1
|
Carter EP, Ang CG, Chaiken IM. Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability. Curr Protein Pept Sci 2023; 24:59-77. [PMID: 35692162 PMCID: PMC11660822 DOI: 10.2174/1389203723666220610120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
With 1.5 million new infections and 690,000 AIDS-related deaths globally each year, HIV- 1 remains a pathogen of significant public health concern. Although a wide array of effective antiretroviral drugs have been discovered, these largely target intracellular stages of the viral infectious cycle, and inhibitors that act at or before the point of viral entry still require further advancement. A unique class of HIV-1 entry inhibitors, called peptide triazoles (PTs), has been developed, which irreversibly inactivates Env trimers by exploiting the protein structure's innate metastable nature. PTs, and a related group of inhibitors called peptide triazole thiols (PTTs), are peptide compounds that dually engage the CD4 receptor and coreceptor binding sites of Env's gp120 subunit. This triggers dramatic conformational rearrangements of Env, including the shedding of gp120 (PTs and PTTs) and lytic transformation of the gp41 subunit to a post-fusion-like arrangement (PTTs). Due to the nature of their dual receptor site engagement, PT/PTT-induced conformational changes may elucidate mechanisms behind the native fusion program of Env trimers following receptor and coreceptor engagement, including the role of thiols in fusion. In addition to inactivating Env, PTT-induced structural transformation enhances the exposure of important and conserved neutralizable regions of gp41, such as the membrane proximal external region (MPER). PTT-transformed Env could present an intriguing potential vaccine immunogen prototype. In this review, we discuss the origins of the PT class of peptide inhibitors, our current understanding of PT/PTT-induced structural perturbations and viral inhibition, and prospects for using these antagonists for investigating Env structural mechanisms and for vaccine development.
Collapse
Affiliation(s)
- Erik P. Carter
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Alshorman A, Al-Hosainat N, Jackson T. Analysis of HIV latent infection model with multiple infection stages and different drug classes. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:713-732. [PMID: 36264087 DOI: 10.1080/17513758.2022.2113828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Latently infected CD4+ T cells represent one of the major obstacles to HIV eradication even after receiving prolonged highly active anti-retroviral therapy (HAART). Long-term use of HAART causes the emergence of drug-resistant virus which is then involved in HIV transmission. In this paper, we develop mathematical HIV models with staged disease progression by incorporating entry inhibitor and latently infected cells. We find that entry inhibitor has the same effect as protease inhibitor on the model dynamics and therefore would benefit HIV patients who developed resistance to many of current anti-HIV medications. Numerical simulations illustrate the theoretical results and show that the virus and latently infected cells reach an infected steady state in the absence of treatment and are eliminated under treatment whereas the model including homeostatic proliferation of latently infected cells maintains the virus at low level during suppressive treatment. Therefore, complete cure of HIV needs complete eradication of latent reservoirs.
Collapse
Affiliation(s)
- Areej Alshorman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | | | - Trachette Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Russo C, Morello G, Mannino G, Russo A, Malaguarnera L. Immunoregulation of Ghrelin in neurocognitive sequelae associated with COVID-19: an in silico investigation. Gene 2022; 834:146647. [PMID: 35680023 PMCID: PMC9169425 DOI: 10.1016/j.gene.2022.146647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/08/2023]
Abstract
Some patients suffering from the new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) develop an exaggerated inflammatory response triggered by a “cytokine storm” resulting in acute respiratory distress syndrome (ARDS) with the concomitant activation of non-specific inflammatory reactivity in the circulatory system and other organs, leading to multiorgan failure, leaky vasculature, coagulopathies and stroke. Impairment of brain functions may also occur as dysregulations in immune function resulting from neuroendocrine interactions. In this study, we explored, by bioinformatics approaches, the interaction between the multiple inflammatory agents involved in SARS-CoV-2 and Ghrelin (Ghre) together with its receptor GHSR-1A, which are described as anti-inflammatory mediators, in order to investigate what could trigger the hyper-inflammatory response in some SARS-CoV-2 patients. In our analysis, we found several interactions of Ghre and GHSR-1A with SARS-CoV-2 interacting human genes. We observed a correlation between Ghre, angiotensin-converting enzyme 2 ACE2, toll-like receptors 9 (TLR9), and Acidic chitinase (CHIA), whereas its receptor GHSR-1A interacts with chemokine receptor 3 (CXCR3), CCR3, CCR5, CCR7, coagulation factor II (thrombin) receptor-like 1 (F2RL1), vitamin D receptor (VDR), Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and DDP4 in receptor dipeptidyl peptidase-4. To our knowledge, our findings show, for the first time, that Ghre and GHSR-1A may exert an immunomodulatory function in the course of SARS-Cov-2 infection.
Collapse
Affiliation(s)
- Cristina Russo
- Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanna Morello
- Department of Biomedical Science, Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Catania, Italy
| | - Giuliana Mannino
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Physiology section, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
4
|
Vanangamudi M, Nair PC, Engels SEM, Palaniappan S, Namasivayam V. Structural Insights to Human Immunodeficiency Virus (HIV-1) Targets and Their Inhibition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:63-95. [PMID: 34258737 DOI: 10.1007/978-981-16-0267-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human immunodeficiency virus (HIV) is a deadly virus that attacks the body's immune system, subsequently leading to AIDS (acquired immunodeficiency syndrome) and ultimately death. Currently, there is no vaccine or effective cure for this infection; however, antiretrovirals that act at various phases of the virus life cycle have been useful to control the viral load in patients. One of the major problems with antiretroviral therapies involves drug resistance. The three-dimensional structure from crystallography studies are instrumental in understanding the structural basis of drug binding to various targets. This chapter provides key insights into different targets and drugs used in the treatment from a structural perspective. Specifically, an insight into the binding characteristics of drugs at the active and allosteric sites of different targets and the importance of targeting allosteric sites for design of new-generation antiretrovirals to overcome complex and resistant forms of the virus has been reviewed.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Gwalior, Gwalior, Madhya Pradesh, India
| | - Pramod C Nair
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
5
|
Matei E, Basu R, Furey W, Shi J, Calnan C, Aiken C, Gronenborn AM. Structure and Glycan Binding of a New Cyanovirin-N Homolog. J Biol Chem 2016; 291:18967-76. [PMID: 27402833 DOI: 10.1074/jbc.m116.740415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope glycoprotein gp120 is heavily glycosylated and bears numerous high mannose sugars. These sugars can serve as targets for HIV-inactivating compounds, such as antibodies and lectins, which bind to the glycans and interfere with viral entry into the target cell. We determined the 1.6 Å x-ray structure of Cyt-CVNH, a recently identified lectin from the cyanobacterium Cyanothece(7424), and elucidated its glycan specificity by NMR. The Cyt-CVNH structure and glycan recognition profile are similar to those of other CVNH proteins, with each domain specifically binding to Manα(1-2)Manα units on the D1 and D3 arms of high mannose glycans. However, in contrast to CV-N, no cross-linking and precipitation of the cross-linked species in solution was observed upon Man-9 binding, allowing, for the first time, investigation of the interaction of Man-9 with a member of the CVNH family by NMR. HIV assays showed that Cyt-CVNH is able to inhibit HIV-1 with ∼4-fold higher potency than CV-N(P51G), a stabilized version of wild type CV-N. Therefore, Cyt-CVNH may qualify as a valuable lectin for potential microbicidal use.
