1
|
Urrea V, Páez-Triana L, Velásquez-Ortiz N, Camargo M, Patiño LH, Vega L, Ballesteros N, Hidalgo-Troya A, Galeano LA, Ramírez JD, Muñoz M. Metagenomic Analysis of Surface Waters and Wastewater in the Colombian Andean Highlands: Implications for Health and Disease. Curr Microbiol 2025; 82:162. [PMID: 40021498 PMCID: PMC11870934 DOI: 10.1007/s00284-024-04019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025]
Abstract
Urban water bodies serve as critical reservoirs of microbial diversity, with major implications for public health and environmental quality. This study aimed to characterize the microbial diversity of surface waters and wastewater from the Pasto River in the Colombian Andean Highlands, offering insights that may support water quality monitoring efforts. Sampling was conducted at three river sites and one wastewater location. Standard physicochemical and microbiological analyses were performed, including real-time PCR to detect protozoan pathogens Giardia spp. and Cryptosporidium spp. Metagenomic sequencing provided an in-depth taxonomic and functional profile of microbial communities through two complementary approaches: (i) read-based analysis to identify abundant families and species, both pathogenic and beneficial, and (ii) detection of health-related molecular markers, including antimicrobial resistance markers and virulence factors. Physicochemical analyses showed distinct profiles between wastewater and surface water, with wastewater exhibiting elevated levels of suspended solids (113.6 mg/L), biochemical oxygen demand (BOD, 311.2 mg/L), and chemical oxygen demand (COD, 426.7 mg/L). Real-time PCR detected Giardia spp. DNA in 75% (76/102) of the samples and Cryptosporidium spp. DNA in 94% (96/102) of samples. The metagenomic read-based profiling identified Aeromonas media as a prevalent pathogen and Polaromonas naphthalenivorans as a potential biodegradative agent. The metagenomic assembly produced 270 high-quality genomes, revealing 16 bacterial species (e. g., Acinetobacter johnsonii and Megamonas funiformis) that provided insights into fecal contaminants and native aquatic microbes. Functional profiling further revealed a high prevalence of antimicrobial resistance markers, particularly for tetracyclines, aminoglycosides, and macrolides, with the highest abundance found in wastewater samples. Additionally, virulence factors were notably present in Zoogloea ramigera. The findings underscore the value of metagenomic profiling as a comprehensive tool for water quality monitoring, facilitating the detection of pathogens, beneficial species, and molecular markers indicative of potential health risks. This approach supports continuous monitoring efforts, offering actionable data for water management strategies to safeguard public health and maintain ecological integrity.
Collapse
Affiliation(s)
- Vanessa Urrea
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, 250027, Funza, Cundinamarca, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Arsenio Hidalgo-Troya
- Grupo de Investigación Salud Pública, Departamento de Matemáticas y Estadística, Universidad de Nariño, 520002, Pasto, Colombia
| | - Luis-Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, 520002, Pasto, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia.
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, 111321, Bogotá, Colombia.
| |
Collapse
|
2
|
Alja'fari J, Sharvelle S, Branch A, Pecson B, Jahne M, Olivieri A, Arabi M, Garland JL, Gonzalez R. Assessing human-source microbial contamination of stormwater in the U.S. WATER RESEARCH 2025; 268:122640. [PMID: 39471764 PMCID: PMC11783576 DOI: 10.1016/j.watres.2024.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Stormwater capture and use (SCU) projects have the potential to provide a significant portion of municipal water demand. However, uncertainty about the degree of microbial contamination in stormwater and the required treatment is a barrier for implementation of SCU projects. Stormwater runoff could become contaminated with human fecal matter in areas with deteriorating infrastructure where raw wastewater exfiltrates from sewer networks to stormwater collection networks, homeless encampments exist, or sanitary sewer overflows (SSOs) occur. Estimation of human fecal contamination can inform selection of stormwater treatment targets. This study investigates stormwater microbial contamination originating from human fecal matter using observed detections and concentrations of human microbial source tracking (MST) markers and potentially human-infectious pathogens (PHIPs). First, a systematic review complied measurements of human MST markers in wet and dry weather stormwater flows and influent wastewater. In addition, measurements of viral pathogens (e.g., adenoviruses, norovirus GI+GII, and enteroviruses) and protozoan pathogens (e.g., Giardia lamblia and Cryptosporidium parvum) in wet weather flows and influent wastewater were assessed. Human MST marker and PHIP data were statistically analyzed and applied to estimate a human fecal contamination analog (HFCA) which is an estimate of the amount of human fecal matter based on relative concentrations of microbial contaminants in stormwater compared to municipal wastewater. Human MST-based HFCAs in wet and dry weather flows ranged from <10-7.0 to 10-1.5 (median = 10-4.5) and 10-12 to 10-2.6 (median = 10-7.0), respectively. PHIP-based HFCAs in wet weather flows ranged from ∼10-8 to 10-0.14. Estimates of human MST-based HFCAs are more reliable than PHIP-based HFCAs because the current PHIP datasets are generally limited by the number of data points, percent detection, variability observed within the statistical distributions, and the geographical span of sampling locations. The use of human MST-based HFCAs is recommended to guide the selection of stormwater treatment process trains that are protective of public health based on the intended end use. Application of HFCA 10-1 (i.e., sewage dilution 10-1) remains a reasonable conservative estimate of human fecal contamination in stormwater to inform selection of pathogen log reduction targets based on the data presently available.
