1
|
Weiss K, Agarkova Y, Zwosta A, Hoevel S, Himmelreich AK, Shumanska M, Etich J, Poschmann G, Brachvogel B, Bogeski I, Mielenz D, Riemer J. A fluorescent sensor for real-time monitoring of DPP8/9 reveals crucial roles in immunity and cancer. Life Sci Alliance 2025; 8:e202403076. [PMID: 40355159 PMCID: PMC12069513 DOI: 10.26508/lsa.202403076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Dipeptidyl peptidases 8 and 9 (DPP8/9) are critical for the quality control of mitochondrial and endoplasmic reticulum protein import, immune regulation, cell adhesion, and cell migration. Dysregulation of DPP8/9 is associated with pathologies including tumorigenesis and inflammation. Commonly, DPP8/9 activity is analysed by in vitro assays using artificial substrates, which allow neither continuously monitoring DPP8/9 activity in individual, living cells nor detecting effects from endogenous interactors and posttranslational modifications. Here, we developed DiPAK (for DPP8/9 activity sensor based on AK2), a ratiometric genetically encoded fluorescent sensor, which enables studying DPP8/9 activity in living cells. Using DiPAK, we determined the dynamic range of DPP8/9 activity in cells overexpressing or lacking DPP9. We identified distinct activity levels among melanoma cell lines and found that LPS-induced primary B-cell activation depends on DPP8/9 as the absence of DPP8/9 activity results in apoptotic but not pyroptotic cell death. Consistently, we observed increasing DPP8/9 activity during B-cell maturation. Overall, DiPAK is a versatile tool for real-time single-cell monitoring of DPP8/9 activity in a broad range of cells and organisms.
Collapse
Affiliation(s)
- Konstantin Weiss
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Yelizaveta Agarkova
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexandra Zwosta
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sarah Hoevel
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Ann-Kathrin Himmelreich
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Magdalena Shumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jan Riemer
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Nguyen JMH, Zolg S, Geiss-Friedlander R, Gorrell MD. The multifunctional regulatory post-proline protease dipeptidyl peptidase 9 and its inhibitors: new opportunities for therapeutics. Cell Mol Life Sci 2025; 82:187. [PMID: 40293537 PMCID: PMC12037458 DOI: 10.1007/s00018-025-05719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Dipeptidyl Peptidase 9 (DPP9) is a prolyl amino dipeptidylpeptidase that can cut a post-proline peptide bond at the penultimate position at the N-terminus. By removing N-terminal prolines, this intracellular peptidase acts as an upstream regulator of the N-degron pathway. DPP9 has crucial roles in inflammatory regulation, DNA repair, cellular homeostasis, and cellular proliferation, while its deregulation is linked to cancer and immunological disorders. Currently, there is no fully selective chemical inhibitor and the DPP9 knockout transgenic mouse model is conditional. Mice and humans in which DPP9 catalytic activity is absent die neonatally. DPP9 inhibition for manipulating DPP9 activity in vivo has potential uses and there is rapid progress towards DPP9 selectivity, with 170x selectivity achieved. This review discusses roles of DPP9 in biology and diseases and potential applications of compounds that inhibit DPP9 and its related proteases.
Collapse
Affiliation(s)
- Jasmine Minh Hang Nguyen
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Samuel Zolg
- Center of Biochemistry and Molecular Cell Research, Albert-Ludwigs-Universität, 79104, Freiburg, Germany
| | - Ruth Geiss-Friedlander
- Center of Biochemistry and Molecular Cell Research, Albert-Ludwigs-Universität, 79104, Freiburg, Germany.
| | - Mark Douglas Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
3
|
Dalapati T, Wang L, Jones AG, Cardwell J, Konigsberg IR, Bossé Y, Sin DD, Timens W, Hao K, Yang I, Ko DC. Context-specific eQTLs provide deeper insight into causal genes underlying shared genetic architecture of COVID-19 and idiopathic pulmonary fibrosis. HGG ADVANCES 2025; 6:100410. [PMID: 39876559 PMCID: PMC11872446 DOI: 10.1016/j.xhgg.2025.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Most genetic variants identified through genome-wide association studies (GWASs) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell type- and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of idiopathic pulmonary fibrosis (IPF) and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWASs, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.
Collapse
Affiliation(s)
- Trisha Dalapati
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Angela G Jones
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jonathan Cardwell
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Department of Molecular Medicine, Québec City, QC, Canada
| | - Don D Sin
- Center for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ivana Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Hartmann L, Kristofori P, Li C, Becker K, Hexemer L, Bohn S, Lenhardt S, Weiss S, Voss B, Loewer A, Legewie S. Transcriptional regulators ensuring specific gene expression and decision-making at high TGFβ doses. Life Sci Alliance 2025; 8:e202402859. [PMID: 39542693 PMCID: PMC11565188 DOI: 10.26508/lsa.202402859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
TGFβ-signaling regulates cancer progression by controlling cell division, migration, and death. These outcomes are mediated by gene expression changes, but the mechanisms of decision-making toward specific fates remain unclear. Here, we combine SMAD transcription factor imaging, genome-wide RNA sequencing, and morphological assays to quantitatively link signaling, gene expression, and fate decisions in mammary epithelial cells. Fitting genome-wide kinetic models to our time-resolved data, we find that most of the TGFβ target genes can be explained as direct targets of SMAD transcription factors, whereas the remainder show signs of complex regulation, involving delayed regulation and strong amplification at high TGFβ doses. Knockdown experiments followed by global RNA sequencing revealed transcription factors interacting with SMADs in feedforward loops to control delayed and dose-discriminating target genes, thereby reinforcing the specific epithelial-to-mesenchymal transition at high TGFβ doses. We identified early repressors, preventing premature activation, and a late activator, boosting gene expression responses for a sufficiently strong TGFβ stimulus. Taken together, we present a global view of TGFβ-dependent gene regulation and describe specificity mechanisms reinforcing cellular decision-making.