Collapse
Affiliation(s)
- Elena Matei
- From the Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Rohan Basu
- From the Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15260, the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - William Furey
- the Department of Pharmacology & Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | - Jiong Shi
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, and
| | - Conor Calnan
- From the Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15260, the Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Christopher Aiken
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, and
| | - Angela M Gronenborn
- From the Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
6
|
Sironi F, Malnati M, Mongelli N, Cozzi P, Guzzo C, Ghezzi S, Martínez-Romero C, García-Sastre A, Lusso P, Jabes D, Biswas P. Characterization of HIV-1 entry inhibitors with broad activity against R5 and X4 viral strains. J Transl Med 2015; 13:107. [PMID: 25888743 PMCID: PMC4399250 DOI: 10.1186/s12967-015-0461-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 12/04/2022] Open
Abstract
Background Combined antiretroviral therapy has drastically reduced mortality and morbidity of HIV-infected individuals. Nevertheless long-term toxicity and appearance of viral resistance hampers the prolonged effectiveness of combination therapy, requiring a continuous input of drugs to replace those utilized in combination regimens. We here investigated the anti-HIV activity of novel derivatives of the suradista chemical class. Methods Compounds were tested on acute HIV-1 infection of activated peripheral blood mononuclear cells. HIV production was monitored by enzyme-linked immunosorbent assay measuring the protein p24 released in culture supernatants. Fusion assays were carried out to study the mechanism of action of these compounds. A modified version of a previously established recombinant vaccinia virus-based assay was used measuring activation of a reporter gene upon fusion of two distinct cell populations. Flow cytometry was performed in competition assays for the binding of several antibodies targeting different sites of the viral envelope glycoprotein gp120, or the receptor CD4, or the coreceptors CXCR4 and CCR5. Results Four compounds inhibited replication of a prototypic R5 (BaL) and X4 (IIIB) laboratory-adapted HIV-1 strain at low micromolar concentrations, in the absence of cytotoxicity. Approximately a ten fold greater activity was achieved against the X4 as compared to the R5 strain. The compounds blocked X4 and R5 HIV-1 fusion, a step of viral entry. This activity appeared specific for HIV-1, as entry of human herpesvirus 6 (HHV-6) and influenza virus was not substantially affected. Further investigation of the inhibitory mechanism revealed that these new molecules target the viral envelope, rather than the coreceptors, as previously shown for a congener of the same class characterized by a long plasmatic half-life. Indeed ND-4043, the most active compound, specifically competed with binding of monoclonal antibodies against the CD4-binding site (CD4-BS) and coreceptor-binding site (CoR-BS) of gp120. These compounds displayed broad anti-HIV activity, as they inhibited various primary R5, X4 and, importantly, dualtropic R5X4 HIV-1 isolates. Of the four derivatives tested, the dimeric compounds were consistently more potent than the monomeric ones. Conclusions Given their unique features, these molecules represent promising candidates for further development and exploitation as anti-HIV therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0461-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Sironi
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| | - Mauro Malnati
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| | | | | | - Christina Guzzo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Silvia Ghezzi
- Unit of Viral Pathogens and Biosafety, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| | - Carles Martínez-Romero
- Department of Microbiology, New York, NY, 10029, USA. .,Global Health and Emerging Pathogens Institute, New York, NY, 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, New York, NY, 10029, USA. .,Global Health and Emerging Pathogens Institute, New York, NY, 10029, USA. .,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Daniela Jabes
- NeED Pharmaceuticals srl, Viale Ortles 22/4, 20139, Milan, Italy.
| | - Priscilla Biswas
- Unit of Molecular Immunology, Division of Genetics and Cell Biology, San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
7
|
Guendel I, Iordanskiy S, Sampey GC, Van Duyne R, Calvert V, Petricoin E, Saifuddin M, Kehn-Hall K, Kashanchi F. Role of Bruton's tyrosine kinase inhibitors in HIV-1-infected cells. J Neurovirol 2015; 21:257-75. [PMID: 25672887 DOI: 10.1007/s13365-015-0323-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton's tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60-120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.
Collapse
Affiliation(s)
- Irene Guendel
- Department of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Metastatic disease is responsible for 90% of death from solid tumors. However, only a minority of metastasis-specific targets has been exploited therapeutically, and effective prevention and suppression of metastatic disease is still an elusive goal. In this review, we will first summarize the current state of knowledge about the molecular features of the disease, with particular focus on steps and targets potentially amenable to therapeutic intervention. We will then discuss the reasons underlying the paucity of metastatic drugs in the current oncological arsenal and potential ways to overcome this therapeutic gap. We reason that the discovery of novel promising targets, an increased understanding of the molecular features of the disease, the effect of disruptive technologies, and a shift in the current preclinical and clinical settings have the potential to create more successful drug development endeavors.
Collapse
Affiliation(s)
- Yari Fontebasso
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
9
|
Regueiro-Ren A, Xue QM, Swidorski JJ, Gong YF, Mathew M, Parker DD, Yang Z, Eggers B, D'Arienzo C, Sun Y, Malinowski J, Gao Q, Wu D, Langley DR, Colonno RJ, Chien C, Grasela DM, Zheng M, Lin PF, Meanwell NA, Kadow JF. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 12. Structure-activity relationships associated with 4-fluoro-6-azaindole derivatives leading to the identification of 1-(4-benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1h-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248). J Med Chem 2013; 56:1656-69. [PMID: 23360431 DOI: 10.1021/jm3016377] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of highly potent HIV-1 attachment inhibitors with 4-fluoro-6-azaindole core heterocycles that target the viral envelope protein gp120 has been prepared. Substitution in the 7-position of the azaindole core with amides (12a,b), C-linked heterocycles (12c-l), and N-linked heterocycles (12m-u) provided compounds with subnanomolar potency in a pseudotype infectivity assay and good pharmacokinetic profiles in vivo. A predictive model was developed from the initial SAR in which the potency of the analogues correlated with the ability of the substituent in the 7-position of the azaindole to adopt a coplanar conformation by either forming internal hydrogen bonds or avoiding repulsive substitution patterns. 1-(4-Benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248, 12m) exhibited much improved in vitro potency and pharmacokinetic properties than the previous clinical candidate BMS-488043 (1). The predicted low clearance in humans, modest protein binding, and good potency in the presence of 40% human serum for 12m led to its selection for human clinical studies.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Department of Medicinal Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang T, Yang Z, Zhang Z, Gong YF, Riccardi KA, Lin PF, Parker DD, Rahematpura S, Mathew M, Zheng M, Meanwell NA, Kadow JF, Bender JA. Inhibitors of HIV-1 attachment. Part 10. The discovery and structure-activity relationships of 4-azaindole cores. Bioorg Med Chem Lett 2012. [PMID: 23200254 DOI: 10.1016/j.bmcl.2012.10.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of 4-azaindole oxoacetic acid piperazine benzamides was synthesized and evaluated in an effort to identify an oral HIV-1 attachment inhibitor with the potential to improve upon the pre-clinical profile of BMS-378806 (7), an initial clinical compound. Modifications at the 7-position of the 4-azaindole core modulated potency significantly and SAR showed that certain compounds with a 5-membered ring heteroaryl group at that position were the most potent. Four of the compounds with the best profiles were evaluated in a rat pharmacokinetic model and all had superior oral bioavailability and lower clearance when compared with 7.
Collapse
Affiliation(s)
- Tao Wang
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Patel K, Dixit VD, Lee JH, Kim JW, Schaffer EM, Nguyen D, Taub DD. The GHS-R blocker D-[Lys3] GHRP-6 serves as CCR5 chemokine receptor antagonist. Int J Med Sci 2012; 9:51-8. [PMID: 22211090 PMCID: PMC3222091 DOI: 10.7150/ijms.9.51] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022] Open
Abstract
[D-Lys3]-Growth Hormone Releasing Peptide-6 (DLS) is widely utilized in vivo and in vitro as a selective ghrelin receptor (GHS-R) antagonist. This antagonist is one of the most common antagonists utilized in vivo to block GHS-R function and activity. Here, we found that DLS also has the ability to modestly block chemokine function and ligand binding to the chemokine receptor CCR5. The DLS effects on RANTES binding and Erk signaling as well as calcium mobilization appears to be much stronger than its effects on MIP-1α and MIP-1β. CCR5 have been shown to act as major co-receptor for HIV-1 entry into the CD4 positive host cells. To this end, we also found that DLS blocks M-tropic HIV-1 propagation in activated human PBMCs. These data demonstrate that DLS may not be a highly selective GHS-R1a inhibitor and may also effects on other G-protein coupled receptor (GPCR) family members. Moreover, DLS may have some potential clinical applications in blocking HIV infectivity and CCR5-mediated migration and function in various inflammatory disease states.
