1
|
Weeden T, Picariello T, Quinn B, Spring S, Shen PY, Qiu Q, Vieira BF, Schlaefke L, Russo RJ, Chang YA, Cui J, Yao M, Wen A, Hsia N, Evron T, Ovington K, Tsai PN, Yoder N, Lan B, Venkatesan R, Hall J, Desjardins CA, Qatanani M, Hilderbrand S, Najim J, Tang Z, Tanner MK, Subramanian R, Thornton CA, Ibraghimov-Beskrovnaya O, Zanotti S. FORCE platform overcomes barriers of oligonucleotide delivery to muscle and corrects myotonic dystrophy features in preclinical models. COMMUNICATIONS MEDICINE 2025; 5:22. [PMID: 39827287 PMCID: PMC11742727 DOI: 10.1038/s43856-025-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND We developed the FORCETM platform to overcome limitations of oligonucleotide delivery to muscle and enable their applicability to neuromuscular disorders. The platform consists of an antigen-binding fragment, highly specific for the human transferrin receptor 1 (TfR1), conjugated to an oligonucleotide via a cleavable valine-citrulline linker. Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by expanded CUG triplets in the DMPK RNA, which sequester splicing proteins in the nucleus, lead to spliceopathy, and drive disease progression. METHODS Multiple surrogate conjugates were generated to characterize the FORCE platform. DYNE-101 is the conjugate designed to target DMPK and correct spliceopathy for the treatment of DM1. HSALR and TfR1hu/mu;DMSXLTg/Tg mice were used as models of myotonic dystrophy, the latter expresses human TfR1 and a human DMPK RNA with >1,000 CUG repeats. Cynomolgus monkeys were used to determine translatability of DYNE-101 pharmacology to higher species. RESULTS In HSALR mice, a surrogate FORCE conjugate achieves durable correction of spliceopathy and improves myotonia to a greater extent than unconjugated ASO. In patient-derived myoblasts, DYNE-101 reduces DMPK RNA and nuclear foci, consequently improving spliceopathy. In TfR1hu/mu;DMSXLTg/Tg mice, DYNE-101 reduces mutant DMPK RNA in muscle, thereby correcting splicing. Reduction of DMPK foci in cardiomyocyte nuclei accompanies these effects. Low monthly dosing of DYNE-101 in TfR1hu/mu;DMSXLWT/Tg mice or cynomolgus monkeys leads to a profound reduction of DMPK expression in muscle. CONCLUSIONS These data validate FORCE as a drug delivery platform and support the notion that DM1 may be treatable with low and infrequent dosing of DYNE-101.
Collapse
Affiliation(s)
| | | | | | - Sean Spring
- Dyne Therapeutics Inc, Waltham, MA, USA
- Pheon Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | - Jin Cui
- Dyne Therapeutics Inc, Waltham, MA, USA
| | | | - Aiyun Wen
- Dyne Therapeutics Inc, Waltham, MA, USA
- Rona Therapeutics, Shanghai, China
| | | | | | - Katy Ovington
- Dyne Therapeutics Inc, Waltham, MA, USA
- 4:59 NewCo, a 5AM Ventures Company, Boston, MA, USA
| | - Pei-Ni Tsai
- Dyne Therapeutics Inc, Waltham, MA, USA
- Generation Bio, Cambridge, MA, USA
| | | | - Bo Lan
- Dyne Therapeutics Inc, Waltham, MA, USA
- Summation Bio, Cambridge, MA, USA
| | | | - John Hall
- Dyne Therapeutics Inc, Waltham, MA, USA
| | | | - Mo Qatanani
- Dyne Therapeutics Inc, Waltham, MA, USA
- Scholar Rock, Cambridge, MA, USA
| | | | | | - Zhenzhi Tang
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|
2
|
Cini JK, Kenney RT, Dexter S, McAndrew SJ, Eraslan RN, Brody R, Rezac DJ, Boohaker R, Lapi SE, Mohan P. SON-1010: an albumin-binding IL-12 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 2024; 15:1493257. [PMID: 39697343 PMCID: PMC11652653 DOI: 10.3389/fimmu.2024.1493257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Cytokines have been promising cancer immunotherapeutics for decades, yet only two are licensed to date. Interleukin-12 (IL-12) is a potent regulator of cell-mediated immunity that activates NK cells and interferon-γ (IFNγ) production. It plays a central role in multiple pathways that can enhance cancer cell death and modify the tumor microenvironment (TME). Attempts to dose rIL-12 were initially successful but IFNγ toxicity in Phase 2 complicated further development in the late 1990s. Since then, better dosing strategies have been developed, but none have achieved the level of cancer control seen in preclinical models. We set out to develop a novel strategy to deliver fully functional IL-12 and other biologics to the TME by binding albumin, taking advantage of its ability to be concentrated and retained in the tumor. Methods Single-chain variable fragments (scFv) were identified from a human phage display library that bound human, mouse, and cynomolgus macaque serum albumin, both at physiologic and acidic conditions. These were taken through a series of steps to identify strongly binding molecules that don't interfere with the normal physiology of albumin to bind FcRn, giving it prolonged half-life in serum, along with SPARC/GP60, which allows albumin to target the TME. A final molecule was chosen and a single mutation was made that minimizes the potential for immunogenicity. This fully human albumin-binding (FHAB®) domain was characterized and manufacturing processes were developed to bring the first drug candidate into the clinic. Results Once identified, the murine form of mIL12-FHAB was studied preclinically to understand its mechanism of action and biodistribution. It was found to be much more efficient at blocking tumor growth compared to murine IL-12, while stimulating significant IFNγ production with minimal toxicity. SON-1010, which uses the human IL-12 sequence, passed through all of the characterization and required toxicology and is currently being studied in the clinic. Conclusions We identified and developed a platform technology with prolonged half-life that can target IL-12 and other immune modulators to the TME. Safety and efficacy are being studied using SON-1010 as monotherapy and in combination with checkpoint blockade strategies.
Collapse
Affiliation(s)
- John K. Cini
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | - Susan Dexter
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | | | - Rich Brody
- InfinixBio, Inc., Athens, OH, United States
| | | | | | - Suzanne E. Lapi
- Radiology, Chemistry, and Biomedical Engineering, University of Alabama, Birmingham, AL, United States
| | - Pankaj Mohan
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| |
Collapse
|
3
|
Kua L, Ng CH, Tan JW, Tan HC, Seh CC, Wong F, Ong R, Rooney CM, Tan J, Chen Q, Horak ID, Tan KW, Low L. Novel OX40 and 4-1BB derived spacers enhance CD30 CAR activity and safety in CD30 positive lymphoma models. Mol Ther 2024; 32:3504-3521. [PMID: 38946142 PMCID: PMC11489532 DOI: 10.1016/j.ymthe.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 04/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024] Open
Abstract
The chimeric antigen receptor (CAR) derived from the CD30 specific murine antibody, HRS-3, has produced promising clinical efficacy with a favorable safety profile in the treatment of relapsed or refractory CD30-positive lymphomas. However, persistence of the autologous CAR-T cells was brief, and many patients relapsed a year after treatment. The lack of persistence may be attributed to the use of a wild-type immunoglobulin (Ig)G1 spacer that can associate with Fc receptors. We first identified the cysteine-rich domain (CRD) 5 of CD30 as the primary binding epitope of HRS-3 and armed with this insight, attempted to improve the HRS-3 CAR functionality with a panel of novel spacer designs. We demonstrate that HRS-3 CARs with OX40 and 4-1BB derived spacers exhibited similar anti-tumor efficacy, circumvented interactions with Fc receptors, and secreted lower levels of cytokines in vitro than a CAR employing the IgG1 spacer. Humanization of the HRS-3 scFv coupled with the 4-1BB spacer preserved potent on-target, on-tumor efficacy, and on-target, off-tumor safety. In a lymphoma mouse model of high tumor burden, T cells expressing humanized HRS-3 CD30.CARs with the 4-1BB spacer potently killed tumors with low levels of circulating inflammatory cytokines, providing a promising candidate for future clinical development in the treatment of CD30-positive malignancies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Disease Models, Animal
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Ki-1 Antigen/immunology
- Ki-1 Antigen/metabolism
- Lymphoma/therapy
- Lymphoma/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, OX40/metabolism
- Receptors, OX40/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lindsay Kua
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Chee Hoe Ng
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Jin Wei Tan
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | | | | | - Fiona Wong
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Richard Ong
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel Tan
- Institute for Molecular and Cellular Biology, A∗STAR Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute for Molecular and Cellular Biology, A∗STAR Singapore 138673, Singapore
| | - Ivan D Horak
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Kar Wai Tan
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Lionel Low
- Tessa Therapeutics Ltd, Singapore 138673, Singapore.