Collapse
Affiliation(s)
- Laura Hartmann
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Panajot Kristofori
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Congxin Li
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Kolja Becker
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
| | - Lorenz Hexemer
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Stefan Bohn
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sonja Lenhardt
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sylvia Weiss
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Björn Voss
- Department of RNA-Biology & Bioinformatics, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
| | - Alexander Loewer
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Ashok G, AlAsmari AF, AlAsmari F, Livingstone P, Anbarasu A, Ramaiah S. Transcriptomic, mutational and structural bioinformatics approaches to explore the therapeutic role of FAP in predominant cancer types. Discov Oncol 2024; 15:699. [PMID: 39579201 PMCID: PMC11585531 DOI: 10.1007/s12672-024-01531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
Fibroblast activating protein (FAP) is a cell surface marker of cancer-associated fibroblasts with a distinct pro-tumorigenic role. The present study analyzed the pan-cancer expression; and clinical and mutational profiles of the FAP coding gene. Molecular dynamics simulation (MDS) deciphered the backbone dynamics and energetics of FAP. Virtual screening and subsequent pharmacokinetic-profiling (PK) filtered lead molecules, which were subjected to molecular docking. MDS projected a stable trajectory for the protein, as dynamics evidenced by low residue-level fluctuations, stable backbone dynamics, and energetics. Around five stabilization and deleterious mutations in the catalytic domain were identified. The low binding energy (BE) profiles from molecular docking studies screened the top five lead molecules for site-specific intermolecular interaction studies. Lead-16 (ZINC000245289699) exhibited a significant BE and inhibition constant of -6.87 kcal/mol and 12.27 μM, respectively, across FAP and its mutants. Interestingly, the docked complexes of Lead-16 interacted with the catalytic triad residues (S624, D702, and H734). The docked complexes of Lead-16 with FAP showed lower average root-mean-square fluctuations compared to the unbound protein, suggesting a stable ligand-protein complex. The tumor-specific expression and its critical overall survival suggest the inhibitors of FAP for potential cancer therapeutic intervention and hindering tumor microenvironment-driven cancer progression.
Collapse
Affiliation(s)
- Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
- Department of Bio-Sciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, 13 Riyadh, Saudi Arabia
| | - Fawaz AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, 13 Riyadh, Saudi Arabia
| | - Paul Livingstone
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, UK
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
- Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
- Department of Bio-Sciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Zhou Y, Chen Y, Xuan C, Li X, Tan Y, Yang M, Cao M, Chen C, Huang X, Hu R. DPP9 regulates NQO1 and ROS to promote resistance to chemotherapy in liver cancer cells. Redox Biol 2024; 75:103292. [PMID: 39094401 PMCID: PMC11345690 DOI: 10.1016/j.redox.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
Chemotherapy has been the standard treatment for liver cancer. However, intrinsic or acquired drug resistance remains a major barrier to successful treatment. At present, the underlying molecular mechanisms of chemoresistance in liver cancer have not been elucidated. Dipeptidyl peptidase 9 (DPP9) is a member of the dipeptidyl peptidase IV family that has been found to be highly expressed in a variety of tumors, including liver cancer. It is unclear whether DPP9 affects chemoresistance in liver cancer. In this study, we find that DPP9 weakens the responses of liver cancer cells to chemotherapy drugs by up-regulating NQO1 and inhibiting intracellular ROS levels. In terms of mechanism, DPP9 inhibits ubiquitin-mediated degradation of NRF2 protein by binding to KEAP1, up-regulates NRF2 protein levels, promotes mRNA transcription of NQO1, and inhibits intracellular ROS levels. In addition, the NQO1 inhibitor dicoumarol can enhance the efficacy of chemotherapy drugs in liver cancer cells. Collectively, our findings suggest that inhibiting DPP9/NQO1 signaling can serve as a potential therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaxin Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenyuan Xuan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingyan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Tan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengran Cao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chi Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China.
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Dalapati T, Wang L, Jones AG, Cardwell J, Konigsberg IR, Bossé Y, Sin DD, Timens W, Hao K, Yang I, Ko DC. Context-specific eQTLs reveal causal genes underlying shared genetic architecture of critically ill COVID-19 and idiopathic pulmonary fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.13.24310305. [PMID: 39040187 PMCID: PMC11261970 DOI: 10.1101/2024.07.13.24310305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell-type and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of IPF and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWAS, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.
Collapse
Affiliation(s)
- Trisha Dalapati
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Angela G. Jones
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jonathan Cardwell
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iain R. Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec – Université Laval, Department of Molecular Medicine, Québec City, Canada
| | - Don D. Sin
- Center for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ivana Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Lead contact
| |
Collapse
|
8
|
Heß L, Aliar K, Grünwald BT, Griffin R, Lozan A, Knöller M, Khokha R, Brummer T, Reinheckel T. Dipeptidyl-peptidase 9 regulates the dynamics of tumorigenesis and metastasis in breast cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167133. [PMID: 38531482 DOI: 10.1016/j.bbadis.2024.167133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The cytosolic dipeptidyl-aminopeptidase 9 (DPP9) cleaves protein N-termini post-proline or -alanine. Our analysis of DPP9 mRNA expression from the TCGA 'breast cancer' data set revealed that low/intermediate DPP9 levels are associated with poor overall survival of breast cancer patients. To unravel the impact of DPP9 on breast cancer development and progression, the transgenic MMTV-PyMT mouse model of metastasizing breast cancer was used. In addition, tissue- and time-controlled genetic deletion of DPP9 by the Cre-loxP recombination system was done. Despite a delay of tumor onset, a higher number of lung metastases were measured in DPP9-deficient mice compared to controls. In human mammary epithelial cells with oncogenic RAS pathway activation, DPP9 deficiency delayed tumorigenic transformation and accelerated TGF-β1 induced epithelial-to-mesenchymal transition (EMT) of spheroids. For further analysis of the mechanism, primary breast tumor cells were isolated from the MMTV-PyMT model. DPP9 deficiency in these cells caused cancer cell migration and invasion accompanied by EMT. In absence of DPP9, the EMT transcription factor ZEB1 was stabilized due to insufficient degradation by the proteasome. In summary, low expression of DPP9 appears to decelerate mammary tumorigenesis but favors EMT and metastasis, which establishes DPP9 as a novel dynamic regulator of breast cancer initiation and progression.