Collapse
Affiliation(s)
- Kalpesh Patel
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Intramural Program, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Patel K, Dixit VD, Lee JH, Kim JW, Schaffer EM, Nguyen D, Taub DD. Identification of ghrelin receptor blocker, D-[Lys3] GHRP-6 as a CXCR4 receptor antagonist. Int J Biol Sci 2011; 8:108-17. [PMID: 22211109 PMCID: PMC3248652 DOI: 10.7150/ijbs.8.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/10/2011] [Indexed: 12/19/2022] Open
Abstract
[D-Lys3]-Growth Hormone Releasing Peptide-6 (DLS) is widely utilized in vivo and in vitro as a selective ghrelin receptor (GHS-R) antagonist. Unexpectedly, we identified that DLS also has the ability to block CXCL12 binding and activity through CXCR4 on T cells and peripheral blood mononuclear cells (PBMCs). Moreover, as CXCR4 has been shown to act as a major co-receptor for HIV-1 entry into CD4 positive host cells, we have also found that DLS partially blocks CXCR4-mediated HIV-1 entry and propagation in activated human PBMCs. These data demonstrate that DLS is not the specific and selective antagonist as thought for GHS-R1a and appears to have additional effects on the CXCR4 chemokine receptor. Our findings also suggest that structural analogues that mimic DLS binding properties may also have properties of blocking HIV infectivity, CXCR4 dependent cancer cell migration and attenuating chemokine-mediated immune cell trafficking in inflammatory disorders.
Collapse
Affiliation(s)
- Kalpesh Patel
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Intramural Program, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
OBJECTIVES 2F5 and 4E10 are two broadly neutralizing monoclonal antibodies (mAbs) targeting the membrane proximal external region (MPER) of HIV-1 gp41 envelope protein. This region, which contacts the viral membrane, is highly conserved and has been regarded as a promising target for vaccine development. We aimed to clarify the basis of 2F5 and 4E10 molecular interactions with epitope cores in MPER and lipid bilayers. DESIGN Microscopy-based approaches were used to infer and quantify the effects of both mAbs on membranes, in the presence and absence of the epitope cores. Supported lipid bilayers (SLBs), with and without phase separation, were used as membrane models. Fluorescent-labeled and nonlabeled MPER-derived peptides containing both 2F5 and 4E10 epitopes were used. METHODS mAbs 2F5 and 4E10 membrane interactions, in the presence or absence of MPER-derived peptides, were evaluated by combined atomic force and confocal microscopies. RESULTS Both mAbs form lipid-segregated aggregates on SLBs and do not induce other significant membrane perturbations. Furthermore, the affinity of MPER toward membranes is differently affected by both mAbs and correlates with the mAbs-epitope core lipid interactions. 2F5 is able to dock the MPER peptide on the membrane, whereas 4E10 extracts the MPER from the lipid bilayer. CONCLUSION The results reveal the molecular details underneath 2F5/4E10 membrane-epitope binding and a model is proposed to explain the differential mAbs neutralization efficacies, which relates to the exposure of the epitopes in the lipid bilayers and the role of the lipids in mAb-epitope binding.
Collapse
|
14
|
Abstract
Since the discovery of CCR5 as a coreceptor for HIV entry, there has been interest in blockade of the receptor for treatment and prevention of HIV infection. Although several CCR5 antagonists have been evaluated in clinical trials, only maraviroc has been approved for clinical use in the treatment of HIV-infected patients. The efficacy, safety and resistance profile of CCR5 antagonists with a focus on maraviroc are reviewed here along with their usage in special and emerging clinical situations. Despite being approved for use since 2007, the optimal use of maraviroc has yet to be well-defined in HIV and potentially in other diseases. Maraviroc and other CCR5 antagonists have the potential for use in a variety of other clinical situations such as the prevention of HIV transmission, intensification of HIV treatment and prevention of rejection in organ transplantation. The use of CCR5 antagonists may be potentiated by other agents such as rapamycin which downregulate CCR5 receptors thus decreasing CCR5 density. There may even be a role for their use in combination with other entry inhibitors. However, clinical use of CCR5 antagonists may have negative consequences in diseases such as West Nile and Tick-borne encephalitis virus infections. In summary, CCR5 antagonists have great therapeutic potential in the treatment and prevention of HIV as well as future use in novel situations such as organ transplantation. Their optimal use either alone or in combination with other agents will be defined by further investigation.
Collapse
Affiliation(s)
- Bruce L Gilliam
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard St, Baltimore, 21201 Maryland, USA
| | | | | |
Collapse
|
15
|
Lou J, Smith RJ. Modelling the effects of adherence to the HIV fusion inhibitor enfuvirtide. J Theor Biol 2010; 268:1-13. [PMID: 20888346 DOI: 10.1016/j.jtbi.2010.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 01/10/2023]
Abstract
Recently, the first drug in a new class of antiretroviral HIV drugs was approved, the fusion inhibitor enfuvirtide. We develop a mathematical model that describes the binding of the virus to T cells. We model the effect of enfuvirtide upon this process using impulsive differential equations. We find equilibria and determine stability in the case of no therapy and then when therapy is taken with perfect adherence. We determine analytical thresholds for the dosage and dosing intervals to ensure the disease-free equilibrium remains stable. We also explore the effects of partial adherence. Our theoretical results suggest that partial adherence may, at times, be worse than no therapy at all, but at other times may in fact as good as perfect adherence. It follows that patients should be counselled on the importance of adherence to this new antiretroviral drug.
Collapse
Affiliation(s)
- Jie Lou
- Department of Mathematics, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | | |
Collapse
|
16
|
Bruno CJ, Jacobson JM. Ibalizumab: an anti-CD4 monoclonal antibody for the treatment of HIV-1 infection. J Antimicrob Chemother 2010; 65:1839-41. [PMID: 20639524 DOI: 10.1093/jac/dkq261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The majority of currently available agents for the treatment of HIV-1 infection act by targeting one of several intracellular steps in the viral life cycle. Despite improvements in efficacy and tolerability, the development of viral resistance to these agents is common and significant toxicity and adherence issues still occur. For this reason the development of safe, well tolerated antiviral agents that target a novel step in the viral life cycle remains important. Viral entry into host cells affords several potential extracellular targets for antiretroviral therapy. Ibalizumab, a humanized monoclonal antibody to CD4, the primary host cellular receptor for HIV-1 entry, has been shown to block HIV-1 entry in vitro. Early clinical trials have demonstrated significant antiviral efficacy with a >1 log(10) reduction in viral load when given as monotherapy. Its long half-life, which allows weekly dosing, and its administration as an intravenous infusion differentiate it from other currently available antiretroviral agents. These properties may prove useful in allowing improved drug delivery to patients who have had difficulty adhering to daily oral regimens. Its unique mode of action reduces the risk of cross-resistance with currently available antiretroviral agents, with the potential to expand the choices available to treat drug-resistant HIV-1.
