1
|
Jiang J, Zhang H, Ou Y, Lai J, Huang Y, Cai W, Li C, Zhang L, Fu Y. The immune-reinforcements of Lenvatinib plus anti-PD-1 and their rationale to unite with TACE for unresectable hepatocellular carcinoma treatment. Immunol Lett 2025; 275:107003. [PMID: 40189154 DOI: 10.1016/j.imlet.2025.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Despite encouraging clinical benefits have gained by anti-PD-1 and Lenvatinib combination, in-depth characterizations about the mechanisms of action remain poorly characterized. Furthermore, although the combination of systemic anti-PD-1 or Lenvatinib treatment and locoregional transcatheter arterial chemoembolization (TACE) is widely carried out to treat unresectable HCC in clinical, the efficacies of different combination regimens are uncertain due to limited researches. METHODS We firstly generated murine HCC models to validate the enhanced anti-tumor effects of anti-PD-1 and Lenvatinib combination therapy. Then single cell mass cytometry (CyTOF) was employed to phenotypically reveal their mechanisms of action. After that, we further compared the effectiveness of TACE plus Lenvatinib (i.e., TACE-Len) dual therapy with TACE, Lenvatinib plus anti-PD-1 (i.e., TACE-Len-PD-1) triple therapy as conversion therapy for unresectable HCC. RESULTS Lenvatinib and anti-PD-1 combination could generate activated immune profiles not only by increasing systemic CD4+, CD8+T cells and B cells proportions, but also by weakening the immune-tolerance functions derived from both immunosuppressive cells (i.e., MDSCs) and co-inhibitory mediators (i.e., PD-L1 and LAG-3). Meanwhile, our study also suggested that TACE-Len-PD-1 triple therapy could achieve better clinical responses with powerful immune profiles for unresectable HCC compared to TACE-Len dual therapy. CONCLUSIONS Our study provided a delicate immune landscape of anti-PD-1and Lenvatinib combination, and we also offered scientific evidences that TACE-Len-PD-1 triple therapy could fulfill better clinical benefits than TACE-Len dual therapy, which is anticipated to provide objective and effective evidences for clinical use.
Collapse
Affiliation(s)
- Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Hui Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Yanjiao Ou
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Jiejuan Lai
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Leida Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China.
| | - Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
2
|
Li S, Yuan H, Yang XZ, Xu X, Yu W, Wu Y, Yao S, Xie J, He W, Guo Z, Chen Y. Synergistic Antitumor Immunotherapy via Mitochondria Regulation in Macrophages and Tumor Cells by an Iridium Photosensitizer. ACS CENTRAL SCIENCE 2025; 11:441-451. [PMID: 40161955 PMCID: PMC11950858 DOI: 10.1021/acscentsci.4c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Mitochondrial targeting has emerged as an attractive method for antitumor treatment. However, most of the mitochondria targeted drugs focused on inhibiting tumor cells, while their potential for activation of immune responses in the tumor microenvironment has rarely been described. In this study, we report a photosensitive iridium complex MitoIrL2, which enabled the simultaneous mitochondrial modulation of macrophages and tumor cells to achieve synergistic antitumor immunity. The adjustment of the mitochondrial respiratory chain, HIF-1α, and the NF-κB pathway in macrophages drove the metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis, converting protumor M2 into the antitumor M1 phenotype. Downregulated expression of immunosuppressive checkpoint SIRPα has also been observed on macrophages. Meanwhile, the mitochondrial targeting MitoIrL2 enhanced the immunogenic cell death of tumor cells and reversed the immunosuppressive tumor microenvironment, which activated the systemic immune response and established long-term immune memory in vivo. This work illustrates a promising strategy to simultaneously regulate macrophages toward the antitumor phenotype and enhance immunogenic cell death in tumor cells for synergistic antitumor immunotherapy.
Collapse
Affiliation(s)
- Shumeng Li
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Hao Yuan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Xiu-Zhi Yang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Xinyu Xu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Wenhao Yu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Yanping Wu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Shankun Yao
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Jin Xie
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Weijiang He
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
- Department
of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, Jiangsu, P.R. China
| |
Collapse
|
3
|
Cao Y, Liao S, Deng C, Qin H, Li Y. A pH-responsive phase-transition bi-affinity nanopolymer-assisted exosome metabolomics for early screening of osteoarthritis. Talanta 2025; 283:127144. [PMID: 39546833 DOI: 10.1016/j.talanta.2024.127144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Exosomes, emerging as ideal non-invasive biomarkers for disease diagnosis and monitoring, have seldom been explored based on metabolite levels. In this study, we designed and synthesized a pH-responsive phase-transition bifunctional affinity nanopolymer (pH-BiAN) that could efficiently and homogeneously separate exosomes from urine. Specifically, poly-4-vinylpyridine (P4VP) was chosen as the pH-responsive polymer and simultaneously modified with two exosome-affinity components CD63 aptamer and distearoyl phosphoethanolamine (DSPE) through a one-step amide reaction at room temperature. By utilizing two distinct but synergistic affinity mechanisms-the immune affinity between CD63 aptamer and exosomal CD63 proteins, and hydrophobic interactions between the DSPE and the exosomal lipids-pH-BiAN can enable efficient and specific exosome separation. Moreover, during the urine exosome capture procedure, the pH-BiAN outperforms conventional solid exosome separation materials by remaining soluble in the urine sample, significantly enhancing mass transfer and contact efficiency. After exosome capture, pH-BiAN can quickly aggregate and convert to solid upon pH adjustment, allowing for easy centrifugation separation. Afterwards, multiple machine learning models were established by combining liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) untargeted metabolomics for isolated exosomes, and the clinical accuracy of the training and test sets was more than 0.919, which could well distinguish early osteoarthritis patients from healthy people.
Collapse
Affiliation(s)
- Yiqing Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuai Liao
- West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan 610213, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Yan Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 201203, China.
| |
Collapse
|
4
|
Ghaneialvar H, Jahani S, Hashemi E, Khalilzad MA, Falahi S, Rashidi MA, Majidpoor J, Najafi S. Combining anti-checkpoint immunotherapies and cancer vaccines as a novel strategy in oncological therapy: A review. Hum Immunol 2025; 86:111209. [PMID: 39662393 DOI: 10.1016/j.humimm.2024.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The field of cancer immunotherapy has experienced remarkable advancements in the treatment of human cancers over recent decades. Therapeutic cancer vaccines have been employed to elicit antitumor immune responses through the generation of specific reactions against tumor-associated antigens. Although preclinical studies have demonstrated hopeful results and at least one product is approved for clinical use, the overall efficacy of cancer vaccines remains restricted. The co-administration of anti-checkpoint antibodies alongside cancer vaccines is proposed as a potential strategy to enhance the clinical efficacy of immunotherapies. Among the various anti-checkpoint agents, monoclonal antibodies targeting CD127, OX40, and CD40 have been further investigated in combined administration with cancer vaccines, demonstrating a synergistic impact on disease outcomes in both animal models and human subjects. This combinational approach has been shown to suppress tumor regression, improve survival rates, and promote the efficacy of cancer vaccines via multiple mechanisms, including the augmentation of generation, activation, and expansion of CD8+ T cells, as well as the production of tumor-inhibitory cytokines. Importantly, the impact of the concurrent administration of anti-checkpoint agents and cancer vaccines surpass those observed with the sole vaccine, indicating that this strategy may offer significant advantages for clinical application in cancer patients. In this review, we aim to provide a comprehensive overview of the significance and therapeutic potential of the combined administration of checkpoint agonist/antagonist antibodies and cancer vaccines for human tumors.
Collapse
Affiliation(s)
- Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saleheh Jahani
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Amin Rashidi
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Li R, Huang J, Wei Y, Wang Y, Lu C, Liu J, Ma X. Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools. Int J Nanomedicine 2024; 19:13615-13651. [PMID: 39717515 PMCID: PMC11665441 DOI: 10.2147/ijn.s491573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment of various malignants.
Collapse
Affiliation(s)
- Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yuhao Wei
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yusha Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
6
|
VandenHeuvel S, Chau E, Mohapatra A, Dabbiru S, Roy S, O’Connell C, Kamat A, Godin B, Raghavan SA. Macrophage Checkpoint Nanoimmunotherapy Has the Potential to Reduce Malignant Progression in Bioengineered In Vitro Models of Ovarian Cancer. ACS APPLIED BIO MATERIALS 2024; 7:7871-7882. [PMID: 38558434 PMCID: PMC11653402 DOI: 10.1021/acsabm.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Most ovarian carcinoma (OvCa) patients present with advanced disease at the time of diagnosis. Malignant, metastatic OvCa is invasive and has poor prognosis, exposing the need for improved therapeutic targeting. High CD47 (OvCa) and SIRPα (macrophage) expression has been linked to decreased survival, making this interaction a significant target for therapeutic discovery. Even so, previous attempts have fallen short, limited by CD47 antibody specificity and efficacy. Macrophages are an important component of the OvCa tumor microenvironment and are manipulated to aid in cancer progression via CD47-SIRPα signaling. Thus, we have leveraged lipid-based nanoparticles (LNPs) to design a therapy uniquely situated to home to phagocytic macrophages expressing the SIRPα protein in metastatic OvCa. CD47-SIRPα presence was evaluated in patient histological sections using immunohistochemistry. 3D tumor spheroids generated on a hanging drop array with OVCAR3 high-grade serous OvCa and THP-1-derived macrophages created a representative model of cellular interactions involved in metastatic OvCa. Microfluidic techniques were employed to generate LNPs encapsulating SIRPα siRNA (siSIRPα) to affect the CD47-SIRPα signaling between the OvCa and macrophages. siSIRPα LNPs were characterized for optimal size, charge, and encapsulation efficiency. Uptake of the siSIRPα LNPs by macrophages was assessed by Incucyte. Following 48 h of 25 nM siSIRPα treatment, OvCa/macrophage heterospheroids were evaluated for SIRPα knockdown, platinum chemoresistance, and invasiveness. OvCa patient tumors and in vitro heterospheroids expressed CD47 and SIRPα. Macrophages in OvCa spheroids increased carboplatin resistance and invasion, indicating a more malignant phenotype. We observed successful LNP uptake by macrophages causing significant reduction in SIRPα gene and protein expressions and subsequent reversal of pro-tumoral alternative activation. Disrupting CD47-SIRPα interactions resulted in sensitizing OvCa/macrophage heterospheroids to platinum chemotherapy and reversal of cellular invasion outside of heterospheroids. Ultimately, our results strongly indicate the potential of using LNP-based nanoimmunotherapy to reduce malignant progression of ovarian cancer.