| |
Collapse
|
4
|
Mett V, Kurnasov OV, Bespalov IA, Molodtsov I, Brackett CM, Burdelya LG, Purmal AA, Gleiberman AS, Toshkov IA, Burkhart CA, Kogan YN, Andrianova EL, Gudkov AV, Osterman AL. A deimmunized and pharmacologically optimized Toll-like receptor 5 agonist for therapeutic applications. Commun Biol 2021; 4:466. [PMID: 33846531 PMCID: PMC8041767 DOI: 10.1038/s42003-021-01978-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
The Toll-like receptor 5 (TLR5) agonist entolimod, a derivative of Salmonella flagellin, has therapeutic potential for several indications including radioprotection and cancer immunotherapy. However, in Phase 1 human studies, entolimod induced a rapid neutralizing immune response, presumably due to immune memory from prior exposure to flagellated enterobacteria. To enable multi-dose applications, we used structure-guided reengineering to develop a next-generation, substantially deimmunized entolimod variant, GP532. GP532 induces TLR5-dependent NF-κB activation like entolimod but is smaller and has mutations eliminating an inflammasome-activating domain and key B- and T-cell epitopes. GP532 is resistant to human entolimod-neutralizing antibodies and shows reduced de novo immunogenicity. GP532 also has improved bioavailability, a stronger effect on key cytokine biomarkers, and a longer-lasting effect on NF-κB. Like entolimod, GP532 demonstrated potent prophylactic and therapeutic efficacy in mouse models of radiation-induced death and tissue damage. These results establish GP532 as an optimized TLR5 agonist suitable for multi-dose therapies and for patients with high titers of preexisting flagellin-neutralizing antibodies.
Collapse
Affiliation(s)
| | - Oleg V Kurnasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Ivan Molodtsov
- Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | | | | | | | | | | | - Andrei V Gudkov
- Genome Protection, Inc., Buffalo, NY, USA. .,Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Bray-French K, Hartman K, Steiner G, Marban-Doran C, Bessa J, Campbell N, Martin-Facklam M, Stubenrauch KG, Solier C, Singer T, Ducret A. Managing the Impact of Immunogenicity in an Era of Immunotherapy: From Bench to Bedside. J Pharm Sci 2021; 110:2575-2584. [PMID: 33812888 DOI: 10.1016/j.xphs.2021.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Biotherapeutics have revolutionized our ability to treat life-threatening diseases. Despite clinical success, the use of biotherapeutics has sometimes been limited by the immune response mounted against them in the form of anti-drug antibodies (ADAs). The multifactorial nature of immunogenicity has prevented a standardized approach for assessing this and each of the assessment methods developed so far does not exhibit high enough reliability to be used alone, due to limited predictiveness. This prompted the Roche Pharma Research and Early Development (pRED) Immunogenicity Working Group to establish an internal preclinical immunogenicity toolbox of in vitro/in vivo approaches and accompanying guidelines for a harmonized assessment and management of immunogenicity in early development. In this article, the complex factors influencing immunogenicity and their associated clinical ramifications are discussed to highlight the importance of an end-to-end approach conducted from lead optimization to clinical candidate selection. We then examine the impact of the resulting lead candidate categorization on the design and implementation of a multi-tiered ADA/immunogenicity assay strategy prior to phase I (entry into human) through early clinical development. Ultimately, the Immunogenicity Toolbox ensures that Roche pRED teams are equipped to address immunogenicity in a standardized manner, paving the way for lifesaving products with improved safety and efficacy.
Collapse
Affiliation(s)
- Katharine Bray-French
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Katharina Hartman
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Guido Steiner
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Céline Marban-Doran
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Juliana Bessa
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Neil Campbell
- Global Product Strategy, Pharma Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Meret Martin-Facklam
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Kay-Gunnar Stubenrauch
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Munich, Germany
| | - Corinne Solier
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Axel Ducret
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Bendell J, Sharma S, Patel MR, Windsor KS, Wainberg ZA, Gordon M, Chaves J, Berlin J, Brachmann CB, Zavodovskaya M, Liu J, Thai D, Bhargava P, Shah MA, Khan SA, Starodub A. Safety and Efficacy of Andecaliximab (GS-5745) Plus Gemcitabine and Nab-Paclitaxel in Patients with Advanced Pancreatic Adenocarcinoma: Results from a Phase I Study. Oncologist 2020; 25:954-962. [PMID: 32812320 DOI: 10.1634/theoncologist.2020-0474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Matrix metalloproteinase 9 (MMP9) expression in the tumor microenvironment is implicated in multiple protumorigenic processes. Andecaliximab (GS-5745), a monoclonal antibody targeting MMP9 with high affinity and selectivity, was evaluated in combination with gemcitabine and nab-paclitaxel in patients with advanced pancreatic adenocarcinoma. PATIENTS AND METHODS This phase I study was completed in two parts: part A was a dose-finding, monotherapy phase that enrolled patients with advanced solid tumors, and part B examined andecaliximab in combination with chemotherapy in specific patient cohorts. In the cohort of patients with pancreatic adenocarcinoma (n = 36), andecaliximab 800 mg every 2 weeks was administered in combination with gemcitabine and nab-paclitaxel. Patients were treated until unacceptable toxicity, withdrawal of consent, disease progression, or death. Efficacy, safety, and biomarker assessments were performed. RESULTS Andecaliximab combined with gemcitabine and nab-paclitaxel appeared to be well tolerated and did not demonstrate any unusual toxicities in patients with pancreatic adenocarcinoma. The most common treatment-emergent adverse events were fatigue (75.0%), alopecia (55.6%), peripheral edema (55.6%), and nausea (50.0%). Median progression-free survival was 7.8 months (90% confidence interval, 6.9-11.0) with an objective response rate of 44.4% and median duration of response of 7.6 months. Maximal andecaliximab target binding, defined as undetectable, andecaliximab-free MMP9 in plasma, was observed. CONCLUSION Andecaliximab in combination with gemcitabine and nab-paclitaxel demonstrates a favorable safety profile and clinical activity in patients with advanced pancreatic adenocarcinoma. IMPLICATIONS FOR PRACTICE The combination of andecaliximab, a novel, first-in-class inhibitor of matrix metalloproteinase 9, with gemcitabine and nab-paclitaxel in patients with advanced pancreatic adenocarcinoma provided a median progression-free survival of 7.8 months and objective response rate of 44.4%. The majority of systemic biomarkers related to matrix metalloproteinase 9 activity and immune suppression increased at 2 months, whereas biomarkers related to tumor burden decreased. Although this study demonstrates promising results with andecaliximab plus chemotherapy in patients with advanced pancreatic adenocarcinoma, andecaliximab was not associated with a survival benefit in a phase III study in patients with advanced gastric/gastroesophageal junction carcinoma.
