising class of nanoscale materials in the fields of drug delivery and biomedical applications. Their unique properties, such as high surface area- tovolume ratios and enhanced permeability and retention effects, enable targeted delivery of therapeutic agents to specific tissues or cells. However, the inherent instability of nanocarriers poses significant challenges to their successful application. This review highlights the importance of nanocarrier stability in biomedical applications and its impact on biocompatibility, targeted drug delivery, long shelf life, drug delivery performance, therapeutic efficacy, reduced side effects, prolonged circulation time, and targeted delivery. Enhancing nanocarrier stability requires careful design, engineering, and optimization of physical and chemical parameters. Various strategies and cutting-edge techniques employed to improve nanocarrier stability are explored, with a focus on their applications in drug delivery. By understanding the advances and challenges in nanocarrier stability, this review aims to contribute to the development and implementation of nanocarrier- based therapies in clinical settings, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- Department of Quality Assurence, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, 425405, India
| |
Collapse
|
8
|
Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. ENVIRONMENTAL RESEARCH 2023; 237:116951. [PMID: 37633628 DOI: 10.1016/j.envres.2023.116951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanomedicine application in cancer therapy is an urgency because of inability of current biological therapies for complete removal of tumor cells. The development of smart and novel nanoplatforms for treatment of cancer can provide new insight in tumor suppression. Hyaluronic acid is a biopolymer that can be employed for synthesis of smart nanostructures capable of selective targeting CD44-overexpressing tumor cells. The breast and lung cancers are among the most malignant and common tumors in both females and males that environmental factors, lifestyle and genomic alterations are among the risk factors for their pathogenesis and development. Since etiology of breast and lung tumors is not certain and multiple factors participate in their development, preventative measures have not been completely successful and studies have focused on developing new treatment strategies for them. The aim of current review is to provide a comprehensive discussion about application of hyaluronic acid-based nanostructures for treatment of breast and lung cancers. The main reason of using hyaluronic acid-based nanoparticles is their ability in targeting breast and lung cancers in a selective way due to upregulation of CD44 receptor on their surface. Moreover, nanocarriers developed from hyaluronic acid or functionalized with hyaluronic acid have high biocompatibility and their safety is appreciated. The drugs and genes used for treatment of breast and lung cancers lack specific accumulation at cancer site and their cytotoxicity is low, but hyaluronic acid-based nanostructures provide their targeted delivery to tumor site and by increasing internalization of drugs and genes in breast and lung tumor cells, they improve their therapeutic index. Furthermore, hyaluronic acid-based nanostructures can be used for phototherapy-mediated breast and lung cancers ablation. The stimuli-responsive and smart kinds of hyaluronic acid-based nanostructures such as pH- and light-responsive can increase selective targeting of breast and lung cancers.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
9
|
Wang Y, Chen S, Wang C, Guo F. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives. Biomed Pharmacother 2023; 166:115348. [PMID: 37639743 DOI: 10.1016/j.biopha.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is the second-most lethal global disease, as per health reports, and is responsible for around 70% of deaths in low- and middle-income countries. Endometrial cancer is one of the emerging malignancies and has been predicted as a public health challenge for the future. Insulin resistance, obesity, and diabetes mellitus are the key metabolic factors that promote risks for the development of endometrial cancer. Various signaling pathways and associated genes are involved in the genesis of endometrial cancer, and any mutation or deletion in such related factors leads to the induction of endometrial cancer. The conventional way of drug delivery has been used for ages but is associated with poor management of cancer due to non-targeting of the endometrial cancer cells, low efficacy of the therapy, and toxicity issues as well. In this context, nanocarrier-based therapy for the management of endometrial cancer is an effective alternate choice that overcomes the problems associated with conventional therapy. In this review article, we highlighted the nanocarrier-based targeting of endometrial cancer, with a special focus on targeting various metabolic signaling pathways. Furthermore, the future perspectives of nanocarrier-based targeting of metabolic pathways in endometrial cancer were also underpinned. It is concluded that targeting metabolic signaling pathways in endometrial cancer via nanocarrier scaffolds is the future of pharmaceutical design for the significant management and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun 130000, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
10
|
Zhang Z, Ding D, Liu J, Huang C, Li W, Lu K, Cheng N. Supramolecular Nanozyme System Based on Polydopamine and Polyoxometalate for Photothermal-Enhanced Multienzyme Cascade Catalytic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38214-38229. [PMID: 37535452 DOI: 10.1021/acsami.3c04723] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The advent of enzyme-facilitated cascade events in which endogenous substrates within the human body are used to generate reactive oxygen species (ROS) has spawned novel cancer treatment possibilities. In this study, a supramolecular cascade catalytic nanozyme system was successfully developed, exhibiting photothermal-enhanced multienzyme cascade catalytic and glutathione (GSH) depletion activities and ultimately triggering the apoptosis-ferroptosis synergistic tumor therapy. The nanozyme system was fabricated using β-cyclodextrin-functionalized polydopamine (PDA) as the substrate, which was then entangled with polyoxometalate (POM) via electrostatic forces and assembled with adamantane-grafted hyaluronic acid and glucose oxidase (GOx) via host-guest supramolecular interaction for tumor targeting and GOx loading. The catalytic function of GOx facilitates the conversion of glucose to H2O2 and gluconic acid. In turn, this process affirms the propitious generation of hydroxyl radical (•OH) through the POM-mediated cascade catalysis. Additionally, the POM species actively deplete the intracellular GSH pool, initiating a cascade catalytic tumor therapy. In addition, the PDA-POM-mediated photothermal hyperthermia boosted the cascade catalytic effect and increased ROS production. This confers considerable promise for photothermal therapy (PTT)/nanocatalytic cancer therapy on supramolecular nanozyme systems. The in vitro and in vivo antitumor efficacy studies demonstrated that the supramolecular cascade catalytic nanozyme system was effective at reducing tumor development while maintaining an acceptable level of biocompatibility. Henceforth, this study is to widen the scope of cascade catalytic nanoenzyme production using supramolecular techniques, as well as endeavor to delineate a prospective pathway for the application of PTT-enhanced nanocatalytic tumor therapy.