Collapse
Affiliation(s)
- Christopher J Bruno
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
17
|
|
18
|
Franquelim HG, Veiga AS, Weissmüller G, Santos NC, Castanho MA. Unravelling the molecular basis of the selectivity of the HIV-1 fusion inhibitor sifuvirtide towards phosphatidylcholine-rich rigid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1234-43. [DOI: 10.1016/j.bbamem.2010.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/19/2010] [Accepted: 02/08/2010] [Indexed: 11/29/2022]
|
19
|
Stellbrink HJ. Novel compounds for the treatment of HIV type-1 infection. Antivir Chem Chemother 2010; 19:189-200. [PMID: 19483267 DOI: 10.1177/095632020901900502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite the recent licensure of several new antiretroviral compounds, there is still a need to develop additional agents. Problems with antiviral activity, tolerability, ease of administration, extent of cross-resistance and pharmacokinetic as well as pharmacodynamic interactions still represent important obstacles to life-long control of HIV type-1 replication by highly active antiretroviral therapy. Several compounds stem from the same classes as currently available drugs: apricitabine and elvucitabine (nucleoside reverse transcriptase inhibitors), rilpivirine (non-nucleoside reverse transcriptase inhibitor), vicriviroc and INCB009471 (CCR5 inhibitors) and elvitegravir (integrase inhibitor). The potential of other compounds with new modes of action is less clear. Currently, maturation inhibitors appear promising but for other drugs, obstacles to continued development, such as the need of parenteral application (that is, monoclonal antibodies) or toxicity (for example, immune modulating agents and pegylated interferon), are already apparent. For even more compounds in the preclinical development phase, an assessment of their possible clinical role is still premature. This review provides an overview and a summary of the current status of drug development in the field.
Collapse
|
20
|
Sommerfelt MA. Circular CCR5 peptide conjugates and uses thereof (WO2008074895). Expert Opin Ther Pat 2009; 19:1323-8. [PMID: 19456281 DOI: 10.1517/13543770902967682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Several new strategies targeting HIV infection aim to inhibit virus entry by blocking the chemokine receptor CCR5 used by macrophage tropic strains associated with early infection. The current application uses virus-like particles as a support to present CCR5 peptide antigens. OBJECTIVES The virus-like particle (VLP)-CCR5 composition aims to function as either a preventative and/or therapeutic vaccine inducing durable autoantibodies that can block CCR5 and prevent HIV entry or attenuate disease progression. METHODS The novelty of the current application lies in the chemical conjugation of circularised peptide antigens to VLPs, primarily the CCR5 N-terminal domain alone but also including the first extracellular loop (ECL-1). Immunised mice and rabbits generated antibodies that recognised native CCR5 and inhibited entry of pseudotype viruses bearing envelope glycoproteins from diverse primary strains in vitro. RESULTS/CONCLUSIONS Further work is required to assess the in vivo therapeutic potential of these CCR5 compositions. As therapeutic vaccines and/or preventative vaccines, the potential for selecting CXCR4 tropic virus populations associated with disease progression will need to be considered in addition to the broader consequences of targeting a cellular antigen involved in innate immunity.
Collapse
|
21
|
Wang T, Yin Z, Zhang Z, Bender JA, Yang Z, Johnson G, Yang Z, Zadjura LM, D’Arienzo CJ, DiGiugno Parker D, Gesenberg C, Yamanaka GA, Gong YF, Ho HT, Fang H, Zhou N, McAuliffe BV, Eggers BJ, Fan L, Nowicka-Sans B, Dicker IB, Gao Q, Colonno RJ, Lin PF, Meanwell NA, Kadow JF. Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Attachment. 5. An Evolution from Indole to Azaindoles Leading to the Discovery of 1-(4-Benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a Drug Candidate That Demonstrates Antiviral Activity in HIV-1-Infected Subjects. J Med Chem 2009; 52:7778-87. [DOI: 10.1021/jm900843g] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Zheng Yang
- Metabolism and Pharmacokinetics, Preclinical Candidate Optimization
| | - Lisa M. Zadjura
- Metabolism and Pharmacokinetics, Preclinical Candidate Optimization
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qi Gao
- Analytical Research and Development, Bristol-Myers Squibb Research and Development, 1 Squibb Drive, New Brunswick, New Jersey 08901
| | | | | | | | | |
Collapse
|
22
|
Marr P, Walmsley S. Reassessment of enfuvirtide's role in the management of HIV-1 infection. Expert Opin Pharmacother 2008; 9:2349-62. [PMID: 18710359 DOI: 10.1517/14656566.9.13.2349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The development of new protease inhibitors, new non-nucleoside reverse transcriptase inhibitors and novel therapeutic drug classes has dramatically changed the approach to managing HIV-1 patients with multidrug resistant virus. This has led many clinicians to reevaluate the clinical utility of enfuvirtide. OBJECTIVES To summarize recent literature on enfuvirtide and to reassess enfuvirtide's role in the management of HIV-1 infection. METHODS MEDLINE (1990 to February Week 2 2008) and EMBASE (1990 to 2008 week 8) databases were searched using the following terms: 'enfuvirtide', 'Fuzeon', 'T20', 'HIV fusion inhibitors', and 'HIV entry inhibitor'; limits: English language. Reference lists of articles deemed relevant were hand searched for additional publications. Significant abstracts from recent international HIV conferences were also identified. CONCLUSION Enfuvirtide can optimize the response to new combinations of HIV-1 drug regimens in multiresistant patients. Its inclusion as an active agent is effective but use is impacted by its high cost, inconvenient route of administration and cosmetic side-effect profile.
Collapse
Affiliation(s)
- Patricia Marr
- University Health Network, Immunodeficiency Clinic, 13 North, Room 1314, 200 Elizabeth Street, Toronto, ON M5G2C4, Canada.
| | | |
Collapse
|
23
|
|
24
|
Franquelim HG, Loura LMS, Santos NC, Castanho MARB. Sifuvirtide screens rigid membrane surfaces. establishment of a correlation between efficacy and membrane domain selectivity among HIV fusion inhibitor peptides. J Am Chem Soc 2008; 130:6215-23. [PMID: 18410103 DOI: 10.1021/ja711247n] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sifuvirtide, a 36 amino acid negatively charged peptide, is a novel and promising HIV fusion inhibitor, presently in clinical trials. Because of the aromatic amino acid residues of the peptide, its behavior in aqueous solution and the interaction with lipid-membrane model systems (large unilammelar vesicles) were studied by using mainly fluorescence spectroscopy techniques (both steady-state and time-resolved). No significant aggregation of the peptide was observed with aqueous solution. Various biological and nonbiological lipid-membrane compositions were analyzed, and atomic force microscopy was used to visualize phase separation in several of those mixtures. Results showed no significant interaction of the peptide, neither with zwitterionic fluid lipid membranes (liquid-disordered phase), nor with cholesterol-rich membranes (liquid-ordered phase). However, significant partitioning was observed with the positively charged lipid models (K(p) = (2.2 +/- 0.3) x 10(3)), serving as a positive control. Fluorescence quenching using Förster resonance acrylamide and lipophilic probes was carried out to study the location of the peptide in the membrane models. In the gel-phase DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) membrane model, an adsorption of the peptide at the surface of these membranes was observed and confirmed by using Förster resonance energy-transfer experiments. These results indicate a targeting of the peptide to gel-phase domains relatively to liquid-disordered or liquid-ordered phase domains. This larger affinity and selectivity toward the more rigid areas of the membranes, where most of the receptors are found, or to viral membrane, may help explain the improved clinical efficiency of sifuvirtide, by providing a local increased concentration of the peptide at the fusion site.
Collapse
Affiliation(s)
- Henri G Franquelim
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
25
|
Abstract
Maraviroc is a specific, slowly reversible, noncompetitive, small-molecule antagonist of the CCR5 chemokine receptor, which also serves as an HIV-1 coreceptor. By acting as an antagonist at the CCR5 coreceptor, maraviroc inhibits HIV-1 from entering host cells. Clinical data for maraviroc are available from two large, well designed, ongoing phase IIb/III trials (MOTIVATE-1 and MOTIVATE-2) conducted in patients infected with R5-tropic HIV-1 who had previously received at least one agent from three of the four classes of antiretroviral drugs and/or were triple-class resistant. According to 24-week interim results of the MOTIVATE-1 and -2 trials, a significantly greater reduction in viral load occurred in patients receiving maraviroc 150 or 300mg (depending on optimised background therapy [OBT]) twice daily plus OBT compared with placebo plus OBT. This significant difference was maintained at 48 weeks in MOTIVATE-1. In the MOTIVATE-1 and -2 trials, a significantly greater proportion of patients receiving maraviroc plus OBT achieved an HIV-1 RNA level <400 and <50 copies/mL compared with those receiving placebo plus OBT. In addition, the CD4+ cell count was increased to a significantly greater extent with maraviroc plus OBT compared with placebo plus OBT. The 48-week results of MOTIVATE-1 also report a significant difference in favour of maraviroc for all these endpoints. In general, maraviroc at dosages of up to 300mg twice daily was well tolerated in treatment-experienced patients infected with R5-tropic HIV-1.