Collapse
Affiliation(s)
- Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida, USA
| | | | - Zev A Wainberg
- Department of Medicine, Division of Hematology Oncology, University of California Los Angeles School of Medicine, Santa Monica, California, USA
| | - Michael Gordon
- HonorHealth Research Institute, Scottsdale, Arizona, USA
| | - Jorge Chaves
- Northwest Medical Specialties, PLLC, Tacoma, Washington, USA
| | - Jordan Berlin
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - JieJane Liu
- Gilead Sciences, Inc, Foster City, California, USA
| | - Dung Thai
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Saad A Khan
- Stanford University Medical Center, Stanford, California, USA
| | - Alexander Starodub
- Riverside Peninsula Cancer Institute, Riverside Cancer Care Center, Newport News, Virginia, USA
| |
Collapse
|
7
|
Jawa V, Terry F, Gokemeijer J, Mitra-Kaushik S, Roberts BJ, Tourdot S, De Groot AS. T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical Assessment and Mitigation-Updated Consensus and Review 2020. Front Immunol 2020; 11:1301. [PMID: 32695107 PMCID: PMC7338774 DOI: 10.3389/fimmu.2020.01301] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
Immune responses to protein and peptide drugs can alter or reduce their efficacy and may be associated with adverse effects. While anti-drug antibodies (ADA) are a standard clinical measure of protein therapeutic immunogenicity, T cell epitopes in the primary sequences of these drugs are the key drivers or modulators of ADA response, depending on the type of T cell response that is stimulated (e.g., T helper or Regulatory T cells, respectively). In a previous publication on T cell-dependent immunogenicity of biotherapeutics, we addressed mitigation efforts such as identifying and reducing the presence of T cell epitopes or T cell response to protein therapeutics prior to further development of the protein therapeutic for clinical use. Over the past 5 years, greater insight into the role of regulatory T cell epitopes and the conservation of T cell epitopes with self (beyond germline) has improved the preclinical assessment of immunogenic potential. In addition, impurities contained in therapeutic drug formulations such as host cell proteins have also attracted attention and become the focus of novel risk assessment methods. Target effects have come into focus, given the emergence of protein and peptide drugs that target immune receptors in immuno-oncology applications. Lastly, new modalities are entering the clinic, leading to the need to revise certain aspects of the preclinical immunogenicity assessment pathway. In addition to drugs that have multiple antibody-derived domains or non-antibody scaffolds, therapeutic drugs may now be introduced via viral vectors, cell-based constructs, or nucleic acid based therapeutics that may, in addition to delivering drug, also prime the immune system, driving immune response to the delivery vehicle as well as the encoded therapeutic, adding to the complexity of assessing immunogenicity risk. While it is challenging to keep pace with emerging methods for the preclinical assessment of protein therapeutics and new biologic therapeutic modalities, this collective compendium provides a guide to current best practices and new concepts in the field.
Collapse
Affiliation(s)
- Vibha Jawa
- Predictive and Clinical Immunogenicity, PPDM, Merck & Co., Kenilworth, NJ, United States
| | | | - Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol-Myers Squibb, Cambridge, MA, United States
| | | | | | - Sophie Tourdot
- BioMedicine Design, Pfizer Inc., Andover, MA, United States
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Kalhor H, Sadeghi S, Marashiyan M, Enssi M, Kalhor R, Ganji M, Rahimi H. In silico mutagenesis in recombinant human keratinocyte growth factor: Improvement of stability and activity in addition to decrement immunogenicity. J Mol Graph Model 2020; 97:107551. [PMID: 32032931 DOI: 10.1016/j.jmgm.2020.107551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
The recombinant human keratinocyte growth factor (rhKGF) is clinically applied to decrease the incidence and duration of cancer therapeutic agents. Particularly, it is extensively used for oral mucositis after chemotherapy-induced damage of different human cancers. However, the usage of rhKGF in treatment is limited owing to its short half-life, poor stability, immunogenicity, tendency to aggregate, and side effects. Therefore, there is a need to enhance the stability and to reduce immunogenicity of rhKGF for therapeutic applications. In this study, the stability, activity, and immunogenicity of rhKGF were improved using computational methods. The several mutations were generated based on sequence alignment, amino acids physic-chemical properties, and the structure simulation. The 3D structure of rhKGF and proposed mutants were predicted by Modeller v9.15 program, and then were evaluated using PROSESS, PROCHECK, and ProSA web tools. Afterwards, the effect of these mutants on rhKGF structure, stability, activity, and its interaction with fibroblast growth factor receptor2-IIb (FGFR2-IIb) was analyzed through utilizing GROMACS molecular dynamics simulations and docking tools, respectively. Also, binding free energies were calculated by the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. We found that F63Y, R121K, and combine1 (K38R, F63Y, K72E, N105S) mutants lead to reduction of the number of T-cell epitopes. However, all of the selected mutants, except for R121K, could considerably increase stability and affinity of the rhKGF to FGFR2-IIb, in silico. In conclusion, this study, for the first time, offered that the combine1 and F63Y mutants could highly improve the stability and activity of rhKGF and even reduce immunogenicity without having any significant effect on the biological functions of rhKGF.
Collapse
Affiliation(s)
- Hourieh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahya Marashiyan
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Enssi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, IR, Iran.
| | - Reyhaneh Kalhor
- Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | - Maziar Ganji
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Kuramochi T, Igawa T, Tsunoda H, Hattori K. Humanization and Simultaneous Optimization of Monoclonal Antibody. Methods Mol Biol 2019; 1904:213-230. [PMID: 30539472 DOI: 10.1007/978-1-4939-8958-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physicochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.
Collapse
Affiliation(s)
| | - Tomoyuki Igawa
- Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Hiroyuki Tsunoda
- Research Division, Chugai Pharmaceutical, Kamakura, Kanagawa, Japan
| | - Kunihiro Hattori
- Research Division, Chugai Pharmaceutical, Kamakura, Kanagawa, Japan
| |
Collapse
|
10
|
Bartholdy C, Reedtz-Runge SL, Wang J, Hjerrild Zeuthen L, Gruhler A, Gudme CN, Lamberth K. In silico and in vitro immunogenicity assessment of B-domain-modified recombinant factor VIII molecules. Haemophilia 2018; 24:e354-e362. [DOI: 10.1111/hae.13555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - J. Wang
- Novo Nordisk A/S; Copenhagen Denmark
| | | | | | | | | |
Collapse
|
11
|
Shah MA, Starodub A, Sharma S, Berlin J, Patel M, Wainberg ZA, Chaves J, Gordon M, Windsor K, Brachmann CB, Huang X, Vosganian G, Maltzman JD, Smith V, Silverman JA, Lenz HJ, Bendell JC. Andecaliximab/GS-5745 Alone and Combined with mFOLFOX6 in Advanced Gastric and Gastroesophageal Junction Adenocarcinoma: Results from a Phase I Study. Clin Cancer Res 2018; 24:3829-3837. [PMID: 29691300 DOI: 10.1158/1078-0432.ccr-17-2469] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
Purpose: Matrix metalloproteinase-9 (MMP9) is implicated in protumorigenic processes. Andecaliximab (GS-5745, a monoclonal antibody targeting MMP9) was evaluated as monotherapy and in combination with mFOLFOX6.Patients and Methods: Three dosages of andecaliximab monotherapy [200, 600, and 1800 mg i.v. every 2 weeks (q2w)] were investigated in patients with advanced solid tumors (n = 13 in a 3+3 design). After determining a recommended dose, patients with advanced HER2-negative gastric/gastroesophageal junction (GEJ) adenocarcinoma (n = 40) received 800 mg andecaliximab + mFOLFOX6 q2w. Pharmacokinetics, pharmacodynamics, safety, and efficacy were assessed.Results: Andecaliximab monotherapy demonstrated no dose-limiting toxicity (DLT) in any cohort, displaying target-mediated drug disposition at the lowest dose (200 mg) and linear pharmacokinetics at higher doses. Based on target engagement, recommended doses for further study are 800 mg q2w or 1,200 mg q3w. Maximal andecaliximab target binding, defined as undetectable andecaliximab-free MMP9 in plasma, was observed in the gastric/GEJ adenocarcinoma cohort. We observed no unusual toxicity, although there were four deaths on study not attributed to andecaliximab treatment. In first-line patients (n = 36), median progression-free survival (PFS) was 9.9 months [95% confidence interval (CI), 5-13.9 months], and the overall response rate (ORR) was 50%. Among all patients (n = 40), median PFS was 7.8 (90% CI, 5.5-13.9) months, and ORR was 48%, with a median duration of response of 8.4 months.Conclusions: Andecaliximab monotherapy achieved target engagement without DLT. Andecaliximab + mFOLFOX6 showed encouraging clinical activity without additional toxicity in patients with HER2-negative gastric/GEJ adenocarcinoma. A phase III study evaluating mFOLFOX6 ± andecaliximab in this setting is ongoing. Clin Cancer Res; 24(16); 3829-37. ©2018 AACR.