Collapse
Affiliation(s)
- Sabrina
N. VandenHeuvel
- Department
of Biomedical Engineering, Texas A&M
University, 3120 TAMU, College Station, Texas 77843, United States
| | - Eric Chau
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Arpita Mohapatra
- Department
of Biomedical Engineering, Texas A&M
University, 3120 TAMU, College Station, Texas 77843, United States
| | - Sameera Dabbiru
- Department
of Biomedical Engineering, Texas A&M
University, 3120 TAMU, College Station, Texas 77843, United States
| | - Sanjana Roy
- Department
of Biomedical Engineering, Texas A&M
University, 3120 TAMU, College Station, Texas 77843, United States
| | - Cailin O’Connell
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- School
of Engineering Medicine, Texas A&M University, 1020 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Aparna Kamat
- Division
of Gynecologic Oncology, Houston Methodist
Hospital, 6550 Fannin Street, Houston, Texas 77030, United States
- Department
of Obstetrics and Gynecology, Houston Methodist
Hospital, 6550 Fannin Street, Houston, Texas 77030, United States
- Houston
Methodist Neal Cancer Center, 6445 Main Street, Houston, Texas 77030, United States
| | - Biana Godin
- Department
of Biomedical Engineering, Texas A&M
University, 3120 TAMU, College Station, Texas 77843, United States
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- Department
of Obstetrics and Gynecology, Houston Methodist
Hospital, 6550 Fannin Street, Houston, Texas 77030, United States
- Houston
Methodist Neal Cancer Center, 6445 Main Street, Houston, Texas 77030, United States
| | - Shreya A. Raghavan
- Department
of Biomedical Engineering, Texas A&M
University, 3120 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Li Z, Qin C, Zhao B, Li T, Zhao Y, Zhang X, Wang W. Circulating tumor cells in pancreatic cancer: more than liquid biopsy. Ther Adv Med Oncol 2024; 16:17588359241284935. [PMID: 39421679 PMCID: PMC11483845 DOI: 10.1177/17588359241284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that slough off the primary lesions and extravasate into the bloodstream. By forming CTC clusters and interacting with other circulating cells (platelets, NK cells, macrophage, etc.), CTCs are able to survive in the circulatory system of tumor patients and colonize to metastatic organs. In recent years, the potential of CTCs in diagnosis, prognostic assessment, and individualized therapy of various types of tumors has been gradually explored, while advances in biotechnology have made it possible to extract CTCs from patient blood samples. These biological features of CTCs provide us with new insights into cancer vulnerabilities. With the advent of new immunotherapies and personalized medicines, disrupting the heterotypical interaction between CTCs and circulatory cells as well as direct CTCs targeting hold great promise. Pancreatic cancer (PC) is one of the most malignant cancers, in part because of early metastasis, difficult diagnosis, and limited treatment options. Although there is significant potential for CTCs as a biomarker to impact PC from diagnosis to therapy, there still remain a number of challenges to the routine implementation of CTCs in the clinical management of PC. In this review, we summed up the progress made in understanding biological characteristics and exceptional technological advances of CTCs and provided insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing Street Dongcheng District Beijing China, Beijing 100730, China
| |
Collapse
|
8
|
Bo Y, Wang H. Biomaterial-Based In Situ Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210452. [PMID: 36649567 PMCID: PMC10408245 DOI: 10.1002/adma.202210452] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen-presenting cells and subsequent T cell priming processes are among the first FDA-approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen-specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor-specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials-based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials-based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines.
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois (CCIL), Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:940-957. [PMID: 38212458 DOI: 10.1007/s11427-023-2417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 01/13/2024]
Abstract
Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
11
|
Yang HW, Ju SP, Hsieh YT, Yang YC. Design single-stranded DNA aptamer of cluster of differentiation 47 protein by stochastic tunnelling-basin hopping-discrete molecular dynamics method. J Biomol Struct Dyn 2024; 42:3969-3982. [PMID: 37261868 DOI: 10.1080/07391102.2023.2217511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
The formation of the Cluster of Differentiation 47 (CD47, PDB code: 2JJT)/signal regulatory protein α (SIRPα) complex is very important as it protects healthy cells from immune clearance while promoting macrophage phagocytosis for tumour elimination. Although several antibodies have been developed for cancer therapy, new function-blocking aptamers are still under development. This study aims to design the aptamer AptCD47, which can block the formation of the CD47/SIRPα complex. This study employs the MARTINI coarse-grained (CG) force field and the stochastic tunnelling-basin hopping-discrete molecular dynamics (STUN-BH-DMD) method to identify the most stable AptCD47/CD47 complexes. Coarse-grained molecular dynamics (CGMD) simulations were used to obtain root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) analyses. The results demonstrate that the formation of AptCD47/CD47 complexes renders the CD47 structure more stable than the single CD47 molecule in a water environment. The minimum energy pathway (MEP) obtained by the nudged elastic band (NEB) method indicates that the binding processes of 5'-ATTCAATTCC-3' and 5'-AGTGCAATCT-3' to CD47 are barrierless, which is much lower than the binding barrier of SIRPα to CD47 of about 14.23 kcal/mol. Therefore, these two AptCD47/CD47 complexes can create a high spatial binding barrier for SIRPα, preventing the formation of a stable CD47/SIRPα complex. The proposed numerical process with the MARTINI CG force field can be used to design CD47 aptamers that efficiently block SIRPα from binding to CD47.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hung-Wei Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City, Taiwan
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Te Hsieh
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yung-Cheng Yang
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Chan H, Trout CV, Mikolon D, Adams P, Guzman R, Mavrommatis K, Abbasian M, Hadjivassiliou H, Dearth L, Fox BA, Sivakumar P, Cho H, Hariharan K. Discovery and Preclinical Activity of BMS-986351, an Antibody to SIRPα That Enhances Macrophage-mediated Tumor Phagocytosis When Combined with Opsonizing Antibodies. CANCER RESEARCH COMMUNICATIONS 2024; 4:505-515. [PMID: 38319147 PMCID: PMC10883291 DOI: 10.1158/2767-9764.crc-23-0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In normal cells, binding of the transmembrane protein CD47 to signal regulatory protein-α (SIRPα) on macrophages induces an antiphagocytic signal. Tumor cells hijack this pathway and overexpress CD47 to evade immune destruction. Macrophage antitumor activity can be restored by simultaneously blocking the CD47-SIRPα signaling axis and inducing a prophagocytic signal via tumor-opsonizing antibodies. We identified a novel, fully human mAb (BMS-986351) that binds SIRPα with high affinity. BMS-986351 demonstrated broad binding coverage across SIRPα polymorphisms and potently blocked CD47-SIRPα binding at the CD47 binding site in a dose-dependent manner. In vitro, BMS-986351 increased phagocytic activity against cell lines from solid tumors and hematologic malignancies, and this effect was markedly enhanced when BMS-986351 was combined with the opsonizing antibodies cetuximab and rituximab. A phase I dose-escalation/-expansion study of BMS-986351 for the treatment of advanced solid and hematologic malignancies is underway (NCT03783403). SIGNIFICANCE Increasing the phagocytotic capabilities of tumor-associated macrophages by modulating macrophage-tumor cell surface signaling via the CD47-SIRPα axis is a novel strategy. Molecules targeting CD47 have potential but its ubiquitous expression necessitates higher therapeutic doses to overcome potential antigen sink effects. The restricted expression pattern of SIRPα may limit toxicities and lower doses of the SIRPα antibody BMS-986351 may overcome target mediated drug disposition while maintaining the desired pharmacology.
Collapse
Affiliation(s)
- Henry Chan
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California
| | - Christina V Trout
- Strategy and Business Development, Avidity Biosciences, Inc., San Diego, California
| | - David Mikolon
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California
| | - Preston Adams
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California
| | | | | | | | | | - Lawrence Dearth
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California
| | - Brian A Fox
- Informatics and Predictive Sciences, Bristol Myers Squibb, Seattle, Washington
| | - Pallavur Sivakumar
- Immuno-Oncology and Cell Therapy Discovery, Bristol Myers Squibb, Seattle, Washington
| | - Ho Cho
- Samsung Bioepis, Seoul, Republic of South Korea
| | | |
Collapse
|
13
|
Bandini S, Ulivi P, Rossi T. Extracellular Vesicles, Circulating Tumor Cells, and Immune Checkpoint Inhibitors: Hints and Promises. Cells 2024; 13:337. [PMID: 38391950 PMCID: PMC10887032 DOI: 10.3390/cells13040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of cancer, in particular lung cancer, while the introduction of predictive biomarkers from liquid biopsies has emerged as a promising tool to achieve an effective and personalized therapy response. Important progress has also been made in the molecular characterization of extracellular vesicles (EVs) and circulating tumor cells (CTCs), highlighting their tremendous potential in modulating the tumor microenvironment, acting on immunomodulatory pathways, and setting up the pre-metastatic niche. Surface antigens on EVs and CTCs have proved to be particularly useful in the case of the characterization of potential immune escape mechanisms through the expression of immunosuppressive ligands or the transport of cargos that may mitigate the antitumor immune function. On the other hand, novel approaches, to increase the expression of immunostimulatory molecules or cargo contents that can enhance the immune response, offer premium options in combinatorial clinical strategies for precision immunotherapy. In this review, we discuss recent advances in the identification of immune checkpoints using EVs and CTCs, their potential applications as predictive biomarkers for ICI therapy, and their prospective use as innovative clinical tools, considering that CTCs have already been approved by the Food and Drug Administration (FDA) for clinical use, but providing good reasons to intensify the research on both.