Collapse
|
26
|
Antiviral compounds show enhanced activity in HIV-1 single cycle pseudovirus assays as compared to classical PBMC assays. J Virol Methods 2008; 148:166-73. [PMID: 18192031 DOI: 10.1016/j.jviromet.2007.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/29/2007] [Accepted: 11/21/2007] [Indexed: 01/25/2023]
Abstract
HIV-1 Env pseudotyped viruses (PV) are an attractive tool for studying the antiviral activities of compounds interfering with virus entry into a target cell. To investigate whether results obtained in PV assays are relevant biologically, the antiviral activity of 6 reference compounds was compared on 5 virus isolates of different clades using three assays: (1) replicating virus in peripheral blood mononuclear cells (PBMCs), (2) PV in CD4 and CCR5- or CXCR4 co-receptor expressing Ghost cells, and (3) PV in PBMCs. A significant linear relationship was found between both single-cycle PV assays (P<0.0001, R2=0.75). Moreover, both assays showed enhanced sensitivity to the antiretrovirals tested (P=0.013 and 0.015, respectively) as compared to the PBMC assay with replication-competent virus. Most importantly, results from the latter assay could be predicted significantly from both PV assays, in which either Ghost target cells (P<0.0001, R2=0.61) or PBMCs (P<0.0001, R2=0.55) were used. The usefulness of the PV assay was demonstrated further by investigating the impact of the HIV-1 Env subtype on the antiviral activity of five new compounds derived from the entry inhibitor BMS806.
Collapse
|
27
|
Sutton RE. What does the future hold for viral gene therapy? Future Virol 2007. [DOI: 10.2217/17460794.2.6.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Richard E Sutton
- Baylor College of Medicine, Department of Molecular Virology & Microbiology, Department of Medicine, Division of Infectious Diseases, Center for Cell & Gene Therapy, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
28
|
Abstract
The majority of current anti-HIV drugs target the viral reverse transcriptase or protease enzymes. However, enfuvirtide and maraviroc are drugs that have been US FDA approved recently and which function by inhibiting virus cell binding and entry which normally occurs through the interaction of the viral envelope protein with its cellular coreceptor. As HIV-1 utilizes many cellular cofactors during its replication cycle, there are a number of other protein–protein interactions that can serve as targets for anti-HIV drug development. In this review article we discuss the general method used to identify anti-HIV drugs that function through targeting protein–protein interactions. We also discuss the currently known cellular cofactors that may serve as targets in future drugs screens.
Collapse
Affiliation(s)
- Andrew P Rice
- Baylor College of Medicine, Department of Molecular Virology & Microbiology, Houston, TX 77030, USA
| | - Richard E Sutton
- Baylor College of Medicine, Department of Molecular Virology & Microbiology, Houston, TX 77030, USA
| |
Collapse
|
29
|
Choudhry V, Zhang MY, Dimitrova D, Prabakaran P, Dimitrov AS, Fouts TR, Dimitrov DS. Antibody-based inhibitors of HIV infection. Expert Opin Biol Ther 2007; 6:523-31. [PMID: 16610981 DOI: 10.1517/14712598.6.5.523] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The demand for new treatment options against HIV is becoming increasingly desperate as the side effects and the expansion and spread of drug-resistant virus within the infected population limit the clinical benefits provided by available anti-HIV drugs. Preparations of polyclonal antibodies have a long history of proven clinical utility against some viruses; however, they have enjoyed very limited success against HIV. Recent clinical trials and in vitro experiments suggest that monoclonal antibodies against HIV may have promise clinically. These antibodies and antibody-based reagents target either the viral envelope glycoprotein, the receptor (CD4) or coreceptor (CCR5) molecules, or transition-state structures that appear during viral entry. The challenge is whether an antibody-based therapy can be identified (with or without their small molecule brethren) that presents long-term clinical efficacy, low toxicity and minimal risk of clinical failure from viral resistance.
Collapse
Affiliation(s)
- Vidita Choudhry
- NCI-Frederick, Protein Interactions Group, CCRNP, CCR, NIH, P.O. Box B, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Thomas LH, Friedland JS, Sharland M. Chemokines and their receptors in respiratory disease: a therapeutic target for respiratory syncytial virus infection. Expert Rev Anti Infect Ther 2007; 5:415-25. [PMID: 17547506 DOI: 10.1586/14787210.5.3.415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell recruitment is a multistep process orchestrated by chemokines and their receptors. The chemokine/receptor system is central to many inflammatory diseases, making it a key target for therapeutic intervention. Despite complexity and redundancy within the system, effective antagonists are in development and undergoing clinical trials, for example, maraviroc, for use in HIV treatment. Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection in infants, with global annual infection estimated at 64 million people. Current treatment is purely supportive, with no effective vaccine available. RSV pathology is partly due to excessive airway inflammation. Evidence is growing for a key role for chemokine receptors. Receptor blockade may therefore provide a feasible therapeutic option to inhibit RSV-induced inflammation and thereby reduce disease severity.
Collapse
Affiliation(s)
- Lynette H Thomas
- Department of Infectious Diseases & Immunity, Imperial College, London, UK.
| | | | | |
Collapse
|
31
|
Abstract
Vaccine-induced antibodies that interfere with viral entry are the protective correlate of most existing prophylactic vaccines. However, for highly variable viruses such as HIV-1, the ability to elicit broadly neutralizing antibody responses through vaccination has proven to be extremely difficult. The major targets for HIV-1 neutralizing antibodies are the viral envelope glycoprotein trimers on the surface of the virus that mediate receptor binding and entry. HIV-1 has evolved many mechanisms on the surface of envelope glycoproteins to evade antibody-mediated neutralization, including the masking of conserved regions by glycan, quaternary protein interactions and the presence of immunodominant variable elements. The primary challenge in the development of an HIV-1 vaccine that elicits broadly neutralizing antibodies therefore lies in the design of suitable envelope glycoprotein immunogens that circumvent these barriers. Here, we describe neutralizing determinants on the viral envelope glycoproteins that are defined by their function in receptor binding or by rare neutralizing antibodies isolated from HIV-infected individuals. We also describe the nonvariable cellular receptors involved in the HIV-1 entry process, or other cellular proteins, and ongoing studies to determine if antibodies against these proteins have efficacy as therapeutic reagents or, in some cases, as vaccine targets to interfere with HIV-1 entry.
