1
|
Datta S, Rahman MA, Koka S, Boini KM. Mitigation of nicotine-induced podocyte injury through inhibition of thioredoxin interacting protein. Biomed Pharmacother 2025; 187:118110. [PMID: 40311224 DOI: 10.1016/j.biopha.2025.118110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Nicotine has been reported to initiate NLRP3 inflammasome formation and activation in different pathological conditions. The current study assessed whether thioredoxin-interacting protein (TXNIP) mediates nicotine-induced NLRP3 inflammasome activation and consequent podocyte injury. Co-immunoprecipitation analysis demonstrated that nicotine-induced TXNIP/NLRP3 interaction in podocytes relative to control groups. However, pre-treatment with TXNIP inhibitors, verapamil (Vera) or SRI-37330 (SRI) attenuates nicotine-induced TXNIP/NLRP3 interaction. Confocal microscopic analysis showed that nicotine treatment significantly increased the colocalization of Nlrp3 with Asc, Nlrp3 with caspase-1 and Nlrp3 with TXNIP in podocytes compared to control cells. Pretreatment with TXNIP inhibitor Vera or SRI abolished nicotine-induced Nlrp3/Asc, Nlrp3/caspase-1 or Nlrp3/TXNIP colocalization. Correspondingly, nicotine treatment significantly increased the caspase-1 activity and IL-1β production compared to control cells. However, prior treatment with TXNIP inhibiting Vera or SRI significantly attenuated the nicotine-induced caspase-1 activity and IL-1β production. Further immunofluorescence analysis showed that nicotine treatment significantly decreased podocin and nephrin expression compared to control cells. However, pretreatment with TXNIP inhibiting Vera or SRI attenuated the nicotine-induced podocin and nephrin reduction. In addition, confocal, flow cytometry and biochemical analysis showed that nicotine treatment significantly increased desmin expression, apoptosis and cell permeability compared to control cells. However, prior treatment with TXNIP inhibiting Vera or SRI significantly attenuated the nicotine-induced desmin expression, apoptosis and cell permeability. Taken together, our results demonstrate that TXNIP/NLRP3 interaction constitutes a potentially key signalling mechanism driving nicotine-induced NLRP3 inflammasome formation, activation and subsequent podocyte damage.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.
| |
Collapse
|
2
|
Leitzke M, Roach DT, Hesse S, Schönknecht P, Becker GA, Rullmann M, Sattler B, Sabri O. Long COVID - a critical disruption of cholinergic neurotransmission? Bioelectron Med 2025; 11:5. [PMID: 40011942 DOI: 10.1186/s42234-025-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Following the COVID-19 pandemic, there are many chronically ill Long COVID (LC) patients with different symptoms of varying degrees of severity. The pathological pathways of LC remain unclear until recently and make identification of path mechanisms and exploration of therapeutic options an urgent challenge. There is an apparent relationship between LC symptoms and impaired cholinergic neurotransmission. METHODS This paper reviews the current literature on the effects of blocked nicotinic acetylcholine receptors (nAChRs) on the main affected organ and cell systems and contrasts this with the unblocking effects of the alkaloid nicotine. In addition, mechanisms are presented that could explain the previously unexplained phenomenon of post-vaccination syndrome (PVS). The fact that not only SARS-CoV-2 but numerous other viruses can bind to nAChRs is discussed under the assumption that numerous other post-viral diseases and autoimmune diseases (ADs) may also be due to impaired cholinergic transmission. We also present a case report that demonstrates changes in cholinergic transmission, specifically, the availability of α4β2 nAChRs by using (-)-[18F]Flubatine whole-body positron emission tomography (PET) imaging of cholinergic dysfunction in a LC patient along with a significant neurological improvement before and after low-dose transcutaneous nicotine (LDTN) administration. Lastly, a descriptive analysis and evaluation were conducted on the results of a survey involving 231 users of LDTN. RESULTS A substantial body of research has emerged that offers a compelling explanation for the phenomenon of LC, suggesting that it can be plausibly explained because of impaired nAChR function in the human body. Following a ten-day course of transcutaneous nicotine administration, no enduring neuropathological manifestations were observed in the patient. This observation was accompanied by a significant increase in the number of free ligand binding sites (LBS) of nAChRs, as determined by (-)-[18F]Flubatine PET imaging. The analysis of the survey shows that the majority of patients (73.5%) report a significant improvement in the symptoms of their LC/MEF/CFS disease as a result of LDTN. CONCLUSIONS In conclusion, based on current knowledge, LDTN appears to be a promising and safe procedure to relieve LC symptoms with no expected long-term harm.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany.
- Department of Anesthesiology, Intensive Care Medicine, Pain- and Palliative Therapy Helios Clinics, Colditzer Straße 48, Leisnig, 04703, Germany.
| | - Donald Troy Roach
- School of Comillas University, Renegade Research, Madrid, 28015, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Neurology Altscherbitz, Schkeuditz, 04435, Germany
- Outpatient Department for Forensic-Psychiatric Research, University of Leipzig, Leipzig, 04103, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Bernhardt Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| |
Collapse
|
3
|
Lindson N, Butler AR, McRobbie H, Bullen C, Hajek P, Wu AD, Begh R, Theodoulou A, Notley C, Rigotti NA, Turner T, Livingstone-Banks J, Morris T, Hartmann-Boyce J. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 2025; 1:CD010216. [PMID: 39878158 PMCID: PMC11776059 DOI: 10.1002/14651858.cd010216.pub9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
BACKGROUND Electronic cigarettes (ECs) are handheld electronic vaping devices that produce an aerosol by heating an e-liquid. People who smoke, healthcare providers, and regulators want to know if ECs can help people quit smoking, and if they are safe to use for this purpose. This is a review update conducted as part of a living systematic review. OBJECTIVES To examine the safety, tolerability, and effectiveness of using EC to help people who smoke tobacco achieve long-term smoking abstinence, in comparison to non-nicotine EC, other smoking cessation treatments, and no treatment. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 February 2024 and the Cochrane Tobacco Addiction Group's Specialized Register to 1 February 2023, reference-checked, and contacted study authors. SELECTION CRITERIA We included trials randomizing people who smoke to an EC or control condition. We included uncontrolled intervention studies in which all participants received an EC intervention. Studies had to report an eligible outcome. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods for screening and data extraction. We used the risk of bias tool (RoB 1) and GRADE to assess the certainty of evidence. Critical outcomes were abstinence from smoking after at least six months, adverse events (AEs), and serious adverse events (SAEs). Important outcomes were biomarkers, toxicants/carcinogens, and longer-term EC use. We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in pairwise and network meta-analyses (NMA). MAIN RESULTS We included 90 completed studies (two new to this update), representing 29,044 participants, of which 49 were randomized controlled trials (RCTs). Of the included studies, we rated 10 (all but one contributing to our main comparisons) at low risk of bias overall, 61 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. Nicotine EC results in increased quit rates compared to nicotine replacement therapy (NRT) (high-certainty evidence) (RR 1.59, 95% CI 1.30 to 1.93; I2 = 0%; 7 studies, 2544 participants). In absolute terms, this might translate to an additional four quitters per 100 (95% CI 2 to 6 more). The rate of occurrence of AEs is probably similar between groups (moderate-certainty evidence (limited by imprecision)) (RR 1.03, 95% CI 0.91 to 1.17; I2 = 0%; 5 studies, 2052 participants). SAEs were rare, and there is insufficient evidence to determine whether rates differ between groups due to very serious imprecision (RR 1.20, 95% CI 0.90 to 1.60; I2 = 32%; 6 studies, 2761 participants; low-certainty evidence). Nicotine EC probably results in increased quit rates compared to non-nicotine EC (moderate-certainty evidence, limited by imprecision) (RR 1.46, 95% CI 1.09 to 1.96; I2 = 4%; 6 studies, 1613 participants). In absolute terms, this might lead to an additional three quitters per 100 (95% CI 1 to 7 more). There is probably little to no difference in the rate of AEs between these groups (moderate-certainty evidence) (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 5 studies, 840 participants). There is insufficient evidence to determine whether rates of SAEs differ between groups, due to very serious imprecision (RR 1.00, 95% CI 0.56 to 1.79; I2 = 0%; 9 studies, 1412 participants; low-certainty evidence). Compared to behavioural support only/no support, quit rates may be higher for participants randomized to nicotine EC (low-certainty evidence due to issues with risk of bias) (RR 1.96, 95% CI 1.66 to 2.32; I2 = 0%; 11 studies, 6819 participants). In absolute terms, this represents an additional four quitters per 100 (95% CI 3 to 5 more). There was some evidence that (non-serious) AEs may be more common in people randomized to nicotine EC (RR 1.18, 95% CI 1.10 to 1.27; I2 = 6%; low-certainty evidence; 6 studies, 2351 participants) and, again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 0.93, 95% CI 0.68 to 1.28; I2 = 0%; 12 studies, 4561 participants; very low-certainty evidence). Results from the NMA were consistent with those from pairwise meta-analyses for all critical outcomes. There was inconsistency in the AE network, which was explained by a single outlying study contributing the only direct evidence for one of the nodes. Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued EC use. Very few studies reported data on other outcomes or comparisons; hence, evidence for these is limited, with CIs often encompassing both clinically significant harm and benefit. AUTHORS' CONCLUSIONS There is high-certainty evidence that ECs with nicotine increase quit rates compared to NRT and moderate-certainty evidence that they increase quit rates compared to ECs without nicotine. Evidence comparing nicotine EC with usual care or no treatment also suggests benefit, but is less certain due to risk of bias inherent in the study design. Confidence intervals were, for the most part, wide for data on AEs, SAEs, and other safety markers, with no evidence for a difference in AEs between nicotine and non-nicotine ECs nor between nicotine ECs and NRT, but low-certainty evidence for increased AEs compared with behavioural support/no support. Overall incidence of SAEs was low across all study arms. We did not detect evidence of serious harm from nicotine EC, but longer, larger studies are needed to fully evaluate EC safety. Our included studies tested regulated nicotine-containing EC; illicit products and/or products containing other active substances (e.g. tetrahydrocannabinol (THC)) may have different harm profiles. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this is a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.
Collapse
Affiliation(s)
- Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Ailsa R Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Hayden McRobbie
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | - Peter Hajek
- Wolfson Institute of Population Health, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angela Difeng Wu
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Rachna Begh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Caitlin Notley
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nancy A Rigotti
- Tobacco Research and Treatment Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tari Turner
- Cochrane Australia, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | | | - Tom Morris
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Jamie Hartmann-Boyce
- Department of Health Promotion and Policy, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
4
|
Christen SE, Hermann L, Bekka E, Vonwyl C, Hammann F, van der Velpen V, Eap CB, Benowitz NL, Haschke M, Liakoni E. Pharmacokinetics and Pharmacodynamics of Inhaled Nicotine Salt and Free-Base Using an E-cigarette: A Randomized Crossover Study. Nicotine Tob Res 2024; 26:1313-1321. [PMID: 38597729 PMCID: PMC11417154 DOI: 10.1093/ntr/ntae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Popular "pod-style" e-cigarettes commonly use nicotine salt-based e-liquids that cause less irritation when inhaled and can deliver higher nicotine concentrations than free-base nicotine. This study investigated the pharmacokinetic and pharmacodynamic effects of different nicotine formulations (salt vs. free-base) and concentrations that might influence systemic nicotine absorption and appeal of e-cigarettes. AIMS AND METHODS In this randomized, double-blind, within-subject crossover study, 20 non-nicotine-naïve participants were switched among three e-liquids (free-base nicotine 20 mg/mL, nicotine salt 20 mg/mL, nicotine salt 40 mg/mL) using a refillable pod system and a standardized vaping protocol (one puff every 30 seconds, 10 puffs total). Serum nicotine concentrations and vital signs were assessed over 180 minutes; direct effects, craving, satisfaction, withdrawal, and respiratory symptoms were measured using questionnaires. CYP2A6 genotypes and the nicotine metabolite ratio were also assessed. RESULTS Eleven (55%) participants were male and the median age was 23.5 years (range 18-67). All three formulations differed significantly in peak serum nicotine concentration (baseline adjusted Cmax, median (range): 12.0 ng/mL (1.6-27.3), 5.4 ng/mL (1.9-18.7), and 3.0 ng/mL (1.3-8.8) for nicotine salt 40 mg/mL, nicotine salt 20 mg/mL and free-base 20 mg/mL, respectively). All groups reached Cmax 2.0-2.5 minutes (median) after their last puff. Differences in subjective effects were not statistically significant. No serious adverse events were observed. CONCLUSIONS Free-base 20 mg/mL formulations achieved lower blood nicotine concentrations than nicotine salt 20 mg/mL, while 40 mg/mL nicotine salt yielded concentrations similar to cigarette smoking. The findings can inform regulatory policy regarding e-liquids and their potential use in smoking cessation. IMPLICATIONS Nicotine salt formulations inhaled by an e-cigarette led to higher nicotine delivery compared to nicotine-free-base formulations with the same nicotine concentration. These findings should be considered in future regulatory discussions. The 40 mg/mL nicotine salt formulation showed similar nicotine delivery as combustible cigarettes, albeit at concentrations over the maximum limit for e-liquids allowed in the European Union. Nicotine delivery resembling combustible cigarettes might be beneficial for smokers willing to quit to adequately alleviate withdrawal symptoms. However, increased nicotine delivery can also pose a public health risk, raising concerns about abuse liability, especially among youth and nonsmokers.