Collapse
Affiliation(s)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (T.R.)
| | | |
Collapse
|
14
|
Li YR, Halladay T, Yang L. Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies. J Biomed Sci 2024; 31:5. [PMID: 38217016 PMCID: PMC10785504 DOI: 10.1186/s12929-024-00998-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Cell-based immunotherapies (CBIs), notably exemplified by chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy, have emerged as groundbreaking approaches for cancer therapy. Nevertheless, akin to various other therapeutic modalities, tumor cells employ counterstrategies to manifest immune evasion, thereby circumventing the impact of CBIs. This phenomenon is facilitated by an intricately immunosuppression entrenched within the tumor microenvironment (TME). Principal mechanisms underpinning tumor immune evasion from CBIs encompass loss of antigens, downregulation of antigen presentation, activation of immune checkpoint pathways, initiation of anti-apoptotic cascades, and induction of immune dysfunction and exhaustion. In this review, we delve into the intrinsic mechanisms underlying the capacity of tumor cells to resist CBIs and proffer prospective stratagems to navigate around these challenges.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Masadah R, Ikram D, Riadi R, Tangdiung Y, Nelwan BJ, Ghaznawie M, Rauf S, Faruk M. CD133, CD47, and PD-L1 Expression in Ovarian High-grade Serous Carcinoma and Its Association with Metastatic Disease: A Cross-sectional Study. Asian Pac J Cancer Prev 2024; 25:249-255. [PMID: 38285791 PMCID: PMC10911714 DOI: 10.31557/apjcp.2024.25.1.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Ovarian cancer is a primary cause of cancer-related death in women. At the time of diagnosis, the majority of ovarian malignancies had metastasized. It is believed that cancer stem cells (CSCs) and immune evasion play a crucial role in the metastatic process. The objective of this study was to describe the expression profiles of cluster of differentiation (CD)133, CD47, and programmed death ligand 1 (PD-L1) in high-grade serous ovarian cancer (HGSC) as commonly utilized markers for CSCs and immune evasion. MATERIAL AND METHODS Using an immunohistochemical procedure, 51 HGSC tissue samples were stained with anti-CD133, anti-CD47, and anti-PDL1 antibodies. The samples contained 31 HGSC with metastases and 20 HGSC absent metastases. The expression of CD133, CD47, and PD-L1 was compared between groups. RESULTS Strong expression of CD133 and CD47 was seen in 52% and 66% of tissue samples, respectively. Twenty of the thirty-one patients with metastases had a significant level of CD133 expression, with a p-value of 0.039. CD47 expression was increased in 26 of 31 samples with metastatic disease. A 62.7 percent of samples were negative for PD-L1 expression, significantly inversely correlated with HGSC metastatic disease (p=0.023). Although there was no significant association between CD133, CD47, or PD-L1 expression and age, Tumor Infiltrating Lymphocytes demonstrated a significantly varied relationship. CONCLUSION Our findings suggested that expression of CD133, CD47, and PD-L1 may have dynamically increased as the primary lesion progressed to the metastatic lesion, implying that these proteins may be involved in the progression of high-grade serous ovarian cancer from the primary to the metastatic stage.
Collapse
Affiliation(s)
- Rina Masadah
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Dzul Ikram
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
- Department of Histology, Faculty of Medicine, Universitas Muslim Indonesia, Makassar, Indonesia.
| | - Riadi Riadi
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Yemima Tangdiung
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Berti Julian Nelwan
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Mahmud Ghaznawie
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Muhammadiyah Makassar, Indonesia.
| | - Syahrul Rauf
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| |
Collapse
|
16
|
Quartieri M, Puspitasari A, Vitacchio T, Durante M, Tinganelli W. The role of hypoxia and radiation in developing a CTCs-like phenotype in murine osteosarcoma cells. Front Cell Dev Biol 2023; 11:1222809. [PMID: 38033871 PMCID: PMC10687637 DOI: 10.3389/fcell.2023.1222809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Cancer treatment has evolved significantly, yet concerns about tumor recurrence and metastasis persist. Within the dynamic tumor microenvironment, a subpopulation of mesenchymal tumor cells, known as Circulating Cancer Stem Cells (CCSCs), express markers like CD133, TrkB, and CD47, making them radioresistant and pivotal to metastasis. Hypoxia intensifies their stemness, complicating their identification in the bloodstream. This study investigates the interplay of acute and chronic hypoxia and radiation exposure in selecting and characterizing cells with a CCSC-like phenotype. Methods: LM8 murine osteosarcoma cells were cultured and subjected to normoxic (21% O2) and hypoxic (1% O2) conditions. We employed Sphere Formation and Migration Assays, Western Blot analysis, CD133 Cell Sorting, and CD133+ Fluorescent Activated Cell Sorting (FACS) analysis with a focus on TrkB antibody to assess the effects of acute and chronic hypoxia, along with radiation exposure. Results: Our findings demonstrate that the combination of radiation and acute hypoxia enhances stemness, while chronic hypoxia imparts a cancer stem-like phenotype in murine osteosarcoma cells, marked by increased migration and upregulation of CCSC markers, particularly TrkB and CD47. These insights offer a comprehensive understanding of the interactions between radiation, hypoxia, and cellular responses in the context of cancer treatment. Discussion: This study elucidates the complex interplay among radiation, hypoxia, and cellular responses, offering valuable insights into the intricacies and potential advancements in cancer treatment.
Collapse
Affiliation(s)
- Martina Quartieri
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Anggraeini Puspitasari
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Biology Division, Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Tamara Vitacchio
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
17
|
Desai N, Katare P, Makwana V, Salave S, Vora LK, Giri J. Tumor-derived systems as novel biomedical tools-turning the enemy into an ally. Biomater Res 2023; 27:113. [PMID: 37946275 PMCID: PMC10633998 DOI: 10.1186/s40824-023-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Cancer is a complex illness that presents significant challenges in its understanding and treatment. The classic definition, "a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body," fails to convey the intricate interaction between the many entities involved in cancer. Recent advancements in the field of cancer research have shed light on the role played by individual cancer cells and the tumor microenvironment as a whole in tumor development and progression. This breakthrough enables the utilization of the tumor and its components as biological tools, opening new possibilities. This article delves deeply into the concept of "tumor-derived systems", an umbrella term for tools sourced from the tumor that aid in combatting it. It includes cancer cell membrane-coated nanoparticles (for tumor theranostics), extracellular vesicles (for tumor diagnosis/therapy), tumor cell lysates (for cancer vaccine development), and engineered cancer cells/organoids (for cancer research). This review seeks to offer a complete overview of the tumor-derived materials that are utilized in cancer research, as well as their current stages of development and implementation. It is aimed primarily at researchers working at the interface of cancer biology and biomedical engineering, and it provides vital insights into this fast-growing topic.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Pratik Katare
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vaishali Makwana
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
18
|
Mackert JD, Stirling ER, Wilson AS, Westwood B, Zhao D, Lo HW, Metheny-Barlow L, Cook KL, Lesser GJ, Soto-Pantoja DR. Anti-CD47 immunotherapy as a therapeutic strategy for the treatment of breast cancer brain metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550566. [PMID: 37546807 PMCID: PMC10402073 DOI: 10.1101/2023.07.25.550566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The presence of cell surface protein CD47 allows cancer cells to evade innate and adaptive immune surveillance resulting in metastatic spread. CD47 binds to and activates SIRPα on the surface of myeloid cells, inhibiting their phagocytic activity. On the other hand, CD47 binds the matricellular protein Thrombospondin-1, limiting T-cell activation. Thus, blocking CD47 is a potential therapeutic strategy for preventing brain metastasis. To test this hypothesis, breast cancer patient biopsies were stained with antibodies against CD47 to determine differences in protein expression. An anti-CD47 antibody was used in a syngeneic orthotopic triple-negative breast cancer model, and CD47 null mice were used in a breast cancer brain metastasis model by intracardiac injection of the E0771-Br-Luc cell line. Immunohistochemical staining of patient biopsies revealed an 89% increase in CD47 expression in metastatic brain tumors compared to normal adjacent tissue (p ≤ 0.05). Anti-CD47 treatment in mice bearing brain metastatic 4T1br3 orthotopic tumors reduced tumor volume and tumor weight by over 50% compared to control mice (p ≤ 0.05) and increased IBA1 macrophage/microglia marker 5-fold in tumors compared to control (p ≤ 0.05). Additionally, CD47 blockade increased the M1/M2 macrophage ratio in tumors 2.5-fold (p ≤ 0.05). CD47 null mice had an 89% decrease in metastatic brain burden (p ≤ 0.05) compared to control mice in a brain metastasis model. Additionally, RNA sequencing revealed several uniquely expressed genes and significantly enriched genes related to tissue development, cell death, and cell migration tumors treated with anti-CD47 antibodies. Thus, demonstrating that CD47 blockade affects cancer cell and tumor microenvironment signaling to limit metastatic spread and may be an effective therapeutic for triple-negative breast cancer brain metastasis.
Collapse
|
19
|
Deng H, Wang G, Zhao S, Tao Y, Zhang Z, Yang J, Lei Y. New hope for tumor immunotherapy: the macrophage-related "do not eat me" signaling pathway. Front Pharmacol 2023; 14:1228962. [PMID: 37484024 PMCID: PMC10358856 DOI: 10.3389/fphar.2023.1228962] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
The "do not eat me" signaling pathway is extremely active in tumor cells, providing a means for these cells to elude macrophage phagocytosis and escape immune surveillance. Representative markers of this pathway, such as CD47 and CD24, are highly expressed in numerous tumors. The interaction of SIRPα with CD47 reduces the accumulation of non-myosin ⅡA on the cell membrane. The combination of CD24 and Siglec10 ultimately leads to the recruitment of SHP-1 or SHP-2 to reduce signal transduction. Both of them weaken the ability of macrophages to engulf tumor cells. Blocking the mutual recognition between CD47-SIRPα or CD24-Siglec10 using large molecular proteins or small molecular drugs represents a promising avenue for tumor immunotherapy. Doing so can inhibit signal transduction and enhance macrophage clearance rates of cancer cells. In this paper, we summarize the characteristics of the drugs that affect the "do not eat me" signaling pathway via classical large molecular proteins and small molecule drugs, which target the CD47-SIRPα and CD24-Siglec10 signaling pathways, which target the CD47-SIRPα and CD24-Siglec10 signaling pathways. We expect it will offer insight into the development of new drugs centered on blocking the "do not eat me" signaling pathway.