Collapse
Affiliation(s)
- Manish A Shah
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York.
| | - Alexander Starodub
- Parkview Comprehensive Cancer Institute/Parkview Health, Fort Wayne, Indiana
| | - Sunil Sharma
- University of Utah Huntsman Cancer Institute, Salt Lake City, Utah
| | - Jordan Berlin
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Manish Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Zev A Wainberg
- Division of Hematology Oncology, Department of Medicine, UCLA School of Medicine, Los Angeles, California
| | - Jorge Chaves
- Northwest Medical Specialties PLLC, Tacoma, Washington
| | | | | | | | - Xi Huang
- Gilead Sciences, Inc., Foster City, California
| | | | | | | | | | | | - Johanna C Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| |
Collapse
|
12
|
Fercher C, Keshvari S, McGuckin MA, Barnard RT. Evolution of the magic bullet: Single chain antibody fragments for the targeted delivery of immunomodulatory proteins. Exp Biol Med (Maywood) 2017; 243:166-183. [PMID: 29256259 DOI: 10.1177/1535370217748575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immunocytokines are fusion proteins that combine the specific antigen binding capacities of an antibody or derivative thereof and the potent bioactivity of a cytokine partner. These novel biopharmaceuticals have been directed to various targets of oncological as well as non-oncological origin and a handful of promising constructs are currently advancing in the clinical trial pipeline. Several factors such as the choice of a disease specific antigen, the antibody format and the modulatory nature of the payload are crucial, not only for therapeutic efficacy and safety but also for the commercial success of such a product. In this review, we provide an overview of the basic principles and obstacles in immunocytokine design with a specific focus on single chain antibody fragment-based constructs that employ interleukins as the immunoactive component. Impact statement Selective activation of the immune system in a variety of malignancies represents an attractive approach when existing strategies have failed to provide adequate treatment options. Immunocytokines as a novel class of bifunctional protein therapeutics have emerged recently and generated promising results in preclinical and clinical studies. In order to harness their full potential, multiple different aspects have to be taken into consideration. Several key points of these fusion constructs are discussed here and should provide an outline for the development of novel products based on an overview of selected formats.
Collapse
Affiliation(s)
- Christian Fercher
- 1 School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sahar Keshvari
- 2 Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Michael A McGuckin
- 2 Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Ross T Barnard
- 1 School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.,3 Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
13
|
Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2017; 61:1382-1414. [PMID: 28737935 DOI: 10.1021/acs.jmedchem.7b00318] [Citation(s) in RCA: 689] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Collapse
Affiliation(s)
- Antoine Henninot
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - James C Collins
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - John M Nuss
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
14
|
In vitro assays supporting the safety assessment of immunomodulatory monoclonal antibodies. Toxicol In Vitro 2017; 45:296-308. [PMID: 28263892 DOI: 10.1016/j.tiv.2017.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/08/2017] [Accepted: 02/28/2017] [Indexed: 01/11/2023]
Abstract
Many monoclonal antibodies (mAbs) licensed for human use or in clinical development for cancer and autoimmune disease directly interact with the immune system. These immunomodulatory mAbs have an inherent risk of adverse immune-mediated drug reactions, including infusion reactions, cytokine storms, immunosuppression and autoimmunity. A thorough understanding of the potential for immunotoxicity of a mAb is required to support administration to humans. This review will highlight the key role of in vitro assays in defining the immunopharmacology, immunotoxicity and immunogenicity of mAbs. A wide range of in vitro tests with multiple formats of different complexity can be utilized to characterize i) the antibody-binding domains of the mAb, such as on-target binding and downstream pharmacological effects (e.g. immunosuppression, immune activation, cytokine release) in both humans and animal species used for toxicology studies and off-target binding; ii) Fc-dependent effects such as Fc-mediated cellular activation (e.g. of leukocytes, platelets) and cytokine release, complement activation; and iii) product-related factors (sequence, physical-chemical properties and impurities) that can impact both pharmacological activity and immunogenicity potential of a mAb. These assays can be crucial to the selection of mAbs with an optimum balance of safety and efficacy, in defining whether a mAb is a high risk molecule, and together with animal data, can inform human safe starting doses and escalation schemes.
Collapse
|
15
|
Jones TD, Hearn AR, Holgate RGE, Kozub D, Fogg MH, Carr FJ, Baker MP, Lacadena J, Gehlsen KR. A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead. Protein Eng Des Sel 2016; 29:531-540. [PMID: 27578884 PMCID: PMC5081043 DOI: 10.1093/protein/gzw045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.
Collapse
Affiliation(s)
- Tim D Jones
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Arron R Hearn
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | | | - Dorota Kozub
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Mark H Fogg
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Francis J Carr
- Abtelum Biomedical, Inc. 175 Briar Lane, Westwood, MA 02090, USA
| | - Matthew P Baker
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Javier Lacadena
- Departamento de Bioquimica y Biologia Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid 28040, Spain
| | - Kurt R Gehlsen
- Research Corporation Technologies Inc., 5210 E. Williams Circle #240, Tucson, AZ 85711, USA
| |
Collapse
|
16
|
Webster CI, Bryson CJ, Cloake EA, Jones TD, Austin MJ, Karle AC, Spindeldreher S, Lowe DC, Baker MP. A comparison of the ability of the human IgG1 allotypes G1m3 and G1m1,17 to stimulate T-cell responses from allotype matched and mismatched donors. MAbs 2016; 8:253-63. [PMID: 26821574 PMCID: PMC4966604 DOI: 10.1080/19420862.2015.1128605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The immunogenicity of clinically administered antibodies has clinical implications for the patients receiving them, ranging from mild consequences, such as increased clearance of the drug from the circulation, to life-threatening effects. The emergence of methods to engineer variable regions resulting in the generation of humanised and fully human antibodies as therapeutics has reduced the potential for adverse immunogenicity. However, due to differences in sequence referred to as allotypic variation, antibody constant regions are not homogeneous within the human population, even within sub-classes of the same immunoglobulin isotype. For therapeutically administered antibodies, the potential exists for an immune response from the patient to the antibody if the allotype of patient and antibody do not match. Allotypic distribution in the human population varies within and across ethnic groups making the choice of allotype for a therapeutic antibody difficult. This study investigated the potential of human IgG1 allotypes to stimulate responses in human CD4(+) T cells from donors matched for homologous and heterologous IgG1 allotypes. Allotypic variants of the therapeutic monoclonal antibody trastuzumab were administered to genetically defined allotypic matched and mismatched donor T cells. No significant responses were observed in the mismatched T cells. To investigate the lack of T-cell responses in relation to mismatched allotypes, HLA-DR agretopes were identified via MHC associated peptide proteomics (MAPPs). As expected, many HLA-DR restricted peptides were presented. However, there were no peptides presented from the sequence regions containing the allotypic variations. Taken together, the results from the T-cell assay and MAPPs assay indicate that the allotypic differences in human IgG1 do not represent a significant risk for induction of immunogenicity.