Collapse
Affiliation(s)
- Samuel E Christen
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Laura Hermann
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elias Bekka
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Celina Vonwyl
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Felix Hammann
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vera van der Velpen
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Neal L Benowitz
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Manuel Haschke
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Evangelia Liakoni
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
6
|
Lindson N, Butler AR, McRobbie H, Bullen C, Hajek P, Begh R, Theodoulou A, Notley C, Rigotti NA, Turner T, Livingstone-Banks J, Morris T, Hartmann-Boyce J. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 2024; 1:CD010216. [PMID: 38189560 PMCID: PMC10772980 DOI: 10.1002/14651858.cd010216.pub8] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol by heating an e-liquid. People who smoke, healthcare providers and regulators want to know if ECs can help people quit smoking, and if they are safe to use for this purpose. This is a review update conducted as part of a living systematic review. OBJECTIVES To examine the safety, tolerability and effectiveness of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence, in comparison to non-nicotine EC, other smoking cessation treatments and no treatment. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group's Specialized Register to 1 February 2023, and Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 July 2023, and reference-checked and contacted study authors. SELECTION CRITERIA We included trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention as these studies have the potential to provide further information on harms and longer-term use. Studies had to report an eligible outcome. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods for screening and data extraction. Critical outcomes were abstinence from smoking after at least six months, adverse events (AEs), and serious adverse events (SAEs). We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in pairwise and network meta-analyses (NMA). MAIN RESULTS We included 88 completed studies (10 new to this update), representing 27,235 participants, of which 47 were randomized controlled trials (RCTs). Of the included studies, we rated ten (all but one contributing to our main comparisons) at low risk of bias overall, 58 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There is high certainty that nicotine EC increases quit rates compared to nicotine replacement therapy (NRT) (RR 1.59, 95% CI 1.29 to 1.93; I2 = 0%; 7 studies, 2544 participants). In absolute terms, this might translate to an additional four quitters per 100 (95% CI 2 to 6 more). There is moderate-certainty evidence (limited by imprecision) that the rate of occurrence of AEs is similar between groups (RR 1.03, 95% CI 0.91 to 1.17; I2 = 0%; 5 studies, 2052 participants). SAEs were rare, and there is insufficient evidence to determine whether rates differ between groups due to very serious imprecision (RR 1.20, 95% CI 0.90 to 1.60; I2 = 32%; 6 studies, 2761 participants; low-certainty evidence). There is moderate-certainty evidence, limited by imprecision, that nicotine EC increases quit rates compared to non-nicotine EC (RR 1.46, 95% CI 1.09 to 1.96; I2 = 4%; 6 studies, 1613 participants). In absolute terms, this might lead to an additional three quitters per 100 (95% CI 1 to 7 more). There is moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 5 studies, 1840 participants). There is insufficient evidence to determine whether rates of SAEs differ between groups, due to very serious imprecision (RR 1.00, 95% CI 0.56 to 1.79; I2 = 0%; 9 studies, 1412 participants; low-certainty evidence). Due to issues with risk of bias, there is low-certainty evidence that, compared to behavioural support only/no support, quit rates may be higher for participants randomized to nicotine EC (RR 1.88, 95% CI 1.56 to 2.25; I2 = 0%; 9 studies, 5024 participants). In absolute terms, this represents an additional four quitters per 100 (95% CI 2 to 5 more). There was some evidence that (non-serious) AEs may be more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low-certainty evidence; 4 studies, 765 participants) and, again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 0.89, 95% CI 0.59 to 1.34; I2 = 23%; 10 studies, 3263 participants; very low-certainty evidence). Results from the NMA were consistent with those from pairwise meta-analyses for all critical outcomes, and there was no indication of inconsistency within the networks. Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued EC use. Very few studies reported data on other outcomes or comparisons, hence, evidence for these is limited, with CIs often encompassing both clinically significant harm and benefit. AUTHORS' CONCLUSIONS There is high-certainty evidence that ECs with nicotine increase quit rates compared to NRT and moderate-certainty evidence that they increase quit rates compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain due to risk of bias inherent in the study design. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs nor between nicotine ECs and NRT. Overall incidence of SAEs was low across all study arms. We did not detect evidence of serious harm from nicotine EC, but the longest follow-up was two years and the number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.
Collapse
Affiliation(s)
- Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Ailsa R Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Hayden McRobbie
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | - Peter Hajek
- Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rachna Begh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Caitlin Notley
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nancy A Rigotti
- Tobacco Research and Treatment Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tari Turner
- Cochrane Australia, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | | | - Tom Morris
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Jamie Hartmann-Boyce
- Department of Health Promotion and Policy, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
7
|
Borkar NA, Thompson MA, Bartman CM, Sathish V, Prakash YS, Pabelick CM. Nicotine affects mitochondrial structure and function in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L803-L818. [PMID: 37933473 PMCID: PMC11068407 DOI: 10.1152/ajplung.00158.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Exposure to cigarette smoke and e-cigarettes, with nicotine as the active constituent, contributes to increased health risks associated with asthma. Nicotine exerts its functional activity via nicotinic acetylcholine receptors (nAChRs), and the alpha7 subtype (α7nAChR) has recently been shown to adversely affect airway dynamics. The mechanisms of α7nAChR action in airways, particularly in the context of airway smooth muscle (ASM), a key cell type in asthma, are still under investigation. Mitochondria have garnered increasing interest for their role in regulating airway tone and adaptations to cellular stress. Here mitochondrial dynamics such as fusion versus fission, and mitochondrial Ca2+ ([Ca2+]m), play an important role in mitochondrial homeostasis. There is currently no information on effects and mechanisms by which nicotine regulates mitochondrial structure and function in ASM in the context of asthma. We hypothesized that nicotine disrupts mitochondrial morphology, fission-fusion balance, and [Ca2+]m regulation, with altered mitochondrial respiration and bioenergetics in the context of asthmatic ASM. Using human ASM (hASM) cells from nonasthmatics, asthmatics, and smokers, we examined the effects of nicotine on mitochondrial dynamics and [Ca2+]m. Fluorescence [Ca2+]m imaging of hASM cells with rhod-2 showed robust responses to 10 μM nicotine, particularly in asthmatics and smokers. In both asthmatics and smokers, nicotine increased the expression of fission proteins while decreasing fusion proteins. Seahorse analysis showed blunted oxidative phosphorylation parameters in response to nicotine in these groups. α7nAChR siRNA blunted nicotine effects, rescuing [Ca2+]m, changes in mitochondrial structural proteins, and mitochondrial dysfunction. These data highlight mitochondria as a target of nicotine effects on ASM, where mitochondrial disruption and impaired buffering could permit downstream effects of nicotine in the context of asthma.NEW & NOTEWORTHY Asthma is a major healthcare burden, which is further exacerbated by smoking. Recognizing the smoking risk of asthma, understanding the effects of nicotine on asthmatic airways becomes critical. Surprisingly, the mechanisms of nicotine action, even in normal and especially asthmatic airways, are understudied. Accordingly, the goal of this research is to investigate how nicotine influences asthmatic airways in terms of mitochondrial structure and function, via the a7nAChR.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
8
|
Khalfaoui L, Mukhtasimova N, Kelley B, Wells N, Teske JJ, Roos BB, Borkar NA, Zhang EY, Sine SM, Prakash YS, Pabelick CM. Functional α7 nicotinic receptors in human airway smooth muscle increase intracellular calcium concentration and contractility in asthmatics. Am J Physiol Lung Cell Mol Physiol 2023; 325:L17-L29. [PMID: 37192375 PMCID: PMC10292984 DOI: 10.1152/ajplung.00260.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023] Open
Abstract
Although nicotinic acetylcholine receptors (nAChRs) are commonly associated with neurons in the brain and periphery, recent data indicate that they are also expressed in non-neuronal tissues. We recently found the alpha7 (α7nAChR) subunit is highly expressed in human airway smooth muscle (hASM) with substantial increase in asthmatics, but their functionality remains unknown. We investigated the location and functional role of α7nAChRs in hASM cells from normal versus mild-moderate asthmatic patients. Immunostaining and protein analyses showed α7nAChR in the plasma membrane including in asthmatics. In asthmatic hASM, patch-clamp recordings revealed significantly higher functional homomeric α7nAChR channels. Real-time fluorescence imaging showed nicotine, via α7nAChR, increases intracellular Ca2+ ([Ca2+]i) independent of ACh effects, particularly in asthmatic hASM, while cellular traction force microscopy showed nicotine-induced contractility including in asthmatics. These results indicate functional homomeric and heteromeric nAChRs that are increased in asthmatic hASM, with pharmacology that likely differ owing to different subunit interfaces that form the orthosteric sites. nAChRs may represent a novel target in alleviating airway hyperresponsiveness in asthma.NEW & NOTEWORTHY Cigarette smoking and vaping exacerbate asthma. Understanding the mechanisms of nicotine effects in asthmatic airways is important. This study demonstrates that functional alpha7 nicotinic acetylcholine receptors (α7nAChRs) are expressed in human airway smooth muscle, including from asthmatics, and enhance intracellular calcium and contractility. Although a7nAChRs are associated with neuronal pathways, α7nAChR in smooth muscle suggests inhaled nicotine (e.g., vaping) can directly influence airway contractility. Targeting α7nAChR may represent a novel approach to alleviating airway hyperresponsiveness in asthma.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Nuriya Mukhtasimova
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Brian Kelley
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Natalya Wells
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Emily Y Zhang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
9
|
Bertschi A, Stefanov BA, Xue S, Charpin-El Hamri G, Teixeira AP, Fussenegger M. Controlling therapeutic protein expression via inhalation of a butter flavor molecule. Nucleic Acids Res 2023; 51:e28. [PMID: 36625292 PMCID: PMC10018347 DOI: 10.1093/nar/gkac1256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Precise control of the delivery of therapeutic proteins is critical for gene- and cell-based therapies, and expression should only be switched on in the presence of a specific trigger signal of appropriate magnitude. Focusing on the advantages of delivering the trigger by inhalation, we have developed a mammalian synthetic gene switch that enables regulation of transgene expression by exposure to the semi-volatile small molecule acetoin, a widely used, FDA-approved food flavor additive. The gene switch capitalizes on the bacterial regulatory protein AcoR fused to a mammalian transactivation domain, which binds to promoter regions with specific DNA sequences in the presence of acetoin and dose-dependently activates expression of downstream transgenes. Wild-type mice implanted with alginate-encapsulated cells transgenic for the acetoin gene switch showed a dose-dependent increase in blood levels of reporter protein in response to either administration of acetoin solution via oral gavage or longer exposure to acetoin aerosol generated by a commercial portable inhaler. Intake of typical acetoin-containing foods, such as butter, lychees and cheese, did not activate transgene expression. As a proof of concept, we show that blood glucose levels were normalized by acetoin aerosol inhalation in type-I diabetic mice implanted with acetoin-responsive insulin-producing cells. Delivery of trigger molecules using portable inhalers may facilitate regular administration of therapeutic proteins via next-generation cell-based therapies to treat chronic diseases for which frequent dosing is required.
Collapse
Affiliation(s)
- Adrian Bertschi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Bozhidar-Adrian Stefanov
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard, Lyon 1 Villeurbanne Cedex F-69622, France
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- To whom correspondence should be addressed. Tel: +41 61 387 31 60; Fax: +41 61 387 39 88;
| |
Collapse
|
10
|
Pharmacotherapy for the Treatment of Tobacco Dependence. Respir Med 2023. [DOI: 10.1007/978-3-031-24914-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
11
|
Hartmann-Boyce J, Lindson N, Butler AR, McRobbie H, Bullen C, Begh R, Theodoulou A, Notley C, Rigotti NA, Turner T, Fanshawe TR, Hajek P. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 2022; 11:CD010216. [PMID: 36384212 PMCID: PMC9668543 DOI: 10.1002/14651858.cd010216.pub7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, although some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit smoking, and if they are safe to use for this purpose. This is a review update conducted as part of a living systematic review. OBJECTIVES To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 July 2022, and reference-checked and contacted study authors. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials, in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. Studies had to report abstinence from cigarettes at six months or longer or data on safety markers at one week or longer, or both. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included the proportion of people still using study product (EC or pharmacotherapy) at six or more months after randomization or starting EC use, changes in carbon monoxide (CO), blood pressure (BP), heart rate, arterial oxygen saturation, lung function, and levels of carcinogens or toxicants, or both. We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in meta-analyses. MAIN RESULTS We included 78 completed studies, representing 22,052 participants, of which 40 were RCTs. Seventeen of the 78 included studies were new to this review update. Of the included studies, we rated ten (all but one contributing to our main comparisons) at low risk of bias overall, 50 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There was high certainty that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (RR 1.63, 95% CI 1.30 to 2.04; I2 = 10%; 6 studies, 2378 participants). In absolute terms, this might translate to an additional four quitters per 100 (95% CI 2 to 6). There was moderate-certainty evidence (limited by imprecision) that the rate of occurrence of AEs was similar between groups (RR 1.02, 95% CI 0.88 to 1.19; I2 = 0%; 4 studies, 1702 participants). SAEs were rare, but there was insufficient evidence to determine whether rates differed between groups due to very serious imprecision (RR 1.12, 95% CI 0.82 to 1.52; I2 = 34%; 5 studies, 2411 participants). There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.94, 95% CI 1.21 to 3.13; I2 = 0%; 5 studies, 1447 participants). In absolute terms, this might lead to an additional seven quitters per 100 (95% CI 2 to 16). There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 5 studies, 1840 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 1.00, 95% CI 0.56 to 1.79; I2 = 0%; 8 studies, 1272 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.66, 95% CI 1.52 to 4.65; I2 = 0%; 7 studies, 3126 participants). In absolute terms, this represents an additional two quitters per 100 (95% CI 1 to 3). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was some evidence that (non-serious) AEs were more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants) and, again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 1.03, 95% CI 0.54 to 1.97; I2 = 38%; 9 studies, 1993 participants). Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued EC use. Very few studies reported data on other outcomes or comparisons, hence evidence for these is limited, with CIs often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS There is high-certainty evidence that ECs with nicotine increase quit rates compared to NRT and moderate-certainty evidence that they increase quit rates compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the effect size. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs nor between nicotine ECs and NRT. Overall incidence of SAEs was low across all study arms. We did not detect evidence of serious harm from nicotine EC, but longest follow-up was two years and the number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates, but further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.