Collapse
Affiliation(s)
- S Phogat
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
32
|
Biswas P, Galli A, Galli L, Tassan Din C, Vecchi A, Malnati M, Lazzarin A, Tambussi G. Does cyclosporin A affect CCR5 and CXCR4 expression in primary HIV-1-infected patients? CYTOMETRY PART B-CLINICAL CYTOMETRY 2007; 72:433-41. [PMID: 17474134 DOI: 10.1002/cyto.b.20352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND CCR5 and CXCR4 are the major coreceptors of HIV required for successful viral entry. No information exists on the effect of cyclosporin A (CsA) on expression of CCR5 and CXCR4. A longitudinal study of the coreceptors' expression in freshly isolated peripheral blood mononuclear cells (PBMC) of patients with primary HIV infection (PHI) was performed. METHODS Patients received highly active antiretroviral therapy (HAART) alone (n = 7) or with CsA (HAART + CsA) (n = 8). Flow cytometric data were analyzed at T0 (baseline), two (T2), six (T6), and twelve (T12) months after therapy initiation. RESULTS At T0 PHI subjects presented a statistically significant higher count and percentage of CD8+CCR5+ lymphocytes compared to healthy donors (HD) (mean +/- SD, 2,240 +/- 1,998 vs 181 +/- 89 cells/microl). Conversely, CD4+CXCR4+ lymphocytes were less abundant in PHI than in HD (443 +/- 337 vs 673 +/- 339 cells/microl), whereas CD4+CCR5+ lymphocytes were substantially comparable (169 +/- 167 vs 126 +/- 60 cells/microl). In the follow up no differences between HAART and HAART + CsA groups reached statistical significance in CD4 lymphocytes. CD4+CCR5- lymphocytes displayed a rapid recovery after therapy initiation, similarly to the CD4+CXCR4+ subset. In CD8 lymphocytes a statistically significant difference between HAART and HAART + CsA patients occurred at T2 when HAART + CsA patients presented a lower absolute count of the CD8+CXCR4+ subset compared to the HAART group. The major change after therapy initiation in all PHI patients was a striking drop of CD8+CCR5+ lymphocytes; moreover, the CD8+CXCR4- subset behaved similarly. The decrement of CD8+CCR5+ lymphocytes paralleled the decline of viremia and CD8+CD38+ lymphocytes, with the sharpest slope at T2. Conversely, RANTES levels increased at T2 and remained elevated during the follow up. CONCLUSIONS CsA cotreatment in PHI patients appears not to substantially modify HIV coreceptors' expression in PBMC. However, this novel piece of information should be used with caution, since this was not a randomized study between the HAART and the HAART + CsA groups.
Collapse
Affiliation(s)
- Priscilla Biswas
- Laboratory of Clinical Immunology, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Biswas P, Tambussi G, Lazzarin A. Access denied? The status of co-receptor inhibition to counter HIV entry. Expert Opin Pharmacother 2007; 8:923-33. [PMID: 17472538 DOI: 10.1517/14656566.8.7.923] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As resistance and long-term metabolic abnormalities hamper the efficacy of previous drugs against HIV-1, targeting of HIV co-receptors represents an exciting new frontier for antiretroviral therapeutics. CCR5 inhibitors are most likely to be the new available drugs within the class of entry inhibitors. This paper reviews the most recent clinical data available on the small-molecule compounds vicriviroc and maraviroc and on the antibodies PRO 140 and CCR5mAb004, as well as some novel genetic approaches. A thorough overview of the many challenges, past, present and future, that CCR5 inhibitors encounter during their development pathway is then presented. Possible immunologic consequences are also discussed. It could be foreseen that the benefit for HIV-infected individuals derived by the use of these potential novel drugs will outweigh the costs/risks intrinsically present in every new therapeutic approach.
Collapse
Affiliation(s)
- Priscilla Biswas
- San Raffaele Scientific Institute, Lab. of Clinical Immunology, Via Stamira d'Ancona n. 20, Milan, Italy.
| | | | | |
Collapse
|
34
|
Li W, Yu M, Bai L, Bu D, Xu X. Downregulation of CCR5 expression on cells by recombinant adenovirus containing antisense CCR5, a possible measure to prevent HIV-1 from entering target cells. J Acquir Immune Defic Syndr 2007; 43:516-22. [PMID: 17019368 DOI: 10.1097/01.qai.0000243102.95640.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chemokine (C-C motif) receptor 5 (CCR5) is one of the major co-receptors for the macrophage (M)-tropic HIV-1. To prevent HIV-1 from entering into target cells, we inhibited CCR5 expression on target cell surface by recombinant adenovirus containing anti-sense CCR5 cDNA. A fragment of 653 bp cDNA located in the 5' region of CCR5 cDNA was reversely inserted into pAdTrack-CMV. Recombinant adenovirus containing antisense CCR5 cDNA (Ad-antiR5) was obtained by homologous recombination of resultant plasmid with the adenoviral backbone plasmid pAdEasy-2 in E. coli BJ5183 and then packed in AD-293 cells. Rate of positive CCR5 on U937 cell surface measured by flow cytometry was decreased from 89.53% to 1.88% after U937 cells infected with Ad-antiR5 for 24 hours, and this reduction lasted at least for 10 days. After challenged with HIV-1, the U937 cells infected with Ad-antiR5 produced much less p24 antigen in cultured medium than those infected with control recombinant adenovirus and the uninfected cells. The recombinant adenovirus had no effect on chemotactic activity and proliferation of the U937 cells. Therefore, the recombinant adenovirus containing anti-sense CCR5 cDNA can down-regulate CCR5 expression on U937 cells and protect the cells from HIV-1 infection without effects on their chemotaxis activity and proliferation function.
Collapse
Affiliation(s)
- Wengang Li
- Department of Infectious Diseases, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Lee-Huang S, Huang PL, Zhang D, Lee JW, Bao J, Sun Y, Chang YT, Zhang J, Huang PL. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. fusion [corrected] inhibition. Biochem Biophys Res Commun 2007; 354:872-8. [PMID: 17275783 PMCID: PMC2790717 DOI: 10.1016/j.bbrc.2007.01.071] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/09/2007] [Indexed: 11/15/2022]
Abstract
We have identified oleuropein (Ole) and hydroxytyrosol (HT) as a unique class of HIV-1 inhibitors from olive leaf extracts effective against viral fusion and integration. We used molecular docking simulation to study the interactions of Ole and HT with viral targets. We find that Ole and HT bind to the conserved hydrophobic pocket on the surface of the HIV-gp41 fusion domain by hydrogen bonds with Q577 and hydrophobic interactions with I573, G572, and L568 on the gp41 N-terminal heptad repeat peptide N36, interfering with formation of the gp41 fusion-active core. To test and confirm modeling predications, we examined the effect of Ole and HT on HIV-1 fusion complex formation using native polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Ole and HT exhibit dose-dependent inhibition on HIV-1 fusion core formation with EC50s of 66–58 nM, with no detectable toxicity. Our findings on effects of HIV-1 integrase are reported in the subsequent article.
Collapse
Affiliation(s)
- Sylvia Lee-Huang
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cocklin S, Gopi H, Querido B, Nimmagadda M, Kuriakose S, Cicala C, Ajith S, Baxter S, Arthos J, Martín-García J, Chaiken IM. Broad-spectrum anti-human immunodeficiency virus (HIV) potential of a peptide HIV type 1 entry inhibitor. J Virol 2007; 81:3645-8. [PMID: 17251295 PMCID: PMC1866025 DOI: 10.1128/jvi.01778-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AIDS epidemic continues to spread at an alarming rate worldwide, especially in developing countries. One approach to solving this problem is the generation of anti-human immunodeficiency virus (HIV) compounds with inhibition spectra broad enough to include globally prevailing forms of the virus. We have examined the HIV type 1 (HIV-1) envelope specificity of a recently identified entry inhibitor candidate, HNG-105, using surface plasmon resonance spectroscopy and pseudovirus inhibition assays. The combined results suggest that the HNG-105 molecule may be effective across the HIV-1 subtypes, and they highlight its potential as a lead for developing therapeutic and microbicidal agents to help combat the spread of AIDS.