Collapse
Affiliation(s)
- Zhengchao Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Jinxiang Liu
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P. R. China
- Department of Special Inspection, Changyi People's Hospital, Weifang, Shandong 261399, P. R. China
| | - Changbao Huang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Wentong Li
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Keliang Lu
- School of Anesthesiology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| |
Collapse
|
11
|
Liu C, Liu W, Liu Y, Duan H, Chen L, Zhang X, Jin M, Cui M, Quan X, Pan L, Hu J, Gao Z, Wang Y, Huang W. Versatile flexible micelles integrating mucosal penetration and intestinal targeting for effectively oral delivery of paclitaxel. Acta Pharm Sin B 2023; 13:3425-3443. [PMID: 37655335 PMCID: PMC10466001 DOI: 10.1016/j.apsb.2023.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 09/02/2023] Open
Abstract
The extremely low bioavailability of oral paclitaxel (PTX) mainly due to the complicated gastrointestinal environment, the obstruction of intestinal mucus layer and epithelium barrier. Thus, it is of great significance to construct a coordinative delivery system which can overcome multiple intestinal physicochemical obstacles simultaneously. In this work, a high-density PEGylation-based glycocholic acid-decorated micelles (PTX@GNPs) was constructed by a novel polymer, 9-Fluorenylmethoxycarbonyl-polyethylene glycocholic acid (Fmoc-PEG-GCA). The Fmoc motif in this polymer could encapsulate PTX via π‒π stacking to form the core of micelles, and the low molecular weight and non-long hydrophobic chain of Fmoc ensures the high-density of PEG. Based on this versatile and flexible carriers, PTX@GNPs possess mucus trapping escape ability due to the flexible PEG, and excellent intestine epithelium targeting attributed to the high affinity of GCA with apical sodium-dependent bile acid transporter. The in vitro and in vivo results showed that this oral micelle could enhance oral bioavailability of PTX, and exhibited similar antitumor efficacy to Taxol injection via intravenous route. In addition, oral PTX@GNPs administered with lower dosage within shorter interval could increase in vivo retention time of PTX, which supposed to remodel immune microenvironment and enhance oral chemotherapy efficacy by synergistic effect.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Minhu Cui
- Department of Gastroenterology, Yanbian University Hospital, Yanji 133000, China
| | - Xiuquan Quan
- Department of Gastroenterology, Yanbian University Hospital, Yanji 133000, China
| | - Libin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiachun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023; 360:888-912. [PMID: 37482344 DOI: 10.1016/j.jconrel.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) consists of a complex combination of proteins, proteoglycans, and other biomolecules. ECM-based materials have been demonstrated to have high biocompatibility and bioactivity, which may be harnessed for drug delivery and tissue engineering applications. Herein, nanoparticles incorporating ECM-based materials and their applications in drug delivery and tissue engineering are reviewed. Proteins such as gelatin, collagen, and fibrin as well as glycosaminoglycans including hyaluronic acid, chondroitin sulfate, and heparin have been employed for cancer therapeutic delivery, gene delivery, and wound healing and regenerative medicine. Strategies for modifying and functionalizing these materials with synthetic and natural polymers or to enable stimuli-responsive degradation and drug release have increased the efficacy of these materials and nano-systems. The incorporation and modification of ECM-based materials may be used to drive drug targeting and increase tissue-specific cell differentiation more effectively.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marissa R Perez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
13
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
14
|
Serri C, Cruz-Maya I, Bonadies I, Rassu G, Giunchedi P, Gavini E, Guarino V. Green Routes for Bio-Fabrication in Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:1744. [PMID: 37376192 PMCID: PMC10300741 DOI: 10.3390/pharmaceutics15061744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decade, significant advances in nanotechnologies, rising from increasing knowledge and refining of technical practices in green chemistry and bioengineering, enabled the design of innovative devices suitable for different biomedical applications. In particular, novel bio-sustainable methodologies are developing to fabricate drug delivery systems able to sagely mix properties of materials (i.e., biocompatibility, biodegradability) and bioactive molecules (i.e., bioavailability, selectivity, chemical stability), as a function of the current demands for the health market. The present work aims to provide an overview of recent developments in the bio-fabrication methods for designing innovative green platforms, emphasizing the relevant impact on current and future biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
15
|
Ali YA, Soliman HA, Abdel-Gabbar M, Ahmed NA, Attia KAA, Shalaby FM, El-Nahass ES, Ahmed OM. Rutin and Hesperidin Revoke the Hepatotoxicity Induced by Paclitaxel in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2738351. [PMID: 37275575 PMCID: PMC10238143 DOI: 10.1155/2023/2738351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 06/07/2023]
Abstract
Paclitaxel, one of the most effective chemotherapeutic drugs, is used to treat various cancers but it is exceedingly toxic when used long-term and can harm the liver. This study aimed to see if rutin, hesperidin, and their combination could protect male Wistar rats against paclitaxel (Taxol)-induced hepatotoxicity. Adult male Wistar rats were subdivided into 5 groups (each of six rats). The normal group was orally given the equivalent volume of vehicles for 6 weeks. The paclitaxel-administered control group received intraperitoneal injection of paclitaxel at a dose of 2 mg/Kg body weight twice a week for 6 weeks. Treated paclitaxel-administered groups were given paclitaxel similar to the paclitaxel-administered control group together with oral supplementation of rutin, hesperidin, and their combination at a dose of 10 mg/Kg body weight every other day for 6 weeks. The treatment of paclitaxel-administered rats with rutin and hesperidin significantly reduced paclitaxel-induced increases in serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transferase activities as well as total bilirubin level and liver lipid peroxidation. However, the levels of serum albumin, liver glutathione content, and the activities of liver superoxide dismutase and glutathione peroxidase increased. Furthermore, paclitaxel-induced harmful hepatic histological changes (central vein and portal area blood vessel congestion, fatty changes, and moderate necrotic changes with focal nuclear pyknosis, focal mononuclear infiltration, and Kupffer cell proliferation) were remarkably enhanced by rutin and hesperidin treatments. Moreover, the elevated hepatic proapoptotic mediator (caspase-3) and pro-inflammatory cytokine (tumor necrosis factor-α) expressions were decreased by the three treatments in paclitaxel-administered rats. The cotreatment with rutin and hesperidin was the most effective in restoring the majority of liver function and histological integrity. Therefore, rutin, hesperidin, and their combination may exert hepatic protective effects in paclitaxel-administered rats by improving antioxidant defenses and inhibiting inflammation and apoptosis.
Collapse
Affiliation(s)
- Yasmine A. Ali
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Kandil A. A. Attia
- Clinical Nutrition Department, College of Applied Medical Sciences, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Department of Evaluation of Natural Resources, Environmental Studies and Research Institute, El-Sadat City University, El-Sadat City 32897, Egypt
| | - Fatma M. Shalaby
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
16
|
Haloi P, Chawla S, Konkimalla VB. Thermosensitive smart hydrogel of PEITC ameliorates the therapeutic efficacy in rheumatoid arthritis. Eur J Pharm Sci 2023; 181:106367. [PMID: 36572358 DOI: 10.1016/j.ejps.2022.106367] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune condition that accompanies chronic inflammation of joints with limited therapeutic options. Phenethyl isothiocyanate (PEITC), a bioactive phytochemical, exerts its chemopreventive, anti-oxidant, and anti-inflammatory activity via the Nrf-2 pathway. However, limited water solubility, short half-life, and instability are reasons for the low bioavailability of PEITC that hampers clinical application. From studies in healthy rats, the performance of PEITC-loaded chitosan/pluronic F-127 smart hydrogel (PH) as a thermosensitive injectable demonstrated adequate thermosensitivity (gel formation), injectability (ease of administration), biocompatibility (with prolonged contact), pharmacokinetics (sustained drug release), and biosafety (nontoxic to major organs). In the adjuvant-induced arthritis (AIA) rat model, PEITC-hydrogel (PH50) injected into the knee joint lowered RA-related symptoms significantly (paw edema and arthritis score). Further, a marked reduction in bone erosion and inflammation-specific biomarkers was observed. Finally, this study demonstrates a smart injectable hydrogel optimally loaded with PEITC which is safe, biocompatible and exhibits significant therapeutic efficacy in RA conditions.