Collapse
Affiliation(s)
- Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Ailsa R Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Hayden McRobbie
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | - Rachna Begh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Caitlin Notley
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nancy A Rigotti
- Tobacco Research and Treatment Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tari Turner
- Cochrane Australia, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Thomas R Fanshawe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Peter Hajek
- Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Hardie G, Gale N, McEwan M, Oscar SM, Ziviani L, Proctor CJ, Murphy J. An abuse liability assessment of the glo tobacco heating product in comparison to combustible cigarettes and nicotine replacement therapy. Sci Rep 2022; 12:14701. [PMID: 36038580 PMCID: PMC9424205 DOI: 10.1038/s41598-022-19167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Tobacco heating products (THPs) have reduced emissions of toxicants compared with cigarette smoke, and as they expose user to lower levels than smoking, have for a role to play in tobacco harm reduction. One key concern of Public Health is that new tobacco and nicotine products should not be more addictive than cigarettes. To assess their abuse liability, we determined nicotine pharmacokinetics and subjective effects of two THPs compared with conventional cigarettes and a nicotine replacement therapy (Nicotine inhaler). In a randomised, controlled, open-label, crossover study healthy adult smokers used a different study product in a 5 min ad libitum use session in each of four study periods. Product liking, overall intent to use again, urge for product and urge to smoke questionnaires were utilised to assess subjective effects. Nicotine uptake was greater for the cigarette (Cmax = 22.7 ng/mL) than for either THP (8.6 and 10.5 ng/mL) and the NRT (2.3 ng/mL). Median Tmax was significantly longer for the NRT (15.03 min) than for the tobacco products (4.05-6.03 min). Product liking and overall intent to use again was highest for the cigarette, and higher for the THPs than the NRT. Urge to smoke was reduced more by the cigarette than by the other three products. Urge to use the THPs was greater than the NRT. These findings suggest that the abuse liability of the THPs lies between that of subjects usual brand cigarettes and the NRT.
Collapse
Affiliation(s)
- George Hardie
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK.
| | - Nathan Gale
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK.
| | - Michael McEwan
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - Stefano Milleri Oscar
- Centro Ricerche Cliniche di Verona, Policlinico G. B. Rossi, P.Le L. A. Scuro 10, 37134, Verona, Italy
| | - Luigi Ziviani
- Centro Ricerche Cliniche di Verona, Policlinico G. B. Rossi, P.Le L. A. Scuro 10, 37134, Verona, Italy
| | | | - James Murphy
- R. J. Reynolds Tobacco Company, 401 N Main Street, Winston Salem, NC, 27101, USA
| |
Collapse
|
13
|
A randomised study to assess the nicotine pharmacokinetics of an oral nicotine pouch and two nicotine replacement therapy products. Sci Rep 2022; 12:6949. [PMID: 35484309 PMCID: PMC9050656 DOI: 10.1038/s41598-022-10544-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Nicotine replacement therapies (NRTs) are intended for short-term use to help cigarette smokers to quit. Some smokers find NRTs ineffective or seek a more satisfactory source of nicotine. Tobacco-free oral nicotine pouch (NP) products have emerged as a potential reduced risk product compared with cigarettes and other tobacco products. In a randomised crossover clinical study, thirty-four healthy adult smokers were enrolled and their nicotine Cmax and AUC0-T determined for three 4 mg nicotine products (NP, gum, lozenge) under fasting conditions. The NP, lozenge and gum mean Cmax values were 8.5, 8.3 and 4.4 ng/mL, AUC0-T values were 30.6, 31.5 and 14.3 ng*h/mL, respectively. The NP showed similar nicotine bioavailability to the lozenge (p = 0.6526 (Cmax), p = 1.0000 (AUC0-T)), and superior bioavailability to the gum (p < 0.0001 for Cmax and AUC0-T). Compared with the lozenge, the NP demonstrated greater product satisfaction with a higher number of positive responses to subjective satisfaction questions. All products were judged to be well-tolerated; the incidence of minor adverse events was lower for the NP (18.2%) than the lozenge (33.3%) or gum (18.8%). In summary, NPs may provide smokers with a more satisfying alternative nicotine source as compared to the reference NRTs. Study Registry/Registered Trial No: ISRCTN/ISRCTN65708311.
Collapse
|
14
|
Suchanecka A, Chmielowiec J, Chmielowiec K, Trybek G, Jaroń A, Czarny W, Król P, Masiak J, Grzywacz A. Serotonin Receptor HTR3A Gene Polymorphisms rs1985242 and rs1062613, E-Cigarette Use and Personality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084746. [PMID: 35457612 PMCID: PMC9029000 DOI: 10.3390/ijerph19084746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
We nowadays record growing numbers of e-cigarette users. The development of nicotine dependence is a result of many factors, including genetics and personality. In this study we analyzed two polymorphisms—rs1985242 and rs1062613—in the serotonin receptor HTR3A gene in a group of e-cigarette users (n = 135) and controls (n = 106). Personality traits were measured using the NEO Five-Factor Inventory. The comparison of e-cigarette users with the control group indicates that the former showed significantly higher scores on the neuroticism scale and lower scores on the scales of extraversion and conscientiousness of the NEO-FFI. Homozygote variants of rs1985242 were more frequent in the study group. The results of the 2 × 3 factorial ANOVA for e-cigarette users and the control group as well as interaction between the HTR3A rs1985242 variants were found for the NEO-FFI conscientiousness scale. These results allow us to conclude that the combination of psychological factors and genetic data creates a possibility for making more complete models of substance use disorders.
Collapse
Affiliation(s)
- Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Wojciech Czarny
- Faculty of Physical Education, University of Rzeszów, Towarnickiego 3 St., 35-959 Rzeszów, Poland;
| | - Paweł Król
- College of Medical Sciences, Institute of Physical Culture Studies, University of Rzeszow, St. Towarnickiego 3, 35-955 Rzeszów, Poland;
| | - Jolanta Masiak
- Neurophysiological Independent Unit, Department of Psychiatry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
15
|
A comprehensive physiologically based pharmacokinetic (PBPK) model for nicotine in humans from using nicotine-containing products with different routes of exposure. Sci Rep 2022; 12:1091. [PMID: 35058535 PMCID: PMC8776883 DOI: 10.1038/s41598-022-05108-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling can be a useful tool for characterizing nicotine pharmacokinetics (PK) from use of tobacco products. We expand a previously published PBPK model to simulate a nicotine PK profile, following single or multiple use of various tobacco products [cigarettes, smokeless tobacco, and electronic nicotine delivery systems, or a nicotine inhaler (NICOTROL)] The uptake route in the model was designed to allow for three uptake compartments: buccal cavity (BC), upper respiratory tract (URT) (conducting and transitional airways) and lower respiratory tract (alveolar region). Within each region, the model includes product-specific descriptions of the flux of nicotine into plasma, as well as the flux of nicotine from the BC and URT to the gastrointestinal tract. These descriptions are based on regional deposition and diffusion models of nicotine into plasma, which depends on the product type. Regional deposition flux combined with regional differences in physiological parameters (e.g., blood perfusion ratio and tissue thickness) play a key role in the product-specific PK profile of nicotine. The current model describes the slower flux of nicotine into plasma across the BC and URT, as well as the rapid flux known to occur in the alveolar region. Overall, the addition of the BC and respiratory tract compartments to the nicotine model provided simulation results that are comparable to the nicotine time-course plasma concentrations reported from clinical studies for the four product categories simulated.
Collapse
|
16
|
Tan X, Vrana K, Ding ZM. Cotinine: Pharmacologically Active Metabolite of Nicotine and Neural Mechanisms for Its Actions. Front Behav Neurosci 2021; 15:758252. [PMID: 34744656 PMCID: PMC8568040 DOI: 10.3389/fnbeh.2021.758252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tobacco use disorder continues to be a leading public health issue and cause of premature death in the United States. Nicotine is considered as the major tobacco alkaloid causing addiction through its actions on nicotinic acetylcholine receptors (nAChRs). Current pharmacotherapies targeting nicotine's effects produce only modest effectiveness in promoting cessation, highlighting the critical need for a better understanding of mechanisms of nicotine addiction to inform future treatments. There is growing interest in identifying potential contributions of non-nicotine components to tobacco reinforcement. Cotinine is a minor alkaloid, but the major metabolite of nicotine that can act as a weak agonist of nAChRs. Accumulating evidence indicates that cotinine produces diverse effects and may contribute to effects of nicotine. In this review, we summarize findings implicating cotinine as a neuroactive metabolite of nicotine and discuss available evidence regarding potential mechanisms underlying its effects. Preclinical findings reveal that cotinine crosses the blood brain barrier and interacts with both nAChRs and non-nAChRs in the nervous system, and produces neuropharmacological and behavioral effects. Clinical studies suggest that cotinine is psychoactive in humans. However, reviewing evidence regarding mechanisms underlying effects of cotinine provides a mixed picture with a lack of consensus. Therefore, more research is warranted in order to provide better insight into the actions of cotinine and its contribution to tobacco addiction.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Kent Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
17
|
Hartmann-Boyce J, McRobbie H, Butler AR, Lindson N, Bullen C, Begh R, Theodoulou A, Notley C, Rigotti NA, Turner T, Fanshawe TR, Hajek P. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 2021; 9:CD010216. [PMID: 34519354 PMCID: PMC8438601 DOI: 10.1002/14651858.cd010216.pub6] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, but some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This is an update conducted as part of a living systematic review. OBJECTIVES To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 May 2021, and reference-checked and contacted study authors. We screened abstracts from the Society for Research on Nicotine and Tobacco (SRNT) 2021 Annual Meeting. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials, in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. Studies had to report abstinence from cigarettes at six months or longer or data on safety markers at one week or longer, or both. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included the proportion of people still using study product (EC or pharmacotherapy) at six or more months after randomization or starting EC use, changes in carbon monoxide (CO), blood pressure (BP), heart rate, arterial oxygen saturation, lung function, and levels of carcinogens or toxicants or both. We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in meta-analyses. MAIN RESULTS We included 61 completed studies, representing 16,759 participants, of which 34 were RCTs. Five of the 61 included studies were new to this review update. Of the included studies, we rated seven (all contributing to our main comparisons) at low risk of bias overall, 42 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.53, 95% confidence interval (CI) 1.21 to 1.93; I2 = 0%; 4 studies, 1924 participants). In absolute terms, this might translate to an additional three quitters per 100 (95% CI 1 to 6). There was low-certainty evidence (limited by very serious imprecision) that the rate of occurrence of AEs was similar (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs were rare, but there was insufficient evidence to determine whether rates differed between groups due to very serious imprecision (RR 1.30, 95% CI 0.89 to 1.90: I2 = 0; 4 studies, 1424 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.94, 95% CI 1.21 to 3.13; I2 = 0%; 5 studies, 1447 participants). In absolute terms, this might lead to an additional seven quitters per 100 (95% CI 2 to 16). There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 3 studies, 601 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 1.06, 95% CI 0.47 to 2.38; I2 = 0; 5 studies, 792 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.61, 95% CI 1.44 to 4.74; I2 = 0%; 6 studies, 2886 participants). In absolute terms this represents an additional six quitters per 100 (95% CI 2 to 15). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was some evidence that non-serious AEs were more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants), and again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 1.51, 95% CI 0.70 to 3.24; I2 = 0%; 7 studies, 1303 participants). Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued use. Very few studies reported data on other outcomes or comparisons, hence evidence for these is limited, with CIs often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to NRT and compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the effect size. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs. Overall incidence of SAEs was low across all study arms. We did not detect evidence of harm from nicotine EC, but longest follow-up was two years and the number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates, but further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is now a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.
Collapse
Affiliation(s)
- Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Hayden McRobbie
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Ailsa R Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | - Rachna Begh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Caitlin Notley
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nancy A Rigotti
- Tobacco Research and Treatment Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tari Turner
- Cochrane Australia, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Thomas R Fanshawe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Peter Hajek
- Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Simms L, Mason E, Berg EL, Yu F, Rudd K, Czekala L, Trelles Sticken E, Brinster O, Wieczorek R, Stevenson M, Walele T. Use of a rapid human primary cell-based disease screening model, to compare next generation products to combustible cigarettes. Curr Res Toxicol 2021; 2:309-321. [PMID: 34485931 PMCID: PMC8408431 DOI: 10.1016/j.crtox.2021.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/01/2022] Open
Abstract
A growing number of public health bodies, regulators and governments around the world consider electronic vapor products a lower risk alternative to conventional cigarettes. Of critical importance are rapid new approach methodologies to enable the screening of next generation products (NGPs) also known as next generation tobacco and nicotine products. In this study, the activity of conventional cigarette (3R4F) smoke and a range of NGP aerosols (heated tobacco product, hybrid product and electronic vapor product) captured in phosphate buffered saline, were screened by exposing a panel of human cell-based model systems using Biologically Multiplexed Activity Profiling (BioMAP® Diversity PLUS® Panel, Eurofins Discovery). Following exposure, the biological activity for a wide range of biomarkers in the BioMAP panel were compared to determine the presence of toxicity signatures that are associated with specific clinical findings. NGP aerosols were found to be weakly active in the BioMAP Diversity PLUS Panel (≤3/148 biomarkers) whereas significant activity was observed for 3R4F (22/148 biomarkers). Toxicity associated biomarker signatures for 3R4F included immunosuppression, skin irritation and thrombosis, with no toxicity signatures seen for the NGPs. BioMAP profiling could effectively be used to differentiate between complex mixtures of cigarette smoke or NGP aerosol extracts in a panel of human primary cell-based assays. Clinical validation of these results will be critical for confirming the utility of BioMAP for screening NGPs for potential adverse human effects.