Collapse
Affiliation(s)
- Jumana Alja'fari
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA.
| | - Sybil Sharvelle
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA
| | - Amos Branch
- Carollo Engineers, Inc., 2795 Mitchell Dr, Walnut Creek, CA 94598, USA
| | - Brian Pecson
- Trussell Technologies, 1939 Harrison Street, Oakland, CA 94612, USA
| | - Michael Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Adam Olivieri
- Environmental and Public Health Engineering, Inc., 1410 Jackson Street, Oakland, CA 94612, USA
| | - Mazdak Arabi
- Department of Civil and Environmental Engineering, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521, USA
| | - Jay L Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Raul Gonzalez
- H(2)O Molecular, 6746 Edinburgh Court, San Diego, CA 92120, USA
| |
Collapse
|
3
|
Cai Y, Zhao Y, Wang C, Yadav AK, Wei T, Kang P. Ozone disinfection of waterborne pathogens: A review of mechanisms, applications, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60709-60730. [PMID: 39392580 DOI: 10.1007/s11356-024-34991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Water serves as a critical vector for the transmission of pathogenic microorganisms, playing a pivotal role in the emergence and propagation of numerous diseases. Ozone (O3) disinfection technology offers promising potential for mitigating the spread of these pathogens in aquatic environments. However, previous studies have only focused on the inactivated effect of O3 on a single pathogenic microorganism, lacking a comprehensive comparative analysis of various influencing factors and different types of pathogens, while the cost-effectiveness of O3 technology has not been mentioned. This review synthesized the migration characteristics of various pathogenic microorganisms in water bodies and examined the properties, mechanisms, and influencing factors of O3 inactivation. It evaluated the efficacy of O3 against diverse pathogens, namely bacteria, viruses, protozoa, and fungi, and provided a comparative analysis of their sensitivities to O3. The formation and impact of harmful disinfection by-products (DBPs) during the O3 inactivation process were assessed, alongside an analysis of the cost-effectiveness of this method. Additionally, potential synergistic treatment processes involving O3 were proposed. Based on these findings, recommendations were made for optimizing the utilization of O3 in water inactivation in order to formulate better inactivation strategies in the post-pandemic eras.
Collapse
Affiliation(s)
- Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China.
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China.
| | - Cong Wang
- Xi'an Aerospace City Water Environment Co., Ltd., Xi'an, 710199, P.R. China
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
- Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751 013, Odisha, India
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
| |
Collapse
|
4
|
Korajkic A, McMinn BR, Pemberton AC, Kelleher J, Ahmed W. The comparison of decay rates of infectious SARS-CoV-2 and viral RNA in environmental waters and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174379. [PMID: 38955270 PMCID: PMC11290430 DOI: 10.1016/j.scitotenv.2024.174379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Understanding the decay characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater and ambient waters is important for multiple applications including assessment of risk of exposure associated with handling wastewater samples, public health risk associated with recreation in wastewater polluted ambient waters and better understanding and interpretation of wastewater-based epidemiology (WBE) results. We evaluated the decay rates of infectious SARS-CoV-2 and viral RNA in wastewater and ambient waters under temperature regimes representative of seasonal fluctuations. Infectious virus was seeded in autoclaved primary wastewater effluent, final dechlorinated wastewater effluent, lake water, and marine water at a final concentration of 6.26 ± 0.07 log10 plaque forming units per milliliter. Each suspension was incubated at either 4°, 25°, and 37 °C. Samples were initially collected on an hourly basis, then approximately every other day for 15 days. All samples were analyzed for infectious virus via a plaque assay using the Vero E6 cell line, and viral gene copy levels were quantified with the US CDC's N1 and N2 reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. The infectious virus decayed significantly faster (p ≤ 0.0214) compared to viral RNA, which persisted for the duration of the study irrespective of the incubation conditions. The initial loss (within 15 min of seeding) as well as decay of infectious SARS-CoV-2 was significantly faster (p ≤ 0.0387) in primary treated wastewater compared to other water types, but viral RNA did not degrade appreciably in this matrix until day 15. Overall, temperature was the most important driver of decay, and after 24 h, no infectious SARS-CoV-2 was detected at 37 °C in any water type. Moreover, the CDC N2 gene assay target decayed significantly (p ≤ 0.0174) faster at elevated temperatures compared to CDC N1, which has important implications for RT-qPCR assay selection for WBE approach.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States.
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Adin C Pemberton
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct 41 Boggo Road, Qld 4102, Australia
| |
Collapse
|
5
|
Gonçalves J, Franco AF, Gomes da Silva P, Rodriguez E, Diaz I, González Peña MJ, Mesquita JR, Muñoz R, Garcia‐Encina P. Exposure assessment of severe acute respiratory syndrome coronavirus 2 and norovirus genogroup I/genogroup II in aerosols generated by a municipal wastewater treatment plant. CLEAN – SOIL, AIR, WATER 2024; 52. [DOI: 10.1002/clen.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 07/30/2024] [Indexed: 01/23/2025]
Abstract
AbstractThe presence of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in wastewater and its potential as an airborne transmission source require extensive investigation, particularly in wastewater treatment plants (WWTPs), where few studies have been conducted. The aim of this study was to investigate the presence of SARS‐CoV‐2 and norovirus (NoV) RNA in wastewater and air samples collected from a municipal WWTP. In addition, the study assessed the potential risk of viral exposure among WWTP employees. In both the summer and winter campaigns of this study, SARS‐CoV‐2 and NoV RNA were quantified in wastewater/sludge samples other than effluent. Viral RNA was not detected in any of the air samples collected. The exposure risk assessment with the SARS‐CoV‐2 RNA concentrations in the influent pumping station of this study shows a lower risk than the calculation with the historical data provided by AquaVall, but both show a low‐to‐medium exposure risk for the WWTP workers. The sensitivity analysis shows that the result of the model is strongly influenced by the SARS‐CoV‐2 RNA quantification in the wastewater. This study underscores the need for extensive investigations into the presence and viability of SARS‐CoV‐2 in wastewater, especially as a potential airborne transmission source within WWTPs.