Collapse
Affiliation(s)
- Carl I Webster
- a MedImmune Ltd, Milstein Building , Granta Park, Cambridge , CB21 6GH , United Kingdom
| | - Christine J Bryson
- b Antitope Ltd (An Abzena company), Babraham Research Campus , Babraham, Cambridge , CB22 3AT , United Kingdom
| | - Edward A Cloake
- b Antitope Ltd (An Abzena company), Babraham Research Campus , Babraham, Cambridge , CB22 3AT , United Kingdom
| | - Tim D Jones
- b Antitope Ltd (An Abzena company), Babraham Research Campus , Babraham, Cambridge , CB22 3AT , United Kingdom
| | - Mark J Austin
- a MedImmune Ltd, Milstein Building , Granta Park, Cambridge , CB21 6GH , United Kingdom
| | - Anette C Karle
- c Novartis Pharma AG , Klybeckstrasse 141, CH-4057 Basel , Switzerland
| | | | - David C Lowe
- a MedImmune Ltd, Milstein Building , Granta Park, Cambridge , CB21 6GH , United Kingdom
| | - Matthew P Baker
- b Antitope Ltd (An Abzena company), Babraham Research Campus , Babraham, Cambridge , CB22 3AT , United Kingdom
| |
Collapse
|
17
|
Pratt KP. Engineering less immunogenic and antigenic FVIII proteins. Cell Immunol 2015; 301:12-7. [PMID: 26566286 DOI: 10.1016/j.cellimm.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 01/03/2023]
Abstract
The development of neutralizing antibodies against blood coagulation factor VIII (FVIII), referred to clinically as "inhibitors", is the most challenging and deleterious adverse event to occur following intravenous infusions of FVIII to treat hemophilia A. Inhibitors occlude FVIII surfaces that must bind to activated phospholipid membranes, the serine proteinase factor IXa, and other components of the 'intrinsic tenase complex' in order to carry out its important role in accelerating blood coagulation. Inhibitors develop in up to one of every three patients, yet remarkably, a substantial majority of severe hemophilia A patients, who circulate no detectable FVIII antigen or activity, acquire immune tolerance to FVIII during initial infusions or else after intensive FVIII therapy to overcome their inhibitor. The design of less immunogenic FVIII proteins through identification and modification ("de-immunization") of immunodominant T-cell epitopes is an important goal. For patients who develop persistent inhibitors, modification of B-cell epitopes through substitution of surface-exposed amino acid side chains and/or attachment of bulky moieties to interfere with FVIII attachment to antibodies and memory B cells is a promising approach. Both experimental and computational methods are being employed to achieve these goals. Future therapies for hemophilia A, as well as other monogenic deficiency diseases, are likely to involve administration of less immunogenic proteins in conjunction with other novel immunotherapies to promote a regulatory cellular environment promoting durable immune tolerance.
Collapse
Affiliation(s)
- Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
18
|
Holgate RGE, Weldon R, Jones TD, Baker MP. Characterisation of a Novel Anti-CD52 Antibody with Improved Efficacy and Reduced Immunogenicity. PLoS One 2015; 10:e0138123. [PMID: 26372145 PMCID: PMC4570798 DOI: 10.1371/journal.pone.0138123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023] Open
Abstract
Anti-CD52 therapy has been shown to be effective in the treatment of a number of B cell malignancies, hematopoietic disorders and autoimmune diseases (including rheumatoid arthritis and multiple sclerosis); however the current standard of treatment, the humanized monoclonal antibody alemtuzumab, is associated with the development of anti-drug antibodies in a high proportion of patients. In order to address this problem, we have identified a novel murine anti-CD52 antibody which has been humanized using a process that avoids the inclusion within the variable domains of non-human germline MHC class II binding peptides and known CD4+ T cell epitopes, thus reducing its potential for immunogenicity in the clinic. The resultant humanized antibody, ANT1034, was shown to have superior binding to CD52 expressing cells than alemtuzumab and was more effective at directing both antibody dependent and complement dependent cell cytotoxicity. Furthermore, when in the presence of a cross-linking antibody, ANT1034 was more effective at directly inducing apoptosis than alemtuzumab. ANT1034 also showed superior activity in a SCID mouse/human CD52 tumour xenograft model where a single 1 mg/Kg dose of ANT1034 led to increased mouse survival compared to a 10 mg/Kg dose of alemtuzumab. Finally, ANT1034 was compared to alemtuzumab in in vitro T cell assays in order to evaluate its potential to stimulate proliferation of T cells in peripheral blood mononuclear cells derived from a panel of human donors: whereas alemtuzumab stimulated proliferation in a high proportion of the donor cohort, ANT1034 did not stimulate proliferation in any of the donors. Therefore we have developed a candidate therapeutic humanized antibody, ANT1034, that may have the potential to be more efficacious and less immunogenic than the current standard anti-CD52 therapy.
Collapse
Affiliation(s)
| | - Richard Weldon
- Antitope Limited, Babraham Research Campus, Cambridge, United Kingdom
| | - Timothy D. Jones
- Antitope Limited, Babraham Research Campus, Cambridge, United Kingdom
| | - Matthew P. Baker
- Antitope Limited, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
19
|
Telikepalli S, Shinogle HE, Thapa PS, Kim JH, Deshpande M, Jawa V, Middaugh CR, Narhi LO, Joubert MK, Volkin DB. Physical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting. J Pharm Sci 2015; 104:1575-91. [PMID: 25753756 DOI: 10.1002/jps.24379] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022]
Abstract
An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size-enriched into different size bins by low-speed centrifugation or a combination of gravitational sedimentation and fluorescence-activated cell sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5-10 μm in size displayed elevated cytokine release profiles compared with other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared with controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by microflow imaging, transmission electron microscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in vitro PBMC studies to rank-order the immunogenic potential of various types of mAb particles are discussed.
Collapse
Affiliation(s)
- Srivalli Telikepalli
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A novel humanized antibody neutralizes H5N1 influenza virus via two different mechanisms. J Virol 2015; 89:3712-22. [PMID: 25609802 DOI: 10.1128/jvi.03014-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Highly pathogenic avian influenza virus subtype H5N1 continues to be a severe threat to public health, as well as the poultry industry, because of its high lethality and antigenic drift rate. Neutralizing monoclonal antibodies (MAbs) can serve as a useful tool for preventing, treating, and detecting H5N1. In the present study, humanized H5 antibody 8A8 was developed from a murine H5 MAb. Both the humanized and mouse MAbs presented positive activity in hemagglutination inhibition (HI), virus neutralization, and immunofluorescence assays against a wide range of H5N1 strains. Interestingly, both human and murine 8A8 antibodies were able to detect H5 in Western blot assays under reducing conditions. Further, by sequencing of escape mutants, the conformational epitope of 8A8 was found to be located within the receptor binding domain (RBD) of H5. The linear epitope of 8A8 was identified by Western blotting of overlapping fragments and substitution mutant forms of HA1. Reverse genetic H5N1 strains with individual mutations in either the conformational or the linear epitope were generated and characterized in a series of assays, including HI, postattachment, and cell-cell fusion inhibition assays. The results indicate that for 8A8, virus neutralization mediated by RBD blocking relies on the conformational epitope while binding to the linear epitope contributes to the neutralization by inhibiting membrane fusion. Taken together, the results of this study show that a novel humanized H5 MAb binds to two types of epitopes on HA, leading to virus neutralization via two mechanisms. IMPORTANCE Recurrence of the highly pathogenic avian influenza virus subtype H5N1 in humans and poultry continues to be a serious public health concern. Preventive and therapeutic measures against influenza A viruses have received much interest in the context of global efforts to combat the current and future pandemics. Passive immune therapy is considered to be the most effective and economically prudent preventive strategy against influenza virus besides vaccination. It is important to develop a humanized neutralizing monoclonal antibody (MAb) against all of the clades of H5N1. For the first time, we report in this study that a novel humanized H5 MAb binds to two types of epitopes on HA, leading to virus neutralization via two mechanisms. These findings further deepen our understanding of influenza virus neutralization.