Collapse
Key Words
- ACM, aerosol collected mass
- AhR, Aryl hydrocarbon receptor
- Alternative methods
- COPD, Chronic obstructive pulmonary disease
- EGFR, epidermal growth factor receptor
- ELISA, enzyme-linked immunosorbent assay
- EVP, Electronic vapor product
- HDFn, Human neonatal dermal fibroblasts
- HTP, Heated Tobacco Product
- HUVEC, Human umbilical vein endothelial cells
- HYB, Hybrid product containing e-liquid drawn through a tobacco plug
- IL, interleukin
- ISO, International Organization for Standardization
- In vitro assays
- MOA, Mechanism of action
- M−CSF, Macrophage colony-stimulating factor
- NGP, Next generation product
- NRC, National Research Council
- NRF2, Nuclear factor erythroid 2-related factor 2
- Next generation products
- PBMC, Peripheral blood mononuclear cells
- PBS, Phosphate buffered saline
- Panel
- Phenotypic screening
- SRB, Sulforhodamine B
- TCR, T cell receptor
- TF, Tissue factor
- TLR, toll-like receptor
- TNFα, tumor necrosis factor alpha
- TPM, Total particulate matter
- Toxicity signature
- bPBS, Bubbled phosphate buffered saline
- mTOR, mechanistic target of rapamycin
Collapse
Affiliation(s)
- Liam Simms
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Elizabeth Mason
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Ellen L. Berg
- Eurofins Discovery, Inc., 111 Anza Blvd, Suite 414, Burlingame, CA 94010, USA
| | - Fan Yu
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Kathryn Rudd
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Lukasz Czekala
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Edgar Trelles Sticken
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Albert-EinsteinRing-7, D-22761 Hamburg, Germany
| | - Oleg Brinster
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Albert-EinsteinRing-7, D-22761 Hamburg, Germany
| | - Roman Wieczorek
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Albert-EinsteinRing-7, D-22761 Hamburg, Germany
| | | | - Tanvir Walele
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| |
Collapse
|
19
|
Deng Y, Gao H, Wang H, Chen L. Snail/HDAC1/2 mediate skeletal growth retardation in fetuses caused by prenatal nicotine exposure. Toxicology 2021; 459:152847. [PMID: 34245815 DOI: 10.1016/j.tox.2021.152847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/30/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Previous findings have confirmed that prenatal nicotine exposure (PNE) leads to retarded cartilage development in the fetal growth plate. It is characterized by insufficient matrix synthesis and decreased expression of matrix phenotype genes aggrecan (ACAN) and Col2A1 in the fetal growth plate chondrocytes; however, the specific molecular mechanism is yet unclear. This study intends to clarify the specific molecular mechanism of fetal osteochondral retardation caused by PNE through animal and cellular experiments. The present study demonstrated that in male offspring of the PNE group (the pregnant rats were subcutaneously administered nicotine 1.0 mg/kg twice per day (2.0 mg/kg.d) at GD11-20), the cartilage matrix of the fetal growth plate was lightly stained, the collagen was reduced, and expression of the matrix phenotype genes, ACAN and Col2A1, was significantly decreased. It was further found that PNE decreased histone acetylation (H3K9/H3K14) levels in the ACAN and Col2A1 promoter regions. Moreover, the expression of Snail and HDAC1/2 was increased in the PNE group. in vitro, the nicotine treatment at different concentrations elevated the expression of Snail/HDAC1/2 while decreasing the H3K9/H3K14 levels in the ACAN and Col2A1 promoter regions. Snail-siRNA transfection partially abolished the nicotine-induced increase in HDAC1/2 expression and decreased the histone acetylation levels in the ACAN and Col2A1 promoter regions. Trichostatin A (TSA) treatment partially reversed the nicotine-induced changes in downstream parameters. In summary, PNE-induced decreased cartilage matrix synthesis in the fetal growth plate of male offspring is effectuated by Snail/HDAC1/2-mediated decreased H3K9/H3K14 levels in the ACAN and Col2A1 promoter regions.
Collapse
Affiliation(s)
- Yu Deng
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Gao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University of School Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
20
|
Czekala L, Chapman F, Simms L, Rudd K, Trelles Sticken E, Wieczorek R, Bode LM, Pani J, Moelijker N, Derr R, Brandsma I, Hendriks G, Stevenson M, Walele T. The in vitro ToxTracker and Aneugen Clastogen Evaluation extension assay as a tool in the assessment of relative genotoxic potential of e-liquids and their aerosols. Mutagenesis 2021; 36:129-142. [PMID: 33769537 PMCID: PMC8166346 DOI: 10.1093/mutage/geaa033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
In vitro (geno)toxicity assessment of electronic vapour products (EVPs), relative to conventional cigarette, currently uses assays, including the micronucleus and Ames tests. Whilst informative on induction of a finite endpoint and relative risk posed by test articles, such assays could benefit from mechanistic supplementation. The ToxTracker and Aneugen Clastogen Evaluation analysis can indicate the activation of reporters associated with (geno)toxicity, including DNA damage, oxidative stress, the p53-related stress response and protein damage. Here, we tested for the different effects of a selection of neat e-liquids, EVP aerosols and Kentucky reference 1R6F cigarette smoke samples in the ToxTracker assay. The assay was initially validated to assess whether a mixture of e-liquid base components, propylene glycol (PG) and vegetable glycerine (VG) had interfering effects within the system. This was achieved by spiking three positive controls into the system with neat PG/VG or phosphate-buffered saline bubbled (bPBS) PG/VG aerosol (nicotine and flavour free). PG/VG did not greatly affect responses induced by the compounds. Next, when compared to cigarette smoke samples, neat e-liquids and bPBS aerosols (tobacco flavour; 1.6% freebase nicotine, 1.6% nicotine salt or 0% nicotine) exhibited reduced and less complex responses. Tested up to a 10% concentration, EVP aerosol bPBS did not induce any ToxTracker reporters. Neat e-liquids, tested up to 1%, induced oxidative stress reporters, thought to be due to their effects on osmolarity in vitro. E-liquid nicotine content did not affect responses induced. Additionally, spiking nicotine alone only induced an oxidative stress response at a supraphysiological level. In conclusion, the ToxTracker assay is a quick, informative screen for genotoxic potential and mechanisms of a variety of (compositionally complex) samples, derived from cigarettes and EVPs. This assay has the potential for future application in the assessment battery for next-generation (smoking alternative) products, including EVPs.
Collapse
Affiliation(s)
- Lukasz Czekala
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Fiona Chapman
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Kathryn Rudd
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Edgar Trelles Sticken
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Roman Wieczorek
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Lisa Maria Bode
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Jutta Pani
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Nynke Moelijker
- Toxys B.V., Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Remco Derr
- Toxys B.V., Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Inger Brandsma
- Toxys B.V., Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Giel Hendriks
- Toxys B.V., Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Matthew Stevenson
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Tanvir Walele
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| |
Collapse
|
21
|
Azzopardi D, Liu C, Murphy J. Chemical characterization of tobacco-free "modern" oral nicotine pouches and their position on the toxicant and risk continuums. Drug Chem Toxicol 2021; 45:2246-2254. [PMID: 34034614 DOI: 10.1080/01480545.2021.1925691] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As compared with cigarette smoking, use of Swedish snus is associated with significantly fewer health risks. Nicotine pouches (NPs), a new form of oral nicotine product, are smokeless and tobacco-free, comprising a nicotine-containing cellulose matrix inside a fiber pouch. NPs are similar in appearance/use to snus, but without tobacco, have the potential to further reduce tobacco-related harm. This study aimed to evaluate toxicant levels of NPs to estimate their position on the tobacco/nicotine product continuums of toxicant delivery and risk. NPs, snus and nicotine replacement therapy products (NRTs) were analyzed for 24-26 compounds applicable to oral tobacco, and their levels were compared. Twenty of these compounds were further used to compare the toxicant profile of NPs, as well as estimated daily toxicant exposure from NP use, with that of tobacco/nicotine products spanning the risk continuum. Of the compounds measured, 22 (NPs), 22 (lozenge NRT), 20 (gum NRT), and 11 (snus) were not quantifiable. Compared with snus, NPs had lower levels of 10 HPHCs and comparable/undetectable levels of a further 13. Across the product categories, NPs and NRTs had the lowest toxicant profiles and estimations of relative toxicant exposure. Based on the present chemical analysis and estimated exposure, use of NPs appears likely to expose users to lower levels of toxic compounds than Swedish snus, which is recognized to offer reduced levels of harm than associated with tobacco smoking. We conclude that NPs should be placed close to NRTs on the tobacco/nicotine product toxicant delivery continuum, although further studies will be needed to confirm this.
Collapse
Affiliation(s)
- David Azzopardi
- Research and Development, British American Tobacco (Investments) Limited, Southampton, UK
| | - Chuan Liu
- Research and Development, British American Tobacco (Investments) Limited, Southampton, UK
| | - James Murphy
- Research and Development, British American Tobacco (Investments) Limited, Southampton, UK
| |
Collapse
|
22
|
Borkar NA, Roos B, Prakash YS, Sathish V, Pabelick CM. Nicotinic α7 acetylcholine receptor (α7nAChR) in human airway smooth muscle. Arch Biochem Biophys 2021; 706:108897. [PMID: 34004182 DOI: 10.1016/j.abb.2021.108897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022]
Abstract
Diseases such as asthma are exacerbated by inflammation, cigarette smoke and even nicotine delivery devices such as e-cigarettes. However, there is currently little information on how nicotine affects airways, particularly in humans, and changes in the context of inflammation or asthma. Here, a longstanding assumption is that airway smooth muscle (ASM) that is key to bronchoconstriction has muscarinic receptors while nicotinic receptors (nAChRs) are only on airway neurons. In this study, we tested the hypothesis that human ASM expresses α7nAChR and explored its profile in inflammation and asthma using ASM of non-asthmatics vs. mild-moderate asthmatics. mRNA and western analysis showed the α7 subunit is most expressed in ASM cells and further increased in asthmatics and smokers, or by exposure to nicotine, cigarette smoke or pro-inflammatory cytokines TNFα and IL-13. In these effects, signaling pathways relevant to asthma such as NFκB, AP-1 and CREB are involved. These novel data demonstrate the expression of α7nAChR in human ASM and suggest their potential role in asthma pathophysiology in the context of nicotine exposure.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Hartmann-Boyce J, McRobbie H, Lindson N, Bullen C, Begh R, Theodoulou A, Notley C, Rigotti NA, Turner T, Butler AR, Fanshawe TR, Hajek P. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 2021; 4:CD010216. [PMID: 33913154 PMCID: PMC8092424 DOI: 10.1002/14651858.cd010216.pub5] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, but some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This is an update of a review first published in 2014. OBJECTIVES To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke achieve long-term smoking abstinence. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 February 2021, together with reference-checking and contact with study authors. SELECTION CRITERIA We included randomized controlled trials (RCTs) and randomized cross-over trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. To be included, studies had to report abstinence from cigarettes at six months or longer and/or data on adverse events (AEs) or other markers of safety at one week or longer. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included changes in carbon monoxide, blood pressure, heart rate, blood oxygen saturation, lung function, and levels of known carcinogens/toxicants. We used a fixed-effect Mantel-Haenszel model to calculate the risk ratio (RR) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data from these studies in meta-analyses. MAIN RESULTS We included 56 completed studies, representing 12,804 participants, of which 29 were RCTs. Six of the 56 included studies were new to this review update. Of the included studies, we rated five (all contributing to our main comparisons) at low risk of bias overall, 41 at high risk overall (including the 25 non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.69, 95% confidence interval (CI) 1.25 to 2.27; I2 = 0%; 3 studies, 1498 participants). In absolute terms, this might translate to an additional four successful quitters per 100 (95% CI 2 to 8). There was low-certainty evidence (limited by very serious imprecision) that the rate of occurrence of AEs was similar) (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs occurred rarely, with no evidence that their frequency differed between nicotine EC and NRT, but very serious imprecision led to low certainty in this finding (RR 1.37, 95% CI 0.77 to 2.41: I2 = n/a; 2 studies, 727 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.70, 95% CI 1.03 to 2.81; I2 = 0%; 4 studies, 1057 participants). In absolute terms, this might again lead to an additional four successful quitters per 100 (95% CI 0 to 11). These trials mainly used older EC with relatively low nicotine delivery. There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 3 studies, 601 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 0.60, 95% CI 0.15 to 2.44; I2 = n/a; 4 studies, 494 participants). Compared to behavioral support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.70, 95% CI 1.39 to 5.26; I2 = 0%; 5 studies, 2561 participants). In absolute terms this represents an increase of seven per 100 (95% CI 2 to 17). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was no evidence that the rate of SAEs differed, but some evidence that non-serious AEs were more common in people randomized to nicotine EC (AEs: RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants; SAEs: RR 1.17, 95% CI 0.33 to 4.09; I2 = 5%; 6 studies, 1011 participants, very low certainty). Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued use. Very few studies reported data on other outcomes or comparisons and hence evidence for these is limited, with confidence intervals often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to ECs without nicotine and compared to NRT. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the size of effect, particularly when using modern EC products. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, though evidence indicated no difference in AEs between nicotine and non-nicotine ECs. Overall incidence of SAEs was low across all study arms. We did not detect any clear evidence of harm from nicotine EC, but longest follow-up was two years and the overall number of studies was small. The evidence is limited mainly by imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information, this review is now a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.
Collapse
Affiliation(s)
- Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Hayden McRobbie
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | - Rachna Begh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Caitlin Notley
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nancy A Rigotti
- Tobacco Research and Treatment Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tari Turner
- Cochrane Australia, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Ailsa R Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Thomas R Fanshawe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Peter Hajek
- Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Nicotine Replacement Therapy and Healthy Lifestyle Psychoeducation for Smoking Reduction in Acute Psychiatric Inpatients: A Cluster-Randomized Parallel Study. J Clin Psychopharmacol 2020; 40:149-156. [PMID: 32032137 DOI: 10.1097/jcp.0000000000001170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Effectiveness of nicotine replacement therapies in acute psychiatric inpatient settings remains under-researched. The aim of this study was to compare effectiveness and acceptability of 3 different forms of nicotine replacement therapy in achieving smoking reduction among acute psychiatric inpatients. METHODS This cluster-randomized, parallel study compared effectiveness and acceptability of nicotine inhalers, nicotine gum, and nicotine patches for smoking reduction in the acute psychiatric inpatient setting. The primary outcome was the exhaled breath carbon monoxide (CO) level change from baseline at weeks 4 and 8. Secondary outcomes included changes in nicotine withdrawal symptoms and psychiatric symptom severity. RESULTS Three hundred ten inpatients on the acute care wards were randomly assigned to nicotine inhalers (n = 184), gum (n = 71), and patches (n = 55). Only the nicotine inhaler group showed statistically significant reduction in CO level from baseline at both weeks 4 and 8 (P < 0.001 and P = 0.032, respectively). The nicotine inhaler and the patch group showed significant decrease in nicotine withdrawal symptoms from baseline at both weeks 4 and 8. Meanwhile, the nicotine inhaler and the gum group showed significant decrease in psychiatric symptom severity from baseline at both weeks 4 and 8. Post hoc comparisons revealed that the inhaler group had a greater decrease in psychiatric symptom severity compared with the patch group. CONCLUSIONS Nicotine inhalers may be an effective choice for smoking reduction in acute psychiatric inpatient settings given its significant effects on CO level, withdrawal symptoms, and psychiatric symptom severity, particularly during the first 4 weeks of treatment.