Collapse
Affiliation(s)
- José Gonçalves
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associate Laboratory, NOVA School of Science and Technology NOVA University Lisbon Caparica Portugal
- Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
- Institute of Sustainable Processes University of Valladolid Valladolid Spain
| | - Andrés Felipe Franco
- Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
- Institute of Sustainable Processes University of Valladolid Valladolid Spain
| | - Priscilla Gomes da Silva
- ICBAS—School of Medicine and Biomedical Sciences Porto University Porto Portugal
- Epidemiology Research Unit (EPIUnit) Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR) Porto Portugal
| | - Elisa Rodriguez
- Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
- Institute of Sustainable Processes University of Valladolid Valladolid Spain
| | - Israel Diaz
- Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
- Institute of Sustainable Processes University of Valladolid Valladolid Spain
| | | | - João R. Mesquita
- ICBAS—School of Medicine and Biomedical Sciences Porto University Porto Portugal
- Epidemiology Research Unit (EPIUnit) Instituto de Saúde Pública da Universidade do Porto Porto Portugal
| | - Raul Muñoz
- Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
- Institute of Sustainable Processes University of Valladolid Valladolid Spain
| | - Pedro Garcia‐Encina
- Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
- Institute of Sustainable Processes University of Valladolid Valladolid Spain
| |
Collapse
|
6
|
Fernández-Bastit L, Montalvo T, Franco S, Barahona L, López-Bejar M, Carbajal A, Casas-Díaz E, Closa-Sebastià F, Segalés J, Vergara-Alert J. Monitoring SARS-CoV-2 infection in urban and peri-urban wildlife species from Catalonia (Spain). ONE HEALTH OUTLOOK 2024; 6:15. [PMID: 39217373 PMCID: PMC11366145 DOI: 10.1186/s42522-024-00109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Human activities including deforestation, urbanization, and wildlife exploitation increase the risk of transmission of zoonotic diseases. Urban and peri-urban wildlife species often flourish in human-altered environments, with their survival and behavior heavily influenced by human-generated food and waste. In Catalonia, Spain, and other Mediterranean regions, species of rodents, including the house mouse (Mus musculus), black rat (Rattus rattus), Norway rat (Rattus norvegicus), as well as wild boar (Sus scrofa) are common in urban and peri-urban areas. These species host numerous infectious agents, including coronaviruses (CoVs), posing potential human health risks. During the coronavirus disease 2019 (COVID-19) pandemic, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved to infect previously non-susceptible species, with variants capable of infecting rodents, emphasizing their importance in surveillance studies. METHODS The present study assessed SARS-CoV-2 presence and/or exposure in 232 rodents, 313 wild boar, and 37 Vietnamese Pot-bellied pigs in Catalonia during the pandemic period (2020-2023). RESULTS All the animals tested for acute SARS-CoV-2 infection (232 rodents and 29 wild boar) were negative. For SARS-CoV-2 exposure, 3 out of 313 (0.96%) wild boar tested positive by ELISA, while the remaining 32 rodents, 310 wild boar, and 37 Vietnamese Pot-bellied pigs were all negative. Cross-reactivity with other CoVs was predicted for ELISA-positive samples, as the 3 wild boar tested negative by the virus neutralization assay, considered as the gold standard technique. CONCLUSIONS The absence of SARS-CoV-2 exposure or acute infection in wild boar and rodent species supports their negligible role in viral spread or transmission during the COVID-19 pandemic in Catalonia. However, their proximity to humans and the ongoing genetic evolution of SARS-CoV-2 underline the need for continued monitoring. Surveillance of SARS-CoV-2 infection in animal species can contribute to design measures to control the emergence of new animal reservoirs or intermediate hosts that could facilitate viral spillover events.
Collapse
Affiliation(s)
- Leira Fernández-Bastit
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, 08193, Catalonia, Spain
- Programa de Sanitat Animal, IRTA, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, 08193, Catalonia, Spain
| | - Tomás Montalvo
- Agència de Salut Pública de Barcelona, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
| | - Sandra Franco
- Agència de Salut Pública de Barcelona, Barcelona, Spain
| | - Laura Barahona
- Agència de Salut Pública de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
| | - Manel López-Bejar
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Annais Carbajal
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | | | | | - Joaquim Segalés
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, 08193, Catalonia, Spain.
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
| | - Júlia Vergara-Alert
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, 08193, Catalonia, Spain.
- Programa de Sanitat Animal, IRTA, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
7
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Gitter A, Bauer C, Wu F, Ramphul R, Chavarria C, Zhang K, Petrosino J, Mezzari M, Gallegos G, Terwilliger AL, Clark JR, Feliz K, Avadhanula V, Piedra T, Weesner K, Maresso A, Mena KD. Assessment of a SARS-CoV-2 wastewater monitoring program in El Paso, Texas, from November 2020 to June 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:564-574. [PMID: 36595614 DOI: 10.1080/09603123.2022.2159017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The border city of El Paso, Texas, and its water utility, El Paso Water, initiated a SARS-CoV-2 wastewater monitoring program to assess virus trends and the appropriateness of a wastewater monitoring program for the community. Nearly weekly sample collection at four wastewater treatment facilities (WWTFs), serving distinct regions of the city, was analyzed for SARS-CoV-2 genes using the CDC 2019-Novel coronavirus Real-Time RT-PCR diagnostic panel. Virus concentrations ranged from 86.7 to 268,000 gc/L, varying across time and at each WWTF. The lag time between virus concentrations in wastewater and reported COVID-19 case rates (per 100,00 population) ranged from 4-24 days for the four WWTFs, with the strongest trend occurring from November 2021 - June 2022. This study is an assessment of the utility of a geographically refined SARS-CoV-2 wastewater monitoring program to supplement public health efforts that will manage the virus as it becomes endemic in El Paso.