Collapse
Affiliation(s)
- Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
17
|
Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sci 2022; 310:121133. [DOI: 10.1016/j.lfs.2022.121133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
18
|
Rodrigues Arruda B, Mendes MGA, Freitas PGCD, Reis AVF, Lima T, Crisóstomo LCCF, Nogueira KAB, Pessoa C, Petrilli R, Eloy JO. Nanocarriers for delivery of taxanes: A review on physicochemical and biological aspects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Wang S, Tavakoli S, Parvathaneni RP, Nawale GN, Oommen OP, Hilborn J, Varghese OP. Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications. Biomater Sci 2022; 10:6399-6412. [PMID: 36214100 DOI: 10.1039/d2bm01154a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hyaluronic acid (HA), one of the main components of the extracellular matrix (ECM), is extensively used in the design of hydrogels and nanoparticles for different biomedical applications due to its critical role in vivo, degradability by endogenous enzymes, and absence of immunogenicity. HA-based hydrogels and nanoparticles have been developed by utilizing different crosslinking chemistries. The development of such crosslinking chemistries indicates that even subtle differences in the structure of reactive groups or the procedure of crosslinking may have a profound impact on the intended mechanical, physical and biological outcomes. There are widespread examples of modified HA polymers that can form either covalently or physically crosslinked biomaterials. More recently, studies have been focused on dynamic covalent crosslinked HA-based biomaterials since these types of crosslinking allow the preparation of dynamic structures with the ability to form in situ, be injectable, and have self-healing properties. In this review, HA-based hydrogels and nanomaterials that are crosslinked by dynamic-covalent coupling (DCC) chemistry have been critically assessed.
Collapse
Affiliation(s)
- Shujiang Wang
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Shima Tavakoli
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Rohith Pavan Parvathaneni
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Ganesh N Nawale
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Jöns Hilborn
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Varghese
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| |
Collapse
|
20
|
Bazzazan S, Moeinabadi-Bidgoli K, Lalami ZA, Bazzazan S, Mehrarya M, Yeganeh FE, Hejabi F, Akbarzadeh I, Noorbazargan H, Jahanbakhshi M, Hossein-khannazer N, Mostafavi E. Engineered UIO-66 metal-organic framework for delivery of curcumin against breast cancer cells: An in vitro evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
22
|
Sokol MB, Yabbarov NG, Mollaeva MR, Chirkina MV, Mollaev MD, Zabolotsky AI, Kuznetsov SL, Nikolskaya ED. Alpha-fetoprotein mediated targeting of polymeric nanoparticles to treat solid tumors. Nanomedicine (Lond) 2022; 17:1217-1235. [PMID: 36136593 DOI: 10.2217/nnm-2022-0097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Serious side effects caused by paclitaxel formulation, containing toxic solubilizer Cremophor® EL, and its nonspecific accumulation greatly limit clinical paclitaxel application. Aim: To design paclitaxel-loaded copolymer of lactic and glycolic acids nanoparticles decorated with alpha-fetoprotein third domain (rAFP3d-NP) to increase paclitaxel safety profile. Methods: rAFP3d-NP was obtained via carbodiimide technique. Results: The particles were characterized with high paclitaxel loading content of 5% and size of 280 nm. rAFP3d-NP revealed biphasic profile with 67% release of paclitaxel during 220 h. Increased area under the curveinf and mean residence time values after rAFP3d-NP administration confirmed prolonged blood circulation compared with paclitaxel. rAFP3d-NP demonstrated significant tumor growth inhibition at 4T1 and SKOV-3 models. Conclusion: rAFP3d-NP is a promising delivery system for paclitaxel and can be applied similarly for delivery of other hydrophobic drugs.
Collapse
Affiliation(s)
- Mariya B Sokol
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - Nikita G Yabbarov
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - Mariia R Mollaeva
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - Margarita V Chirkina
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - Murad D Mollaev
- JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Artur I Zabolotsky
- JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia.,Lomonosov Moscow State University, Biological Faculty, Department of Biochemistry, Moscow, 119991, Russia
| | | | - Elena D Nikolskaya
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| |
Collapse
|
23
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
24
|
Radhakrishnan D, Mohanan S, Choi G, Choy JH, Tiburcius S, Trinh HT, Bolan S, Verrills N, Tanwar P, Karakoti A, Vinu A. The emergence of nanoporous materials in lung cancer therapy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:225-274. [PMID: 35875329 PMCID: PMC9307116 DOI: 10.1080/14686996.2022.2052181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is one of the most common cancers, affecting more than 2.1 million people across the globe every year. A very high occurrence and mortality rate of lung cancer have prompted active research in this area with both conventional and novel forms of therapies including the use of nanomaterials based drug delivery agents. Specifically, the unique physico-chemical and biological properties of porous nanomaterials have gained significant momentum as drug delivery agents for delivering a combination of drugs or merging diagnosis with targeted therapy for cancer treatment. This review focuses on the emergence of nano-porous materials for drug delivery in lung cancer. The review analyses the currently used nanoporous materials, including inorganic, organic and hybrid porous materials for delivering drugs for various types of therapies, including chemo, radio and phototherapy. It also analyses the selected research on stimuli-responsive nanoporous materials for drug delivery in lung cancer before summarizing the various findings and projecting the future of emerging trends. This review provides a strong foundation for the current status of the research on nanoporous materials, their limitations and the potential for improving their design to overcome the unique challenges of delivering drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Goeun Choi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan31116, Korea
| | - Jin-Ho Choy
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- Course, College of Medicine, Dankook UniversityDepartment of Pre-medical, Cheonan31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shankar Bolan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nikki Verrills
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Pradeep Tanwar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
25
|
Self-assembly and disassembly mechanisms of biomimetic peptides: Molecular dynamics simulation and experimental measurement. Int J Biol Macromol 2022; 209:785-793. [PMID: 35429517 DOI: 10.1016/j.ijbiomac.2022.04.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 01/22/2023]
Abstract
Drug-loaded pH-responsive nanoparticles are potential drug carriers in nanotherapeutics delivery because they can remain stable in normal tissues but can disassemble and release drug molecules in tumors. In this study, the mechanisms of self-assembly and disassembly were investigated by analyzing the characteristics of three kinds of biomimetic peptides with different components and sequences. The structural parameters and energy changes during self-assembly and disassembly were calculated by molecular dynamics simulation. Transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy were used to observe morphological changes and measure the strength of hydrophobic and hydrophilic interactions between peptides. Results show that the hydrophobic and hydrophilic interactions play crucial roles in the self-assembly and disassembly processes of peptides. The structure of the peptide clusters after self-assembly became tighter as the difference between hydrophobic and hydrophilic interactions increased, whereas a decrease in this difference led to the increased disassembly of the peptides. In general, polyethylene glycol chain modification was necessary in disassembly, and peptides with straight structures had stronger disassembly ability than that with branched structures with the same components. The morphology of peptide clusters can be controlled under different pH values by changing the composition and structure of the peptides for enhanced drug retention and sustained release.