Collapse
|
25
|
The use of human induced pluripotent stem cells to screen for developmental toxicity potential indicates reduced potential for non-combusted products, when compared to cigarettes. Curr Res Toxicol 2020; 1:161-173. [PMID: 34345845 PMCID: PMC8320631 DOI: 10.1016/j.crtox.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Effective in vitro strategies are required to predict early developmental toxicity. devTOXqP is a metabolomics biomarker assay using iPSCs. Sample smoke/aerosol captured in bPBS, was tested up to 10% concentration. Cigarettes & HTP bPBS extracts were predicted as potentially developmentally toxic. HYB & EVP aerosols were not predicted as having developmentally toxic potential in devTOXqP.
devTOX quickPredict (devTOXqP) is a metabolomics biomarker-based assay that utilises human induced pluripotent stem (iPS) cells to screen for potential early stage embryonic developmental toxicity in vitro. Developmental toxicity potential is assessed based on the assay endpoint of the alteration in the ratio of key unrelated biomarkers, ornithine and cystine (o/c). This work aimed to compare the developmental toxicity potential of tobacco-containing and tobacco-free non-combustible nicotine products to cigarette smoke. Smoke and aerosol from test articles were produced using a Vitrocell VC10 smoke/aerosol exposure system and bubbled into phosphate buffered saline (bPBS). iPS cells were exposed to concentrations of up to 10% bPBS. Assay sensitivity was assessed through a spiking study with a known developmental toxicant, all-trans-retinoic acid (ATRA), in combination with cigarette smoke extract. The bPBS extracts of reference cigarettes (1R6F and 3R4F) and a heated tobacco product (HTP) were predicted to have the potential to induce developmental toxicity, in this screening assay. The bPBS concentration at which these extracts exceeded the developmental toxicity threshold was 0.6% (1R6F), 1.3% (3R4F), and 4.3% (HTP) added to the cell media. Effects from cigarette smoke and HTP aerosol were driven largely by cytotoxicity, with the cell viability and o/c ratio dose–response curves crossing the developmental toxicity thresholds at very similar concentrations of added bPBS. The hybrid product and all the electronic cigarette (e-cigarette) aerosols were not predicted to be potential early developmental toxicants, under the conditions of this screening assay.
Collapse
Key Words
- ATRA, All-trans-retinoic acid
- CDC, Centers for Disease Control and Prevention
- COT, United Kingdom Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment
- CV, coefficient of variation
- Cigarettes
- DART, developmental and reproductive toxicity
- DNPH, 2,4-dinitrophenylhydrazine
- Developmental toxicity
- E-cigarettes
- ECVAM, European Center for the Validation of Alternative Methods
- EPA, United States Environmental Protection Agency
- EVP, electronic vapour product
- FDR, false discovery rate
- HPHCs, Harmful and Potentially Harmful Constituents
- HPLC-DAD, high-performance liquid chromatography with a diode-array detector
- HTP, heated tobacco product
- HYB, hybrid product
- Human induced pluripotent stem cells
- ISO, International Organization for Standardisation
- ISTD, internal standard
- In vitro reproduction assay
- LC-MS/MS, liquid chromatography with tandem mass spectrometry
- LOQ, limit of quantification
- ND, No effect was detected within the exposure range tested
- NHS, United Kingdom National Health Service
- NICE, National Institute for Health and Care Excellence
- Nicotine
- ODC, ornithine decarboxylase
- OECD, Organisation for Economic Co-operation and Development
- PBS, phosphate buffered saline
- PG/VG, propylene glycol/vegetable glycerine
- POD, point of difference
- Q-TOF, Quadrupole Time-of-Flight
- ROS, reactive oxygen species
- TP, cell viability toxicity potential concentration
- TT21C, toxicity testing in the 21st century
- UPLC-HRMS, ultra-high performance liquid chromatography coupled high resolution mass spectrometry
- bPBS, bubbled phosphate buffered saline
- dTP, developmental toxicity potential concentration
- dTT, developmental toxicity threshold
- devTOXqP, devTOX quickPredict
- e-cigarettes, electronic cigarettes
- iPS cells, induced pluripotent stem cells
- nAChRs, nicotinic acetylcholine receptors
- o/c, ornithine/cystine ratio
Collapse
|
26
|
Hartmann-Boyce J, McRobbie H, Lindson N, Bullen C, Begh R, Theodoulou A, Notley C, Rigotti NA, Turner T, Butler AR, Hajek P. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 2020; 10:CD010216. [PMID: 33052602 PMCID: PMC8094228 DOI: 10.1002/14651858.cd010216.pub4] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. People who smoke report using ECs to stop or reduce smoking, but some organisations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This review is an update of a review first published in 2014. OBJECTIVES To evaluate the effect and safety of using electronic cigarettes (ECs) to help people who smoke achieve long-term smoking abstinence. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO for relevant records to January 2020, together with reference-checking and contact with study authors. SELECTION CRITERIA We included randomized controlled trials (RCTs) and randomized cross-over trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. To be included, studies had to report abstinence from cigarettes at six months or longer and/or data on adverse events (AEs) or other markers of safety at one week or longer. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, AEs, and serious adverse events (SAEs). Secondary outcomes included changes in carbon monoxide, blood pressure, heart rate, blood oxygen saturation, lung function, and levels of known carcinogens/toxicants. We used a fixed-effect Mantel-Haenszel model to calculate the risk ratio (RR) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data from these studies in meta-analyses. MAIN RESULTS We include 50 completed studies, representing 12,430 participants, of which 26 are RCTs. Thirty-five of the 50 included studies are new to this review update. Of the included studies, we rated four (all which contribute to our main comparisons) at low risk of bias overall, 37 at high risk overall (including the 24 non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.69, 95% confidence interval (CI) 1.25 to 2.27; I2 = 0%; 3 studies, 1498 participants). In absolute terms, this might translate to an additional four successful quitters per 100 (95% CI 2 to 8). There was low-certainty evidence (limited by very serious imprecision) of no difference in the rate of adverse events (AEs) (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs occurred rarely, with no evidence that their frequency differed between nicotine EC and NRT, but very serious imprecision led to low certainty in this finding (RR 1.37, 95% CI 0.77 to 2.41: I2 = n/a; 2 studies, 727 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.71, 95% CI 1.00 to 2.92; I2 = 0%; 3 studies, 802 participants). In absolute terms, this might again lead to an additional four successful quitters per 100 (95% CI 0 to 12). These trials used EC with relatively low nicotine delivery. There was low-certainty evidence, limited by very serious imprecision, that there was no difference in the rate of AEs between these groups (RR 1.00, 95% CI 0.73 to 1.36; I2 = 0%; 2 studies, 346 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 0.25, 95% CI 0.03 to 2.19; I2 = n/a; 4 studies, 494 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.50, 95% CI 1.24 to 5.04; I2 = 0%; 4 studies, 2312 participants). In absolute terms this represents an increase of six per 100 (95% CI 1 to 14). However, this finding was very low-certainty, due to issues with imprecision and risk of bias. There was no evidence that the rate of SAEs varied, but some evidence that non-serious AEs were more common in people randomized to nicotine EC (AEs: RR 1.17, 95% CI 1.04 to 1.31; I2 = 28%; 3 studies, 516 participants; SAEs: RR 1.33, 95% CI 0.25 to 6.96; I2 = 17%; 5 studies, 842 participants). Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate over time with continued use. Very few studies reported data on other outcomes or comparisons and hence evidence for these is limited, with confidence intervals often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to ECs without nicotine and compared to NRT. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the degree of effect, particularly when using modern EC products. Confidence intervals were wide for data on AEs, SAEs and other safety markers. Overall incidence of SAEs was low across all study arms. We did not detect any clear evidence of harm from nicotine EC, but longest follow-up was two years and the overall number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information for decision-makers, this review is now a living systematic review. We will run searches monthly from December 2020, with the review updated as relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.
Collapse
Affiliation(s)
- Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Hayden McRobbie
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | - Rachna Begh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Caitlin Notley
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nancy A Rigotti
- Tobacco Research and Treatment Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tari Turner
- Cochrane Australia, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Ailsa R Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Peter Hajek
- Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Moerke MJ, McMahon LR, Wilkerson JL. More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder. Pharmacol Rev 2020; 72:527-557. [PMID: 32205338 PMCID: PMC7090325 DOI: 10.1124/pr.119.018028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine's major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation. SIGNIFICANCE STATEMENT: Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.
Collapse
Affiliation(s)
- M J Moerke
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - L R McMahon
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - J L Wilkerson
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| |
Collapse
|
28
|
Grzywacz A, Suchanecka A, Chmielowiec J, Chmielowiec K, Szumilas K, Masiak J, Balwicki Ł, Michałowska-Sawczyn M, Trybek G. Personality Traits or Genetic Determinants-Which Strongly Influences E-Cigarette Users? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17010365. [PMID: 31948125 PMCID: PMC6981659 DOI: 10.3390/ijerph17010365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Presently, a growing popularity of electronic cigarettes may be observed. Used as a means of obtaining nicotine they allow to substitute traditional cigarettes. The origins of substance use disorders are conditioned by dopaminergic signaling which influences motivational processes being elementary factors conditioning the process of learning and exhibiting goal-directed behaviors. The study concentrated on analysis of three polymorphisms located in the dopamine receptor 2 (DRD2) gene—rs1076560, rs1799732 and rs1079597 using the PCR method, personality traits determined with the Big Five Questionnaire, and anxiety measured with the State Trait Anxiety Inventory. The study was conducted on a group of 394 volunteers, consisting e-cigarette users (n = 144) and controls (n = 250). Compared to the controls the case group subjects achieved significantly higher scores in regard to the STAI state and the trait scale, as well as the NEO-FFI Neuroticism and Openness scale. Likewise, in the case of the STAI state for DRD2 rs1076560 significant differences were found. Furthermore, while comparing the groups (e-cigarette users vs. controls) we noticed interactions for the NEO FFI Neuroticism and DRD2 rs1076560. The same was observed in the case of interactions significance while comparing groups (e-cigarette users vs. controls) for the STAI trait/scale and DRD2 rs1799732. Findings from this study demonstrate that psychological factors and genetic determinants should be analyzed simultaneously and comprehensively while considering groups of addicted patients. Since the use, and rapid increase in popularity, of electronic cigarettes has implications for public health, e-cigarette users should be studied holistically, especially younger groups of addicted and experimenting users.
Collapse
Affiliation(s)
- Anna Grzywacz
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
- Correspondence:
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (J.C.); (K.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (J.C.); (K.C.)
| | - Kamila Szumilas
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp.72, 70-111 Szczecin, Poland;
| | - Jolanta Masiak
- Neurophysiological Independent Unit, Department of Psychiatry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Łukasz Balwicki
- Department of Public Health and Social Medicine, Medical University of Gdansk, 42A Zwyciestwa St., 80-210 Gdansk, Poland;
| | | | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. St., 70-111 Szczecin, Poland;
| |
Collapse
|
29
|
Yang X, Naylor J, Matazel K, Goodwin A, Jacob CC, Bryant M, Loukotková L, Gamboa da Costa G, Chemerynski S, Deng-Bryant Y, Reissig C, Jackson K, Fisher J. Use of a physiologically-based pharmacokinetic model to explore the potential disparity in nicotine disposition between adult and adolescent nonhuman primates. Toxicol Appl Pharmacol 2020; 386:114826. [PMID: 31730783 DOI: 10.1016/j.taap.2019.114826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
The widespread use and high abuse liability of tobacco products has received considerable public health attention, in particular for youth, who are vulnerable to nicotine addiction. In this study, adult and adolescent squirrel monkeys were used to evaluate age-related metabolism and pharmacokinetics of nicotine after intravenous administration. A physiologically-based pharmacokinetic (PBPK) model was created to characterize the pharmacokinetic behaviors of nicotine and its metabolites, cotinine, trans-3'-hydroxycotinine (3'-OH cotinine), and trans-3'-hydroxycotinine glucuronide (3'-OH cotinine glucuronide) for both adult and adolescent squirrel monkeys. The PBPK nicotine model was first calibrated for adult squirrel monkeys utilizing in vitro nicotine metabolic data, plasma concentration-time profiles and cumulative urinary excretion data for nicotine and metabolites. Further model refinement was conducted when the calibrated adult model was scaled to the adolescents, because adolescents appeared to clear nicotine and cotinine more rapidly relative to adults. More specifically, the resultant model parameters representing systemic clearance of nicotine and cotinine for adolescent monkeys were approximately two- to three-fold of the adult values on a per body weight basis. The nonhuman primate PBPK model in general captured experimental observations that were used for both model calibration and evaluation, with acceptable performance metrics for precision and bias. The model also identified differences in nicotine pharmacokinetics between adolescent and adult nonhuman primates which might also be present in humans.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Jennifer Naylor
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Katelin Matazel
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Amy Goodwin
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Cristina C Jacob
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Matthew Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lucie Loukotková
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Susan Chemerynski
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Ying Deng-Bryant
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Chad Reissig
- Division of Individual Health Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kia Jackson
- Division of Individual Health Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jeffrey Fisher
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
30
|
Perry RN, Schlagintweit HE, Darredeau C, Helmick C, Newman AJ, Good KP, Barrett SP. The impacts of actual and perceived nicotine administration on insula functional connectivity with the anterior cingulate cortex and nucleus accumbens. J Psychopharmacol 2019; 33:1600-1609. [PMID: 31542980 PMCID: PMC6854612 DOI: 10.1177/0269881119872205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Changes in resting state functional connectivity between the insula and dorsal anterior cingulate cortex as well as between the insula and nucleus accumbens have been linked to nicotine withdrawal and/or administration. However, because many of nicotine's effects in humans appear to depend, at least in part, on the belief that nicotine has been administered, the relative contribution of nicotine's pharmacological actions to such effects requires clarification. AIMS The purpose of this study was to examine the impacts of perceived and actual nicotine administration on neural responses. METHODS Twenty-six smokers were randomly assigned to receive either a nicotine inhaler (4 mg deliverable) or a nicotine-free inhaler across two sessions. Inhaler content instructions (told nicotine vs told nicotine-free) differed across sessions. Resting state functional connectivity between sub-regions of the insula and the dorsal anterior cingulate cortex and nucleus accumbens was measured using magnetic resonance imaging before and after inhaler administration. RESULTS Both actual and perceived nicotine administration independently altered resting state functional connectivity between the anterior insula and the dorsal anterior cingulate cortex, with actual administration being associated with decreased resting state functional connectivity, and perceived administration with increased resting state functional connectivity. Actual nicotine administration also contralaterally reduced resting state functional connectivity between the anterior insula and nucleus accumbens, while reductions in resting state functional connectivity between the mid-insula and right nucleus accumbens were observed when nicotine was administered unexpectedly. Changes in resting state functional connectivity associated with actual or perceived nicotine administration were unrelated to changes in subjective withdrawal and craving. Changes in withdrawal and craving were however independently associated with resting state functional connectivity between the nucleus accumbens and insula. CONCLUSIONS Our findings highlight the importance of considering non-pharmacological factors when examining drug mechanisms of action.