Collapse
Affiliation(s)
- Anna Gitter
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Cici Bauer
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Fuqing Wu
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Ryan Ramphul
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Carlos Chavarria
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Kehe Zhang
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | | | | | - Gabriela Gallegos
- Department of Management, Policy & Community Health, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | | | | | - Karen Feliz
- Baylor College of Medicine, Houston, TX, USA
| | | | - Tony Piedra
- Baylor College of Medicine, Houston, TX, USA
| | | | | | - Kristina D Mena
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| |
Collapse
|
9
|
Kononova Y, Adamenko L, Kazachkova E, Solomatina M, Romanenko S, Proskuryakova A, Utkin Y, Gulyaeva M, Spirina A, Kazachinskaia E, Palyanova N, Mishchenko O, Chepurnov A, Shestopalov A. Features of SARS-CoV-2 Replication in Various Types of Reptilian and Fish Cell Cultures. Viruses 2023; 15:2350. [PMID: 38140591 PMCID: PMC10748073 DOI: 10.3390/v15122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND SARS-CoV-2 can enter the environment from the feces of COVID-19 patients and virus carriers through untreated sewage. The virus has shown the ability to adapt to a wide range of hosts, so the question of the possible involvement of aquafauna and animals of coastal ecosystems in maintaining its circulation remains open. METHODS the aim of this work was to study the tropism of SARS-CoV-2 for cells of freshwater fish and reptiles, including those associated with aquatic and coastal ecosystems, and the effect of ambient temperature on this process. In a continuous cell culture FHM (fathead minnow) and diploid fibroblasts CGIB (silver carp), SARS-CoV-2 replication was not maintained at either 25 °C or 29 °C. At 29 °C, the continuous cell culture TH-1 (eastern box turtle) showed high susceptibility to SARS-CoV-2, comparable to Vero E6 (development of virus-induced cytopathic effect (CPE) and an infectious titer of 7.5 ± 0.17 log10 TCID50/mL on day 3 after infection), and primary fibroblasts CNI (Nile crocodile embryo) showed moderate susceptibility (no CPE, infectious titer 4.52 ± 0.14 log10 TCID50/mL on day 5 after infection). At 25 °C, SARS-CoV-2 infection did not develop in TH-1 and CNI. CONCLUSIONS our results show the ability of SARS-CoV-2 to effectively replicate without adaptation in the cells of certain reptile species when the ambient temperature rises.
Collapse
Affiliation(s)
- Yulia Kononova
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Lyubov Adamenko
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Evgeniya Kazachkova
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Mariya Solomatina
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia; (S.R.); (A.P.); (Y.U.)
| | - Anastasia Proskuryakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia; (S.R.); (A.P.); (Y.U.)
| | - Yaroslav Utkin
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia; (S.R.); (A.P.); (Y.U.)
| | - Marina Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
- The Department of Natural Science, Novosibirsk State University, 2, Pirogova St., Novosibirsk 630090, Russia
| | - Anastasia Spirina
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Elena Kazachinskaia
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Natalia Palyanova
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Oksana Mishchenko
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation, Moscow 141306, Russia;
| | - Alexander Chepurnov
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| |
Collapse
|
10
|
Hui KPY, Chin AWH, Ehret J, Ng KC, Peiris M, Poon LLM, Wong KHM, Chan MCW, Hosegood I, Nicholls JM. Stability of SARS-CoV-2 on Commercial Aircraft Interior Surfaces with Implications for Effective Control Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6598. [PMID: 37623181 PMCID: PMC10454724 DOI: 10.3390/ijerph20166598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The COVID-19 pandemic from 2019 to 2022 devastated many aspects of life and the economy, with the commercial aviation industry being no exception. One of the major concerns during the pandemic was the degree to which the internal aircraft environment contributed to virus transmission between humans and, in particular, the stability of SARS-CoV-2 on contact surfaces in the aircraft cabin interior. METHOD In this study, the stability of various major strains of SARS-CoV-2 on interior aircraft surfaces was evaluated using the TCID50 assessment. RESULTS In contrast to terrestrial materials, SARS-CoV-2 was naturally less stable on common contact points in the aircraft interior, and, over a 4 h time period, there was a 90% reduction in culturable virus. Antiviral and surface coatings were extremely effective at mitigating the persistence of the virus on surfaces; however, their benefit was diminished by regular cleaning and were ineffective after 56 days of regular use and cleaning. Finally, successive strains of SARS-CoV-2 have not evolved to be more resilient to survival on aircraft surfaces. CONCLUSIONS We conclude that the mitigation strategies for SARS-CoV-2 on interior aircraft surfaces are more than sufficient, and epidemiological evidence over the past three years has not found that surface spread is a major route of transmission.
Collapse
Affiliation(s)
- Kenrie P. Y. Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - Alex W. H. Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - John Ehret
- Qantas Airways Ltd., Qantas 10 Bourke Rd Mascot, Sydney, NSW 2020, Australia
| | - Ka-Chun Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - Leo L. M. Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - Karen H. M. Wong
- Electron Microscopy Unit, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China
| | - Michael C. W. Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - Ian Hosegood
- Qantas Airways Ltd., Qantas 10 Bourke Rd Mascot, Sydney, NSW 2020, Australia
| | - John M. Nicholls
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam HKG, Hong Kong SAR, China
| |
Collapse
|
11
|
Atoui A, Cordevant C, Chesnot T, Gassilloud B. SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163453. [PMID: 37059142 PMCID: PMC10091716 DOI: 10.1016/j.scitotenv.2023.163453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Ali Atoui
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France.