Collapse
Affiliation(s)
- Han Deng
- General Practice Ward/International Medical Center, General Practice Medical Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- General Practice Ward/International Medical Center, General Practice Medical Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Shengyan Zhao
- General Practice Ward/International Medical Center, General Practice Medical Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yiran Tao
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixiong Zhang
- General Practice Ward/International Medical Center, General Practice Medical Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jinliang Yang
- General Practice Ward/International Medical Center, General Practice Medical Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center, General Practice Medical Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Strati A, Economopoulou P, Lianidou E, Psyrri A. Clinical Significance of PD-L1 Status in Circulating Tumor Cells for Cancer Management during Immunotherapy. Biomedicines 2023; 11:1768. [PMID: 37371863 DOI: 10.3390/biomedicines11061768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The approval of monoclonal antibodies against programmed death-ligand 1 (PD-L1) and programmed cell death protein (PD1) has changed the landscape of cancer treatment. To date, many immune checkpoint inhibitors (ICIs) have been approved by the FDA for the treatment of metastatic cancer as well as locally recurrent advanced cancer. However, immune-related adverse events (irAEs) of ICIs highlight the need for biomarker analysis with strong predictive value. Liquid biopsy is an important tool for clinical oncologists to monitor cancer patients and administer or change appropriate therapy. CTCs frequently express PD-L1, and this constitutes a clinically useful and non-invasive method to assess PD-L1 status in real-time. This review summarizes all the latest findings about the clinical significance of CTC for the management of cancer patients during the administration of immunotherapy and mainly focuses on the assessment of PD-L1 expression in CTCs.
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiota Economopoulou
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Amanda Psyrri
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| |
Collapse
|
21
|
Desai N, Rana D, Pande S, Salave S, Giri J, Benival D, Kommineni N. "Bioinspired" Membrane-Coated Nanosystems in Cancer Theranostics: A Comprehensive Review. Pharmaceutics 2023; 15:1677. [PMID: 37376125 DOI: 10.3390/pharmaceutics15061677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Achieving precise cancer theranostics necessitates the rational design of smart nanosystems that ensure high biological safety and minimize non-specific interactions with normal tissues. In this regard, "bioinspired" membrane-coated nanosystems have emerged as a promising approach, providing a versatile platform for the development of next-generation smart nanosystems. This review article presents an in-depth investigation into the potential of these nanosystems for targeted cancer theranostics, encompassing key aspects such as cell membrane sources, isolation techniques, nanoparticle core selection, approaches for coating nanoparticle cores with the cell membrane, and characterization methods. Moreover, this review underscores strategies employed to enhance the multi-functionality of these nanosystems, including lipid insertion, membrane hybridization, metabolic engineering, and genetic modification. Additionally, the applications of these bioinspired nanosystems in cancer diagnosis and therapeutics are discussed, along with the recent advances in this field. Through a comprehensive exploration of membrane-coated nanosystems, this review provides valuable insights into their potential for precise cancer theranostics.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
22
|
Zhang JY, Gao WD, Lin JY, Xu S, Zhang LJ, Lu XC, Luan X, Peng JQ, Chen Y. Nanotechnology-based photo-immunotherapy: a new hope for inhibition of melanoma growth and metastasis. J Drug Target 2023:1-14. [PMID: 37216425 DOI: 10.1080/1061186x.2023.2216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Melanoma is the most aggressive form of skin cancer and there is a need for the development of effective anti-melanoma therapies as it shows high metastatic ability and low response rate. In addition, it has been identified that traditional phototherapy could trigger immunogenic cell death (ICD) to activate antitumor immune response, which could not only effectively arrest primary tumor growth, but also exhibit superior effects in terms of anti-metastasis, anti-recurrence for metastatic melanoma treatment However, the limited tumor accumulation of photosensitizers/photothermal agents and immunosuppressive tumor microenvironment severely weaken the immune effects. The application of nanotechnology facilitates a higher accumulation of photosensitizers/photothermal agents at the tumor site, which can thus improve the antitumor effects of photo-immunotherapy (PIT). In this review, we summarize the basic principles of nanotechnology-based PIT and highlight novel nanotechnologies that are expected to enhance the antitumor immune response for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Ji-Yuan Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Dong Gao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Chen Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Qing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
23
|
Li SY, Guo YL, Tian JW, Zhang HJ, Li RF, Gong P, Yu ZL. Anti-Tumor Strategies by Harnessing the Phagocytosis of Macrophages. Cancers (Basel) 2023; 15:2717. [PMID: 37345054 DOI: 10.3390/cancers15102717] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Macrophages are essential for the human body in both physiological and pathological conditions, engulfing undesirable substances and participating in several processes, such as organism growth, immune regulation, and maintenance of homeostasis. Macrophages play an important role in anti-bacterial and anti-tumoral responses. Aberrance in the phagocytosis of macrophages may lead to the development of several diseases, including tumors. Tumor cells can evade the phagocytosis of macrophages, and "educate" macrophages to become pro-tumoral, resulting in the reduced phagocytosis of macrophages. Hence, harnessing the phagocytosis of macrophages is an important approach to bolster the efficacy of anti-tumor treatment. In this review, we elucidated the underlying phagocytosis mechanisms, such as the equilibrium among phagocytic signals, receptors and their respective signaling pathways, macrophage activation, as well as mitochondrial fission. We also reviewed the recent progress in the area of application strategies on the basis of the phagocytosis mechanism, including strategies targeting the phagocytic signals, antibody-dependent cellular phagocytosis (ADCP), and macrophage activators. We also covered recent studies of Chimeric Antigen Receptor Macrophage (CAR-M)-based anti-tumor therapy. Furthermore, we summarized the shortcomings and future applications of each strategy and look into their prospects with the hope of providing future research directions for developing the application of macrophage phagocytosis-promoting therapy.
Collapse
Affiliation(s)
- Si-Yuan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yong-Lin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jia-Wen Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - He-Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rui-Fang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
24
|
Ahmed MSU, Lord BD, Adu Addai B, Singhal SK, Gardner K, Salam AB, Ghebremedhin A, White J, Mahmud I, Martini R, Bedi D, Lin H, Jones JD, Karanam B, Dean-Colomb W, Grizzle W, Wang H, Davis M, Yates CC. Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling. Cancers (Basel) 2023; 15:cancers15082282. [PMID: 37190208 DOI: 10.3390/cancers15082282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
African American (AA) women with breast cancer are more likely to have higher inflammation and a stronger overall immune response, which correlate with poorer outcomes. In this report, we applied the nanostring immune panel to identify differences in inflammatory and immune gene expression by race. We observed a higher expression of multiple cytokines in AA patients compared to EA patients, with high expression of CD47, TGFB1, and NFKB1 associated with the transcriptional repressor Kaiso. To investigate the mechanism associated with this expression pattern, we observed that Kaiso depletion results in decreased expression of CD47, and its ligand SIRPA. Furthermore, Kaiso appears to directly bind to the methylated sequences of the THBS1 promotor and repress gene expression. Similarly, Kaiso depletion attenuated tumor formation in athymic nude mice, and these Kaiso-depleted xenograft tissues showed significantly higher phagocytosis and increased infiltration of M1 macrophages. In vitro validation using MCF7 and THP1 macrophages treated with Kaiso-depleted exosomes showed a reduced expression of immune-related markers (CD47 and SIRPA) and macrophage polarization towards the M1 phenotype compared to MCF7 cells treated with exosomes isolated from high-Kaiso cells. Lastly, analysis of TCGA breast cancer patient data demonstrates that this gene signature is most prominent in the basal-like subtype, which is more frequently observed in AA breast cancer patients.
Collapse
Affiliation(s)
- Md Shakir Uddin Ahmed
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Brittany D Lord
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Adu Addai
- School of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Iqbal Mahmud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deepa Bedi
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Huixian Lin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jacqueline D Jones
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA
| | | | - Windy Dean-Colomb
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Oncology-Newnan, Newnan, GA 30265, USA
| | - William Grizzle
- Department of Pathology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
25
|
Negi M, Kaushik N, Nguyen LN, Choi EH, Kaushik NK. Argon gas plasma-treated physiological solutions stimulate immunogenic cell death and eradicates immunosuppressive CD47 protein in lung carcinoma. Free Radic Biol Med 2023; 201:26-40. [PMID: 36907254 DOI: 10.1016/j.freeradbiomed.2023.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Cold atmospheric plasma-treated liquids (PTLs) exhibit selective toxicity toward tumor cells and are provoked by a cocktail of reactive oxygen and nitrogen species in such liquids. Compared to the gaseous phase, these reactive species are more persistent in the aqueous phase. This indirect plasma treatment method has gradually gathered interest in the discipline of plasma medicine to treat cancer. PTL's motivated effect on immunosuppressive proteins and immunogenic cell death (ICD) in solid cancer cells is still not explored. In this study, we aimed to induce immunomodulation by plasma-treated Ringer's lactate (PT-RL) and phosphate-buffered saline (PT-PBS) solutions for cancer treatment. PTLs induced minimum cytotoxicity in normal lung cells and inhibited cancer cell growth. ICD is confirmed by the enhanced expression of damage-associated molecular patterns (DAMPs). We evidenced that PTLs induce intracellular nitrogen oxide species accumulation and elevate immunogenicity in cancer cells owing to the production of pro-inflammatory cytokines, DAMPs, and reduced immunosuppressive protein CD47 expression. In addition, PTLs influenced A549 cells to elevate the organelles (mitochondria and lysosomes) in macrophages. Taken together, we have developed a therapeutic approach to potentially facilitate the selection of a suitable candidate for direct clinical applications.