Collapse
Affiliation(s)
- Lisa Heß
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Kazeera Aliar
- Princess Margaret Cancer Centre, University Health Network, ON M5G 2G4, Toronto, Canada
| | - Barbara T Grünwald
- Princess Margaret Cancer Centre, University Health Network, ON M5G 2G4, Toronto, Canada
| | - Ricarda Griffin
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Alina Lozan
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, 79104 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mariel Knöller
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, ON M5G 2G4, Toronto, Canada; Department of Medical Biophysics, University of Toronto, ON M5G 2G4, Toronto, Canada
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, 79104 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Centre for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), University Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, 79104 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Centre for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), University Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
9
|
Thakur D, Sengupta D, Mahapatra E, Das S, Sarkar R, Mukherjee S. Glucocorticoid receptor: a harmonizer of cellular plasticity in breast cancer-directs the road towards therapy resistance, metastatic progression and recurrence. Cancer Metastasis Rev 2024; 43:481-499. [PMID: 38170347 DOI: 10.1007/s10555-023-10163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Recent therapeutic advances have significantly uplifted the quality of life in breast cancer patients, yet several impediments block the road to disease-free survival. This involves unresponsiveness towards administered therapy, epithelial to mesenchymal transition, and metastatic progression with the eventual appearance of recurrent disease. Attainment of such characteristics is a huge adaptive challenge to which tumour cells respond by acquiring diverse phenotypically plastic states. Several signalling networks and mediators are involved in such a process. Glucocorticoid receptor being a mediator of stress response imparts prognostic significance in the context of breast carcinoma. Involvement of the glucocorticoid receptor in the signalling cascade of breast cancer phenotypic plasticity needs further elucidation. This review attempted to shed light on the inter-regulatory interactions of the glucocorticoid receptor with the mediators of the plasticity program in breast cancer; which may provide a hint for strategizing therapeutics against the glucocorticoid/glucocorticoid receptor axis so as to modulate phenotypic plasticity in breast carcinoma.
Collapse
Affiliation(s)
- Debanjan Thakur
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Salini Das
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Ruma Sarkar
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388421, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
10
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Santamaria P, Sari A, Nibali L. Molecular profiling of gingival crevicular fluid fails to distinguish between infrabony and suprabony periodontal defects. J Clin Periodontol 2023; 50:1315-1325. [PMID: 37438680 DOI: 10.1111/jcpe.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
AIM To assess the differential molecular profiling of gingival crevicular fluid (GCF) from infrabony and suprabony periodontal defects compared with healthy sites. MATERIALS AND METHODS Seventy-five samples from 25 patients with untreated periodontitis stage III-IV were included. Clinical and radiological parameters as well as GCF samples were collected from an infrabony defect, a suprabony defect and a periodontally healthy site per patient. A multiplex bead immunoassay was performed to assess the level of 18 biomarkers associated with inflammation, connective tissue degradation and regeneration/repair. RESULTS GCF volume was higher in periodontal sites compared with healthy sites, with no significant difference between infrabony and suprabony defects. Fourteen biomarkers were elevated in infrabony and suprabony sites compared with healthy sites (p < .05). Only interleukin-1α levels were increased in infrabony compared with suprabony sites, whereas there was no difference in probing pocket depth. CONCLUSIONS Although the GCF molecular profile clearly differentiates periodontally affected sites from healthy sites, the different architecture between infrabony and suprabony defects is not reflected in GCF biomarker changes.
Collapse
Affiliation(s)
- Pasquale Santamaria
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Aysegul Sari
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Bettecken A, Heß L, Hölzen L, Reinheckel T. Dipeptidyl-Aminopeptidases 8 and 9 Regulate Autophagy and Tamoxifen Response in Breast Cancer Cells. Cells 2023; 12:2031. [PMID: 37626841 PMCID: PMC10453625 DOI: 10.3390/cells12162031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The cytosolic dipeptidyl-aminopeptidases 8 (DPP8) and 9 (DPP9) belong to the DPPIV serine proteases with the unique characteristic of cleaving off a dipeptide post-proline from the N-termini of substrates. To study the role of DPP8 and DPP9 in breast cancer, MCF-7 cells (luminal A-type breast cancer) and MDA.MB-231 cells (basal-like breast cancer) were used. The inhibition of DPP8/9 by 1G244 increased the number of lysosomes in both cell lines. This phenotype was more pronounced in MCF-7 cells, in which we observed a separation of autophagosomes and lysosomes in the cytosol upon DPP8/9 inhibition. Likewise, the shRNA-mediated knockdown of either DPP8 or DPP9 induced autophagy and increased lysosomes. DPP8/9 inhibition as well as the knockdown of the DPPs reduced the cell survival and proliferation of MCF-7 cells. Additional treatment of MCF-7 cells with tamoxifen, a selective estrogen receptor modulator (SERM) used to treat patients with luminal breast tumors, further decreased survival and proliferation, as well as increased cell death. In summary, both DPP8 and DPP9 activities confine macroautophagy in breast cancer cells. Thus, their inhibition or knockdown reduces cell viability and sensitizes luminal breast cancer cells to tamoxifen treatment.