Collapse
|
26
|
Yu Y, Wang B, Sun M, Zhang Y, Hou L, Wang S, Chen T, Yang F, Ma Z. Lysosomal activable Vorinostat carrier-prodrug self-assembling with BPQDs enables photothermal oncotherapy to reverse tumor thermotolerance and metastasis. Int J Pharm 2022; 617:121580. [PMID: 35202725 DOI: 10.1016/j.ijpharm.2022.121580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
Photothermal therapy (PTT) is becoming increasing prevalent in clinic for eradicating the primary tumor and improving cancer patients' compliance. However, photothermal resistance and distal metastasis still haunt the tumor treatment with PTT. Herein, on the basis that histone deacetylase acetylase inhibitor (HDACis) could activate the expression of anti-tumor gene and accelerate the differentiation and apoptosis of tumor cells, we propose that HDACis supplementing PTT could overcome those obstacles with appropriate drug-controlled release strategy. Thus, we fabricated a nano-complex of lysosomal activable vorinostat (SAHA) carrier-prodrug encapsulating black phosphorus quantum dots (BPQDs@PPS) to counter those challenges in PTT. With spherical morphology and favorable bio-safety, BPQDs@PPS could release BPQDs and Vorinostat spontaneously in lysosome, not only effectively inhibiting tumor growth, but also reversing tumor thermotolerance and metastasis within a PTT procedure. Especially, both western blot and immunofluorescence analysis validate that Vorinostat enables PTT to reverse tumor thermotolerance and distal metastasis by down-regulation of HSP70 and up-regulation of H3. Therefore, this research not only reveals the mechanism how HDACis supplement PTT in reversing tumor thermotolerance and metastasis, but also provides a promising prospect to upgrade clinical photothermal therapy.
Collapse
Affiliation(s)
- Yingjie Yu
- School of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Bingkai Wang
- School of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Miao Sun
- School of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Yunchang Zhang
- School of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Lei Hou
- School of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Sizhen Wang
- School of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Tianheng Chen
- School of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Feng Yang
- School of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Zhiqiang Ma
- School of Pharmacy, Naval Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
27
|
Redox-Responsive and Electrically Neutral PLGA Nanoparticles for siRNA Delivery in Human Cervical Carcinoma Cells. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Agrawal A, Bhattacharya S. Cutting-edge Nanotechnological Approaches for Lung Cancer Therapy. Curr Drug Res Rev 2022; 14:171-187. [PMID: 35440332 DOI: 10.2174/2589977514666220418085658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Lung cancer is the second leading cancer with a high rate of mortality. It can be treated using different intervention techniques such as chemotherapy, radiation therapy, surgical removal, and photodynamic therapy. All of these interventions lack specificity, implying that it harms the normal cells adjacent to the infected ones. Nanotechnology provides a promising solution that increases the bioavailability of anticancer drugs at the tumor site with reduced toxicity and improved therapeutic efficacy. Nanotechnology also improves the way lung cancer is diagnosed and treated. Various nanocarriers like liposomes, polymeric nanoparticles, magnetic nanoparticles, and different theranostic approaches are already approved for medical use, while various are under clinical and preclinical stages. This review article covers the details about lung cancer, types of overexpressed receptors, and cutting-edge nanocarriers used for treating lung cancer at its specific target.
Collapse
Affiliation(s)
- Amaiyya Agrawal
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| |
Collapse
|
29
|
Liu K, Huang X. Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy. Carbohydr Res 2022; 511:108500. [PMID: 35026559 PMCID: PMC8792315 DOI: 10.1016/j.carres.2022.108500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a polysaccharide consisting of repeating disaccharides of N-acetyl-d-glucosamine and d-glucuronic acid. There are increasing interests in utilizing self-assembled HA nanoparticles (HA-NPs) for targeted imaging and therapy. The principal endogenous receptor of HA, cluster of differentiation 44 (CD44), is overexpressed on many types of tumor cells as well as inflammatory cells in human bodies. Active targeting from HA-CD44 mediated interaction and passive targeting due to the enhanced permeability retention (EPR) effect could lead to selective accumulation of HA-NPs at targeted disease sites. This review focuses on the synthesis strategies of self-assembled HA-NPs, as well as their applications in therapy and biomedical imaging.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
30
|
Shao H, Li B, Li H, Gao L, Zhang C, Sheng H, Zhu L. Novel Strategies for Solubility and Bioavailability Enhancement of Bufadienolides. Molecules 2021; 27:51. [PMID: 35011278 PMCID: PMC8746454 DOI: 10.3390/molecules27010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Toad venom contains a large number of bufadienolides, which have a variety of pharmacological activities, including antitumor, cardiovascular, anti-inflammatory, analgesic and immunomodulatory effects. The strong antitumor effect of bufadienolides has attracted considerable attention in recent years, but the clinical application of bufadienolides is limited due to their low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored, such as structural modification, solid dispersion, cyclodextrin inclusion, microemulsion and nanodrug delivery systems, etc. In this review, we have tried to summarize the pharmacological activities and structure-activity relationship of bufadienolides. Furthermore, the strategies for solubility and bioavailability enhancement of bufadienolides also are discussed. This review can provide a basis for further study on bufadienolides.
Collapse
Affiliation(s)
| | | | | | | | | | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| |
Collapse
|
31
|
Tian X, Bera H, Guo X, Xu R, Sun J, He Z, Cun D, Yang M. Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56858-56872. [PMID: 34806372 DOI: 10.1021/acsami.1c16351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapeutics often failed to elicit optimal antitumor responses against lung cancer due to their limited exposure and accumulation in tumors. To achieve an effective therapeutic outcome of paclitaxel (PTX) against metastatic lung cancer with attenuated systemic and local toxicities, pulmonary delivery of redox-responsive PTX dimeric nanoparticles (NPs) was introduced. PTX dimers conjugated through variable lengths of diacid linkers containing disulfide bonds (-SS-) (i.e., α-PTX-SS-PTX, β-PTX-SS-PTX, and γ-PTX-SS-PTX) were initially synthesized and were subsequently self-assembled into uniform nanosized particles in the presence of vitamin E TPGS with high drug loading capacity (DE > 97%). Among various redox-sensitive scaffolds, β-PTX-SS-PTX NPs exhibited an optimal reactive oxygen species/glutathione-responsive drug release behavior, causing a lower local toxicity profile of PTX in the lungs. The scaffolds also demonstrated excellent colloidal stability, cellular uptake efficiency, and discriminating cytotoxicity between cancer and healthy cells. Further, they depicted an improved lung retention as compared to the control nanovesicles (β-PTX-CC-PTX) devoid of the redox-sensitive disulfide motif. In the B16F10 melanoma metastatic lung cancer mouse model, intratracheally delivered β-PTX-SS-PTX NPs exhibited a stronger anticancer potential with reduced systemic toxicity as compared to Taxol intravenous injection containing an equivalent PTX dose. The PTX dimeric NPs could also dramatically reduce the local toxicity relative to Taxol following their pulmonary delivery. Thus, this study presents redox-responsive PTX dimeric NPs as a promising nanomedicine for improved therapeutic efficacy against metastatic lung cancer.