Collapse
Affiliation(s)
- Simon Cocklin
- Drexel University College of Medicine, 11313 New College Building, 245 N. 15th St., Philadelphia, PA 19102, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tan Y, Du J, Cai S, Li X, Ma W, Guo Z, Chen H, Huang Z, Xiao J, Cai L, Cai S. Cloning and characterizing mutated human stromal cell-derived factor-1 (SDF-1): C-terminal alpha-helix of SDF-1alpha plays a critical role in CXCR4 activation and signaling, but not in CXCR4 binding affinity. Exp Hematol 2006; 34:1553-1562. [PMID: 17046575 DOI: 10.1016/j.exphem.2006.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 06/28/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE A novel C-terminal alpha-helix-defective mutant of human stromal cell-derived factor-1 (SDF-1), hSDF-154, was designed and produced in order to develop an optimal CXC chemokine receptor 4 (CXCR4) antagonist. MATERIALS AND METHODS Human native SDF-1 and alpha-helix defective SDF-1 (hSDF-154) were cloned from human bone marrow stromal cells by reverse transcription polymerase chain reaction, inserted into vector pET-30a(+), and transformed into Escherichia coli strain BL21(DE3). The recombinant hSDF-154 was purified and refolded under optimized conditions and its functional characteristics were compared with the native form of SDF-1. Functional evaluation includes migration of Jurkat and MOLT4 cells assessed by chemotaxis assay, intracellular calcium influx in these cells measured by flow cytometry, extracellular signal-regulated kinase (ERK) phosphorylation analyzed by Western blot assay, receptor binding affinity examined by sequential concentrations of unlabeled SDF-1alpha, hSDF-154 competition with (125)I- SDF-1alpha, and internalization of CXCR4 on the cell surface detected by flow cytometry. RESULTS hSDF-154 had significantly decreased chemotaxic ability, such as cell migration, as compared to the native hSDF-1. hSDF-154 failed to trigger CXCR4 to induce transient calcium influx and ERK phosphorylation. However, both hSDF-154 and the native hSDF-1 have similar binding affinity to CXCR4 and a similar ability to induce CXCR4 internalization. CONCLUSION These results indicate that hSDF-154, which has a defective C-terminal alpha-helix, a normal N-terminus, and a normal central beta-strand scaffold structure, retains normal binding affinity to CXCR4 and normal induction of CXCR4 internalization, but fails to activate CXCR4-mediated cellular signaling and chemotaxis. Therefore, the C-terminal alpha-helix of hSDF-1 plays a critical role for CXCR4 stimulation. The hSDF-154, which efficiently binds to and induces internalization of CXCR4 without activating CXCR4-related intracellular signaling and cell migration, may serve as an optimal CXCR4 antagonist.
Collapse
Affiliation(s)
- Yi Tan
- Department of Clinical Pharmacology, Pharmacy School of Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cassol E, Alfano M, Biswas P, Poli G. Monocyte-derived macrophages and myeloid cell lines as targets of HIV-1 replication and persistence. J Leukoc Biol 2006; 80:1018-30. [PMID: 16946020 DOI: 10.1189/jlb.0306150] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HIV infection of mononuclear phagocytes (MP), mostly as tissue macrophages, is a dominant feature in the pathogenesis of HIV disease and its progression to AIDS. Although the general mechanism of infection is not dissimilar to that of CD4+ T lymphocytes occurring via interaction of the viral envelope with CD4 and a chemokine receptor (usually CCR5), other features are peculiar to MP infection. Among others, the long-term persistence of productive infection, sustained by the absence of substantial cell death, and the capacity of the virions to bud and accumulate in intracellular multivesicular bodies (MVB), has conferred to MP the role of "Trojan horses" perpetuating the chronic state of infection. Because the investigation of tissue macrophages is often very difficult for both ethical and practical reasons of accessibility, most studies of in vitro infection rely upon monocyte-derived macrophages (MDM), a methodology hampered by inter-patient variability and lack of uniformity of experimental protocols. A number of cell lines, mostly Mono Mac, THP-1, U937, HL-60, and their derivative chronically infected counterparts (such as U1 and OM-10.1 cell lines) have complemented the MDM system of infection providing useful information on the features of HIV replication in MP. This article describes and compares the most salient features of these different cellular models of MP infection by HIV.
Collapse
Affiliation(s)
- Edana Cassol
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Italy
| | | | | | | |
Collapse
|
39
|
Poveda E, Briz V, Quiñones-Mateu M, Soriano V. HIV tropism: diagnostic tools and implications for disease progression and treatment with entry inhibitors. AIDS 2006; 20:1359-67. [PMID: 16791010 DOI: 10.1097/01.aids.0000233569.74769.69] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
van den Broek I, Sparidans RW, Huitema ADR, Schellens JHM, Beijnen JH. Development and validation of a quantitative assay for the measurement of two HIV-fusion inhibitors, enfuvirtide and tifuvirtide, and one metabolite of enfuvirtide (M-20) in human plasma by liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 837:49-58. [PMID: 16713406 DOI: 10.1016/j.jchromb.2006.03.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/24/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
A method for the quantification of two peptide HIV-1 fusion inhibitors (enfuvirtide, T-20 and tifuvirtide, T-1249) and one metabolite of enfuvirtide (M-20) in human plasma has been developed and validated, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS). The analytes were extracted from plasma by solid-phase extraction (SPE) on vinyl-copolymer cartridges. Chromatographic separation of the peptides was performed on a Symmetry 300 C(18) column (50mmx2.1mm I.D., particle size 3.5 microm), using a water-acetonitrile gradient containing 0.25% (v/v) formic acid. The triple quadrupole mass spectrometer was operated in the positive ion-mode and multiple reaction monitoring (MRM) was used for peak detection. Deuterated (d60) enfuvirtide and (d50) tifuvirtide were used as internal standards. The assay was linear over a concentration range of 20-10,000 ng/ml for enfuvirtide and tifuvirtide and of 20-2000 ng/ml for M-20. Intra- and inter-assay precisions and deviations from the nominal concentrations were </=13%. Stability of the analytes was tested under all relevant conditions for sample handling. The method was capable to measure concentrations of enfuvirtide and its metabolite in plasma samples of human immunodeficiency virus type-1 (HIV-1) infected patients treated with the drug.
Collapse
Affiliation(s)
- I van den Broek
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Section of Biomedical Analysis, Division of Drug Toxicology, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Wan L, Zhang X, Gunaseelan S, Pooyan S, Debrah O, Leibowitz MJ, Rabson AB, Stein S, Sinko PJ. Novel multi-component nanopharmaceuticals derived from poly(ethylene) glycol, retro-inverso-Tat nonapeptide and saquinavir demonstrate combined anti-HIV effects. AIDS Res Ther 2006; 3:12. [PMID: 16635263 PMCID: PMC1481600 DOI: 10.1186/1742-6405-3-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 04/24/2006] [Indexed: 11/10/2022] Open
Abstract
Background Current anti-AIDS therapeutic agents and treatment regimens can provide a dramatically improved quality of life for HIV-positive people, many of whom have no detectable viral load for prolonged periods of time. Despite this, curing AIDS remains an elusive goal, partially due to the occurrence of drug resistance. Since the development of resistance is linked to, among other things, fluctuating drug levels, our long-term goal has been to develop nanotechnology-based drug delivery systems that can improve therapy by more precisely controlling drug concentrations in target cells. The theme of the current study is to investigate the value of combining AIDS drugs and modifiers of cellular uptake into macromolecular conjugates having novel pharmacological properties. Results Bioconjugates were prepared from different combinations of the approved drug, saquinavir, the antiviral agent, R.I.CK-Tat9, the polymeric carrier, poly(ethylene) glycol and the cell uptake enhancer, biotin. Anti-HIV activities were measured in MT-2 cells, an HTLV-1-transformed human lymphoid cell line, infected with HIV-1 strain Vbu 3, while parallel studies were performed in uninfected cells to determine cellular toxicity. For example, R.I.CK-Tat9 was 60 times more potent than L-Tat9 while the addition of biotin resulted in a prodrug that was 2850 times more potent than L-Tat9. Flow cytometry and confocal microscopy studies suggest that variations in intracellular uptake and intracellular localization, as well as synergistic inhibitory effects of SQV and Tat peptides, contributed to the unexpected and substantial differences in antiviral activity. Conclusion Our results demonstrate that highly potent nanoscale multi-drug conjugates with low non-specific toxicity can be produced by combining moieties with anti-HIV agents for different targets onto macromolecules having improved delivery properties.