Collapse
Affiliation(s)
- Aaron Bettecken
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Heß
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Hölzen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79104 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79104 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Centre of Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Li R, Liu C, Wan C, Liu T, Zhang R, Du J, Wang X, Jiao X, Gao R, Li B. A Targeted and pH-Responsive Nano-Graphene Oxide Nanoparticle Loaded with Doxorubicin for Synergetic Chemo-Photothermal Therapy of Oral Squamous Cell Carcinoma. Int J Nanomedicine 2023; 18:3309-3324. [PMID: 37351329 PMCID: PMC10284161 DOI: 10.2147/ijn.s402249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Purpose Oral squamous cell carcinoma (OSCC) is a malignant disease with serious impacts on human health and quality of life worldwide. This disease is traditionally treated through a combination of surgery, radiotherapy, and chemotherapy. However, the efficacy of traditional treatments is hindered by systemic toxicity, limited therapeutic effects, and drug resistance. Fibroblast activation protein (FAP) is a membrane-bound protease. Although FAP has limited expression in normal adult tissues, it is highly expressed in the tumor microenvironment of many solid cancers - a characteristic that makes it an ideal target for anticancer therapy. In this study, we constructed a nano-drug delivery system (NPF@DOX) targeting FAP to increase the therapeutic efficiency of synergistic chemo-photothermal therapy against OSCC. Methods We utilized PEGylated nano-graphene oxide (NGO) to link doxorubicin (DOX) and fluorescently-labeled, FAP-targeted peptide chains via hydrogen bonding and π-π bonding to enhance the targeting capability of NPF@DOX. The synthesis of NPF@DOX was analyzed using UV-Vis and FT-IR spectroscopy and its morphology using transmission electron microscopy (TEM). Additionally, the drug uptake efficiency in vitro, photo-thermal properties, release performance, and anti-tumor effects of NPF@DOX were evaluated and further demonstrated in vivo. Results Data derived from FT-IR, UV-Vis, and TEM implied successful construction of the NPF@DOX nano-drug delivery system. Confocal laser scanning microscopy images and in vivo experiments demonstrated the targeting effects of FAP on OSCC. Furthermore, NPF@DOX exhibited a high photothermal conversion efficiency (52.48%) under near-infrared radiation. The thermogenic effect of NPF@DOX simultaneously promoted local release of DOX and apoptosis based on a pH-stimulated effect. Importantly, FAP-targeted NPF@DOX in combination with PTT showed better tumor suppression performance in vivo and in vitro than did either therapy individually. Conclusion NPF@DOX can precisely target OSCC, and combined treatment with chemical and photothermal therapy can improve the therapeutic outcomes of OSCC. This method serves as an efficient therapeutic strategy for the development of synergistic anti-tumor research.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Chen Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Rongrong Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
14
|
Castle AR, Kang SG, Eskandari-Sedighi G, Wohlgemuth S, Nguyen MA, Drucker DJ, Mulvihill EE, Westaway D. Beta-endoproteolysis of the cellular prion protein by dipeptidyl peptidase-4 and fibroblast activation protein. Proc Natl Acad Sci U S A 2023; 120:e2209815120. [PMID: 36574660 PMCID: PMC9910601 DOI: 10.1073/pnas.2209815120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 12/29/2022] Open
Abstract
The cellular prion protein (PrPC) converts to alternatively folded pathogenic conformations (PrPSc) in prion infections and binds neurotoxic oligomers formed by amyloid-β α-synuclein, and tau. β-Endoproteolysis, which splits PrPC into N- and C-terminal fragments (N2 and C2, respectively), is of interest because a protease-resistant, C2-sized fragment (C2Sc) accumulates in the brain during prion infections, seemingly comprising the majority of PrPSc at disease endpoint in mice. However, candidates for the underlying proteolytic mechanism(s) remain unconfirmed in vivo. Here, a cell-based screen of protease inhibitors unexpectedly linked type II membrane proteins of the S9B serine peptidase subfamily to PrPC β-cleavage. Overexpression experiments in cells and assays with recombinant proteins confirmed that fibroblast activation protein (FAP) and its paralog, dipeptidyl peptidase-4 (DPP4), cleave directly at multiple sites within PrPC's N-terminal domain. For wild-type mouse and human PrPC substrates expressed in cells, the rank orders of activity were human FAP ~ mouse FAP > mouse DPP4 > human DPP4 and human FAP > mouse FAP > mouse DPP4 >> human DPP4, respectively. C2 levels relative to total PrPC were reduced in several tissues from FAP-null mice, and, while knockout of DPP4 lacked an analogous effect, the combined DPP4/FAP inhibitor linagliptin, but not the FAP-specific inhibitor SP-13786, reduced C2Sc and total PrPSc levels in two murine cell-based models of prion infections. Thus, the net activity of the S9B peptidases FAP and DPP4 and their cognate inhibitors/modulators affect the physiology and pathogenic potential of PrPC.
Collapse
Affiliation(s)
- Andrew R. Castle
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
| | - Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, ABT6G 2H7, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, Ottawa, ONK1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1H 8M5, Canada
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ONM5G 1X5, Canada
- Department of Medicine, University of Toronto, Toronto, ONM5S 2J7, Canada
| | - Erin E. Mulvihill
- University of Ottawa Heart Institute, Ottawa, ONK1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1H 8M5, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
- Department of Biochemistry, University of Alberta, Edmonton, ABT6G 2H7, Canada
| |
Collapse
|
15
|
Ye P, Duan W, Leng YQ, Wang YK, Tan X, Wang WZ. DPP3: From biomarker to therapeutic target of cardiovascular diseases. Front Cardiovasc Med 2022; 9:974035. [PMID: 36312232 PMCID: PMC9605584 DOI: 10.3389/fcvm.2022.974035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is the leading cause of death globally among non-communicable diseases, which imposes a serious socioeconomic burden on patients and the healthcare system. Therefore, finding new strategies for preventing and treating cardiovascular diseases is of great significance in reducing the number of deaths and disabilities worldwide. Dipeptidyl peptidase 3 (DPP3) is the first zinc-dependent peptidase found among DPPs, mainly distributes within the cytoplasm. With the unique HEXXGH catalytic sequence, it is associated with the degradation of oligopeptides with 4 to 10 amino acids residues. Accumulating evidences have demonstrated that DPP3 plays a significant role in almost all cellular activities and pathophysiological mechanisms. Regarding the role of DPP3 in cardiovascular diseases, it is currently mainly used as a biomarker for poor prognosis in patients with cardiovascular diseases, suggesting that the level of DPP3 concentration in plasma is closely linked to the mortality of diseases such as cardiogenic shock and heart failure. Interestingly, it has been reported recently that DPP3 regulates blood pressure by interacting with the renin-angiotensin system. In addition, DPP3 also participates in the processes of pain signaling, inflammation, and oxidative stress. But the exact mechanism by which DPP3 affects cardiovascular function is not clear. Hence, this review summarizes the recent advances in the structure and catalytic activity of DPP3 and its extensive biological functions, especially its role as a therapeutic target in cardiovascular diseases. It will provide a theoretical basis for exploring the potential value of DPP3 as a therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yue-Qi Leng
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Xing Tan
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,*Correspondence: Wei-Zhong Wang
| |
Collapse
|
16
|
Cui C, Tian X, Wei L, Wang Y, Wang K, Fu R. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors. Front Pharmacol 2022; 13:1002871. [PMID: 36172198 PMCID: PMC9510841 DOI: 10.3389/fphar.2022.1002871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are widely expressed in mammals including humans, mainly locate in the cytoplasm. The DPP8 and DPP9 (DPP8/9) belong to serine proteolytic enzymes, they can recognize and cleave N-terminal dipeptides of specific substrates if proline is at the penultimate position. Because the localization of DPP8/9 is different from that of DPP4 and the substrates for DPP8/9 are not yet completely clear, their physiological and pathological roles are still being further explored. In this article, we will review the recent research advances focusing on the expression, regulation, and functions of DPP8/9 in physiology and pathology status. Emerging research results have shown that DPP8/9 is involved in various biological processes such as cell behavior, energy metabolism, and immune regulation, which plays an essential role in maintaining normal development and physiological functions of the body. DPP8/9 is also involved in pathological processes such as tumorigenesis, inflammation, and organ fibrosis. In recent years, related research on immune cell pyroptosis has made DPP8/9 a new potential target for the treatment of hematological diseases. In addition, DPP8/9 inhibitors also have great potential in the treatment of tumors and chronic kidney disease.