Collapse
Affiliation(s)
- Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Plasade Co. Ltd., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Plasade Co. Ltd., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, South Korea.
| |
Collapse
|
26
|
Khawar MB, Afzal A, Abbasi MH, Sheikh N, Sun H. Nano-immunoengineering of CAR-T cell therapy against tumor microenvironment: The way forward in combating cancer. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Chen Y, Klingen TA, Aas H, Wik E, Akslen LA. CD47 and CD68 expression in breast cancer is associated with tumor-infiltrating lymphocytes, blood vessel invasion, detection mode, and prognosis. J Pathol Clin Res 2023; 9:151-164. [PMID: 36598153 PMCID: PMC10073931 DOI: 10.1002/cjp2.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
CD47 expressed on tumor cells binds to signal regulatory protein alpha on macrophages, initiating inhibition of phagocytosis. We investigated the relationships between tumor expression of CD47 and CD68 macrophage content, subsets of tumor-infiltrating lymphocytes (TILs), and vascular invasion in breast cancer. A population-based series of 282 cases (200 screen detected and 82 interval patients) from the Norwegian Breast Cancer Screening Program was examined. Immunohistochemical staining for CD47 and CD68 was evaluated on tissue microarray (TMA) slides. For CD47 evaluation, a staining index was used. CD68 tumor-associated macrophages were counted and dichotomized. TIL subsets (CD45, CD3, CD4, CD8, and FOXP3) were counted and dichotomized using immunohistochemistry on TMA slides. Vascular invasion (both lymphatic and blood vessel) was determined on whole tissue slides. High CD47 tumor cell expression or high counts of CD68 macrophages were significantly associated with elevated levels of all TIL subsets (p < 0.02), CD163 macrophages (p < 0.001), blood vessel invasion (CD31 positive) (p < 0.01), and high tumor cell Ki67 (p < 0.004). High CD47 expression was associated with ER negativity (p < 0.001), HER2 positive status (p = 0.03), and interval-detected tumors (p = 0.03). Combined high expression of CD47-CD68 was associated with a shorter recurrence-free survival (RFS) by multivariate analysis (hazard ratio [HR]: 2.37, p = 0.018), adjusting for tumor diameter, histologic grade, lymph node status, and molecular subtype. Patients with luminal A tumors showed a shorter RFS for CD47-CD68 high cases by multivariate assessment (HR: 5.73, p = 0.004). This study demonstrates an association of concurrent high CD47 tumor cell expression and high CD68 macrophage counts with various TIL subsets, blood vessel invasion (CD31 positive), other aggressive tumor features, and interval-presenting breast cancer. Our findings suggest a link between CD47, tumor immune response, and blood vessel invasion (CD31 positive). Combined high expression of CD47-CD68 was an independent prognostic factor associated with poor prognosis in all cases, as well as in the luminal A category.
Collapse
Affiliation(s)
- Ying Chen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyVestfold HospitalTønsbergNorway
- Department of PathologyOslo University HospitalOsloNorway
- Fürst Medical LaboratoryOsloNorway
| | - Tor Audun Klingen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyVestfold HospitalTønsbergNorway
| | - Hans Aas
- Department of SurgeryVestfold HospitalTønsbergNorway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| |
Collapse
|
28
|
Hernandez A, Hartgerink JD, Young S. Self-assembling peptides as immunomodulatory biomaterials. Front Bioeng Biotechnol 2023; 11:1139782. [PMID: 36937769 PMCID: PMC10014862 DOI: 10.3389/fbioe.2023.1139782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Self-assembling peptides are a type of biomaterial rapidly emerging in the fields of biomedicine and material sciences due to their promise in biocompatibility and effectiveness at controlled release. These self-assembling peptides can form diverse nanostructures in response to molecular interactions, making them versatile materials. Once assembled, the peptides can mimic biological functions and provide a combinatorial delivery of therapeutics such as cytokines and drugs. These self-assembling peptides are showing success in biomedical settings yet face unique challenges that must be addressed to be widely applied in the clinic. Herein, we describe self-assembling peptides' characteristics and current applications in immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Andrea Hernandez
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
- *Correspondence: Simon Young,
| |
Collapse
|
29
|
Chen A, Chen Y, Rong X, You X, Wu D, Zhou X, Zeng W, Zhou Z. The application of exosomes in the early diagnosis and treatment of osteoarthritis. Front Pharmacol 2023; 14:1154135. [PMID: 37188263 PMCID: PMC10175594 DOI: 10.3389/fphar.2023.1154135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
With the increase in human lifespan and the aggravation of global aging, the incidence of osteoarthritis (OA) is increasing annually. To better manage and control the progression of OA, prompt diagnosis and treatment for early-stage OA are important. However, a sensitive diagnostic modality and therapy for early OA have not been well developed. The exosome is a class of extracellular vesicles containing bioactive substances, that can be delivered directly from original cells to neighboring cells to modulate cellular activities through intercellular communication. In recent years, exosomes have been considered important in the early diagnosis and treatment of OA. Synovial fluid exosome and its encapsulated substances, e.g., microRNA, lncRNA, and proteins, can not only distinguish OA stages but also prevent the progression of OA by directly targeting cartilage or indirectly modulating the immune microenvironment in the joints. In this mini-review, we include recent studies on the diagnostic and therapeutic modalities of exosomes and hope to provide a new direction for the early diagnosis and treatment of OA disease in the future.
Collapse
Affiliation(s)
- Anjing Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Scientific Research and Experiment Management, West China Hospital, Sichuan University, Chengdu, China
| | - Yangmengfan Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhe You
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Diwei Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xinran Zhou
- West China Biobanks and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weinan Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Weinan Zeng, ; Zongke Zhou,
| | - Zongke Zhou
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University/Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Weinan Zeng, ; Zongke Zhou,
| |
Collapse
|
30
|
Shih CP, Tang X, Kuo CW, Chueh DY, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022; 10:990171. [PMID: 36405322 PMCID: PMC9673126 DOI: 10.3389/fchem.2022.990171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/08/2022] [Indexed: 09/29/2023] Open
Abstract
In the past two decades, we have witnessed rapid developments in nanotechnology, especially in biomedical applications such as drug delivery, biosensing, and bioimaging. The most commonly used nanomaterials in biomedical applications are nanoparticles, which serve as carriers for various therapeutic and contrast reagents. Since nanomaterials are in direct contact with biological samples, biocompatibility is one of the most important issues for the fabrication and synthesis of nanomaterials for biomedical applications. To achieve specific recognition of biomolecules for targeted delivery and biomolecular sensing, it is common practice to engineer the surfaces of nanomaterials with recognition moieties. This mini-review summarizes different approaches for engineering the interfaces of nanomaterials to improve their biocompatibility and specific recognition properties. We also focus on design strategies that mimic biological systems such as cell membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
31
|
Wang W, Fu C, Lin M, Lu Y, Lian S, Xie X, Zhou G, Li W, Zhang Y, Jia L, Zhong C, Huang M. Fucoxanthin prevents breast cancer metastasis by interrupting circulating tumor cells adhesion and transendothelial migration. Front Pharmacol 2022; 13:960375. [PMID: 36160416 PMCID: PMC9500434 DOI: 10.3389/fphar.2022.960375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the leading cause of cancer-related death and a critical challenge in improving cancer treatment today. Circulating tumor cells (CTCs) adhesion to and across the vascular endothelium are critical steps in the establishment of micrometastatic foci away from the primary tumor. Therefore, we believe that interrupting CTCs adhesion to endothelium and transendothelial migration may efficiently prevent cancer metastasis. Fucoxanthin (Fx) is an algal carotenoid widely distributed in brown algae, macroalgae, and diatoms. Previous studies have found that Fx has various pharmacological activities, including antidiabetic, antioxidant, anti-inflammatory, anti-obesity, antimalarial, anticancer, and so on. However, it remains unclear whether Fx has a preventive effect on cancer metastasis. Here, we found that Fx interrupts breast cancer cells MCF-7 adhesion to endothelium and transendothelial migration, thus inhibiting CTCs-based pulmonary metastasis in vivo. The hetero-adhesion assay showed that Fx significantly inhibited the expression of inflammatory factor-induced cell adhesion molecules (CAMs) and the resulting adhesion between MCF-7 cells and endothelial cells. The wound-healing and transwell assays showed that Fx significantly inhibited the motility, invasion, and transendothelial migration abilities of MCF-7 cells. However, the same concentration of Fx did not significantly alter the cell viability, cell cycle, apoptosis, and ROS of breast cancer cells, thus excluding the possibility that Fx inhibits MCF-7 cell adhesion and transendothelial migration through cytotoxicity. Mechanistically, Fx inhibits the expression of CAMs on endothelial cells by inhibiting the NF-кB signaling pathway by down-regulating the phosphorylation level of IKK-α/β, IкB-α, and NF-кB p65. Fx inhibits transendothelial migration of MCF-7 cells by inhibiting Epithelial-to-mesenchymal transition (EMT), PI3K/AKT, and FAK/Paxillin signaling pathways. Moreover, we demonstrated that Fx significantly inhibits the formation of lung micrometastatic foci in immunocompetent syngeneic mouse breast cancer metastasis models. We also showed that Fx enhances antitumor immune responses by substantially increasing the subsets of cytotoxic T lymphocytes in the peripheral immune system. This new finding provides a basis for the application of Fx in cancer metastatic chemoprevention and suggests that interruption of the CTCs adhesion to endothelium and transendothelial migration may serve as a new avenue for cancer metastatic chemoprevention.