Collapse
|
21
|
Salvat RS, Parker AS, Choi Y, Bailey-Kellogg C, Griswold KE. Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate. PLoS Comput Biol 2015; 11:e1003988. [PMID: 25568954 PMCID: PMC4288714 DOI: 10.1371/journal.pcbi.1003988] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/14/2014] [Indexed: 12/25/2022] Open
Abstract
The immunogenicity of biotherapeutics can bottleneck development pipelines and poses a barrier to widespread clinical application. As a result, there is a growing need for improved deimmunization technologies. We have recently described algorithms that simultaneously optimize proteins for both reduced T cell epitope content and high-level function. In silico analysis of this dual objective design space reveals that there is no single global optimum with respect to protein deimmunization. Instead, mutagenic epitope deletion yields a spectrum of designs that exhibit tradeoffs between immunogenic potential and molecular function. The leading edge of this design space is the Pareto frontier, i.e. the undominated variants for which no other single design exhibits better performance in both criteria. Here, the Pareto frontier of a therapeutic enzyme has been designed, constructed, and evaluated experimentally. Various measures of protein performance were found to map a functional sequence space that correlated well with computational predictions. These results represent the first systematic and rigorous assessment of the functional penalty that must be paid for pursuing progressively more deimmunized biotherapeutic candidates. Given this capacity to rapidly assess and design for tradeoffs between protein immunogenicity and functionality, these algorithms may prove useful in augmenting, accelerating, and de-risking experimental deimmunization efforts. Protein therapeutics have created a revolution in disease therapy, providing improved outcomes for prevalent illnesses and conditions while at the same time yielding treatments for diseases that were previously intractable. However, this powerful class of drugs is subject to their own unique challenges and risk factors. In particular, the biological origins of therapeutic proteins predispose them towards eliciting a detrimental immune response from the patient's own body. Therefore, fully capitalizing on the medicinal reservoir of natural and engineered proteins will require efficient, effective, and broadly applicable deimmunization technologies. We have developed deimmunization algorithms that simultaneously optimize therapeutic candidates for both low immunogenicity and high-level activity and stability. Here, we combine computational modeling and experimental analysis to show that the process of protein deimmunization manifests inherent tradeoffs between immunogenic potential and biomolecular function. Our experimental results demonstrate that dual objective optimization allows us to assess and design for these tradeoffs, thereby enabling facile construction of deimmunized variants that span a broad range of immunogenicity and functionality performance parameters. Thus, we can rapidly map the design space for deimmunized drug candidates, and we can use this information to guide selection of engineered proteins that are most likely to meet performance benchmarks for a given clinical application.
Collapse
Affiliation(s)
- Regina S. Salvat
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America
| | - Andrew S. Parker
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
| | - Yoonjoo Choi
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail: (CBK); (KEG)
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America
- Program in Molecular and Cellular Biology, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail: (CBK); (KEG)
| |
Collapse
|
22
|
Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. SELF NONSELF 2014; 1:314-322. [PMID: 21487506 DOI: 10.4161/self.1.4.13904] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/20/2010] [Accepted: 10/07/2010] [Indexed: 12/15/2022]
Abstract
The immunogenicity of protein therapeutics has so far proven to be difficult to predict in patients, with many biologics inducing undesirable immune responses directed towards the therapeutic resulting in reduced efficacy, anaphylaxis and occasionally life threatening autoimmunity. The most common effect of administrating an immunogenic protein therapeutic is the development of a high affinity anti-therapeutic antibody response. Furthermore, it is clear from clinical studies that protein therapeutics derived from endogenous human proteins are capable of stimulating undesirable immune responses in patients, and as a consequence, the prediction and reduction of immunogenicity has been the focus of intense research. This review will outline the principle causes of the immunogenicity in protein therapeutics, and describe the development of pre-clinical models that can be used to aid in the prediction of the immunogenic potential of novel protein therapeutics prior to administration in man.
Collapse
Affiliation(s)
- Matthew P Baker
- Antitope Ltd.; Babraham Research Campus; Babraham, Cambridge UK
| | | | | | | |
Collapse
|
23
|
Drake PM, Albers AE, Baker J, Banas S, Barfield RM, Bhat AS, de Hart GW, Garofalo AW, Holder P, Jones LC, Kudirka R, McFarland J, Zmolek W, Rabuka D. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 2014; 25:1331-41. [PMID: 24924618 PMCID: PMC4215875 DOI: 10.1021/bc500189z] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
It is becoming increasingly clear
that site-specific conjugation
offers significant advantages over conventional conjugation chemistries
used to make antibody–drug conjugates (ADCs). Site-specific
payload placement allows for control over both the drug-to-antibody
ratio (DAR) and the conjugation site, both of which play an important
role in governing the pharmacokinetics (PK), disposition, and efficacy
of the ADC. In addition to the DAR and site of conjugation, linker
composition also plays an important role in the properties of an ADC.
We have previously reported a novel site-specific conjugation platform
comprising linker payloads designed to selectively react with site-specifically
engineered aldehyde tags on an antibody backbone. This chemistry results
in a stable C–C bond between the antibody and the cytotoxin
payload, providing a uniquely stable connection with respect to the
other linker chemistries used to generate ADCs. The flexibility and
versatility of the aldehyde tag conjugation platform has enabled us
to undertake a systematic evaluation of the impact of conjugation
site and linker composition on ADC properties. Here, we describe the
production and characterization of a panel of ADCs bearing the aldehyde
tag at different locations on an IgG1 backbone conjugated using Hydrazino-iso-Pictet-Spengler (HIPS) chemistry. We demonstrate that
in a panel of ADCs with aldehyde tags at different locations, the
site of conjugation has a dramatic impact on in vivo efficacy and
pharmacokinetic behavior in rodents; this advantage translates to
an improved safety profile in rats as compared to a conventional lysine
conjugate.
Collapse
Affiliation(s)
- Penelope M Drake
- Redwood Bioscience , 5703 Hollis Street, Emeryville, California 94608, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Computationally driven deletion of broadly distributed T cell epitopes in a biotherapeutic candidate. Cell Mol Life Sci 2014; 71:4869-80. [PMID: 24880662 DOI: 10.1007/s00018-014-1652-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/23/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
Biotherapeutics are subject to immune surveillance within the body, and anti-biotherapeutic immune responses can compromise drug efficacy and patient safety. Initial development of targeted antidrug immune memory is coordinated by T cell recognition of immunogenic subsequences, termed "T cell epitopes." Biotherapeutics may therefore be deimmunized by mutating key residues within cognate epitopes, but there exist complex trade-offs between immunogenicity, mutational load, and protein structure-function. Here, a protein deimmunization algorithm has been applied to P99 beta-lactamase, a component of antibody-directed enzyme prodrug therapies. The algorithm, integer programming for immunogenic proteins, seamlessly integrates computational prediction of T cell epitopes with both 1- and 2-body sequence potentials that assess protein tolerance to epitope-deleting mutations. Compared to previously deimmunized P99 variants, which bore only one or two mutations, the enzymes designed here contain 4-5 widely distributed substitutions. As a result, they exhibit broad reductions in major histocompatibility complex recognition. Despite their high mutational loads and markedly reduced immunoreactivity, all eight engineered variants possessed wild-type or better catalytic activity. Thus, the protein design algorithm is able to disrupt broadly distributed epitopes while maintaining protein function. As a result, this computational tool may prove useful in expanding the repertoire of next-generation biotherapeutics.