Collapse
Affiliation(s)
- Chenkai Cui
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Linting Wei
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinhong Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kexin Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Rongguo Fu,
| |
Collapse
|
17
|
Santi MD, Zhang M, Salvo E, Asam K, Viet C, Xie T, Amit M, Aouizerat B, Ye Y. Schwann Cells Induce Phenotypic Changes in Oral Cancer Cells. Adv Biol (Weinh) 2022; 6:e2200187. [PMID: 35925609 PMCID: PMC9474679 DOI: 10.1002/adbi.202200187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Indexed: 01/28/2023]
Abstract
Head and neck cancer (HNC) is the seventh most common cancer worldwide, the majority being oral squamous cell carcinoma. Despite advances in cancer diagnosis and treatment, the survival rate of patients with HNC remains stagnant. The cancer-nerve interaction has been recognized as an important driver of cancer progression. Schwann cells, a type of peripheral glia, have been implicated in promoting cancer cell growth, migration, dispersion, and invasion into the nerve in many cancers. Here, it is demonstrated that the presence of Schwann cells makes oral cancer cells more aggressive by promoting their proliferation, extracellular matrix breakdown, and altering cell metabolism. Furthermore, oral cancer cells became larger, more circular, with more projections and nuclei following co-culturing with Schwann cells. RNA-sequencing analysis in oral cancer cells following exposure to Schwann cells shows corresponding changes in genes involved in the hallmarks of cancer and cell metabolism; the enriched KEGG pathways are spliceosome, RNA transport, cell cycle, axon guidance, signaling pathways regulating pluripotency of stem cells, cAMP signaling, WNT signaling, proteoglycans in cancer and PI3K-Akt signaling. Taken together, these results suggest a significant role for Schwann cells in facilitating oral cancer progression, highlighting their potential as a target to treat oral cancer progression.
Collapse
Affiliation(s)
- Maria Daniela Santi
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Morgan Zhang
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Elizabeth Salvo
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Kesava Asam
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Chi Viet
- Loma Linda University School of Dentistry, Loma Linda, CA92350
| | - Tongxin Xie
- Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Moran Amit
- Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Bradley Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Yi Ye
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| |
Collapse
|
18
|
Sun C, Chen Y, Kim NH, Lowe S, Ma S, Zhou Z, Bentley R, Chen YS, Tuason MW, Gu W, Bhan C, Tuason JPW, Thapa P, Cheng C, Zhou Q, Zhu Y. Identification and Verification of Potential Biomarkers in Gastric Cancer By Integrated Bioinformatic Analysis. Front Genet 2022; 13:911740. [PMID: 35910202 PMCID: PMC9337873 DOI: 10.3389/fgene.2022.911740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Gastric cancer (GC) is a common cancer with high mortality. This study aimed to identify its differentially expressed genes (DEGs) using bioinformatics methods. Methods: DEGs were screened from four GEO (Gene Expression Omnibus) gene expression profiles. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. A protein–protein interaction (PPI) network was constructed. Expression and prognosis were assessed. Meta-analysis was conducted to further validate prognosis. The receiver operating characteristic curve (ROC) was analyzed to identify diagnostic markers, and a nomogram was developed. Exploration of drugs and immune cell infiltration analysis were conducted. Results: Nine up-regulated and three down-regulated hub genes were identified, with close relations to gastric functions, extracellular activities, and structures. Overexpressed Collagen Type VIII Alpha 1 Chain (COL8A1), Collagen Type X Alpha 1 Chain (COL10A1), Collagen Triple Helix Repeat Containing 1 (CTHRC1), and Fibroblast Activation Protein (FAP) correlated with poor prognosis. The area under the curve (AUC) of ADAM Metallopeptidase With Thrombospondin Type 1 Motif 2 (ADAMTS2), COL10A1, Collagen Type XI Alpha 1 Chain (COL11A1), and CTHRC1 was >0.9. A nomogram model based on CTHRC1 was developed. Infiltration of macrophages, neutrophils, and dendritic cells positively correlated with COL8A1, COL10A1, CTHRC1, and FAP. Meta-analysis confirmed poor prognosis of overexpressed CTHRC1. Conclusion: ADAMTS2, COL10A1, COL11A1, and CTHRC1 have diagnostic values in GC. COL8A1, COL10A1, CTHRC1, and FAP correlated with worse prognosis, showing prognostic and therapeutic values. The immune cell infiltration needs further investigations.