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Thierry Chesnot
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| | - Benoît Gassilloud
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| |
Collapse
|
12
|
Lanzarini NM, Mannarino CF, Ribeiro AVC, Prado T, Vahia LS, Siqueira MM, Resende PC, Quintaes BR, Miagostovich MP. SARS-CoV-2 surveillance-based on municipal solid waste leachate in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67368-67377. [PMID: 37101215 PMCID: PMC10132925 DOI: 10.1007/s11356-023-27019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Municipal solid waste leachate-based epidemiology is an alternative viral tracking tool that applies fresh truck leachate as an early warning of public health emergencies. This study aimed to investigate the potential of SARS-CoV-2 surveillance based on solid waste fresh truck leachate. Twenty truck leachate samples were ultracentrifugated, nucleic acid extracted, and real-time RT-qPCR SARS-CoV-2 N1/N2 applied. Viral isolation, variant of concern (N1/N2) inference, and whole genome sequencing were also performed. SARS-CoV-2 was detected on 40% (8/20) of samples, with a concentration from 2.89 to 6.96 RNA Log10 100 mL-1. The attempt to isolate SARS-CoV-2 and recover the whole genome was not successful; however, positive samples were characterized as possible pre-variant of concern (pre-VOC), VOC Alpha (B.1.1.7) and variant of interest Zeta (P.2). This approach revealed an alternative tool to infer SARS-CoV-2 in the environment and may help the management of local surveillance, health, and social policies.
Collapse
Affiliation(s)
- Natália Maria Lanzarini
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Camille Ferreira Mannarino
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Leonardo Saboia Vahia
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | | | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
13
|
Pozzetto B, Gagnaire J, Berthelot P, Bourlet T, Pillet S. [Viruses present in the environment: virological considerations and examples of their impact on human health]. REVUE FRANCOPHONE DES LABORATOIRES : RFL 2023; 2023:33-43. [PMID: 36879984 PMCID: PMC9978926 DOI: 10.1016/s1773-035x(23)00053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Animal viruses are present in most human environments. Their viability in these media is very variable and the most important element that conditions this viability is the existence or not of a phospholipid envelope surrounding the nucleocapsid. After some general considerations on the structure of viruses, their multiplication cycle and their resistance to different physico-chemical agents, some examples of the impact of animal viruses present in the environment on human health will be presented. The situations that are related concern recent epidemiological events: circulation of type 2 polioviruses derived from the Sabin vaccine strain in the wastewater of New York, London and Jerusalem; risk of transmission of Sars-CoV-2 during the spreading of sludge from wastewater treatment plants on agricultural land in the era of the Covid-19 pandemic; « new » forms of food-borne poisoning of viral origin (hepatitis E, tick-borne encephalitis, Nipah virus infection); contamination by epidemic viruses of mobile phones used by pediatricians; role of fomites in the spread of orthopoxvirus infections (smallpox, cowpox, monkeypox). The risk attached to animal viruses present in the environment must be assessed in a measured way without overestimating or underestimating their potential consequences for human health.
Collapse
Affiliation(s)
- Bruno Pozzetto
- Service des agents infectieux et d'hygiène, Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
- Team GIMAP, CIRI-Centre international de recherche en infectiologie, université Jean Monnet de Saint-Étienne, université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-42023 Saint-Étienne cedex, France
| | - Julie Gagnaire
- Unité de gestion du risque infectieux (Ugri), Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
| | - Philippe Berthelot
- Team GIMAP, CIRI-Centre international de recherche en infectiologie, université Jean Monnet de Saint-Étienne, université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-42023 Saint-Étienne cedex, France
- Unité de gestion du risque infectieux (Ugri), Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
| | - Thomas Bourlet
- Service des agents infectieux et d'hygiène, Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
- Team GIMAP, CIRI-Centre international de recherche en infectiologie, université Jean Monnet de Saint-Étienne, université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-42023 Saint-Étienne cedex, France
| | - Sylvie Pillet
- Service des agents infectieux et d'hygiène, Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France
- Team GIMAP, CIRI-Centre international de recherche en infectiologie, université Jean Monnet de Saint-Étienne, université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-42023 Saint-Étienne cedex, France
| |
Collapse
|
14
|
Kelmer GAR, Ramos ER, Dias EHO. Coliphages as viral indicators in municipal wastewater: A comparison between the ISO and the USEPA methods based on a systematic literature review. WATER RESEARCH 2023; 230:119579. [PMID: 36640612 DOI: 10.1016/j.watres.2023.119579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The use of traditional faecal indicator bacteria as surrogate organisms for pathogenic viruses in domestic wastewater has been noted as a problematic as concentrations and removal rates of bacteria and viruses do not seem to correlate. In this sense, bacteriophages (phages) emerge as potential viral indicators, as they are commonly found in wastewater in high levels, and can be quantified using simple, fast, low-cost methods. Somatic and F-specific coliphages comprise groups of phages commonly used as indicators of water quality. There are two internationally recognised methods to detect and enumerate coliphages in water samples, the International Standardization Organization (ISO) and the US Environmental Protection Agency (USEPA) methods. Both methods are based on the lysis of specific bacterial host strains infected by phages. Within this context, this systematic literature review aimed at gathering concentrations in raw and treated domestic wastewater (secondary, biological treatment systems and post-treatment systems), and removal efficiencies of somatic and F-specific coliphages obtained by ISO and USEPA methods, and then compare both methods. A total of 33 research papers were considered in this study. Results showed that the ISO method is more commonly applied than the USEPA method. Some discrepancies in terms of concentrations and removal efficiencies were observed between both methods. Higher removal rates were observed for both somatic and F-specific coliphages in activated sludge systems when using the USEPA method compared to the ISO method; in other secondary (biological) treatment systems, this was observed only for F-specific coliphages. The use of different standardised methods available might lead to difficulties in obtaining and comparing phage data in different conditions and locations. Future research comparing both ISO and USEPA methods as well as viral and bacterial pathogens and indicators in WWTP is recommended.