Collapse
|
25
|
Brennan FR, Cauvin A, Tibbitts J, Wolfreys A. Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases. Drug Dev Res 2014; 75:115-61. [PMID: 24782266 DOI: 10.1002/ddr.21173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/23/2014] [Indexed: 12/19/2022]
Abstract
An increasing number of immunomodulatory monoclonal antibodies (mAbs) and IgG Fc fusion proteins are either approved or in early-to-late stage clinical trials for the treatment of chronic inflammatory conditions, autoimmune diseases and organ transplant rejection. The exquisite specificity of mAbs, in combination with their multi-functional properties, high potency, long half-life (permitting intermittent dosing and prolonged pharamcological effects), and general lack of off-target toxicity makes them ideal therapeutics. Dosing with mAbs for these severe and debilitating but often non life-threatening diseases is usually prolonged, for several months or years, and not only affects adults, including sensitive populations such as woman of child-bearing potential (WoCBP) and the elderly, but also children. Immunosuppression is usually a therapeutic goal of these mAbs and when administered to patients whose treatment program often involves other immunosuppressive therapies, there is an inherent risk for frank immunosuppression and reduced host defence which when prolonged increases the risk of infection and cancer. In addition when mAbs interact with the immune system they can induce other adverse immune-mediated drug reactions such as infusion reactions, cytokine release syndrome, anaphylaxis, immune-complex-mediated pathology and autoimmunity. An overview of the nonclinical safety assessment and risk mitigation strategies utilized to characterize these immunomodulatory mAbs and Fc fusion proteins to support first-in human (FIH) studies and futher clinical development in inflammatory disease indications is provided. Specific emphasis is placed on the design of studies to qualify animal species for toxicology studies, early studies to investigate safety and define PK/PD relationships, FIH-enabling and chronic toxicology studies, immunotoxicity, developmental, reproductive and juvenile toxicity studies and studies to determine the potential for immunosuppression and reduced host defence against infection and cancer. Nonclinical strategies to facilitate clinical and market entry in the most efficient timeframe are presented.
Collapse
Affiliation(s)
- Frank R Brennan
- Preclinical Safety, New Medicines, UCB-Celltech, Slough, SL1 3WE, UK
| | | | | | | |
Collapse
|
26
|
Kuramochi T, Igawa T, Tsunoda H, Hattori K. Humanization and simultaneous optimization of monoclonal antibody. Methods Mol Biol 2014; 1060:123-137. [PMID: 24037839 DOI: 10.1007/978-1-62703-586-6_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physiochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in the light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.
Collapse
Affiliation(s)
- T Kuramochi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | | | | | | |
Collapse
|
27
|
LaFleur DW, Abramyan D, Kanakaraj P, Smith RG, Shah RR, Wang G, Yao XT, Kankanala S, Boyd E, Zaritskaya L, Nam V, Puffer BA, Buasen P, Kaithamana S, Burnette AF, Krishnamurthy R, Patel D, Roschke VV, Kiener PA, Hilbert DM, Barbas CF. Monoclonal antibody therapeutics with up to five specificities: functional enhancement through fusion of target-specific peptides. MAbs 2013; 5:208-18. [PMID: 23575268 PMCID: PMC3893231 DOI: 10.4161/mabs.23043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The recognition that few human diseases are thoroughly addressed by mono-specific, monoclonal antibodies (mAbs) continues to drive the development of antibody therapeutics with additional specificities and enhanced activity. Historically, efforts to engineer additional antigen recognition into molecules have relied predominantly on the reformatting of immunoglobulin domains. In this report we describe a series of fully functional mAbs to which additional specificities have been imparted through the recombinant fusion of relatively short polypeptides sequences. The sequences are selected for binding to a particular target from combinatorial libraries that express linear, disulfide-constrained, or domain-based structures. The potential for fusion of peptides to the N- and C- termini of both the heavy and light chains affords the bivalent expression of up to four different peptides. The resulting molecules, called zybodies, can gain up to four additional specificities, while retaining the original functionality and specificity of the scaffold antibody. We explore the use of two clinically significant oncology antibodies, trastuzumab and cetuximab, as zybody scaffolds and demonstrate functional enhancements in each case. The affect of fusion position on both peptide and scaffold function is explored, and penta-specific zybodies are demonstrated to simultaneously engage five targets (ErbB2, EGFR, IGF-1R, Ang2 and integrin αvβ3). Bispecific, trastuzumab-based zybodies targeting ErbB2 and Ang2 are shown to exhibit superior efficacy to trastuzumab in an angiogenesis-dependent xenograft tumor model. A cetuximab-based bispecific zybody that targeting EGFR and ErbB3 simultaneously disrupted multiple intracellular signaling pathways; inhibited tumor cell proliferation; and showed efficacy superior to that of cetuximab in a xenograft tumor model.
Collapse
|
28
|
Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. Clin Immunol 2013; 149:534-55. [PMID: 24263283 DOI: 10.1016/j.clim.2013.09.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 02/07/2023]
Abstract
Protein therapeutics hold a prominent and rapidly expanding place among medicinal products. Purified blood products, recombinant cytokines, growth factors, enzyme replacement factors, monoclonal antibodies, fusion proteins, and chimeric fusion proteins are all examples of therapeutic proteins that have been developed in the past few decades and approved for use in the treatment of human disease. Despite early belief that the fully human nature of these proteins would represent a significant advantage, adverse effects associated with immune responses to some biologic therapies have become a topic of some concern. As a result, drug developers are devising strategies to assess immune responses to protein therapeutics during both the preclinical and the clinical phases of development. While there are many factors that contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) responses appear to play a critical role in the development of antibody responses to biologic therapeutics. A range of methodologies to predict and measure Td immune responses to protein drugs has been developed. This review will focus on the Td contribution to immunogenicity, summarizing current approaches for the prediction and measurement of T cell-dependent immune responses to protein biologics, discussing the advantages and limitations of these technologies, and suggesting a practical approach for assessing and mitigating Td immunogenicity.
Collapse
|
29
|
Brinks V, Weinbuch D, Baker M, Dean Y, Stas P, Kostense S, Rup B, Jiskoot W. Preclinical Models Used for Immunogenicity Prediction of Therapeutic Proteins. Pharm Res 2013; 30:1719-28. [DOI: 10.1007/s11095-013-1062-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/15/2013] [Indexed: 02/06/2023]
|
30
|
Bautista AC, Salimi-Moosavi H, Jawa V. Universal immunoassay applied during early development of large molecules to understand impact of immunogenicity on biotherapeutic exposure. AAPS JOURNAL 2012; 14:843-9. [PMID: 22941399 DOI: 10.1208/s12248-012-9403-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022]
Abstract
Immunogenicity testing during early biotherapeutic development is usually limited by resources needed for assay development, validation, and the necessity for unique product-specific controls and reagents. We describe a unique immunoassay [universal indirect species-specific assay (UNISA)] that can be applied during early phase preclinical studies to support pharmacology, pharmacokinetics (PK), and toxicology evaluation during biotherapeutic antibody candidate assessment. UNISA was evaluated across three animal species: mouse, rat, and cynomolgus monkey. For each species, a unique and specific antibody pair was generated consisting of the secondary antibody and the positive control. The secondary antibody is specific for species anti-IgG antibody while demonstrating no cross-reactivity to human antibody-based biotherapeutics. The positive control is comprised of a species-specific anti-human IgG antibody clone specific for binding to the CH2 domain of all human IgG subtypes. Applications of this platform included: (a) identifying the dose with the least immunogenicity risk; (b) characterizing the impact of immunogenicity on PK exposure profiles across multiple antibody candidates and dose regimens; and (c) characterizing the immune response specificity to the idiotype or non-idiotypic region of the biotherapeutic candidate. Due to its use of universal species-specific reagents, UNISA can overcome resource constraints and avoid extensive validation and development time to support immunogenicity testing during the early research and preclinical phase of programs. Enhanced understanding of the impact of the immunogenicity on biotherapeutic exposure and target-related immunomodulatory effects have been made possible with the use of this assay.