Collapse
Affiliation(s)
- Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Yue Chen
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, Hefei, China
| | - Na Hyun Kim
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, United States
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, United States
| | - Yi-Sheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Wenchao Gu
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chandur Bhan
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | | | - Pratikshya Thapa
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Ce Cheng
- The University of Arizona College of Medicine, Tucson, AZ, United States
- Banner-University Medical Center South, Tucson, AZ, United States
| | - Qin Zhou
- Mayo Clinic, Rochester, MN, United States
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yanzhe Zhu,
| |
Collapse
|
19
|
Jingjian Q, Jiang E, Shang Z. Prognostic value of tumor-stroma ratio in oral carcinoma: role of cancer associated fibroblasts. Oral Dis 2022. [PMID: 35388593 DOI: 10.1111/odi.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Tumor-stroma Ratio(TSR) is a promising parameter representing the abundance of the stroma which has been validated in many solid tumors. However, it is still not clear which part of stroma mainly contribute to the prognostic value of TSR. The aim of this study is to confirm the prognostic value of TSR in a large cohort of oral squamous cell carcinoma (OSCC) and further demonstrated that cancer associated fibroblasts (CAFs)-stroma ratio (CSR) contributed to the prognostic value of TSR. MATERIALS AND METHODS TSR was evaluated on hematoxylin and eosin-stained tissue samples from 581 patients with OSCC, which divides patients into high (>50%) and low (<50%) stroma. Then, CSR was estimated on immunohistochemical staining slides of 100 patients selected from 581patients. RESULTS In multivariate analysis, TSR was identified as an independent prognostic factor for disease-free survival (DFS) (P < 0.001) and oral cancer-specific survival (OCSS) (P < 0.001). The interaction term reached statistical significance for histological grade for DFS and OCSS separately. Furthermore, the high-stroma group had a higher CSR than the low-stroma group. CONCLUSION The prognostic value of TSR is validated in OSCC particularly in moderate and high differentiation. And CSR palys its part in the prognosis of TSR.
Collapse
Affiliation(s)
- Qiu Jingjian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine of Ministry of education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, 430089, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine of Ministry of education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, 430089, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine of Ministry of education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, 430089, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Lyu Z, Li Y, Zhu D, Wu S, Hu F, Zhang Y, Li Y, Hou T. Fibroblast Activation Protein-Alpha is a Prognostic Biomarker Associated With Ferroptosis in Stomach Adenocarcinoma. Front Cell Dev Biol 2022; 10:859999. [PMID: 35359436 PMCID: PMC8963861 DOI: 10.3389/fcell.2022.859999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The potential role of fibroblast activation protein-alpha (FAP) in modulating the progression and invasion of stomach adenocarcinoma (STAD) has not yet been comprehensively investigated. This study aimed to explore the role of FAP in STAD and the underlying association between FAP and the tumor microenvironment (TME) and ferroptosis.Methods: Overall survival was analyzed to evaluate the prognostic value of FAP based on gene expression data and clinical information on STAD. Associations between FAP expression, clinical parameters, and immune characteristics were comprehensively analyzed. The ferroptosis-related patterns of STAD samples were investigated based on 43 ferroptosis-related genes, and the correlations between these clusters and clinical characteristics were evaluated. The possible biological functions and pathways were explored using gene set enrichment analysis (GSEA).Results: FAP was identified as a novel biomarker that significantly contributed to the poor prognosis of STAD (hazard ratio = 1.270, P = 0.013). The elevated level of FAP expression was related to a more advanced tumor stage in STAD. The close relationship between FAP and the TME was validated. Four distinct ferroptosis-related clusters (A–D) were evident. Evaluating ferroptosis-related clusters could illustrate the stages of STAD and patient prognosis. Cluster C displayed the lowest FAP expression and a better prognosis than the other clusters. The different clusters were linked to different biological mechanisms, including epithelial-mesenchymal transition and immune-relevant pathways.Conclusion: FAP is a promising biomarker to distinguish prognosis and is associated with the TME and ferroptosis in STAD.
Collapse
Affiliation(s)
- Zejian Lyu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yafang Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dandan Zhu
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sifan Wu
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Fei Hu
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yu Zhang
- Medical Department, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yu Zhang, ; Yong Li, ; Tieying Hou,
| | - Yong Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yu Zhang, ; Yong Li, ; Tieying Hou,
| | - Tieying Hou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
- Medical Department, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yu Zhang, ; Yong Li, ; Tieying Hou,
| |
Collapse
|
21
|
Vlachostergios PJ, Karathanasis A, Tzortzis V. Expression of Fibroblast Activation Protein Is Enriched in Neuroendocrine Prostate Cancer and Predicts Worse Survival. Genes (Basel) 2022; 13:135. [PMID: 35052475 PMCID: PMC8774973 DOI: 10.3390/genes13010135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Advanced prostate cancer (PC) may accumulate genomic alterations that hallmark lineage plasticity and transdifferentiation to a neuroendocrine (NE) phenotype. Fibroblast activation protein (FAP) is a key player in epithelial-to-mesenchymal transition (EMT). However, its clinical value and role in NE differentiation in advanced PC has not been fully investigated. METHODS Two hundred and eight patients from a multicenter, prospective cohort of patients with metastatic castration-resistant prostate cancer (CRPC) with available RNA sequencing data were analyzed for tumor FAP mRNA expression, and its association with overall survival (OS) and NE tumor features was investigated. RESULTS Twenty-one patients (10%) were found to have high FAP mRNA expression. Compared to the rest, this subset had a proportionally higher exposure to taxanes and AR signaling inhibitors (abiraterone or enzalutamide) and was characterized by active NE signaling, evidenced by high NEPC- and low AR-gene expression scores. These patients with high tumor mRNA FAP expression had a more aggressive clinical course and significantly shorter survival (12 months) compared to those without altered FAP expression (28 months, log-rank p = 0.016). CONCLUSIONS FAP expression may serve as a valuable NE marker indicating a worse prognosis in patients with metastatic CRPC.