Collapse
Affiliation(s)
- Gisele A R Kelmer
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Elloís R Ramos
- Environmental and Sanitary Engineering Course, Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Edgard H O Dias
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil; Department of Sanitary and Environmental Engineering (ESA), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil.
| |
Collapse
|
15
|
Wang R, Alamin M, Tsuji S, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Honda R. Removal performance of SARS-CoV-2 in wastewater treatment by membrane bioreactor, anaerobic-anoxic-oxic, and conventional activated sludge processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158310. [PMID: 36030862 PMCID: PMC9411102 DOI: 10.1016/j.scitotenv.2022.158310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The potential risk of SARS-CoV-2 in treated effluent from a wastewater treatment plant (WWTP) is concerned since SARS-CoV-2 is contained in wastewater during the COVID-19 outbreak. However, the removal of SARS-CoV-2 in WWTP has not been well investigated. The objectives of this study were (i) to clarify the removal performance of SARS-CoV-2 during wastewater treatment, (ii) to compare the removal performance of different secondary treatment processes, and (iii) to evaluate applicability of pepper mild mottle of virus (PMMoV) as a performance indicator for the reduction of SARS-CoV-2 RNA in wastewater treatment. Influent wastewater, secondary-treatment effluent (before chlorination), and final effluent (after chlorination) samples were collected from a WWTP from May 28 to September 24, 2020, during the COVID-19 outbreak in Japan. The target WWTP had three parallel treatment systems employing conventional activated sludge (CAS), anaerobic-anoxic -oxic (A2O), and membrane bioreactor (MBR) processes. SARS-CoV-2 in both the liquid and solid fractions of the influent wastewater was concentrated and quantified using RT-qPCR. SARS-CoV-2 in treated effluent was concentrated from 10 L samples to achieve a detection limit as low as 10 copies/L. The log reduction value (LRV) of SARS-CoV-2 was 2.7 ± 0.86 log10 in CAS, 1.6 ± 0.50 log10 in A2O, and 3.6 ± 0.62 log10 in MBR. The lowest LRV observed during the sampling period was 2.8 log10 in MBR, 1.2 log10 in CAS, and 1.0 log10 in A2O process, indicating that the MBR had the most stable reduction performance. PMMoV was found to be a good indicator virus to evaluate reduction performance of SARS-CoV-2 independent of the process configuration because the LRV of PMMoV was significantly lower than that of SARS-CoV-2 in the CAS, A2O and MBR processes.
Collapse
Affiliation(s)
- Rongxuan Wang
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shohei Tsuji
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, Japan
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan.
| |
Collapse
|
16
|
Salvo M, Azambuya J, Baccardatz N, Moriondo A, Blanco R, Martinez M, Direnna M, Bertolini G, Gamazo P, Colina R, Alvareda E, Victoria M. One-Year Surveillance of SARS-CoV-2 and Rotavirus in Water Matrices from a Hot Spring Area. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:401-409. [PMID: 36181654 PMCID: PMC9525940 DOI: 10.1007/s12560-022-09537-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still impacting not only on human health but also all economic activities, especially in those related to tourism. In this study, in order to characterize the presence of SARS-CoV-2 in a hot spring park in Uruguay, swimming pools water, wastewater, and surface water from this area were analyzed by quantitative PCR. Wastewater from Salto city located next to the hydrothermal spring area was also evaluated as well as the presence of Rotavirus (RV). Overall, SARS-CoV-2 was detected in 13% (13/102) of the analyzed samples. Moreover, this virus was not detected in any of the samples from the swimming pools water and was present in 18% (3/17) of wastewater samples from the hotels area showing the same trend between the titer of SARS-CoV-2 and the number of infected people in Salto city. SARS-CoV-2 was also detected in wastewater samples (32% (11/34)) from Salto city, detecting the first positive sample when 105 persons were positive for SARS-CoV-2. Rotavirus was detected only in 10% (2/24) of the wastewater samples analyzed in months when partial lockdown measures were taken, however, this virus was detected in nearly all wastewater samples analyzed when social distancing measures and partial lockdown were relaxed. Wastewater results confirmed the advantages of using the detection and quantification of viruses in this matrix in order to evaluate the presence of these viruses in the population, highlighting the usefulness of this approach to define and apply social distancing. This study suggests that waters from swimming pools are not a source of infection for SARS-CoV-2, although more studies are needed including infectivity assays in order to confirm this statement.
Collapse
Affiliation(s)
- M Salvo
- Water Department, Centro Universitario Regional Litoral Norte, Universidad de La República, Rivera 1350, 50000, Salto, CP, Uruguay
| | - J Azambuya
- Administración de Las Obras Sanitarias del Estado, Salto, Uruguay
| | - N Baccardatz
- Administración de Las Obras Sanitarias del Estado, Salto, Uruguay
| | - A Moriondo
- Ministry of Public Health, Salto, Uruguay
| | - R Blanco
- Ministry of Public Health, Salto, Uruguay
| | | | - M Direnna
- Intendencia de Salto, Salto, Uruguay
| | | | - P Gamazo
- Water Department, Centro Universitario Regional Litoral Norte, Universidad de La República, Rivera 1350, 50000, Salto, CP, Uruguay
| | - R Colina
- Laboratory of Molecular Virology, Centro Universitario Regional Litoral Norte, Universidad de la República, Rivera 1350, 50000, Salto, CP, Uruguay
| | - E Alvareda
- Water Department, Centro Universitario Regional Litoral Norte, Universidad de La República, Rivera 1350, 50000, Salto, CP, Uruguay.