Collapse
MESH Headings
- A549 Cells
- Animals
- Antineoplastic Agents, Phytogenic/chemical synthesis
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Biomimetic Materials/chemical synthesis
- Biomimetic Materials/chemistry
- Biomimetic Materials/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Dimerization
- Drug Screening Assays, Antitumor
- Glutathione/metabolism
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Materials Testing
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Paclitaxel/chemical synthesis
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Xidong Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Ruizhao Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
32
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
33
|
Pereira FM, Melo MN, Santos ÁKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb Technol 2021; 150:109889. [PMID: 34489042 DOI: 10.1016/j.enzmictec.2021.109889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023]
Abstract
Hybrid nanoparticles composed of different biopolymers for delivery of enzyme/prodrug systems are of interest for cancer therapy. Hyaluronic acid-coated chitosan nanoparticles (CS/HA NP) were prepared to encapsulate individually an enzyme/pro-drug complex based on horseradish peroxidase (HRP) and indole-3-acetic acid (IAA). CS/HA NP showed size around 158 nm and increase to 170 and 200 nm after IAA and HRP encapsulation, respectively. Nanoparticles showed positive zeta potential values (between +20.36 mV and +24.40 mV) and higher encapsulation efficiencies for both nanoparticles (up to 90 %) were obtained. Electron microscopy indicated the formation of spherical particles with smooth surface characteristic. Physicochemical and thermal characterizations suggest the encapsulation of HRP and IAA. Kinetic parameters for encapsulated HRP were similar to those of the free enzyme. IAA-CS/HA NP showed a bimodal release profile of IAA with a high initial release (72 %) followed by a slow-release pattern. The combination of HRP-CS/HA NP and IAA- CS/HA NP reduced by 88 % the cell viability of human bladder carcinoma cell line (T24) in the concentrations 0.5 mM of pro-drug and 1.2 μg/mL of the enzyme after 24 h.
Collapse
Affiliation(s)
- Fernanda Menezes Pereira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Micael Nunes Melo
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Átali Kayane Mendes Santos
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Karony Vieira Oliveira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil.
| |
Collapse
|
34
|
Davidovic T, Schimpf J, Sprenger-Mähr H, Abbassi-Nik A, Soleiman A, Zitt E, Lhotta K. Preparation and evaluation of reduction-responsive micelles based on disulfide-linked chondroitin sulfate A-tocopherol succinate for controlled antitumour drug release. J Pharm Pharmacol 2021; 73:1405-1417. [PMID: 34254648 PMCID: PMC8556126 DOI: 10.1093/jpp/rgab096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The study was to construct reduction-responsive chondroitin sulfate A (CSA)-conjugated TOS (CST) micelles with disulfide bond linkage, which was used for controlled doxorubicin (DOX) release and improved drug efficacy in vivo. METHODS CST and non-responsive CSA-conjugated TOS (CAT) were synthesized, and the chemical structure was confirmed by Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, fluorescence spectrophotometer and dynamic light scattering. Antitumour drug DOX was physically encapsulated into CST and CSA by dialysis method. Cell uptake of DOX-based formulations was investigated by confocal laser scanning microscopy. In vitro cytotoxicity was studied in A549 and AGS cells. Furthermore, antitumour activity was evaluated in A549-bearing mice. KEY FINDINGS CST and CAT can form self-assembled micelles, and have low value of critical micelle concentration. Notably, DOX-containing CST (D-CST) micelles demonstrated reduction-triggered drug release in glutathione-containing media. Further, reduction-responsive uptake of D-CST was observed in A549 cells. In addition, D-CST induced stronger cytotoxicity (P < 0.05) than DOX-loaded CAT (D-CAT) against A549 and AGS cells. Moreover, D-CST exhibited significantly stronger antitumour activity in A549-bearing nude mice than doxorubicin hydrochloride and D-CAT. CONCLUSIONS The reduction-responsive CST micelles enhanced the DOX effect at tumour site and controlled drug release.
Collapse
Affiliation(s)
- Tamara Davidovic
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Judith Schimpf
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Hannelore Sprenger-Mähr
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Armin Abbassi-Nik
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Afschin Soleiman
- Pathology, Cytodiagnostics and Molecular Pathology, Hall in Tirol, Austria
| | - Emanuel Zitt
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Karl Lhotta
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| |
Collapse
|
35
|
Riestra-Ayora J, Sánchez-Rodríguez C, Palao-Suay R, Yanes-Díaz J, Martín-Hita A, Aguilar MR, Sanz-Fernández R. Paclitaxel-loaded polymeric nanoparticles based on α-tocopheryl succinate for the treatment of head and neck squamous cell carcinoma: in vivo murine model. Drug Deliv 2021; 28:1376-1388. [PMID: 34180747 PMCID: PMC8245075 DOI: 10.1080/10717544.2021.1923863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prognosis of patients with recurrent or metastatic head and neck squamous cell cancer (HNSCC) is generally poor. New treatments are required to supplement the current standard of care. Paclitaxel (PTX), an effective chemotherapeutic for HNSCC, has serious side effects. A polymeric nanocarrier system was developed for the delivery of PTX to improve HNSCC treatment. This study aimed to evaluate the antitumor efficacy of PTX-loaded polymeric nanoparticles based on α-TOS (PTX-NPs) administered by direct intratumoral injection into a Hypopharynx carcinoma squamous cells (FaDu) tumor xenograft mouse model. The nanocarrier system based on block copolymers of polyethylene glycol (PEG) and a methacrylic derivative of α-TOS was synthesized and PTX was loaded into the delivery system. Tumor volume was measured to evaluate the antitumor effect of the PTX-NPs. The relative mechanisms of apoptosis, cell proliferation, growth, angiogenesis, and oxidative and nitrosative stress were detected by Western blotting, fluorescent probes, and immunohistochemical analysis. The antitumor activity results showed that compared to free PTX, PTX-NPs exhibited much higher antitumor efficacy and apoptosis-inducing in a FaDu mouse xenograft model and demonstrated an improved safety profile. Ki-67, EGFR, and angiogenesis markers (Factor VIII, CD31, and CD34) expression were significantly lower in the PTX-NPs group compared with other groups (p < .05). Also, PTX-NPs induced oxidative and nitrosative stress in tumor tissue. Direct administration of PTX-loaded polymeric nanoparticles based on α-Tocopheryl Succinate at the tumor sites, proved to be promising for HNSCC therapy.