Collapse
Affiliation(s)
- Weiyu Wang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Chengbin Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Breast Surgery Institute, Fujian Medical University, Fuzhou, China
| | - Mengting Lin
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Yusheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| | - Shu Lian
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Xiaodong Xie
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Guiyu Zhou
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Wulin Li
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Lee Jia
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Chunlian Zhong
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| | - Mingqing Huang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| |
Collapse
|
32
|
Safari H, Felder ML, Kaczorowski N, Eniola-Adefeso O. Effect of the Emulsion Solvent Evaporation Technique Cosolvent Choice on the Loading Efficiency and Release Profile of Anti-CD47 from PLGA nanospheres. J Pharm Sci 2022; 111:2525-2530. [DOI: 10.1016/j.xphs.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
|
33
|
Hu X, Qiu Y, Zeng X, Wang H. Exosomes reveal the dual nature of radiotherapy in tumor immunology. Cancer Sci 2022; 113:1105-1112. [PMID: 35218675 PMCID: PMC8990792 DOI: 10.1111/cas.15314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Radioresistance is the potential cause of cancer metastasis and recurrence. Radiation‐induced changes in exosomes can partially explain the undesirable prognosis of radiotherapy (RT). Exosomes, newly discovered ways of cell communication, carry the characteristics of their origin, resulting in their diversity. Various exosomes in the tumor microenvironment exert different function in immune response. In this review, the dual effect of RT on the immune system was described, and the effect of radiotherapy on tumors via exosomes was explored. The molecules in exosomes after RT were described to play immunosuppressive and immunocompetent roles: immune‐related receptors and cell signaling molecules involved in both adaptive and innate immune system were present. CD69, TIGIT, TIM‐3, LAG‐3 and the tumor necrosis factor (TNF) family that signal to T cells were shown to be regulated by exosomes after irradiation. The change in innate immunity‐derived like receptors, Leukocyte Immunoglobin‐Like Receptors (LILR) was described, as well as B7‐H3, V‐domain containing Ig suppressor of T cell activation (VISTA), and CD155 on tumor cells. These changed molecules inhibit and activate the immune system through different mechanisms. By analyzing the relationship between exosome‐derived molecules and immunity, this review shows that radiotherapy can induce immunosuppression and immune clearance through exosomes, thereby treating tumors and improving patient prognosis.
Collapse
Affiliation(s)
- Xinru Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.,Queen Mary School, Nanchang University, Nanchang, 330006, China
| | - Yuyue Qiu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.,Queen Mary School, Nanchang University, Nanchang, 330006, China
| | - Xiaoping Zeng
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Hongmei Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
34
|
Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life (Basel) 2022; 12:323. [PMID: 35207611 PMCID: PMC8878951 DOI: 10.3390/life12020323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Immune modulation is a hallmark of cancer. Cancer-immune interaction shapes the course of disease progression at every step of tumorigenesis, including metastasis, of which circulating tumor cells (CTCs) are regarded as an indicator. These CTCs are a heterogeneous population of tumor cells that have disseminated from the tumor into circulation. They have been increasingly studied in recent years due to their importance in diagnosis, prognosis, and monitoring of treatment response. Ample evidence demonstrates that CTCs interact with immune cells in circulation, where they must evade immune surveillance or modulate immune response. The interaction between CTCs and the immune system is emerging as a critical point by which CTCs facilitate metastatic progression. Understanding the complex crosstalk between the two may provide a basis for devising new diagnostic and treatment strategies. In this review, we will discuss the current understanding of CTCs and the complex immune-CTC interactions. We also present novel options in clinical interventions, targeting the immune-CTC interfaces, and provide some suggestions on future research directions.
Collapse
Affiliation(s)
- Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - King H. Lim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Kevin Julio Wijanarko
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Kwan T. Chow
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| |
Collapse
|
35
|
Zhang H, Wang C, Fan J, Zhu Q, Feng Y, Pan J, Peng J, Shi J, Qi S, Liu Y. CD47 Promotes the Proliferation and Migration of Adamantinomatous Craniopharyngioma Cells by Activating the MAPK/ERK Pathway, and CD47 Blockade Facilitates Microglia‐mediated Phagocytosis. Neuropathol Appl Neurobiol 2022; 48:e12795. [PMID: 35156226 DOI: 10.1111/nan.12795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/14/2021] [Accepted: 02/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Huarong Zhang
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Chaohu Wang
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Jun Fan
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Qianchao Zhu
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Yiwen Feng
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Junxiang Peng
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Jin Shi
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Yi Liu
- Department of Neurosurgery, Nanfang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
36
|
Xia Y, Wang T, Wu L, Zhong H, Zhou Y, Ke P, Bao X, Dai Q, Yang Q, Lu Y, Xu D, Liang M, Han M. Blocking CD47 with restructured peptide nanoparticles for motivating phagocytosis to inhibit tumor progression. Biomater Sci 2022; 10:4324-4334. [PMID: 35775458 DOI: 10.1039/d2bm00189f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phagocytosis checkpoints, especially targeting CD47, have shown encouraging therapeutic effects. However, there are currently many shortcomings and challenges with immune checkpoint blockades (ICBs). Inspired by the phenomenon of molecular self-assembly,...
Collapse
Affiliation(s)
- Yiyi Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Tiantian Wang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Haiqing Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Peng Ke
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoyan Bao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qi Dai
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qiyao Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yiying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Min Liang
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Tan Y, Chen H, Zhang J, Cai L, Jin S, Song D, Yang T, Guo Z, Wang X. Platinum(IV) complexes as inhibitors of CD47-SIRPα axis for chemoimmunotherapy of cancer. Eur J Med Chem 2021; 229:114047. [PMID: 34915428 DOI: 10.1016/j.ejmech.2021.114047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023]
Abstract
Phagocytosis of cancer cells by antigen presenting cells (APCs) is critical to activate the host's immune responses. However, the targeting ability of APCs to cancer cells is limited by the upregulation of transmembrane protein CD47 on the cancer cell surface. Blocking CD47 can affect the macrophage-mediated phagocytosis. Two platinum-based immunomodulators MUP and DMUP were synthesized to enhance the phagocytic activity of macrophages by blocking the CD47-SIRPα axis. These PtIV complexes not only showed high antiproliferative activity against a panel of human cancer cell lines, but also cooperated with human peripheral blood mononuclear cells (PBMCs) to suppress cancer cells. They acted as immune checkpoint inhibitors to modulate the immune responses of both cancer and immune cells. In particular, DMUP decreased the expression of CD47 in tumor tissues and promoted the polarization of macrophages from M2 to M1 phenotype in a mouse model of non-small cell lung cancer, thereby enhancing the anticancer effect. By interfering with DNA synthesis and stimulating immune system, DMUP takes the advantage of chemotherapy and immunotherapy to inhibit cancer cells. The dual efficacy of DMUP makes it a potential chemoimmunotherapeutic agent in cancer therapy.
Collapse
Affiliation(s)
- Yehong Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Jie Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Suxing Jin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Jiangbei New Area, Nanjing, 210000, PR China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Jiangbei New Area, Nanjing, 210000, PR China.
| |
Collapse
|
38
|
Wang H, Wen C, Chen S, Li W, Qin Q, He L, Wang F, Chen J, Ye W, Li W, Peng J, Yang X, Liu H. ROS/JNK/C-Jun Pathway is Involved in Chaetocin Induced Colorectal Cancer Cells Apoptosis and Macrophage Phagocytosis Enhancement. Front Pharmacol 2021; 12:729367. [PMID: 34776955 PMCID: PMC8578663 DOI: 10.3389/fphar.2021.729367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
There is an urgent need for novel agents for colorectal cancer (CRC) due to the increasing number of cases and drug-resistance related to current treatments. In this study, we aim to uncover the potential of chaetocin, a natural product, as a chemotherapeutic for CRC treatment. We showed that, regardless of 5-FU-resistance, chaetocin induced proliferation inhibition by causing G2/M phase arrest and caspase-dependent apoptosis in CRC cells. Mechanically, our results indicated that chaetocin could induce reactive oxygen species (ROS) accumulation and activate c-Jun N-terminal kinase (JNK)/c-Jun pathway in CRC cells. This was confirmed by which the JNK inhibitor SP600125 partially rescued CRC cells from chaetocin induced apoptosis and the ROS scavenger N-acetyl-L-cysteine (NAC) reversed both the chaetocin induced apoptosis and the JNK/c-Jun pathway activation. Additionally, this study indicated that chaetocin could down-regulate the expression of CD47 at both mRNA and protein levels, and enhance macrophages phagocytosis of CRC cells. Chaetocin also inhibited tumor growth in CRC xenograft models. In all, our study reveals that chaetocin induces CRC cell apoptosis, irrelevant to 5-FU sensitivity, by causing ROS accumulation and activating JNK/c-Jun, and enhances macrophages phagocytosis, which suggests chaetocin as a candidate for CRC chemotherapy.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Obstetrics and Gynecology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory Animal Lab, Guangzhou, China
| | - Weiqian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyuan Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiong Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibiao Ye
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory Animal Lab, Guangzhou, China
| | - Junsheng Peng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
YILDIZ TUĞBAAKMAN, KÖSE EMEK, ELLIOTT SAMANTHAL. MATHEMATICAL MODELING OF PANCREATIC CANCER TREATMENT WITH CANCER STEM CELLS. J BIOL SYST 2021. [DOI: 10.1142/s0218339021500182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Of all cancers, pancreatic cancer has a significantly low rate of survival, mostly due to lack of early screening. Thus, once detected, pancreatic cancer is usually in later stages, reducing the likelihood of full recovery. The most common treatment strategy is chemotherapy, although several immunotherapeutic drugs show promising results in extending the patient’s lifespan. In this paper, we provide a validated mathematical model for the pancreatic cancer after fitting the parameter values, such as tumor growth rate, inverse carrying capacity, activation and decay rate of pancreatic stellate cells, with the use of the experimental data presented by Cioffi et al. cioffi2015inhibition For treatments with the chemotherapeutic drugs, Abraxane and Gemcitabine, and the immunotherapeutic drug, Anti-CD47, we modified the model accurately and compared the simulation results with the experimental data not only to model pancreatic cancer treatment correctly but also to move forward with other drug trials. Then, we include the cancer stem cells, which are known to initiate tumors and cause a relapse post-chemotherapy, per cancer stem cell hypothesis so that cancer progression can be assessed based on this phenomenon. In addition, we investigate optimal drug protocols. We find out that the most effective treatment is dual therapy due to extending survival time when compared to other drugs. Moreover, this study reveals that drug dose is more effectual than frequency of drug injection on account of different treatment scheduling with the same dose over a week. The model could be a starting point to investigate pancreatic cancer progression based on cancer stem cell hypothesis and shed light on novel drug discoveries.