| | - M Victoria
- Laboratory of Molecular Virology, Centro Universitario Regional Litoral Norte, Universidad de la República, Rivera 1350, 50000, Salto, CP, Uruguay.
| |
Collapse
|
17
|
Shrestha A, Kunwar BM, Meierhofer R. Water, sanitation, hygiene practices, health and nutritional status among children before and during the COVID-19 pandemic: longitudinal evidence from remote areas of Dailekh and Achham districts in Nepal. BMC Public Health 2022; 22:2035. [PMID: 36344970 PMCID: PMC9640870 DOI: 10.1186/s12889-022-14346-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic drew hygiene to the center of disease prevention. The provision of adequate water, sanitation, and hygiene (WASH) services is crucial to protect public health during a pandemic. Yet, access to levels of water supply that support adequate hygiene measures are deficient in many areas in Nepal. We examined WASH practices and their impact on child health and nutritional status in two districts before and during the COVID-19 pandemic. METHODS A longitudinal and mixed method study was conducted in March-May 2018 and November-December 2021. In total, 715 children aged 0-10 years were surveyed at baseline. Of these, 490 children were assessed at endline. Data collection methods included observations, a questionnaire, stool analysis, anthropometric measurements, water quality analysis, and an assessment of clinical signs of nutritional deficiencies. We conducted 10 in-depth interviews to understand major problems related to COVID-19. RESULTS Most respondents (94.2%) had heard about COVID-19; however, they did not wear face masks or comply with any social distancing protocols. Almost 94.2% of the households self-reported handwashing with soap 5-10 times per day at endline, especially after defecation, compared to 19.6% at baseline. Water quality was better at endline than at baseline with median 12 to 29 CFU Escherichia coli/100 mL (interquartile range at baseline [IQR] = 4-101) at the point of collection and 34 to 51.5 CFU Escherichia coli/100 mL (IQR = 8-194) at the point of consumption. Fever (41.1-16.8%; p = 0.01), respiratory illness (14.3-4.3%; p = 0.002), diarrhea (19.6-9.5%; p = 0.01), and Giardia lamblia infections (34.2-6.5%, p = 0.01) decreased at endline. In contrast, nutritional deficiencies such as bitot's spots (26.7-40.2%; p = 0.01), pale conjunctiva (47.0-63.3%; p = 0.01), and dermatitis (64.8-81.4%; p = 0.01) increased at endline. The inadequacy of the harvest and the lack of household income to meet households' nutritional needs increased drastically (35.0-94.2%; p = 0.01). CONCLUSION We found that improved water quality and handwashing practices were associated with a decrease in infectious diseases. However, food security also decreased resulting in a high prevalence of nutritional deficiencies. Our findings underline that disaster preparedness should consider access to adequate WASH, nutrition, and health supplies.
Collapse
Affiliation(s)
- Akina Shrestha
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Kathmandu University School of Medical Sciences, Dhulikhel Hospital, Kathmandu, GPO Box 11008, Nepal
| | - Bal Mukunda Kunwar
- Swiss Development Organization, Helvetas, Lalitpur GPO Box 688, Sanepa, Kathmandu, Nepal
| | - Regula Meierhofer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
18
|
Robins PE, Dickson N, Kevill JL, Malham SK, Singer AC, Quilliam RS, Jones DL. Predicting the dispersal of SARS-CoV-2 RNA from the wastewater treatment plant to the coast. Heliyon 2022; 8:e10547. [PMID: 36091966 PMCID: PMC9448708 DOI: 10.1016/j.heliyon.2022.e10547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Viral pathogens including SARS-CoV-2 RNA have been detected in wastewater treatment effluent, and untreated sewage overflows, that pose an exposure hazard to humans. We assessed whether SARS-CoV-2 RNA was likely to have been present in detectable quantities in UK rivers and estuaries during the first wave of the Covid-19 pandemic. We simulated realistic viral concentrations parameterised on the Camel and Conwy catchments (UK) and their populations, showing detectable SARS-CoV-2 RNA concentrations for untreated but not for treated loading, but also being contingent on viral decay, hydrology, catchment type/shape, and location. Under mean or low river flow conditions, viral RNA concentrated within the estuaries allowing for viral build-up and caused a lag by up to several weeks between the peak in community infections and the viral peak in the environment. There was an increased hazard posed by SARS-CoV-2 RNA with a T 90 decay rate >24 h, as the estuarine build-up effect increased. High discharge events transported the viral RNA downstream and offshore, increasing the exposure risk to coastal bathing waters and shellfisheries - although dilution in this case reduced viral concentrations well below detectable levels. Our results highlight the sensitivity of exposure to viral pathogens downstream of wastewater treatment, across a range of viral loadings and catchment characteristics - with implications to environmental surveillance.