Collapse
Affiliation(s)
- Juan Riestra-Ayora
- Department otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, Getafe, Madrid, Spain.,Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Carolina Sánchez-Rodríguez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Raquel Palao-Suay
- Department of Polymeric Nanomaterials and Biomaterials Institute of Polymer Science and Technology CSIC, Networking Biomedical Research Centre in Bioengineering Biomaterials, and Nanomedicine CIBER-BBN, C/Juan de la Cierva, 3, Madrid, Spain
| | - Joaquín Yanes-Díaz
- Department otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, Getafe, Madrid, Spain.,Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana Martín-Hita
- Department Pathology, Hospital, Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, Getafe, Madrid, Spain
| | - María Rosa Aguilar
- Department of Polymeric Nanomaterials and Biomaterials Institute of Polymer Science and Technology CSIC, Networking Biomedical Research Centre in Bioengineering Biomaterials, and Nanomedicine CIBER-BBN, C/Juan de la Cierva, 3, Madrid, Spain
| | - Ricardo Sanz-Fernández
- Department otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, Getafe, Madrid, Spain.,Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| |
Collapse
|
36
|
Shi J, Ren Y, Ma J, Luo X, Li J, Wu Y, Gu H, Fu C, Cao Z, Zhang J. Novel CD44-targeting and pH/redox-dual-stimuli-responsive core-shell nanoparticles loading triptolide combats breast cancer growth and lung metastasis. J Nanobiotechnology 2021; 19:188. [PMID: 34162396 PMCID: PMC8220850 DOI: 10.1186/s12951-021-00934-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Background The toxicity and inefficient delivery of triptolide (TPL) in tumor therapy have greatly limited the clinical application. Thus, we fabricated a CD44-targeting and tumor microenvironment pH/redox-sensitive nanosystem composed of hyaluronic acid-vitamin E succinate and poly (β-amino esters) (PBAEss) polymers to enhance the TPL-mediated suppression of breast cancer proliferation and lung metastasis. Results The generated TPL nanoparticles (NPs) had high drug loading efficiency (94.93% ± 2.1%) and a desirable average size (191 nm). Mediated by the PBAEss core, TPL/NPs displayed a pH/redox-dual-stimuli-responsive drug release profile in vitro. Based on the hyaluronic acid coating, TPL/NPs exhibited selective tumor cellular uptake and high tumor tissue accumulation capacity by targeting CD44. Consequently, TPL/NPs induced higher suppression of cell proliferation, blockage of proapoptotic and cell cycle activities, and strong inhibition of cell migration and invasion than that induced by free TPL in MCF-7 and MDA-MB-231 cells. Importantly, TPL/NPs also showed higher efficacy in shrinking tumor size and blocking lung metastasis with decreased systemic toxicity in a 4T1 breast cancer mouse model at an equivalent or lower TPL dosage compared with that of free TPL. Histological immunofluorescence and immunohistochemical analyses in tumor and lung tissue revealed that TPL/NPs induced a high level of apoptosis and suppressed expression of matrix metalloproteinases, which contributed to inhibiting tumor growth and pulmonary metastasis. Conclusion Collectively, our results demonstrate that TPL/NPs, which combine tumor active targeting and pH/redox-responsive drug release with proapoptotic and antimobility effects, represent a promising candidate in halting breast cancer progression and metastasis while minimizing systemic toxicity. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00934-0.
Collapse
Affiliation(s)
- Jinfeng Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China
| | - Jiaqi Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China
| | - Xi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, China.
| |
Collapse
|
37
|
Luo D, Wang X, Zhong X, Chang J, He M, Wang H, Li Y, Zhao C, Luo Y, Ran L. MPEG-PCL Nanomicelles Platform for Synergistic Metformin and Chrysin Delivery to Breast Cancer in Mice. Anticancer Agents Med Chem 2021; 22:280-293. [PMID: 34165412 DOI: 10.2174/1871520621666210623092725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Metformin (MET) is a well-known anti-diabetic drug that also has anti-cancer effects. However, high therapeutic doses of MET on cancer cells and the low efficacy of combinatory therapeutic approaches limit its clinical application. Recent studies have shown that chrysin (CHR) can improve the pharmaceutical efficacy of MET by suppressing human telomerase reverse transcriptase (hTERT) and cyclin D1 gene expression. OBJECTIVE This study aimed to develop different ratios of methoxy poly(ethylene glycol)-b-poly(e-caprolactone) (MPEG-PCL) micelles for breast cancer to co-deliver a synergistic CHR/MET combination. METHODS CHR/MET drug-loaded micelles were prepared by modified thin-film hydration. Fourier infrared spectrum, gel permeation chromatography, transmission electron microscopy, and high-performance liquid chromatography were used to evaluate the physicochemical properties of nanostructures. Cell proliferation and cell apoptosis were assessed by MTT and Annexin V-FITC/PI double staining method. The gene expression of hTERT and cyclin D1 was measured by real-time PCR assay. A subcutaneous mouse T47D xenograft model was established to evaluate the in vivo efficiency. RESULTS When the ratio of MPEG-PCL was 1:1.7, the highest drug loading rate and encapsulation efficiency of CHR (11.31±0.37) and MET (12.22±0.44) were observed. Uniform MPEG-PCL micelles of 51.70±1.91 nm allowed MET to incorporate with CHR, which were co-delivered to breast cancer cells. We demonstrated that CHR/MET co-delivery micelles showed a good synergistic effect on inhibiting proliferation in T47D cells (combination index=0.87) by suppressing hTERT and cyclin D1 gene expression. Compared with the free CHR/MET group, the apoptosis rate on T47D cells by CHR/MET nano-micelles significantly improved from 71.33% to 79.25%. The tumour volume and tumour weight of the CHR/MET group increased more slowly than that of the single-drug treatment group (P<0.05). Compared with the CHR/MET group, the tumour volume and tumour weight of the CHR/MET nano-micelle group decreased by 42% and 59%, respectively. CONCLUSIONS We demonstrated that ratiometric CHR/MET micelles could provide an effective technique for the treatment of breast cancer.