Collapse
Affiliation(s)
- Robin N Perry
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Hera E Schlagintweit
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Christine Darredeau
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Carl Helmick
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Aaron J Newman
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Kimberley P Good
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Sean P Barrett
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada,Sean P. Barrett, Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
31
|
Solingapuram Sai KK, Zuo Y, Rose JE, Garg PK, Garg S, Nazih R, Mintz A, Mukhin AG. Rapid Brain Nicotine Uptake from Electronic Cigarettes. J Nucl Med 2019; 61:928-930. [PMID: 31676729 DOI: 10.2967/jnumed.119.230748] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
This study sought to determine brain nicotine kinetics from use of the increasingly popular electronic cigarette (E-cig). Methods: In 17 E-cig users (9 men and 8 women), brain uptake of nicotine after inhalation from E-cigs was directly assessed using 11C-nicotine PET. The brain nicotine kinetics were compared with those from smoking combustible cigarettes (C-cigs). Results: A single puff of E-cig vapor caused the nicotine concentration in the brain to rise quickly (mean time to reach 50% of maximum brain nicotine concentration, 27 s), with a peak amplitude 25% higher in women than men, resembling previous observations with C-cigs. Nonetheless, the accumulation from E-cigs (24%) was less than that from C-cigs (32%) in both men and women. Conclusion: E-cigs can deliver nicotine to the brain with a rapidity similar to that of C-cigs. Therefore, to the extent that rapid brain uptake promotes smoking reward, E-cigs might maintain a degree of nicotine dependence and also serve as a noncombustible substitute for cigarettes.
Collapse
Affiliation(s)
| | - Yantao Zuo
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Jed E Rose
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Pradeep K Garg
- Department of Radiological Sciences, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina; and
| | - Sudha Garg
- Department of Radiological Sciences, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina; and
| | - Rachid Nazih
- Department of Radiological Sciences, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina; and
| | - Akiva Mintz
- Department of Radiological Sciences, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina; and
| | - Alexey G Mukhin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
32
|
Cai X, Gao L, Cucchiarini M, Madry H. Association of Nicotine with Osteochondrogenesis and Osteoarthritis Development: The State of the Art of Preclinical Research. J Clin Med 2019; 8:jcm8101699. [PMID: 31623196 PMCID: PMC6832988 DOI: 10.3390/jcm8101699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
The deleterious effects of nicotine on various health conditions have been well documented. Although many orthopedic diseases are adversely affected by nicotine, little is known about its preclinical effects on chondrogenesis or osteogenesis, cartilage formation, osteoarthritis (OA), and osteochondral repair. A systematic review was conducted examining the current scientific evidence on the effects of nicotine on chondrogenesis or osteogenesis in vitro, possible consequences of prenatal nicotine exposure (PNE) on cartilage and OA susceptibility in the offspring, and whether nicotine affects OA development and osteochondral repair in vivo, always focusing on their underlying mechanisms. The data reveal dose-dependent effects on articular chondrocytes and on the chondrogenesis and osteogenesis of medicinal signaling cells in vitro, with lower doses often resulting in positive effects and higher doses causing negative effects. PNE negatively affects articular cartilage development and induces OA in the offspring without or with nicotine exposure. In contrast, protective effects on OA development were only reported in monosodium iodoacetate-induced small animal models. Finally, nicotine repressed MSC-based osteochondral repair in vivo. Future studies need to investigate dose-dependent clinical effects of smoking on cartilage quality in offspring, OA susceptibility and progression, and osteochondral repair more in detail, thus identifying possible thresholds for its pathological effects.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
- Department of Orthopaedic Surgery, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
33
|
Teichert A, Brossard P, Felber Medlin L, Sandalic L, Franzon M, Wynne C, Laugesen M, Lüdicke F. Evaluation of Nicotine Pharmacokinetics and Subjective Effects following Use of a Novel Nicotine Delivery System. Nicotine Tob Res 2019; 20:458-465. [PMID: 28482017 PMCID: PMC5896440 DOI: 10.1093/ntr/ntx093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/05/2017] [Indexed: 12/23/2022]
Abstract
Introduction Novel nicotine delivery systems represent an evolving part of the tobacco harm reduction strategy. The pharmacokinetic (PK) profile of nicotine delivered by P3L, a pulmonary nicotine delivery system, and its effects on smoking urges and craving relief in relation to Nicorette inhalator were evaluated. Methods This open-label, ascending nicotine levels study was conducted in 16 healthy smokers. Three different nicotine delivery levels, 50, 80, and 150 µg/puff, delivered by the P3L system were evaluated consecutively on different days after the use of the Nicorette inhalator. Venous nicotine PK, subjective effects, and tolerability were assessed. Results Geometric least-squares means for maximum plasma nicotine concentration (Cmax), generated by the mixed-effect model for exposure comparison, were 9.7, 11.2, and 9.8 ng/mL for the 50, 80, and 150 µg/puff P3L variants, respectively, compared to 6.1 ng/mL after Nicorette inhalator use. Median time from product use start to Cmax was 7.0 minutes for all P3L, compared to 30.0 minutes for the Nicorette inhalator. Craving reduction was slightly faster than with the Nicorette inhalator as assessed with the visual analog scale craving score. The mean Questionnaire of Smoking Urges -brief total scores did not differ for both products. P3L was well tolerated. Conclusions At all three nicotine levels tested, the inhalation of the nicotine lactate aerosol delivered with the P3L provided plasma nicotine concentrations higher and faster compared to the Nicorette inhalator. The plasma nicotine concentration–time profile supports a pulmonary route of absorption for P3L compared to the oromucosal absorption of the Nicorette inhalator. Implications The combination of nicotine and lactic acid with the P3L device shows potential over existing nicotine delivery systems by delivering nicotine with kinetics close to published data on conventional cigarettes and without exogenous carrier substances as used in current electronic nicotine delivery systems. Altogether, the PK profile, subjective effects, and safety profile obtained in this study suggest P3L is an innovative nicotine delivery product that will be acceptable to adult smokers as an alternative to cigarettes.
Collapse
Affiliation(s)
- Axel Teichert
- Philip Morris Products S.A., Research & Development, Neuchâtel, Switzerland
| | - Patrick Brossard
- Philip Morris Products S.A., Research & Development, Neuchâtel, Switzerland
| | | | - Larissa Sandalic
- Philip Morris Products S.A., Research & Development, Neuchâtel, Switzerland
| | - Mikael Franzon
- Philip Morris Products S.A., Research & Development, Neuchâtel, Switzerland
| | - Chris Wynne
- Christchurch Clinical Studies Trust Ltd., Christchurch, New Zealand
| | | | - Frank Lüdicke
- Philip Morris Products S.A., Research & Development, Neuchâtel, Switzerland
| |
Collapse
|
34
|
Oncken C, Dornelas EA, Kuo CL, Sankey HZ, Kranzler HR, Mead EL, Thurlow MSD. Randomized Trial of Nicotine Inhaler for Pregnant Smokers. Am J Obstet Gynecol MFM 2019; 1:10-18. [PMID: 31380506 DOI: 10.1016/j.ajogmf.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Smoking during pregnancy is a serious public health problem in need of better treatments. Nicotine replacement treatment (NRT) (patch or gum) has not been shown in randomized placebo-controlled trials to be efficacious for smoking cessation during pregnancy. However, the nicotine inhaler may have advantages over other NRTs as it replicates some of the sensory effects of smoking. Objective The purpose of the study was examine the efficacy and safety of the nicotine inhaler for smoking cessation during pregnancy. We hypothesized that the nicotine inhaler compared to placebo would increase quit rates and reduce smoking during treatment and at the end of pregnancy, result in a higher birth weight and gestational age in the offspring, and reduce the incidence of preterm birth and low birth weight infants. Study Design We conducted a randomized, double-blind, placebo-controlled trial of the nicotine inhaler for smoking cessation during pregnancy. Pregnant women who smoked ≥5 cigarettes daily received behavioral counseling and random assignment to a 6-week treatment with nicotine or placebo inhaler, followed by a 6-week taper period. Throughout treatment, we assessed tobacco exposure biomarkers, cessation rates, and adverse events. We also obtained information on birth outcomes. The primary outcome was smoking cessation at 32-34 weeks gestation; secondary outcomes were smoking reduction, birth weight and gestational age, and the incidence of preterm birth or low birth weight infants. We compared treatment groups on these measures using t-tests, Fisher's exact tests, and multivariate linear and logistic regression. Results Participants in the placebo (n=67) and nicotine (n=70) groups were comparable on baseline characteristics, though women in the placebo group reported a higher motivation to quit (p=0.016). Biochemically-validated smoking cessation rates were similar with nicotine and placebo (after 6 weeks of treatment: 4% (3/70) vs. 3% (2/67), respectively, p< 0.99, and at 32-34 weeks gestation: 10% (7/70) vs. 18% (12/67), respectively, p=0.220). Cigarettes per day (CPD) decreased over time in both groups (p< 0.001), with the nicotine inhaler group having a greater decrease than the placebo group two (p=0.022) and six weeks after the quit date (p=0.042), but not at 32-34 weeks gestation (p=0.108). Serum cotinine levels, birth weight, gestational age and reductions in carbon monoxide did not differ by group. However, the incidence of preterm delivery was higher in the placebo than the nicotine group: 15% (10/67) vs. 4% (3/67), respectively, p=0.030). The incidence of delivering a low birth weight infant was also higher in the placebo than the nicotine group: 15% (10/67) vs. 6% (4/67), respectively, p=0.035, but not after adjusting for preterm delivery p=0.268. Conclusions Although the nicotine inhaler group did not have a higher quit rate during pregnancy than the placebo group, the outcome of preterm delivery occurred less frequently in the nicotine group.
Collapse
Affiliation(s)
- Cheryl Oncken
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT.,Department of Obstetrics and Gynecology, University of Connecticut School of Medicine, Farmington, CT
| | - Ellen A Dornelas
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT.,Division of Oncology, Hartford Hospital, Hartford, CT
| | - Chia-Ling Kuo
- Connecticut Institute for Clinical and Translational Science, University of Connecticut School of Medicine, Farmington, CT
| | - Heather Z Sankey
- Department of Obstetrics and Gynecology, Baystate Medical Center, Springfield, MA
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Erin L Mead
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT
| | - Ms Sheila D Thurlow
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT
| |
Collapse
|
35
|
Czekala L, Simms L, Stevenson M, Trelles-Sticken E, Walker P, Walele T. High Content Screening in NHBE cells shows significantly reduced biological activity of flavoured e-liquids, when compared to cigarette smoke condensate. Toxicol In Vitro 2019; 58:86-96. [PMID: 30880017 DOI: 10.1016/j.tiv.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/05/2023]
Abstract
There is scientific agreement that the detrimental effects of cigarettes are produced by the formation of Harmful and Potentially Harmful Constituents from tobacco combustion and not by nicotine. For this reason numerous public health bodies and governments worldwide have indicated that e-cigarettes have a central role to play in tobacco harm reduction. In this study, high content screening (HCS) was used to compare the effects of neat e-liquids and 3R4F reference cigarette smoke condensate (CSC), which served as a positive control, in Normal Human Bronchial Epithelial (NHBE) cells. The endpoints measured covered cellular health, energy production and oxidative stress. Base liquids, with or without nicotine, and commercial, flavoured, nicotine-containing e-liquids (CFs), had little or no effect on cell viability and most HCS endpoints even at significantly higher concentrations (typically 100 times or higher) than 3R4F CSC. CSC induced a dose-dependent decrease of cell viability and triggered the response in all HCS endpoints. Effects of CFs were typically observed at or above 1%. CF Menthol was the most active flavour, with minimum effective concentrations 43 to 659 times higher than corresponding 3R4F CSC concentrations. Our results show a lower biological activity of e-liquids compared to cigarette smoke condensate in this experimental setting, across wide range of cellular endpoints.
Collapse
Affiliation(s)
- Lukasz Czekala
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, United Kingdom.
| | - Liam Simms
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, United Kingdom
| | - Matthew Stevenson
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, United Kingdom
| | - Edgar Trelles-Sticken
- Reemstma Cigarettenfabriken GmbH, An Imperial Brands Company, Albert Einstein Ring 7, D-22791 Hamburg, Germany
| | - Paul Walker
- Cyprotex No. 24 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, United Kingdom
| | - Tanvir Walele
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, United Kingdom
| |
Collapse
|
36
|
Etter JF. Gateway effects and electronic cigarettes. Addiction 2018; 113:1776-1783. [PMID: 28786147 DOI: 10.1111/add.13924] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/25/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND E-cigarettes are alleged to be a gateway to cigarette smoking in non-smokers. This study examines whether the gateway theory has value, whether the criteria to establish causality have been met and what type of evidence is required to test this theory. ANALYSIS Experiments are impractical, and we may not be able to test properly the gateway effects via observational studies that simply adjust for confounders. Multivariate models cannot eliminate all the variance in propensity to smoke captured by the variable 'vaping' because of the proximity of these two behaviours. It may be difficult to prove that vaping precedes smoking when product use co-occurs and when, in fact, smoking usually precedes vaping. The gateway theory is not compatible with either (1) the decrease in smoking prevalence observed in adolescents in countries where vaping increased or (2) an increase in smoking among teenagers after age restrictions were imposed on e-cigarette purchases. A spurious gateway effect can be produced artificially by mathematical models in which a propensity to use substances is correlated with opportunities to use substances. Finally, neither nicotine medications nor smokeless tobacco produce gateway effects. Available data are compatible with a common liability model in which people who are liable to use nicotine are more likely to use both e-cigarettes and cigarettes. CONCLUSIONS Despite its weaknesses and scant empirical support, the gateway theory of smoking initiation has had enormous political influence. Policies based on this theory will not have the intended effects if the association between vaping and smoking is explained by common liabilities.