Collapse
Affiliation(s)
- TUĞBA AKMAN YILDIZ
- Department of Computer Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey
| | - EMEK KÖSE
- Department of Mathematics and Computer Science, St. Mary’s College of Maryland, St. Mary’s City, MD 20619, USA
| | - SAMANTHA L. ELLIOTT
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD 20619, USA
| |
Collapse
|
40
|
Li X, Pan X, Zhou H, Wang P, Gao Y, Shang S, Guo S, Sun J, Xiong Z, Ning S, Zhi H, Li X. Comprehensive characterization genetic regulation and chromatin landscape of enhancer-associated long non-coding RNAs and their implication in human cancer. Brief Bioinform 2021; 23:6375264. [PMID: 34581409 DOI: 10.1093/bib/bbab401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) that emanate from enhancer regions (defined as enhancer-associated lncRNAs, or elncRNAs) are emerging as critical regulators in disease progression. However, their biological characteristics and clinical relevance have not been fully portrayed. Here, based on the traditional expression quantitative loci (eQTL) and our optimized residual eQTL method, we comprehensively described the genetic effect on elncRNA expression in more than 300 lymphoblastoid cell lines. Meanwhile, a chromatin atlas of elncRNAs relative to the genetic regulation state was depicted. By applying the maximum likelihood estimate method, we successfully identified causal elncRNAs for protein-coding gene expression reprogramming and showed their associated single nucleotide polymorphisms (SNPs) favor binding of transcription factors. Further epigenome analysis revealed two immune-associated elncRNAs AL662844.4 and LINC01215 possess high levels of H3K27ac and H3K4me1 in human cancer. Besides, pan-cancer analysis of 3D genome, transcriptome, and regulatome data showed they potentially regulate tumor-immune cell interaction through affecting MHC class I genes and CD47, respectively. Moreover, our study showed there exist associations between elncRNA and patient survival. Finally, we made a user-friendly web interface available for exploring the regulatory relationship of SNP-elncRNA-protein-coding gene triplets (http://bio-bigdata.hrbmu.edu.cn/elncVarReg). Our study provides critical mechanistic insights for elncRNA function and illustrates their implications in human cancer.
Collapse
Affiliation(s)
- Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Xu Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Zhiying Xiong
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| |
Collapse
|
41
|
Higher senescence associated secretory phenotype and lower defense mediator in urinary extracellular vesicles of elders with and without Parkinson disease. Sci Rep 2021; 11:15783. [PMID: 34349163 PMCID: PMC8339003 DOI: 10.1038/s41598-021-95062-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
Youth fountain and aging culprits are usually sought and identified in blood but not urine. Extracellular vesicles (EVs) possess parental cell properties, circulate in blood, CSF and urine, and provide paracrine and remote cell–cell communication messengers. This study investigated whether senescence‐associated secretory phenotype (SASP) and immune defense factors in EVs of urine could serve as biomarkers in elderly individuals with and without a comorbidity. Urine samples from young adults and elderly individuals with and without Parkinson disease (PD) were collected and stored at − 80 °C until studies. Urine EVs were separated from a drop-through solution and confirmed by verifying CD9, CD63, CD81 and syntenin expression. The EVs and drop-through solution were subjected to measurement of SASP cytokines and defense factors by Milliplex array assays. Many SASP cytokines and defense factors could be detected in urinary EVs but not urinary solutions. Elderly individuals (age > 60) had significantly higher levels of the SASP-associated factors IL-8, IP-10, GRO, and MCP-1 in EVs (p < 0.05). In contrast, some defense factors, IL-4, MDC and IFNα2 in EVs had significantly lower levels in elderly adults than in young adults (age < 30). Patients with and without PD exhibited a similar SASP profile in EVs but significantly lower levels of IL-10 in the EVs from patients with PD. This study used a simple device to separate urinary EVs from solution for comparisons of SASP and defense mediators between young adults and elders with and without PD. Results from this study indicate that aging signature is present in EVs circulating to urine and the signatures include higher inflammatory mediators and lower defense factors in urinary EVs but not solutions, suggesting a simple method to separate urinary EVs from solutions for searching aging mechanistic biomarkers may make prediction of aging and monitoring of anti-senolytic interventions possible.
Collapse
|
42
|
Tang XY, Shi AP, Xiong YL, Zheng KF, Liu YJ, Shi XG, Jiang T, Zhao JB. Clinical Research on the Mechanisms Underlying Immune Checkpoints and Tumor Metastasis. Front Oncol 2021; 11:693321. [PMID: 34367975 PMCID: PMC8339928 DOI: 10.3389/fonc.2021.693321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
This study highlights aspects of the latest clinical research conducted on the relationship between immune checkpoints and tumor metastasis. The overview of each immune checkpoint is divided into the following three sections: 1) structure and expression; 2) immune mechanism related to tumor metastasis; and 3) clinical research related to tumor metastasis. This review expands on the immunological mechanisms of 17 immune checkpoints, including TIM-3, CD47, and OX-40L, that mediate tumor metastasis; evidence shows that most of these immune checkpoints are expressed on the surface of T cells, which mainly exert immunomodulatory effects. Additionally, we have summarized the roles of these immune checkpoints in the diagnosis and treatment of metastatic tumors, as these checkpoints are considered common predictors of metastasis in various cancers such as prostate cancer, non-Hodgkin lymphoma, and melanoma. Moreover, certain immune checkpoints can be used in synergy with PD-1 and CTLA-4, along with the implementation of combination therapies such as LIGHT-VTR and anti-PD-1 antibodies. Presently, most monoclonal antibodies generated against immune checkpoints are under investigation as part of ongoing preclinical or clinical trials conducted to evaluate their efficacy and safety to establish a better combination treatment strategy; however, no significant progress has been made regarding monoclonal antibody targeting of CD28, VISTA, or VTCN1. The application of immune checkpoint inhibitors in early stage tumors to prevent tumor metastasis warrants further evidence; the immune-related adverse events should be considered before combination therapy. This review aims to elucidate the mechanisms of immune checkpoint and the clinical progress on their use in metastatic tumors reported over the last 5 years, which may provide insights into the development of novel therapeutic strategies that will assist with the utilization of various immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xi-Yang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - An-Ping Shi
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Kai-Fu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yu-Jian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xian-Gui Shi
- College of Basic Medicine, Air Force Medical University, Xi’an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
43
|
Wang J, Zhang H, Yin X, Bian Y. Anti-CD47 antibody synergizes with cisplatin against laryngeal cancer by enhancing phagocytic ability of macrophages. Clin Exp Immunol 2021; 205:333-342. [PMID: 33999416 DOI: 10.1111/cei.13618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 01/25/2023] Open
Abstract
Cisplatin is mainly used in late-stage or recurrent laryngeal cancer patients. However, the effect of the chemotherapy is limited due to cisplatin resistance. Therefore, we explored the synergized role of immunosuppressive mediator with cisplatin in laryngeal cancer. Cancer cells isolated from tissues of patients with laryngeal cancer were treated with cisplatin to screen the potential immunosuppressive mediator, whose synergized effects with cisplatin were explored both in vivo and in vitro. CD47 was selected for its high expression in cisplatin-treated laryngeal cancer cells. Blocking CD47 expression using its neutralizing antibody (aCD47) synergized with cisplatin to increase macrophage phagocytosis in a co-culture system of human epithelial type 2 (Hep-2) cancer cells with tumor-associated macrophages (TAMs). Moreover, aCD47 together with cisplatin prevented tumor growth by inhibiting proliferation of cancer cells and the secretion of proinflammatory cytokines, as well as by inducing the apoptosis of cancer cells and phagocytosis of TAMs in a Hep-2-implanted mouse tumor model. aCD47 synergized with cisplatin against laryngeal cancer by enhancing the phagocytic ability of TAMs, and the combined therapy of cisplatin and aCD47 might serve as a novel therapeutic strategy against laryngeal cancer.
Collapse
Affiliation(s)
- Jingmiao Wang
- The First Department of Otorhinolaryngology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haizhong Zhang
- The First Department of Otorhinolaryngology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyan Yin
- The First Department of Otorhinolaryngology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanrui Bian
- The First Department of Otorhinolaryngology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
44
|
3D Multicellular Stem-Like Human Breast Tumor Spheroids Enhance Tumorigenicity of Orthotopic Xenografts in Athymic Nude Rat Model. Cancers (Basel) 2021; 13:cancers13112784. [PMID: 34205080 PMCID: PMC8199968 DOI: 10.3390/cancers13112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). Breast CSCs can induce the formation of new blood vessels at the site of tumor growth and a develop metastatic phenotype by enhancing a stromal cell response, similar to that of the primary breast cancer. The aim of this study was to investigate breast cancer cells cultured in stromal stem cell factor-supplemented media to generate 3D spheroids that exhibit increased stem-like properties. These 3D stem-like spheroids reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat. This approach enables a means to develop orthotopic tumors with a stem-like phenotype in a larger athymic rat rodent model of human breast cancer. Abstract Therapeutic targeting of stem cells needs to be strategically developed to control tumor growth and prevent metastatic burden successfully. Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). The development of 3D stem-like properties of human breast tumor spheroids in stem cell factor conditioned media was investigated in orthotopic xenografts for enhanced tumorgenicity in the athymic nude rat model. MCF-7, ZR-75-1, and MDA-MB-231 breast cancer cell lines were cultured in serum-free, stem cell factor-supplemented medium under non-adherent conditions and passaged to generate 3rd generation spheroids. The spheroids were co-cultured with fetal lung fibroblast (FLF) cells before orthotopic heterotransplantation into the mammary fat pads of athymic nude rats. Excised xenografts were assessed histologically by H&E staining and immunohistochemistry for breast cancer marker (ERB1), proliferation marker (Ki67), mitotic marker (pHH3), hypoxia marker (HIF-2α), CSC markers (CD47, CD44, CD24, and CD133), and vascularization markers (CD31, CD34). Breast cancer cells cultured in stem cell factor supplemented medium generated 3D spheroids exhibited increased stem-like characteristics. The 3D stem-like spheroids co-cultured with FLF as supporting stroma reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat.