Collapse
Affiliation(s)
- Daiqin Luo
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Xinjun Wang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xiaomei Zhong
- The Second People's Hospital of Guiyang; GuiYang 550000, China
| | - Jianying Chang
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Mingyuan He
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Heran Wang
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Yongxia Li
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Chaofen Zhao
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Yan Luo
- Guiyang Medical University Guiyang, 550001, P.R. China, Gui Zhou province, China
| | - Li Ran
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| |
Collapse
|
38
|
Zahiri M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Fabrication of versatile targeted lipopolymersomes for improved camptothecin efficacy against colon adenocarcinoma in vitro and in vivo. Expert Opin Drug Deliv 2021; 18:1309-1322. [PMID: 33970721 DOI: 10.1080/17425247.2021.1928631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hybrid vesicular systems (lipopolymersomes) are promising platforms for minimizing the liposomes and polymersomes disadvantages in terms of chemotherapeutic transportation. In this regard, lipopolymersome has been designed to integrate the advantage of both polymersomes and liposomes to enable better structural integrity of the bilayer after encapsulation of hydrophobic drugs while maintaining the soft nature of liposomes, superior serum stability, and high encapsulation efficiency of cargos in the bilayer segment. RESEARCH DESIGN AND METHODS In the present study, we reported preparation and characterization of five camptothecin (CPT)-loaded lipopolymersomal formulations composed of poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) and dipalmitoylphosphatidylcholine (DPPC) at different molar ratios using film rehydration method. Afterward, the preferred formulation was tagged with AS1411 DNA aptamer in order to evaluate the therapeutic index using nucleolin-positive colon cancer cell lines (HT29 and C26). RESULTS The obtained data indicated that the prepared CPT-loaded lipopolymersome at a PEG-PLA: DPPC ratio of 75:25 exhibited superior stability and high loading capacity compared to other systems. Moreover, high cytotoxicity of the aptamer-targeted lipopolymersome and increased tumor accumulation were observed in comparison with non-targeted one. CONCLUSIONS The designed polymer-rich lipopolymersomal platform offers bright future for the development of potent nanomedicine against cancer.
Collapse
Affiliation(s)
- Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Faraji N, Esrafili A, Esfandiari B, Abednezhad A, Naghizadeh M, Arasteh J. Synthesis of pH-sensitive hyaluronic acid nanogels loaded with paclitaxel and interferon gamma: Characterization and effect on the A549 lung carcinoma cell line. Colloids Surf B Biointerfaces 2021; 205:111845. [PMID: 34015733 DOI: 10.1016/j.colsurfb.2021.111845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/17/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022]
Abstract
Lung cancer is one of the deadliest cancers in various populations. Apart from the effects that anticancer drugs such as paclitaxel (PTX) have on cancer cells, they also have many side effects on healthy cells. Interferon gamma (IFN-γ) is also one of the cytokines used in the treatment of cancer. Current research is focused on providing new drug carriers to find new therapeutic goals. After synthesis of nanogels and loading of PTX and IFN-γ, the cytotoxicity of these nanogels on A549 and HEK293 healthy cell line was measured by MTT assay and flow cytometry analysis. Finally, the expression of STAT1 gene was investigated using Real time-PCR. The results of MTT assay showed that the survival rate of healthy cells treated with PTX and IFN-γ-loaded nanogels was 2.15 and 2.39 times higher than cancer cells, respectively. The results also showed that the gene expression STAT1 in A549 cells exposed to these nanogels was higher than healthy cells (p < 0.05). Based on flow cytometry results, the death rate of healthy cells treated with the mentioned nanogels was lower than cancer cells (p < 0.05). Therefore, Studies showed that synthesized nanogels have positive effects on cancer cells and also have fewer side effects on healthy cells.
Collapse
Affiliation(s)
- Nima Faraji
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Esfandiari
- Department of Biology, Islamshahr Branch, Islamic Azad University, Tehran, Iran
| | - Arash Abednezhad
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Naghizadeh
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Arasteh
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
40
|
Novel redox-sensitive thiolated TPGS based nanoparticles for EGFR targeted lung cancer therapy. Int J Pharm 2021; 602:120652. [PMID: 33915187 DOI: 10.1016/j.ijpharm.2021.120652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Novel glutathione (GSH) redox-sensitive thiolated vitaminE-PEG1000-succinate (TPGH-SH) was synthesized by conjugating TPGS with 4-amino thiophenol (4-ATP) and confirmed by FTIR and NMR studies. Following, docetaxel (DTX) loaded, cetuximab (CTB) conjugated redox sensitive TPGS-SH nanoparticles (TPGS-SH NP) were prepared by dialysis method and screened for size, charge, DTX entrapment, which revealed that size, surface charge and percent entrapment are in the range of 183-227 nm, +18 to +26 mV and 68-71%. SEM, TEM, AFM have reflected the spherical and uniform size of NP with a smooth surface. In-vitro release studies were performed in media containing different concentrations of GSH to study their effect on drug release and drug release of up to 94.5%, at pH 5.5, GSH 20 mM, is observed within 24 h. The pH/redox sensitivity studies revealed the better stability of NP at higher pH and lower GSH concentrations. In-vitro cytotoxicity, cellular uptake, migration and apoptotic assays, performed on A549 cells, have proved that targeted formulation produced higher cytotoxicity (significantly less IC50 value) and uptake and also prevented cell migration. Pharmacokinetic and histopathological screening were performed on CF rats, which demonstrated promising results. The in-vivo efficacy studies on benzo(a)pyrene induced mice lung cancer model showed that targeted TPGS-SH NP has significantly reduced the cell number than the model control.
Collapse
|
41
|
Wang B, Hu W, Yan H, Chen G, Zhang Y, Mao J, Wang L. Lung cancer chemotherapy using nanoparticles: Enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel. Biomed Pharmacother 2021; 136:111249. [PMID: 33450493 DOI: 10.1016/j.biopha.2021.111249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 01/29/2023] Open
Abstract
Platinum-based combination therapy is more effective and less toxic, but lack of targeting, and is not capable to enrich in the tumor zone. To obstacle these drawbacks, prodrug and nanotechnology strategies have been investigated in this study. GSH-responsive and pH-responsive cisplatin prodrug was synthesized. Cisplatin prodrug and paclitaxel co-loaded nanoparticles: DDP-P/PTX NPs were constructed. The drug release behavior and cytotoxicity of nanoparticles was assessed in vitro. In vivo anticancer efficiency and toxicity were evaluated on lung cancer bearing mice animal model. DDP-P/PTX NPs had a nanoscale size of 112.9 ± 3.5 nm. A reduction and pH triggered drug release with a synergistic tumor cell inhibition ability was observed by DDP-P/PTX NPs. DDP-P/PTX NPs also exhibited high tumor distribution, low systemic toxicity and remarkable antitumor effects in vivo. DDP-P/PTX NPs could be applied as promising anticancer system for the treatment of NSCLC.