Collapse
Affiliation(s)
- Ami C Bautista
- Clinical Immunology Department, Amgen Inc., One Amgen Center Drive, MS 30E-3-B, Thousand Oaks, California 91320, USA
| | | | | |
Collapse
|
31
|
Johnson R, Jiskoot W. Models for evaluation of relative immunogenic potential of protein particles in biopharmaceutical protein formulations. J Pharm Sci 2012; 101:3586-92. [PMID: 22736238 DOI: 10.1002/jps.23248] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 12/19/2022]
Abstract
An immune response to a therapeutic protein that compromises the biopharmaceutical activity or cross-reacts with an endogenous protein is a serious clinical event. The role of protein aggregates and particles in biopharmaceutical formulations in mediating this immune response has gained considerable attention over the recent past. Model systems that could consistently and reliably predict the relative immunogenicity of biopharmaceutical protein formulations would be extremely valuable. Several approaches have been developed in an attempt to provide this insight, including in silico algorithms, in vitro tests utilizing human leukocytes and in vivo animal models. This commentary provides an update of these various approaches as well as the author's perspectives on the pros and cons of these different methods.
Collapse
Affiliation(s)
- Richard Johnson
- Medical Products Division, Baxter Healthcare Corporation, Round Lake, Illinois, USA.
| | | |
Collapse
|
32
|
Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, Goletz TJ, Kerwin BA, Chirmule N, Narhi LO, Jawa V. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem 2012; 287:25266-79. [PMID: 22584577 PMCID: PMC3408134 DOI: 10.1074/jbc.m111.330902] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aggregation of biotherapeutics has the potential to induce an immunogenic response. Here, we show that aggregated therapeutic antibodies, previously generated and determined to contain a variety of attributes (Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) J. Biol. Chem. 286, 25118–25133), can enhance the in vitro innate immune response of a population of naive human peripheral blood mononuclear cells. This response depended on the aggregate type, inherent immunogenicity of the monomer, and donor responsiveness, and required a high number of particles, well above that detected in marketed drug products, at least in this in vitro system. We propose a cytokine signature as a potential biomarker of the in vitro peripheral blood mononuclear cell response to aggregates. The cytokines include IL-1β, IL-6, IL-10, MCP-1, MIP-1α, MIP-1β, MMP-2, and TNF-α. IL-6 and IL-10 might have an immunosuppressive effect on the long term immune response. Aggregates made by stirring induced the highest response compared with aggregates made by other methods. Particle size in the 2–10 μm range and the retention of some folded structure were associated with an increased response. The mechanism of aggregate activation at the innate phase was found to occur through specific cell surface receptors (the toll-like receptors TLR-2 and TLR-4, FcγRs, and the complement system). The innate signal was shown to progress to an adaptive T-cell response characterized by T-cell proliferation and secretion of T-cell cytokines. Investigating the ability of aggregates to induce cytokine signatures as biomarkers of immune responses is essential for determining their risk of immunogenicity.
Collapse
Affiliation(s)
- Marisa K Joubert
- Department of Product Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K. Engineering the variable region of therapeutic IgG antibodies. MAbs 2011; 3:243-52. [PMID: 21406966 DOI: 10.4161/mabs.3.3.15234] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Since the first generation of humanized IgG1 antibodies reached the market in the late 1990s, IgG antibody molecules have been extensively engineered. The success of antibody therapeutics has introduced severe competition in developing novel therapeutic monoclonal antibodies, especially for promising or clinically validated targets. Such competition has led researchers to generate so-called second or third generation antibodies with clinical differentiation utilizing various engineering and optimization technologies. Parent IgG antibodies can be engineered to have improved antigen binding properties, effector functions, pharmacokinetics, pharmaceutical properties and safety issues. Although the primary role of the antibody variable region is to bind to the antigen, it is also the main source of antibody diversity and its sequence affects various properties important for developing antibody therapeutics. Here we review recent research activity in variable region engineering to generate superior antibody therapeutics.
Collapse
Affiliation(s)
- Tomoyuki Igawa
- Chugai Pharmaceutical Co. Ltd., Fuji-Gotemba Research Laboratories, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Moisa AA, Kolesanova EF. Synthetic peptide vaccines. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s1990750810040025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci 2010; 100:354-87. [PMID: 20740683 DOI: 10.1002/jps.22276] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 12/12/2022]
Abstract
All protein therapeutics have the potential to be immunogenic. Several factors, including patient characteristics, disease state, and the therapy itself, influence the generation of an immune response. Product-related factors such as the molecule design, the expression system, post-translational modifications, impurities, contaminants, formulation and excipients, container, closure, as well as degradation products are all implicated. However, a critical examination of the available data shows that clear unequivocal evidence for the impact of these latter factors on clinical immunogenicity is lacking. No report could be found that clearly deconvolutes the clinical impact of the product attributes on patient susceptibility. Aggregation carries the greatest concern as a risk factor for immunogenicity, but the impact of aggregates is likely to depend on their structure as well as on the functionality (e.g., immunostimulatory or immunomodulatory) of the therapeutic. Preclinical studies are not yet capable of assessing the clinically relevant immunogenicity potential of these product-related factors. Simply addressing these risk factors as part of product development will not eliminate immunogenicity. Minimization of immunogenicity has to begin at the molecule design stage by reducing or eliminating antigenic epitopes and building in favorable physical and chemical properties.
Collapse
Affiliation(s)
- Satish Kumar Singh
- Pfizer, Inc., BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research and Development, Chesterfield, Missouri 63017, USA.
| |
Collapse
|
36
|
Brennan FR, Morton LD, Spindeldreher S, Kiessling A, Allenspach R, Hey A, Muller PY, Frings W, Sims J. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. MAbs 2010; 2:233-55. [PMID: 20421713 PMCID: PMC2881251 DOI: 10.4161/mabs.2.3.11782] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 03/23/2010] [Indexed: 12/31/2022] Open
Abstract
Most therapeutic monoclonal antibodies (mAbs) licensed for human use or in clinical development are indicated for treatment of patients with cancer and inflammatory/autoimmune disease and as such, are designed to directly interact with the immune system. A major hurdle for the development and early clinical investigation of many of these immunomodulatory mAbs is their inherent risk for adverse immune-mediated drug reactions in humans such as infusion reactions, cytokine storms, immunosuppression and autoimmunity. A thorough understanding of the immunopharmacology of a mAb in humans and animals is required to both anticipate the clinical risk of adverse immunotoxicological events and to select a safe starting dose for first-in-human (FIH) clinical studies. This review summarizes the most common adverse immunotoxicological events occurring in humans with immunomodulatory mAbs and outlines non-clinical strategies to define their immunopharmacology and assess their immunotoxic potential, as well as reduce the risk of immunotoxicity through rational mAb design. Tests to assess the relative risk of mAb candidates for cytokine release syndrome, innate immune system (dendritic cell) activation and immunogenicity in humans are also described. The importance of selecting a relevant and sensitive toxicity species for human safety assessment in which the immunopharmacology of the mAb is similar to that expected in humans is highlighted, as is the importance of understanding the limitations of the species selected for human safety assessment and supplementation of in vivo safety assessment with appropriate in vitro human assays. A tiered approach to assess effects on immune status, immune function and risk of infection and cancer, governed by the mechanism of action and structural features of the mAb, is described. Finally, the use of immunopharmacology and immunotoxicity data in determining a minimum anticipated biologic effect Level (MABEL) and in the selection of safe human starting dose is discussed.
Collapse
Affiliation(s)
- Frank R Brennan
- Novartis Biologicals, Translational Sciences and Safety, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Alaoui-Ismaili MH, Falb D. Design of second generation therapeutic recombinant bone morphogenetic proteins. Cytokine Growth Factor Rev 2009; 20:501-7. [DOI: 10.1016/j.cytogfr.2009.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Letvin NL. A vaccine that delivers rather than induces antibodies. Gene Ther 2009; 16:1283-4. [PMID: 19759565 DOI: 10.1038/gt.2009.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Journal Watch. Pharmaceut Med 2008. [DOI: 10.1007/bf03256737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|