Collapse
|
45
|
Popowski KD, Dinh PC, George A, Lutz H, Cheng K. Exosome therapeutics for COVID-19 and respiratory viruses. VIEW 2021; 2:20200186. [PMID: 34766162 PMCID: PMC7995024 DOI: 10.1002/viw.20200186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Respiratory viral diseases are a leading cause of mortality in humans. They have proven to drive pandemic risk due to their complex transmission factors and viral evolution. However, the slow production of effective antiviral drugs and vaccines allows for outbreaks of these diseases, emphasizing a critical need for refined antiviral therapeutics. The delivery of exosomes, a naturally secreted extracellular vesicle, yields therapeutic effects for a variety of diseases, including viral infection. Exosomes and viruses utilize similar endosomal sorting pathways and mechanisms, providing exosomes with the potential to serve as a therapeutic that can target, bind, and suppress cellular uptake of various viruses including the novel severe acute respiratory syndrome coronavirus 2. Here, we review the relationship between exosomes and respiratory viruses, describe potential exosome therapeutics for viral infections, and summarize progress toward clinical translation for lung-derived exosome therapeutics.
Collapse
Affiliation(s)
- Kristen D. Popowski
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Phuong‐Uyen C. Dinh
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Arianna George
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Halle Lutz
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ke Cheng
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleigh/Chapel HillNorth CarolinaUSA
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
46
|
Correlation of CD47 Expression with Adverse Clinicopathologic Features and an Unfavorable Prognosis in Colorectal Adenocarcinoma. Diagnostics (Basel) 2021; 11:diagnostics11040668. [PMID: 33917794 PMCID: PMC8068136 DOI: 10.3390/diagnostics11040668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
CD47, a transmembrane protein, is widely overexpressed on the tumor cell surface. However, the prognostic significance of CD47 expression in colorectal adenocarcinoma (CRA) has not yet been clarified. Here, we investigated the clinicopathologic significance of CD47 expression in CRA. CD47 expression was evaluated via immunohistochemical analysis of microarray sections of 328 CRA tissues. CD47 expression was observed in 53 (16.2%) of the 328 CRA tissues, and positive expression was associated with lymphatic invasion (p = 0.018), perineural invasion (p = 0.024), tumor budding (p = 0.009), the pathologic N stage (p = 0.022), and the American Joint Committee on Cancer (AJCC) stage (p = 0.027). In survival analyses of 329 patients, a positive CD47 expression was associated with a poor recurrence-free survival (RFS) (p = 0.032). In multivariate analysis, however, it was not an independent prognostic factor. In patients who underwent surgical resection without adjuvant treatment, a positive CD47 expression was associated with a shorter RFS (p = 0.001) but not with cancer-specific survival (CSS). In patients who received postoperative adjuvant treatment, no significant differences were found in both RFS and CSS. In conclusion, we investigated CD47 expression in 328 CRA tissues. A positive CD47 expression was observed in a minority (16.2%) of the tissues and was significantly associated with adverse clinicopathologic features and a poor patient outcome.
Collapse
|
47
|
Tian C, Yang Y, Bai B, Wang S, Liu M, Sun RC, Yu T, Chu XM. Potential of exosomes as diagnostic biomarkers and therapeutic carriers for doxorubicin-induced cardiotoxicity. Int J Biol Sci 2021; 17:1328-1338. [PMID: 33867849 PMCID: PMC8040474 DOI: 10.7150/ijbs.58786] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (DOX) is a kind of representative anthracyclines. It has greatly prolonged lifespan of cancer patients. However, a long course of DOX chemotherapy could induce various forms of deaths of cardiomyocytes, such as apoptosis, pyroptosis and ferroptosis, contributing to varieties of cardiac complications called cardiotoxicity. It has become a major concern considering the large number of cancer patients' worldwide and increased survival rates after chemotherapy. Exosomes, a subgroup of extracellular vesicles (EVs), are secreted by nearly all cells and consist of lipid bilayers, nucleic acids and proteins. They can serve as mediators between intercellular communication via the transfer of bioactive molecules from secretory to recipient cells, modulating multiple pathophysiological processes. It has been proven that exosomes in body fluids can serve as biomarkers for doxorubicin-induced cardiotoxicity (DIC). Moreover, exosomes have attracted considerable attention because of their capacity as carriers of certain proteins, genetic materials (miRNA and lncRNA), and chemotherapeutic drugs to decrease the dosage of DOX and alleviate cardiotoxicity. This review briefly describes the characteristics of exosomes and highlights their clinical application potential as diagnostic biomarkers and drug delivery vehicles for DIC, thus providing a strategy for addressing it based on exosomes.
Collapse
Affiliation(s)
- Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao 266071, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao 266000, China
| | - Rui-Cong Sun
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, China
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao 266000, China
| | - Xian-ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao 266032, China
| |
Collapse
|
48
|
Imam R, Chang Q, Black M, Yu C, Cao W. CD47 expression and CD163 + macrophages correlated with prognosis of pancreatic neuroendocrine tumor. BMC Cancer 2021; 21:320. [PMID: 33765961 PMCID: PMC7992939 DOI: 10.1186/s12885-021-08045-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies have suggested the important roles of CD47 and tumor-associated macrophages in the prognosis and immunotherapy of various human malignancies. However, the clinical significance of CD47 expression and CD163+ TAMs in pancreatic neuroendocrine tumor (PanNET) remains unclear. Methods In this study, 47 well-differentiated PanNET resection specimens were collected. CD47 expression and CD163+ macrophages were evaluated using immunohistochemistry and correlated with clinicopathologic properties. Results Positive CD47 staining was seen in all PanNETs as well as adjacent normal islets. Compared to normal islets, CD47 overexpressed in PanNETs (p = 0.0015). In the cohort, lymph node metastasis (LNM), lymphovascular invasion (LVI), and perineural invasion (PNI) were found in 36.2, 59.6, and 48.9% of the cases, respectively. Interestingly, PanNETs with LNM, LVI, or PNI had significantly lower H-score of CD47 than those without LNM (p = 0.035), LVI (p = 0.0005), or PNI (p = 0.0035). PanNETs in patients with disease progression (recurrence/death) also showed a significantly lower expression of CD47 than those without progression (p = 0.022). In contrast, CD163+ macrophage counts were significantly higher in cases with LNM, LVI, and PNI. Conclusions Our data suggest relative low CD47 expression and high CD163+ TAMs may act as indicators for poor prognosis of PanNETs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08045-7.
Collapse
Affiliation(s)
- Rami Imam
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA
| | - Qing Chang
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA
| | - Margaret Black
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA
| | - Caroline Yu
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA
| | - Wenqing Cao
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA.
| |
Collapse
|
49
|
Liu Y, Shi K, Chen Y, Wu X, Chen Z, Cao K, Tao Y, Chen X, Liao J, Zhou J. Exosomes and Their Role in Cancer Progression. Front Oncol 2021; 11:639159. [PMID: 33828985 PMCID: PMC8020998 DOI: 10.3389/fonc.2021.639159] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes from extracellular vesicles can activate or inhibit various signaling pathways by transporting proteins, lipids, nucleic acids and other substances to recipient cells. In addition, exosomes are considered to be involved in the development and progression of tumors from different tissue sources in numerous ways, including remodeling of the tumor microenvironment, promoting angiogenesis, metastasis, and invasion, and regulating the immune escape of tumor cells. However, the precise molecular mechanisms by which exosomes participate in these different processes remains unclear. In this review, we describe the research progress of tumor cell-derived exosomes in cancer progression. We also discuss the prospects of the application of exosomes combined with nanoengineered chemotherapeutic drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Yang Liu
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Shi
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- Department of Dermatology, The First Hospital of Changsha, Changsha, China
| | - Xianrui Wu
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Chen
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology of Xiangya Hospital, Central South University, Changsha, China
| | - Junlin Liao
- Departments of Medical Cosmetology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jianda Zhou
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Iżykowska K, Rassek K, Korsak D, Przybylski GK. Novel targeted therapies of T cell lymphomas. J Hematol Oncol 2020; 13:176. [PMID: 33384022 PMCID: PMC7775630 DOI: 10.1186/s13045-020-01006-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
T cell lymphomas (TCL) comprise a heterogeneous group of non-Hodgkin lymphomas (NHL) that often present at an advanced stage at the time of diagnosis and that most commonly have an aggressive clinical course. Treatment in the front-line setting is most often cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-like regimens, which are effective in B cell lymphomas, but in TCL are associated with a high failure rate and frequent relapses. Furthermore, in contrast to B cell NHL, in which substantial clinical progress has been made with the introduction of monoclonal antibodies, no comparable advances have been seen in TCL. To change this situation and improve the prognosis in TCL, new gene-targeted therapies must be developed. This is now possible due to enormous progress that has been made in the last years in the understanding of the biology and molecular pathogenesis of TCL, which enables the implementation of the research findings in clinical practice. In this review, we present new therapies and current clinical and preclinical trials on targeted treatments for TCL using histone deacetylase inhibitors (HDACi), antibodies, chimeric antigen receptor T cells (CARTs), phosphatidylinositol 3-kinase inhibitors (PI3Ki), anaplastic lymphoma kinase inhibitors (ALKi), and antibiotics, used alone or in combinations. The recent clinical success of ALKi and conjugated anti-CD30 antibody (brentuximab-vedotin) suggests that novel therapies for TCL can significantly improve outcomes when properly targeted.
Collapse
Affiliation(s)
- Katarzyna Iżykowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Dorota Korsak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Grzegorz K Przybylski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland.
| |
Collapse
|