Collapse
Affiliation(s)
- Jean-François Etter
- Institute of Global Health, Faculty of Medicine, University of Geneva, Switzerland
| |
Collapse
|
37
|
Xie Z, Zhao Z, Yang X, Pei L, Luo H, Ni Q, Li B, Qi Y, Tie K, Magdalou J, Chen L, Wang H. Prenatal nicotine exposure intergenerationally programs imperfect articular cartilage via histone deacetylation through maternal lineage. Toxicol Appl Pharmacol 2018; 352:107-118. [DOI: 10.1016/j.taap.2018.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/15/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
|
38
|
Maruta K, Watanabe C, Hozumi H, Kurihara C, Furuhashi H, Takajo T, Okada Y, Shirakabe K, Higashiyama M, Komoto S, Tomita K, Nagao S, Ishizuka T, Miura S, Hokari R. Nicotine treatment ameliorates DSS-induced colitis by suppressing MAdCAM-1 expression and leukocyte recruitment. J Leukoc Biol 2018; 104:1013-1022. [PMID: 29901817 DOI: 10.1002/jlb.3a0717-304r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 11/06/2022] Open
Abstract
The enhanced recruitment of leukocytes to the inflamed colon is a key feature of ulcerative colitis (UC). The gut-specific adhesion molecules involved in leukocyte recruitment have emerged as recent therapeutic targets. Nicotine absorbed from smoking has been reported to work protectively in UC patients. Our hypothesis is that nicotine may suppress the aberrant leukocyte recruitment and colonic inflammation via the suppression of the overexpressed gut-specific adhesion molecules in the inflamed colon. To test this hypothesis, the severity of colitis and the degree of leukocyte recruitment induced by gut-specific adhesion molecules were assessed in dextran sulfate sodium (DSS) colitis mice (C57BL/6J mice treated with 3% DSS) with or without nicotine treatment. We also studied the in vitro changes in the expression of adhesion molecules by using a vascular endothelial cell line. DSS-induced colitis was accompanied by increases in disease activity index (DAI), histological score, recruitment of leukocytes, and the expression of adhesion molecules, mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and VCAM-1. Nicotine treatment significantly attenuated MAdCAM-1 expression, leukocyte recruitment, DAI, and histological score. The expression of β7-integrin, the ligand for MAdCAM-1, on leukocytes was not affected by nicotine treatment. In vitro study, the TNF-α-enhanced mRNA expression of MAdCAM-1 was reduced by the coadministration of nicotine in a dose-dependent manner, possibly via nicotinic receptor activation. These results supported our hypothesis that nicotine treatment ameliorated colitis through the suppression of MAdCAM-1 expression on the microvessels in the inflamed colon. Further investigation is warranted on the role of nicotine in the treatment of UC.
Collapse
Affiliation(s)
- Koji Maruta
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Chikako Watanabe
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Hideaki Hozumi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Hirotaka Furuhashi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Takeshi Takajo
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuhiko Shirakabe
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shigeaki Nagao
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Saitama, Japan
| | - Soichiro Miura
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
39
|
Tie K, Wu M, Deng Y, Wen Y, Dan Xu, Chen L, Wang H. Histone hypo-acetylation of Sox9 mediates nicotine-induced weak cartilage repair by suppressing BMSC chondrogenic differentiation. Stem Cell Res Ther 2018; 9:98. [PMID: 29631619 PMCID: PMC5891899 DOI: 10.1186/s13287-018-0853-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 03/21/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Nicotine has negative effects on tissue repair, little research concerns its effect on the cartilage repair of tissue engineering stem cells. The present study aimed to investigate the effects of nicotine on the bone marrow-derived mesenchymal stem cells' (BMSCs) chondrogenic repair function of cartilage defects and explored the molecular mechanism. METHODS A cartilage defect model of rat was repaired by BMSC transplantation, and treated with nicotine or saline at 2.0 mg/kg/d in 12 weeks. Nicotine's effect on chondrogenic differentiation was studied by exposing BMSCs to nicotine at 0.1, 1, 10, and 100 μM, and methyllycaconitine (MLA), which is a selective α7-nicotinic acetylcholine receptor (nAChR) inhibitor and si-RNA of nuclear factor of activated T cells 2 (NFATc2), were used to verify the molecular mechanism of nicotine's effect. RESULTS Data showed that nicotine inhibited cartilage repair function by suppressing SRY-type high-mobility group box 9 (Sox9) in regenerated tissues. Further in vitro study demonstrated that nicotine enhanced intracellular Ca2+ and activity of calcineurin (CaN) through α7-nAChR, increased the nucleic expressions of NFATc2 and the bindings to SOX9 promoter, and thus reduced the acetylation of H3K9 and H3K14 in SOX9 promoter. CONCLUSIONS Findings from this study demonstrated that nicotine suppressed the chondrogenic differentiation of BMSCs in vivo and in vitro, which offers insight into the risk assessment of cartilage defect repair in a nicotine exposure population and its therapeutic target.
Collapse
Affiliation(s)
- Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Yu Deng
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, People's Republic of China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
40
|
Lee PN, Fariss MW. A systematic review of possible serious adverse health effects of nicotine replacement therapy. Arch Toxicol 2017; 91:1565-1594. [PMID: 27699443 PMCID: PMC5364244 DOI: 10.1007/s00204-016-1856-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Abstract
We conducted a systematic literature review to identify and critically evaluate studies of serious adverse health effects (SAHEs) in humans using nicotine replacement therapy (NRT) products. Serious adverse health effects refer to adverse events, leading to substantial disruption of the ability to conduct normal life functions. Strength of evidence evaluations and conclusions were also determined for the identified SAHEs. We evaluated 34 epidemiological studies and clinical trials, relating NRT use to cancer, reproduction/development, CVD, stroke and/or other SAHEs in patients, and four meta-analyses on effects in healthy populations. The overall evidence suffers from many limitations, the most significant being the short-term exposure (≤12 weeks) and follow-up to NRT product use in most of the studies, the common failure to account for changes in smoking behaviour following NRT use, and the sparse information on SAHEs by type of NRT product used. The only SAHE from NRT exposure we identified was an increase in respiratory congenital abnormalities reported in one study. Limited evidence indicated a lack of effect between NRT exposure and SAHEs for CVD and various reproduction/developmental endpoints. For cancer, stroke and other SAHEs, the evidence was inadequate to demonstrate any association with NRT use. Our conclusions agree with recent statements from authoritative bodies.
Collapse
Affiliation(s)
- Peter N. Lee
- P N Lee Statistics and Computing Ltd, 17 Cedar Road, Sutton, Surrey SM2 5DA UK
| | | |
Collapse
|
41
|
Lan X, Lederman R, Eng JM, Shoshtari SSM, Saleem MA, Malhotra A, Singhal PC. Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress. PLoS One 2016; 11:e0167071. [PMID: 27907022 PMCID: PMC5132002 DOI: 10.1371/journal.pone.0167071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022] Open
Abstract
Background Cigarette smoking plays an important role in the progression of chronic kidney disease (CKD). Nicotine, one of the major components of cigarette smoking, has been demonstrated to increase proliferation of renal mesangial cells. In this study, we examined the effect of nicotine on podocyte injury. Methods To determine the expression of nicotinic acetylcholine receptors (nAChR subunits) in podocytes, cDNAs and cell lysate of cultured human podocytes were used for the expression of nAChR mRNAs and proteins, respectively; and mouse renal cortical sections were subjected to immunofluorescant staining. We also studied the effect of nicotine on podocyte nephrin expression, reactive oxygen species (ROS) generation (via DCFDA loading followed by fluorometric analysis), proliferation, and apoptosis (morphologic assays). We evaluated the effect of nicotine on podocyte downstream signaling including phosphorylation of ERK1/2, JNK, and p38 and established causal relationships by using respective inhibitors. We used nAChR antagonists to confirm the role of nicotine on podocyte injury. Results Human podocytes displayed robust mRNA and protein expression of nAChR in vitro studies. In vivo studies, mice renal cortical sections revealed co-localization of nAChRs along with synaptopodin. In vitro studies, nephrin expression in podocyte was decreased by nicotine. Nicotine stimulated podocyte ROS generation; nonetheless, antioxidants such as N-acetyl cysteine (NAC) and TEMPOL (superoxide dismutase mimetic agent) inhibited this effect of nicotine. Nicotine did not modulate proliferation but promoted apoptosis in podocytes. Nicotine enhanced podocyte phosphorylation of ERK1/2, JNK, and p38, and their specific inhibitors attenuated nicotine-induced apoptosis. nAChR antagonists significantly suppressed the effects of nicotine on podocyte. Conclusions Nicotine induces podocyte apoptosis through ROS generation and associated downstream MAPKs signaling. The present study provides insight into molecular mechanisms involved in smoking associated progression of chronic kidney disease.
Collapse
Affiliation(s)
- Xiqian Lan
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
- * E-mail: (XL); (PS)
| | - Rivka Lederman
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Judith M. Eng
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Seyedeh Shadafarin Marashi Shoshtari
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Moin A. Saleem
- Academic Renal Unit, Southmead Hospital, Bristol, United Kingdom
| | - Ashwani Malhotra
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Pravin C. Singhal
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
- * E-mail: (XL); (PS)
| |
Collapse
|
42
|
Hartmann‐Boyce J, McRobbie H, Bullen C, Begh R, Stead LF, Hajek P. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 2016; 9:CD010216. [PMID: 27622384 PMCID: PMC6457845 DOI: 10.1002/14651858.cd010216.pub3] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Electronic cigarettes (ECs) are electronic devices that heat a liquid into an aerosol for inhalation. The liquid usually comprises propylene glycol and glycerol, with or without nicotine and flavours, and stored in disposable or refillable cartridges or a reservoir. Since ECs appeared on the market in 2006 there has been a steady growth in sales. Smokers report using ECs to reduce risks of smoking, but some healthcare organizations, tobacco control advocacy groups and policy makers have been reluctant to encourage smokers to switch to ECs, citing lack of evidence of efficacy and safety. Smokers, healthcare providers and regulators are interested to know if these devices can help smokers quit and if they are safe to use for this purpose. This review is an update of a review first published in 2014. OBJECTIVES To evaluate the safety and effect of using ECs to help people who smoke achieve long-term smoking abstinence. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO for relevant records from 2004 to January 2016, together with reference checking and contact with study authors. SELECTION CRITERIA We included randomized controlled trials (RCTs) in which current smokers (motivated or unmotivated to quit) were randomized to EC or a control condition, and which measured abstinence rates at six months or longer. As the field of EC research is new, we also included cohort follow-up studies with at least six months follow-up. We included randomized cross-over trials, RCTs and cohort follow-up studies that included at least one week of EC use for assessment of adverse events (AEs). DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods for screening and data extraction. Our main outcome measure was abstinence from smoking after at least six months follow-up, and we used the most rigorous definition available (continuous, biochemically validated, longest follow-up). We used a fixed-effect Mantel-Haenszel model to calculate the risk ratio (RR) with a 95% confidence interval (CI) for each study, and where appropriate we pooled data from these studies in meta-analyses. MAIN RESULTS Our searches identified over 1700 records, from which we include 24 completed studies (three RCTs, two of which were eligible for our cessation meta-analysis, and 21 cohort studies). Eleven of these studies are new for this version of the review. We identified 27 ongoing studies. Two RCTs compared EC with placebo (non-nicotine) EC, with a combined sample size of 662 participants. One trial included minimal telephone support and one recruited smokers not intending to quit, and both used early EC models with low nicotine content and poor battery life. We judged the RCTs to be at low risk of bias, but under the GRADE system we rated the overall quality of the evidence for our outcomes as 'low' or 'very low', because of imprecision due to the small number of trials. A 'low' grade means that further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. A 'very low' grade means we are very uncertain about the estimate. Participants using an EC were more likely to have abstained from smoking for at least six months compared with participants using placebo EC (RR 2.29, 95% CI 1.05 to 4.96; placebo 4% versus EC 9%; 2 studies; 662 participants. GRADE: low). The one study that compared EC to nicotine patch found no significant difference in six-month abstinence rates, but the confidence intervals do not rule out a clinically important difference (RR 1.26, 95% CI 0.68 to 2.34; 584 participants. GRADE: very low).Of the included studies, none reported serious adverse events considered related to EC use. The most frequently reported AEs were mouth and throat irritation, most commonly dissipating over time. One RCT provided data on the proportion of participants experiencing any adverse events. The proportion of participants in the study arms experiencing adverse events was similar (ECs vs placebo EC: RR 0.97, 95% CI 0.71 to 1.34 (298 participants); ECs vs patch: RR 0.99, 95% CI 0.81 to 1.22 (456 participants)). The second RCT reported no statistically significant difference in the frequency of AEs at three- or 12-month follow-up between the EC and placebo EC groups, and showed that in all groups the frequency of AEs (with the exception of throat irritation) decreased significantly over time. AUTHORS' CONCLUSIONS There is evidence from two trials that ECs help smokers to stop smoking in the long term compared with placebo ECs. However, the small number of trials, low event rates and wide confidence intervals around the estimates mean that our confidence in the result is rated 'low' by GRADE standards. The lack of difference between the effect of ECs compared with nicotine patches found in one trial is uncertain for similar reasons. None of the included studies (short- to mid-term, up to two years) detected serious adverse events considered possibly related to EC use. The most commonly reported adverse effects were irritation of the mouth and throat. The long-term safety of ECs is unknown. In this update, we found a further 15 ongoing RCTs which appear eligible for this review.