Collapse
Affiliation(s)
- Li Wan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Xiaoping Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Simi Gunaseelan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Shahriar Pooyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Olivia Debrah
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Michael J Leibowitz
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08903-2681, USA
| | - Arnold B Rabson
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08903-2681, USA
| | - Stanley Stein
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08903-2681, USA
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08903-2681, USA
| |
Collapse
|
42
|
Biswas P, Nozza S, Scarlatti G, Lazzarin A, Tambussi G. Oral CCR5 inhibitors: will they make it through? Expert Opin Investig Drugs 2006; 15:451-64. [PMID: 16634684 DOI: 10.1517/13543784.15.5.451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The therapeutic armamentarium against HIV has recently gained a drug belonging to a novel class of antiretrovirals, the entry inhibitors. The last decade has driven an in-depth knowledge of the HIV entry process, unravelling the multiple engagements of the HIV envelope proteins with the cellular receptorial complex that is composed of a primary receptor (CD4) and a co-receptor (CCR5 or CXCR4). The vast majority of HIV-infected subjects exhibit biological viral variants that use CCR5 as a co-receptor. Individuals with a mutated CCR5 gene, both homo- and heterozygotes, appear to be healthy. For these and other reasons, CCR5 represents an appealing target for treatment intervention, although certain challenges can not be ignored. Promising small-molecule, orally bioavailable CCR5 antagonists are under development for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Priscilla Biswas
- San Raffaele Scientific Institute, Laboratory of Clinical Immunology, Clinic of Infectious Diseases, Via Stamira d'Ancona 20, 20127 Milan, Italy.
| | | | | | | | | |
Collapse
|
43
|
Burastero SE, Paolucci C, Breda D, Soldarini A, Dorigatti F, Soprana E, Hasson H, Biswas P, Lazzarin A, Castagna A. Immunological Basis for IgE Hyper-Production in Enfuvirtide-Treated HIV- Positive Patients. J Clin Immunol 2006; 26:168-76. [PMID: 16602031 DOI: 10.1007/s10875-006-9005-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/24/2005] [Indexed: 02/05/2023]
Abstract
We previously reported that enfuvirtide (ENF) treatment is accompanied by a selective increase of serum IgE. We asked whether ENF had intrinsic capability to direct B-lymphocytes to switch to IgE and/or if it could drive CD4 T cells to a Th2 phenotype. ENF was added in vitro: (a) to B-lymphocytes stimulated with IgE-switch inducing stimuli; (b) to peripheral blood mononuclear cells. Total IgE production by B cells and IL4 and IFN-gamma production by CD4 T lymphocytes were evaluated, respectively. ENF had no measurable effect on the IgE production by B-lymphocytes. In contrast, it sharply increased the IL4 to IFN-gamma (a correlate of the Th2 phenotype) when added in vitro to T cells from healthy donors or from single ENF-treated patients. The hyper-IgE production in ENF-treated patients is associated with the in vitro induction of a type-2 phenotype in CD4 T cells.
Collapse
|
44
|
Briz V, Poveda E, Soriano V. [HIV entry into the cells--mechanisms and therapeutic possibilities]. Med Clin (Barc) 2006; 126:341-8. [PMID: 16650368 PMCID: PMC7131321 DOI: 10.1157/13085735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 09/30/2005] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) entry into cells is the first step in the viral replication cycle, which has been explored as a new therapeutic target. A better knowledge of the mechanisms involved in the entry process has led to the development of agents, which may inhibit each of the different steps of the viral entry process: attachment of the gp120 to the CD4 cell receptor; binding of the gp120 to CCR5 or CXCR4 coreceptors; and the fusion of viral and cell membranes. Entry inhibitors are the latest family of antiretroviral compounds, being enfuvirtide, a fusion inhibitor, the first approved. Several other entry inhibitors are currently in clinical development and hopefully soon will be part of the therapeutic armamentarium against HIV.
Collapse
Affiliation(s)
- Verónica Briz
- Servicio de Enfermedades Infecciosas, Hospital Carlos III, Madrid, Spain
| | | | | |
Collapse
|
45
|
Nishikawa M, Takashima K, Nishi T, Furuta RA, Kanzaki N, Yamamoto Y, Fujisawa JI. Analysis of binding sites for the new small-molecule CCR5 antagonist TAK-220 on human CCR5. Antimicrob Agents Chemother 2006; 49:4708-15. [PMID: 16251315 PMCID: PMC1280122 DOI: 10.1128/aac.49.11.4708-4715.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G protein-coupled receptor CCR5 is the main coreceptor for macrophage-tropic human immunodeficiency virus type 1 (HIV-1), and various small-molecule CCR5 antagonists are being developed to treat HIV-1 infection. It has been reported that such CCR5 antagonists, including TAK-779, bind to a putative binding pocket formed by transmembrane domains (TMs) 1, 2, 3 and 7 of CCR5, indicating the importance of the conformational changes of the TMs during virus entry. In this report, using a single-round infection assay with human CCR5 and its substitution mutants, we demonstrated that a new CCR5 antagonist, TAK-220, shares the putative interacting amino acid residues Asn252 and Leu255 in TM6 with TAK-779 but also requires the distinct residues Gly163 and Ile198 in TMs 4 and 5, respectively, for its inhibitory effect. We suggested that, together with molecular models of the interactions between the drugs and CCR5, the inhibitory activity of TAK-220 could involve direct interactions with amino acid residues in TMs 4, 5, and 6 in addition to those in the previously postulated binding pocket. The possible interaction of drugs with additional regions of the CCR5 molecule would help to develop a new small-molecule CCR5 antagonist.
Collapse
Affiliation(s)
- Masao Nishikawa
- Department of Microbiology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Bolken TC, Laquerre S, Zhang Y, Bailey TR, Pevear DC, Kickner SS, Sperzel LE, Jones KF, Warren TK, Amanda Lund S, Kirkwood-Watts DL, King DS, Shurtleff AC, Guttieri MC, Deng Y, Bleam M, Hruby DE. Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses. Antiviral Res 2005; 69:86-97. [PMID: 16343651 PMCID: PMC7114356 DOI: 10.1016/j.antiviral.2005.10.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/27/2005] [Accepted: 10/27/2005] [Indexed: 11/18/2022]
Abstract
Category A arenaviruses as defined by the National Institute of Allergy and Infectious Diseases (NIAID) are human pathogens that could be weaponized by bioterrorists. Many of these deadly viruses require biosafety level-4 (BSL-4) containment for all laboratory work, which limits traditional laboratory high-throughput screening (HTS) for identification of small molecule inhibitors. For those reasons, a related BSL-2 New World arenavirus, Tacaribe virus, 67-78% identical to Junín virus at the amino acid level, was used in a HTS campaign where approximately 400,000 small molecule compounds were screened in a Tacaribe virus-induced cytopathic effect (CPE) assay. Compounds identified in this screen showed antiviral activity and specificity against not only Tacaribe virus, but also the Category A New World arenaviruses (Junín, Machupo, and Guanarito). Drug resistant variants were isolated, suggesting that these compounds act through inhibition of a viral protein, the viral glycoprotein (GP2), and not through cellular toxicity mechanisms. A lead compound, ST-294, has been chosen for drug development. This potent and selective compound, with good bioavailability, demonstrated protective anti-viral efficacy in a Tacaribe mouse challenge model. This series of compounds represent a new class of inhibitors that may warrant further development for potential inclusion in a strategic stockpile.
Collapse
Affiliation(s)
- Tove C Bolken
- SIGA Technologies Inc., 4575 SW Research Way, Corvallis, OR 97333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The number of people infected with HIV continues to increase relentlessly. Post-exposure prophylaxis (PEP) following exposure to HIV infection may prevent established HIV infection. Such intervention is supported by biological plausibility and limited data from animal and human studies. Antiretroviral prophylaxis is associated with significant side effects and the risk should be weighed against the potential benefits. PEP should be considered after significant occupational and non-occupational exposures. However, PEP is not suitable for individuals with repeated high-risk behaviour who are not willing to adhere to risk reduction practices. Primary prevention strategies remain the mainstay for control of the HIV epidemic and cannot be replaced by PEP. Guidance for PEP following exposure to HIV infection is available in many countries worldwide.
Collapse
Affiliation(s)
- Ali S Omrani
- Infectious Diseases Unit, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK.
| | | |
Collapse
|