Collapse
MESH Headings
- Androgen Antagonists/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/mortality
- Carcinoma, Neuroendocrine/pathology
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Prognosis
- Prospective Studies
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/mortality
- Prostatic Neoplasms, Castration-Resistant/pathology
- Survival Rate
Collapse
Affiliation(s)
- Panagiotis J. Vlachostergios
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Athanasios Karathanasis
- Department of Urology, University of Thessaly School of Health Sciences Faculty of Medicine, University Hospital of Larissa, 41100 Larissa, Greece;
| | - Vassilios Tzortzis
- Department of Urology, University of Thessaly School of Health Sciences Faculty of Medicine, University Hospital of Larissa, 41100 Larissa, Greece;
| |
Collapse
|
22
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Regulation of Fibroblast Activation Protein-α Expression: Focus on Intracellular Protein Interactions. J Med Chem 2021; 64:14028-14045. [PMID: 34523930 DOI: 10.1021/acs.jmedchem.1c01010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prolyl-specific peptidase fibroblast activation protein-α (FAP-α) is expressed at very low or undetectable levels in nondiseased human tissues but is selectively induced in activated (myo)fibroblasts at sites of tissue remodeling in fibrogenic processes. In normal regenerative processes involving transient fibrosis FAP-α+(myo)fibroblasts disappear from injured tissues, replaced by cells with a normal FAP-α- phenotype. In chronic uncontrolled pathological fibrosis FAP-α+(myo)fibroblasts permanently replace normal tissues. The mechanisms of regulation and elimination of FAP-α expression in(myo)fibroblasts are unknown. According to a yeast two-hybrid screen and protein databanks search, we propose that the intracellular (co)-chaperone BAG6/BAT3 can interact with FAP-α, mediated by the BAG6/BAT3 Pro-rich domain, inducing proteosomal degradation of FAP-α protein under tissue homeostasis. In this Perspective, we discuss our findings in the context of current knowledge on the regulation of FAP-α expression and comment potential therapeutic strategies for uncontrolled fibrosis, including small molecule degraders (PROTACs)-modified FAP-α targeted inhibitors.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland.,University Institute of Pathology, CHUV and UNIL, CH1011 Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters-Paris, 1 rue Pierre Fontaine, 91000 Evry, France.,Hybrigenics Corporation, Cambridge Innovation Center, 50 Milk Street, Cambridge, Massachusetts 02142, United States
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland
| |
Collapse
|
23
|
Wu R, Zuo W, Xu X, Bi L, Zhang C, Chen H, Liu H. MCU That Is Transcriptionally Regulated by Nrf2 Augments Malignant Biological Behaviors in Oral Squamous Cell Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650791. [PMID: 34189138 PMCID: PMC8195654 DOI: 10.1155/2021/6650791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/10/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To clarify the role and molecular mechanism of mitochondrial calcium uniporter (MCU) in the malignant biological behaviors of oral squamous cell carcinoma (OSCC) cells through clinical and cellular experiments. METHODS Immunohistochemistry and qRT-PCR techniques were used to observe the expression of MCU, nuclear factor erythroid 2-related factor 2 (Nrf2), mitochondrial calcium uptake 1 (MICU1), and MICU2 in OSCC and normal tissues. After treatment with si-MCU, spermine, and/or sh-Nrf2, malignant biological behaviors of OSCC cells including proliferation, migration, and apoptosis were detected by clone formation, migration, and mitochondrial membrane potential (MMP) assays. Furthermore, MCU, MICU1, MICU2, Nrf2, and other proteins related to malignant biological behaviors were examined using western blot, immunohistochemistry, and immunofluorescence assays. RESULTS MCU, Nrf2, and MICU1 were strongly expressed in OSCC as compared to normal tissues, while MICU2 was relatively weakly expressed in OSCC tissues. Knockdown of MCU distinctly weakened proliferation and migration and lowered MMP level in CAL 27 cells. Conversely, its activation reinforced migrated capacity and increased MMP level in CAL 27 cells, which was reversed after cotransfection with sh-Nrf2. After treatment with si-MCU or spermine, Nrf2 expression was not affected in CAL 27 cells. However, MCU expression was distinctly suppressed in CAL 27 cells transfected with sh-Nrf2. Furthermore, knockdown of Nrf2 significantly reversed the increase in expression of MICU1 and MICU2 induced by MCU activation in CAL 27 cells. CONCLUSION MCU, as a novel oncogene of OSCC, augments malignant biological behaviors of OSCC cells, which could be transcriptionally regulated by Nrf2.
Collapse
Affiliation(s)
- Ran Wu
- Department of Stomatology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| | - Weiwen Zuo
- Department of Stomatology, Tangshan Vocational and Technical College, Tangshan, 063000 Hebei, China
| | - Xiaoliang Xu
- Department of Stomatology, The Second Hospital of Tangshan, Tangshan, 063000 Hebei, China
| | - Lei Bi
- Department of Stomatology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| | - Chunguang Zhang
- Department of Stomatology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| | - Hui Chen
- Department of Stomatology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| | - Hui Liu
- Department of Stomatology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| |
Collapse
|
24
|
Huang JC, Emran AA, Endaya JM, McCaughan GW, Gorrell MD, Zhang HE. DPP9: Comprehensive In Silico Analyses of Loss of Function Gene Variants and Associated Gene Expression Signatures in Human Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:1637. [PMID: 33915844 PMCID: PMC8037973 DOI: 10.3390/cancers13071637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Dipeptidyl peptidase (DPP) 9, DPP8, DPP4 and fibroblast activation protein (FAP) are the four enzymatically active members of the S9b protease family. Associations of DPP9 with human liver cancer, exonic single nucleotide polymorphisms (SNPs) in DPP9 and loss of function (LoF) variants have not been explored. Human genomic databases, including The Cancer Genome Atlas (TCGA), were interrogated to identify DPP9 LoF variants and associated cancers. Survival and gene signature analyses were performed on hepatocellular carcinoma (HCC) data. We found that DPP9 and DPP8 are intolerant to LoF variants. DPP9 exonic LoF variants were most often associated with uterine carcinoma and lung carcinoma. All four DPP4-like genes were overexpressed in liver tumors and their joint high expression was associated with poor survival in HCC. Increased DPP9 expression was associated with obesity in HCC patients. High expression of genes that positively correlated with overexpression of DPP4, DPP8, and DPP9 were associated with very poor survival in HCC. Enriched pathways analysis of these positively correlated genes featured Toll-like receptor and SUMOylation pathways. This comprehensive data mining suggests that DPP9 is important for survival and that the DPP4 protease family, particularly DPP9, is important in the pathogenesis of human HCC.