Collapse
Affiliation(s)
- Baohua Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, People's Republic of China
| | - Wenxia Hu
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Hongjiang Yan
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, People's Republic of China
| | - Ge Chen
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Yaozhong Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Junjie Mao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| |
Collapse
|
42
|
Jiang T, Ma S, Shen Y, Li Y, Pan R, Xing H. Topical anesthetic and pain relief using penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers. Drug Deliv 2021; 28:478-486. [PMID: 33641554 PMCID: PMC7952054 DOI: 10.1080/10717544.2021.1889717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Many strategies have been developed to overcome the stratum corneum (SC) barrier, including functionalized nanostructures. Chemical penetration enhancers (CPEs) and cell-penetrating peptides (CPP) were applied to decorate nanostructured lipid carriers (NLC) for topical anesthetic and pain relief. A novel pyrenebutyrate (PB-PEG-DSPE) compound was synthesized by the amide action of the carboxylic acid group of PB with the amido groups of DSPE-PEG. PB-PEG-DSPE has a hydrophobic group, hydrophilic group, and lipid group. The lipid group can be inserted into NLC to form PB functional NLC. In order to improve the penetrability, TAT and PB multi-decorated NLC were designed for the delivery of lidocaine hydrochloride (LID) (TAT/PB LID NLC). The therapeutic effects of NLC in terms of in vitro skin penetration and in vivo in animal models were further studied. The size of TAT/PB LID NLC tested by DLS was 153.6 ± 4.3 nm. However, the size of undecorated LID NLC was 115.3 ± 3.6 nm. The PDI values of NLC vary from 0.13 ± 0.01 to 0.16 ± 0.03. Zeta potentials of NLC were negative, between -20.7 and -29.3 mV. TAT/PB LID NLC (851.2 ± 25.3 µg/cm2) showed remarkably better percutaneous penetration ability than PB LID NLC (610.7 ± 22.1 µg/cm2), TAT LID NLC (551.9 ± 21.8 µg/cm2) (p < .05) and non-modified LID NLC (428.2 ± 21.4 µg/cm2). TAT/PB LID NLC exhibited the most prominent anesthetic effect than single ligand decorated or undecorated LID NLC in vivo. The resulting TAT/PB LID NLC exhibited good skin penetration and anesthetic efficiency, which could be applied as a promising anesthesia system.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuangshuang Ma
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yangyang Shen
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuwen Li
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ruirui Pan
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
43
|
Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy. Int J Pharm 2021; 599:120418. [PMID: 33647414 DOI: 10.1016/j.ijpharm.2021.120418] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 01/11/2023]
Abstract
Nanocrystals (NCs) enable the delivery of poorly water-soluble drugs with improved dissolution and bioavailability. However, their uncontrolled release and instability make targeted delivery challenging. Herein, a nano-in-nano delivery system composed of a drug nanocrystal core and liposome shell (NC@Lipo) is presented, which merges the advantages of drug nanocrystals (high drug loading) and liposomes (easy surface functionalization and high stability) for targeted delivery of hydrophobic drugs to tumors. CHMFL-ABL-053 (053), a hydrophobic drug candidate discovered by our group, was employed as a model drug to demonstrate the performance of NC@Lipo delivery system. Surface PEGylated (053-NC@PEG-Lipo) and folic acid-functionalized (053-NC@FA-Lipo) formulations were fabricated by wet ball milling combined with probe sonication. 053-NC@Lipo enabled high drug loading (up to 19.51%), considerably better colloidal stability, and longer circulation in vivo than 053-NC. Compared with free 053, 053-NC@PEG-Lipo and 053-NC@FA-Lipo exhibited higher tumor accumulation and considerably better in vivo antitumor efficacy in K562 xenograft mice with tumor growth inhibition rate (TGI) of up to 98%. Additionally, more effective tumor cell targeting in vitro and higher TGI in vivo were achieved with 053-NC@FA-Lipo. The NC@Lipo strategy may contribute to the targeted delivery of poorly water-soluble drugs with high drug loading, high stability, and tailorable surface, and has potential for the development of more efficient nanocrystal- and liposome-based formulations for commercial and clinical applications. It may also provide new opportunities for potential clinical application of candidate 053.
Collapse
|
44
|
Malta R, Loureiro JB, Costa P, Sousa E, Pinto M, Saraiva L, Amaral MH. Development of lipid nanoparticles containing the xanthone LEM2 for topical treatment of melanoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Chondroitin sulfate-based redox-responsive nanoparticles for melanoma-targeted drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Chen S, Song Z, Feng R. Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel. Anticancer Agents Med Chem 2020; 20:2169-2189. [PMID: 32682385 DOI: 10.2174/1871520620666200719001038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Background:
Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic
effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse
pharmacokinetic property limit its clinical application.
Objective:
To review the recent progress on the PTX delivery systems.
Methods:
In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly
includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or
further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic
property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent
progress on the nano-drug delivery system for PTX since 2011.
Results:
The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic
property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its
activities against cancer are also comparable or high when compared with the commercial formulation.
Conclusion:
Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping
or enhancing its activity and improving its pharmacokinetic property.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| |
Collapse
|
47
|
Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive nanoscale drug delivery systems for cancer treatment. Int J Pharm 2020; 589:119882. [PMID: 32941986 DOI: 10.1016/j.ijpharm.2020.119882] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
48
|
Padya BS, Pandey A, Pisay M, Koteshwara KB, Chandrashekhar Hariharapura R, Bhat KU, Biswas S, Mutalik S. Stimuli-responsive and cellular targeted nanoplatforms for multimodal therapy of skin cancer. Eur J Pharmacol 2020; 890:173633. [PMID: 33049302 DOI: 10.1016/j.ejphar.2020.173633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Interdisciplinary applications of nanopharmaceutical sciences have tremendous potential for enhancing pharmacokinetics, efficacy and safety of cancer therapy. The limitations of conventional therapeutic platforms used for skin cancer therapy have been largely overcome by the use of nanoplatforms. This review discusses various nanotechnological approaches experimented for the treatment of skin cancer. The review describes various polymeric, lipidic and inorganic nanoplatforms for efficient therapy of skin cancer. The stimuli-responsive nanoplatforms such as pH-responsive as well as temperature-responsive platforms have also been reviewed. Different strategies for potentiating the nanoparticles application for cancer therapy such as surface engineering, conjugation with drugs, stimulus-responsive and multimodal effect have also been discussed and compared with the available conventional treatments. Although, nanopharmaceuticals face challenges such as toxicity, cost and scale-up, efforts put-in to improve these drawbacks with continuous research would deliver exciting and promising results in coming days.
Collapse
Affiliation(s)
- Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Muralidhar Pisay
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K B Koteshwara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Chandrashekhar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kuruveri Udaya Bhat
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Mangalore, Karnataka, 575025, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
49
|
Chai Z, Teng C, Yang L, Ren L, Yuan Z, Xu S, Cheng M, Wang Y, Yan Z, Qin C, Han X, Yin L. Doxorubicin delivered by redox-responsive Hyaluronic Acid–Ibuprofen prodrug micelles for treatment of metastatic breast cancer. Carbohydr Polym 2020; 245:116527. [DOI: 10.1016/j.carbpol.2020.116527] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022]
|
50
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|