Collapse
Affiliation(s)
- Peter E. Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Neil Dickson
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Jessica L. Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | | | - Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
19
|
Gomes M, Bartolomeu M, Vieira C, Gomes ATPC, Faustino MAF, Neves MGPMS, Almeida A. Photoinactivation of Phage Phi6 as a SARS-CoV-2 Model in Wastewater: Evidence of Efficacy and Safety. Microorganisms 2022; 10:659. [PMID: 35336234 PMCID: PMC8954818 DOI: 10.3390/microorganisms10030659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
The last two years have been marked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This virus is found in the intestinal tract; it reaches wastewater systems and, consequently, the natural receiving water bodies. As such, inefficiently treated wastewater (WW) can be a means of contamination. The currently used methods for the disinfection of WW can lead to the formation of toxic compounds and can be expensive or inefficient. As such, new and alternative approaches must be considered, namely, photodynamic inactivation (PDI). In this work, the bacteriophage φ6 (or, simply, phage φ6), which has been used as a suitable model for enveloped RNA viruses, such as coronaviruses (CoVs), was used as a model of SARS-CoV-2. Firstly, to understand the virus's survival in the environment, phage φ6 was subjected to different laboratory-controlled environmental conditions (temperature, pH, salinity, and solar and UV-B irradiation), and its persistence over time was assessed. Second, to assess the efficiency of PDI towards the virus, assays were performed in both phosphate-buffered saline (PBS), a commonly used aqueous matrix, and a secondarily treated WW (a real WW matrix). Third, as WW is generally discharged into the marine environment after treatment, the safety of PDI-treated WW was assessed through the determination of the viability of native marine water microorganisms after their contact with the PDI-treated effluent. Overall, the results showed that, when used as a surrogate for SARS-CoV-2, phage φ6 remains viable in different environmental conditions for a considerable period. Moreover, PDI proved to be an efficient approach in the inactivation of the viruses, and the PDI-treated effluent showed no toxicity to native aquatic microorganisms under realistic dilution conditions, thus endorsing PDI as an efficient and safe tertiary WW disinfection method. Although all studies were performed with phage φ6, which is considered a suitable model of SARS-CoV-2, further studies using SARS-CoV-2 are necessary; nevertheless, the findings show the potential of PDI for controlling SARS-CoV-2 in WW.
Collapse
Affiliation(s)
- Marta Gomes
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Maria Bartolomeu
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Cátia Vieira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Ana T. P. C. Gomes
- Center for Interdisciplinary Investigation (CIIS), Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | | | | | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| |
Collapse
|
20
|
The WHO Guidelines for Safe Wastewater Use in Agriculture: A Review of Implementation Challenges and Possible Solutions in the Global South. WATER 2022. [DOI: 10.3390/w14060864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Globally, the use of untreated, often diluted, or partly treated wastewater in agriculture covers about 30 million ha, far exceeding the area under the planned use of well-treated (reclaimed) wastewater which has been estimated in this paper at around 1.0 million ha. This gap has likely increased over the last decade despite significant investments in treatment capacities, due to the even larger increases in population, water consumption, and wastewater generation. To minimize the human health risks from unsafe wastewater irrigation, the WHO’s related 2006 guidelines suggest a broader concept than the previous (1989) edition by emphasizing, especially for low-income countries, the importance of risk-reducing practices from ‘farm to fork’. This shift from relying on technical solutions to facilitating and monitoring human behaviour change is, however, challenging. Another challenge concerns local capacities for quantitative risk assessment and the determination of a risk reduction target. Being aware of these challenges, the WHO has invested in a sanitation safety planning manual which has helped to operationalize the rather academic 2006 guidelines, but without addressing key questions, e.g., on how to trigger, support, and sustain the expected behaviour change, as training alone is unlikely to increase the adoption of health-related practices. This review summarizes the perceived challenges and suggests several considerations for further editions or national adaptations of the WHO guidelines.
Collapse
|
21
|
Haramoto E, Medema G, Meschke JS, Petterson S. Editorial: SARS-CoV-2 in water. JOURNAL OF WATER AND HEALTH 2022; 20:iii-vi. [PMID: 36366985 DOI: 10.2166/wh.2022.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| | - Gertjan Medema
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| | - John Scott Meschke
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| | - Susan Petterson
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| |
Collapse
|
22
|
Hrudey SE, Bischel HN, Charrois J, Chik AHS, Conant B, Delatolla R, Dorner S, Graber TE, Hubert C, Isaac-Renton J, Pons W, Safford H, Servos M, Sikora C. Wastewater Surveillance for SARS-CoV-2 RNA in Canada. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network. Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities.
Collapse
Affiliation(s)
- Steve E. Hrudey
- Professor Emeritus, Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2G3 Canada
| | - Heather N. Bischel
- Associate Professor, Department of Civil & Environmental Engineering, University of California, Davis, Davis, CA 95616 USA
| | - Jeff Charrois
- Senior Manager, Analytical Operations and Process Development Teams, EPCOR Water Services Inc, Edmonton, AB T5K 0A5 Canada
| | - Alex H. S. Chik
- Project Manager, Wastewater Surveillance Initiative, Ontario Clean Water Agency, Mississauga, ON L5A 4G1 Canada
| | - Bernadette Conant
- Past Chief Executive Officer, Canadian Water Network, Waterloo, ON N2L 3G1 Canada
| | - Rob Delatolla
- Professor, Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Sarah Dorner
- Professor, Civil, Geological & Mining Engineering, Polytechnique Montréal, Montréal, PQ H3T 1J4 Canada
| | - Tyson E. Graber
- Associate Scientist, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1 Canada
| | - Casey Hubert
- Professor, Campus Alberta Innovates Program Chair in Geomicrobiology, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Judy Isaac-Renton
- Professor Emerita, Dept. Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Calgary, AB, T2N 3V9 Canada
| | - Wendy Pons
- Professor, Bachelor of Environmental Health Program Conestoga College Institute of Technology and Advanced Learning, Kitchener, ON N2P 2N6 Canada
| | - Hannah Safford
- Associate Director of Science Policy, Federation of American Scientists, Arlington, VA 22205 USA
| | - Mark Servos
- Professor & Canada Research Chair, Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Christopher Sikora
- Medical Officer of Health, Edmonton Region, Alberta Health Services, Edmonton, AB T5J 3E4 Canada
| |
Collapse
|