Collapse
Affiliation(s)
- Jiali Carrie Huang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| | - Abdullah Al Emran
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| | - Justine Moreno Endaya
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| | - Geoffrey W. McCaughan
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
- AW Morrow GE & Liver Centre, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| | - Hui Emma Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| |
Collapse
|
25
|
Krepela E, Vanickova Z, Hrabal P, Zubal M, Chmielova B, Balaziova E, Vymola P, Matrasova I, Busek P, Sedo A. Regulation of Fibroblast Activation Protein by Transforming Growth Factor Beta-1 in Glioblastoma Microenvironment. Int J Mol Sci 2021; 22:ijms22031046. [PMID: 33494271 PMCID: PMC7864518 DOI: 10.3390/ijms22031046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The proline-specific serine protease fibroblast activation protein (FAP) can participate in the progression of malignant tumors and represents a potential diagnostic and therapeutic target. Recently, we demonstrated an increased expression of FAP in glioblastomas, particularly those of the mesenchymal subtype. Factors controlling FAP expression in glioblastomas are unknown, but evidence suggests that transforming growth factor beta (TGFbeta) can trigger mesenchymal changes in these tumors. Here, we investigated whether TGFbeta promotes FAP expression in transformed and stromal cells constituting the glioblastoma microenvironment. We found that both FAP and TGFbeta-1 are upregulated in glioblastomas and display a significant positive correlation. We detected TGFbeta-1 immunopositivity broadly in glioblastoma tissues, including tumor parenchyma regions in the immediate vicinity of FAP-immunopositive perivascular stromal cells. Wedemonstrate for the first time that TGFbeta-1 induces expression of FAP in non-stem glioma cells, pericytes, and glioblastoma-derived endothelial and FAP+ mesenchymal cells, but not in glioma stem-like cells. In glioma cells, this effect is mediated by the TGFbeta type I receptor and canonical Smad signaling and involves activation of FAP gene transcription. We further present evidence of FAP regulation by TGFbeta-1 secreted by glioma cells. Our results provide insight into the previously unrecognized regulation of FAP expression by autocrine and paracrine TGFbeta-1 signaling in a broad spectrum of cell types present in the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Evzen Krepela
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Zdislava Vanickova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Petr Hrabal
- Department of Pathology, Military University Hospital Prague, 169 02 Prague 6, Czech Republic;
| | - Michal Zubal
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Barbora Chmielova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Eva Balaziova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Petr Vymola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Ivana Matrasova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
- Correspondence: (P.B.); (A.S.); Tel.: +420-22496-5825 (P.B.); +420-22496-5735 (A.S.)
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
- Correspondence: (P.B.); (A.S.); Tel.: +420-22496-5825 (P.B.); +420-22496-5735 (A.S.)
| |
Collapse
|
26
|
Qi T, Qu Q, Li G, Wang J, Zhu H, Yang Z, Sun Y, Lu Q, Qu J. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer. Am J Cancer Res 2020; 10:3083-3105. [PMID: 33163259 PMCID: PMC7642666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023] Open
Abstract
The PEA3 subfamily is a subgroup of the E26 transformation-specific (ETS) family. Its members, ETV1, ETV4, and ETV5, have been found to be overexpressed in multiple cancers. The deregulation of ETV1, ETV4, and ETV5 induces cell growth, invasion, and migration in various tumor cells, leading to tumor progression, metastasis, and drug resistance. Therefore, exploring drugs or therapeutic targets that target the PEA3 subfamily may contribute to the clinical treatment of tumor patients. In this review, we introduce the structures and functions of the PEA3 subfamily members, systematically review their main roles in various tumor cells, analyze their prognostic and diagnostic value, and, finally, introduce several molecular targets and therapeutic drugs targeting ETV1, ETV4, and ETV5. We conclude that targeting a series of upstream regulators and downstream target genes of the PEA3 subfamily may be an effective strategy for the treatment of ETV1/ETV4/ETV5-overexpressing tumors.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Zhi Yang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Yuesheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s HospitalWenzhou 325000, PR China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| |
Collapse
|
27
|
Coto-Llerena M, Ercan C, Kancherla V, Taha-Mehlitz S, Eppenberger-Castori S, Soysal SD, Ng CKY, Bolli M, von Flüe M, Nicolas GP, Terracciano LM, Fani M, Piscuoglio S. High Expression of FAP in Colorectal Cancer Is Associated With Angiogenesis and Immunoregulation Processes. Front Oncol 2020; 10:979. [PMID: 32733792 PMCID: PMC7362758 DOI: 10.3389/fonc.2020.00979] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast activation protein α (FAP) plays an important role in tissue remodeling and helps tumor cells invade surrounding tissue. We sought to investigate FAP as a prognostic molecular marker in colorectal cancer (CRC) using immunohistochemical and transcriptomic data. FAP expression and clinicopathological information were obtained from The Cancer Genome Atlas data set. The association of FAP expression and tissue cellular heterogeneity landscape was explored using the xCell method. We evaluated FAP protein expression in a cohort of 92 CRCs and 19 non-tumoral tissues. We observed that FAP was upregulated in tumors both at the mRNA and protein levels, and its expression was associated with advanced stages, poor survival, and consensus molecular subtype 4. FAP expression was also associated with angiogenesis and collagen degradation. We observed an enrichment in immune-cell process-related genes associated with FAP overexpression. Colorectal cancers with high FAP expression display an inflamed phenotype enriched for macrophages and monocytes. Those tumors showed enrichment for regulatory T cell populations and depletion of TH1 and natural killer T cells, pointing to an immunosuppressive environment. Colorectal cancers with high levels of stromal FAP are associated with aggressive disease progression and survival. Our results suggest that FAP plays additional roles in tumor progression such as modulation of angiogenesis and immunoregulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Mairene Coto-Llerena
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Caner Ercan
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Venkatesh Kancherla
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Stephanie Taha-Mehlitz
- Visceral Surgery Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | | | - Savas D. Soysal
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Charlotte K. Y. Ng
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Martin Bolli
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Markus von Flüe
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | | | - Luigi M. Terracciano
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
- Visceral Surgery Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| |
Collapse
|