Collapse
Affiliation(s)
- Jamie Hartmann‐Boyce
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordUKOX2 6GG
| | - Hayden McRobbie
- Barts & The London School of Medicine and Dentistry, Queen Mary University of LondonWolfson Institute of Preventive Medicine55 Philpot StreetWhitechapelLondonUKE1 2HJ
| | - Chris Bullen
- University of AucklandNational Institute for Health InnovationPrivate Bag 92019Auckland Mail CentreAucklandNew Zealand1142
| | - Rachna Begh
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordUKOX2 6GG
| | - Lindsay F Stead
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordUKOX2 6GG
| | - Peter Hajek
- Barts & The London School of Medicine and Dentistry, Queen Mary University of LondonWolfson Institute of Preventive Medicine55 Philpot StreetWhitechapelLondonUKE1 2HJ
| |
Collapse
|
43
|
Haussmann HJ, Fariss MW. Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotine per se. Crit Rev Toxicol 2016; 46:701-34. [PMID: 27278157 PMCID: PMC5020336 DOI: 10.1080/10408444.2016.1182116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/14/2016] [Accepted: 04/20/2016] [Indexed: 12/31/2022]
Abstract
The effects of long-term use of nicotine per se on cancer risk, in the absence of tobacco extract or smoke, are not clearly understood. This review evaluates the strength of published scientific evidence, in both epidemiological and animal studies, for the potential carcinogenic effects of nicotine per se; that is to act as a complete carcinogen or as a modulator of carcinogenesis. For human studies, there appears to be inadequate evidence for an association between nicotine exposure and the presence of or lack of a carcinogenic effect due to the limited information available. In animal studies, limited evidence suggests an association between long-term nicotine exposure and a lack of a complete carcinogenic effect. Conclusive studies using current bioassay guidelines, however, are missing. In studies using chemical/physical carcinogens or transgenic models, there appears to be inadequate evidence for an association between nicotine exposure and the presence of or lack of a modulating (stimulating) effect on carcinogenesis. This is primarily due to the large number of conflicting studies. In contrast, a majority of studies provides sufficient evidence for an association between nicotine exposure and enhanced carcinogenesis of cancer cells inoculated in mice. This modulating effect was especially prominent in immunocompromized mice. Overall, taking the human and animal studies into consideration, there appears to be inadequate evidence to conclude that nicotine per se does or does not cause or modulate carcinogenesis in humans. This conclusion is in agreement with the recent US Surgeon General's 2014 report on the health consequences of nicotine exposure.
Collapse
|
44
|
Perkins KA, Kunkle N, Michael VC, Karelitz JL, Donny EC. Assessing Discrimination of Nicotine in Humans Via Cigarette Smoking. Nicotine Tob Res 2016; 18:1830-6. [PMID: 27013335 PMCID: PMC4978980 DOI: 10.1093/ntr/ntw082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/01/2016] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Nicotine's interoceptive stimulus effects likely help explain smoking's reinforcing efficacy, but human studies have been limited by difficulties controlling dosing via tobacco inhalation. Our objective was to describe a procedure to study nicotine discrimination via smoking. METHODS Dependent smokers abstinent overnight (>12 hours) were first "trained" to discriminate between two cigarettes differing in nicotine content, based on four puffs of exposure, and then tested on whether they successfully acquired that discrimination. After piloting with Quest brand commercial cigarettes, 29 subjects engaged in the main study with cigarettes available through NIDA (Spectrum; 16mg vs. 0.4mg nicotine content). Discrimination training first involved two trials, one with each cigarette, prior to six testing trials. Due to results with the first 20 subjects, the remaining nine received two training trials with each cigarette (four total). Subjective perceptions were also assessed during each testing trial, and puff choice between the two cigarettes available concurrently was assessed after testing, on the last two trials. RESULTS All five pilot subjects successfully discriminated Quest 1 versus Quest 3 (defined by at least five out of six trials correct, ie, >80%). Yet, only 10 of 20 subjects (50%) were able to discriminate the two Spectrum cigarettes based on two training trials. After changing to four training trials, eight of nine subjects were able to discriminate (89%). Subjective perceptions and puff choice differed between cigarettes more in those able versus unable to discriminate them. CONCLUSIONS With sufficient training exposures, smokers can discriminate nicotine between cigarettes differing in nicotine contents. IMPLICATIONS The interoceptive stimulus effects of nicotine are critical to understanding reinforcement from cigarette smoking behavior. Because of the very recent availability of Spectrum research cigarettes from NIDA, with specific known amounts of nicotine content, the study of nicotine discrimination in humans via cigarette smoking may now be feasible. Our results demonstrate that, with sufficient training, smokers can behaviorally discriminate nicotine from four puffs' exposure between cigarettes differing in nicotine contents. Future research should evaluate human discrimination of nicotine from greater amounts of cigarette smoke exposure, as well as in response to other procedural variations.
Collapse
Affiliation(s)
- Kenneth A Perkins
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA;
| | - Nicole Kunkle
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Valerie C Michael
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Joshua L Karelitz
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Eric C Donny
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
45
|
Barboza JL, Patel R, Patel P, Hudmon KS. An update on the pharmacotherapeutic interventions for smoking cessation. Expert Opin Pharmacother 2016; 17:1483-96. [DOI: 10.1080/14656566.2016.1197203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Caldwell BO, Crane J. Combination Nicotine Metered Dose Inhaler and Nicotine Patch for Smoking Cessation: A Randomized Controlled Trial. Nicotine Tob Res 2016; 18:1944-1951. [PMID: 27185903 DOI: 10.1093/ntr/ntw093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/07/2016] [Indexed: 11/13/2022]
Abstract
INTRODUCTION In order to replicate the rewarding effects of smoking, nicotine replacement therapies must deliver nicotine via the pulmonary route. We aimed to measure the efficacy of a simple pressurized metered dose inhaler containing nicotine combined with a nicotine patch for smoking cessation. METHODS Double-blind randomized placebo-controlled, parallel group trial conducted at the University of Otago, Wellington, New Zealand. Five-hundred two adults (≥18 years) who smoked at least nine cigarettes per day, with a Fagerström Test for Nicotine Dependence ≥3 who wanted to quit, were randomized (1:1). INTERVENTIONS active nicotine pressurized metered dose inhaler (pMDI) plus active nicotine patch, versus placebo pMDI plus active nicotine patch. Subjects were instructed to use the aerosols for 6 months when they felt an urge to smoke and the patches daily for 5 months, reduce their smoking and quit by the end of the fourth week. Subjects were followed for 7 months. The primary outcome was prolonged 6 month not smoked on 7 consecutive days, analyzed by intention-to-treat. RESULTS For the primary outcome, 78/246 (31.71%) in the active group versus 46/256 (17.97%) in the control group were abstinent (odds ratio 2.12, 95% confidence interval 1.40 to 3.23). Adverse events were reported by 245/246 (99.6%) and 247/256 (96.5%) subjects in the active and control groups, respectively. Mild coughing which decreased with regular use was common with the nicotine aerosols. CONCLUSION Inhaled nicotine from a metered dose inhaler combined with a nicotine patch substantially improves abstinence for 6 months amongst adult nicotine dependant smokers wanting to quit. IMPLICATIONS In 2012, we published a systematic review of the use nicotine by inhalation in this journal. At that time we were unable to find any studies that had measured the effects of nicotine delivery by pMDI on smoking cessation, and we are not aware of any since 2012. Our study is the first to look at nicotine by pMDI in smoking cessation. The present trial demonstrates that a simple nonproprietary nicotine inhaler, using relatively inexpensive standard technology, increases smoking cessation rates over and above nicotine patch therapy, and could usefully enhance nicotine replacement in smoking cessation treatment.
Collapse
Affiliation(s)
- Brent O Caldwell
- Department of Medicine, University of Otago, Wellington, Wellington, New Zealand
| | - Julian Crane
- Department of Medicine, University of Otago, Wellington, Wellington, New Zealand
| |
Collapse
|
47
|
Medjber K, Freidja ML, Grelet S, Lorenzato M, Maouche K, Nawrocki-Raby B, Birembaut P, Polette M, Tournier JM. Role of nicotinic acetylcholine receptors in cell proliferation and tumour invasion in broncho-pulmonary carcinomas. Lung Cancer 2015; 87:258-64. [DOI: 10.1016/j.lungcan.2015.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/19/2014] [Accepted: 01/02/2015] [Indexed: 11/29/2022]
|
48
|
Barreto GE, Iarkov A, Moran VE. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson's disease. Front Aging Neurosci 2015; 6:340. [PMID: 25620929 PMCID: PMC4288130 DOI: 10.3389/fnagi.2014.00340] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 01/10/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, which is characterized by neuroinflammation, dopaminergic neuronal cell death and motor dysfunction, and for which there are no proven effective treatments. The negative correlation between tobacco consumption and PD suggests that tobacco-derived compounds can be beneficial against PD. Nicotine, the more studied alkaloid derived from tobacco, is considered to be responsible for the beneficial behavioral and neurological effects of tobacco use in PD. However, several metabolites of nicotine, such as cotinine, also increase in the brain after nicotine administration. The effect of nicotine and some of its derivatives on dopaminergic neurons viability, neuroinflammation, and motor and memory functions, have been investigated using cellular and rodent models of PD. Current evidence shows that nicotine, and some of its derivatives diminish oxidative stress and neuroinflammation in the brain and improve synaptic plasticity and neuronal survival of dopaminergic neurons. In vivo these effects resulted in improvements in mood, motor skills and memory in subjects suffering from PD pathology. In this review, we discuss the potential benefits of nicotine and its derivatives for treating PD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana Bogotá, D. C., Colombia
| | - Alexander Iarkov
- Center of Research in Biomedical Sciences, Universidad Autónoma de Chile Santiago, Chile ; Research & Development Service, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - Valentina Echeverria Moran
- Center of Research in Biomedical Sciences, Universidad Autónoma de Chile Santiago, Chile ; Research & Development Service, Bay Pines VA Healthcare System Bay Pines, FL, USA ; Research Service, James A Haley Veterans' Hospital Tampa, FL, USA ; Department of Molecular Medicine, Morsani College of Medicine, University of South Tampa, FL, USA
| |
Collapse
|
49
|
Moyses C, Hearn A, Redfern A. Evaluation of a novel nicotine inhaler device: part 2--effect on craving and smoking urges. Nicotine Tob Res 2015; 17:26-33. [PMID: 25082830 PMCID: PMC4282120 DOI: 10.1093/ntr/ntu122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/18/2014] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Many smokers find currently available nicotine replacement therapies unsatisfactory. The pharmacokinetics of nicotine delivered via a novel inhaler device, and its effect on craving satiation and smoking urges, were compared with the Nicorette® Inhalator (10 mg). METHODS Results are reported for Parts B (N = 24) and D (N = 24) of a 4-part Phase I study. Participants (18-55 years, ≥ 10 cigarettes/day within 1 hr of waking, expired carbon monoxide >10 ppm on screening) received single doses of nicotine on consecutive days (0.45 and 0.67 mg [Part B] and 0.45 mg [Part D] via the novel device; 10 mg via Nicorette® [Parts B and D]). Venous pharmacokinetics, craving, and tolerability were assessed. RESULTS In Part B, the novel device 0.45 and 0.67 mg produced significantly lower C max, AUClast, and AUCall than Nicorette® (all p ≤ .05), higher AUC0-10 and significantly shorter T max (18.7 and 19.2 min vs. 38.0 min, respectively, p ≤ .05). Craving score AUC was lower for the novel device 0.45 mg than for Nicorette® in Part B (1356.3 vs. 1566.3, p = .029) and approached statistical significance in Part D (1208.5 vs. 1402.3 [p = .059]). Mean craving scores were lower for the novel device 0.45 mg than Nicorette® at 7/8 postdose timepoints in Part B (p ≤ .05 at 180 and 240 min) and at all timepoints in Part D (p ≤ .05 at 2, 4, and 10 min). CONCLUSIONS The novel device was at least as effective as the Nicorette® Inhalator (10mg) in relieving craving and smoking urges and was statistically superior at certain timepoints and in an overall craving AUC analysis, despite lower total nicotine exposure.
Collapse
|
50
|
Moyses C, Hearn A, Redfern A. Evaluation of a novel nicotine inhaler device: part 1--arterial and venous pharmacokinetics. Nicotine Tob Res 2014; 17:18-25. [PMID: 25385878 PMCID: PMC4282122 DOI: 10.1093/ntr/ntu228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Introduction: In the United Kingdom, licensed nicotine-containing products can be recommended to reduce the harm associated with smoking. Many smokers find currently available nicotine replacement products unsatisfactory. The arterial and venous pharmacokinetics (PK) of nicotine delivered via a novel inhaler device were determined. Methods: Results are reported for Parts A (N = 18) and C (N = 18) of a 4-part (A–D) Phase I study. Participants (18–55 years, ≥10 cigarettes/day, smoking within 1hr of waking, expired carbon monoxide >10 ppm on screening) orally inhaled 2 single doses of nicotine (2 of 3 dose levels [0.22, 0.45, and 0.67 mg]) (Part A) and repeated hourly doses of 0.67mg nicotine for 12hr (Part C), via the novel device. Arterial and venous PK and tolerability were assessed. Results: In Part A, mean arterial plasma nicotine concentrations at 2min after the start of inhalation were 1.10, 2.06, and 2.59ng/mL for the 0.22, 0.45, and 0.67mg doses, respectively. Mean maximum arterial plasma nicotine concentrations (Cmax) were 2.11, 3.73, and 4.38ng/mL and mean times to Cmax were 10.2, 7.3, and 6.5min after the start of inhalation for the 0.22, 0.45, and 0.67mg doses, respectively. In Part C, the mean pre- and postdose venous plasma nicotine concentration increased steadily and fluctuated in the range 8–10mg/mL after 9hr. The novel device was well tolerated; most adverse events were mild. Conclusion: The novel inhaler device delivers nicotine rapidly into the systemic circulation and offers a viable alternative to cigarettes for those finding it difficult to quit the behavioral and sensorial aspects of smoking.
Collapse
|