1
|
Thakur A, Sharma K. Thyme oil-loaded chitosan microparticles: an antibacterial approach against pathogenic bacteria. 3 Biotech 2025; 15:145. [PMID: 40308290 PMCID: PMC12037447 DOI: 10.1007/s13205-025-04301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Thyme oil was encapsulated effectively in chitosan microparticles (CTT-MPs) through ionic gelation with a maximum entrapment efficiency of 73.42%. The optimal encapsulation was achieved using 15 mg/ml of chitosan and 7 mg/ml of tripolyphosphate. The CTT-MPs exhibited considerably higher antimicrobial activity than free thyme oil and blank chitosan microparticles. In particular, the CTT-MPs had lower minimum inhibitory concentrations (MICs) against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus. In addition, CTT-MPs successfully suppressed biofilm formation, with over 99% inhibition of biofilm formation. The CTT-MPs had excellent antioxidant activity, with a DPPH radical scavenging ability of 87.67%, which is much greater compared to the 57.77% for blank microparticles. Particle-size analysis showed that the CTT-MPs had a particle diameter of 1.6 µm. The zeta potential of the CTT-MPs was found to be 38 mV, reflecting good colloidal stability. These results underscore the potential of CTT-MPs as a new therapeutic platform that possesses antibacterial, antibiofilm, and antioxidant activities with a novel application for thyme oil delivery.
Collapse
|
2
|
Ike KA, Omaliko PC, Fernander MC, Sanders BM, Enikuomehin JM, Alabi JO, Adelusi OO, Kholif AE, Thomas MD, Anele UY. Evaluating the Effect of an Essential Oil Blend on the Growth and Fitness of Gram-Positive and Gram-Negative Bacteria. BIOLOGY 2025; 14:437. [PMID: 40282302 PMCID: PMC12024878 DOI: 10.3390/biology14040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The increasing prevalence of antibiotic-resistant bacteria has necessitated the exploration of alternative antimicrobial agents, particularly natural products like essential oils. This study investigated the antibacterial potential of a unique blend of four essential oils (EOB) across a gradient of concentrations (0.1 to 50%) against Gram-positive and Gram-negative bacteria using an adapted broth microdilution method, minimum inhibitory concentrations (MICs), and 24-h growth assays. The Gram-positive bacteria were Staphylococcus epidermidis and Bacillus subtilis, while the Gram-negative bacteria were Escherichia coli and Klebsiella aerogenes. The results demonstrated that the EOB exerted a concentration-dependent inhibitory effect on bacterial growth, with MICs determined at 25% for all the species tested. Growth curve analysis revealed that lower concentrations of the EOB (0.1 to 0.78%) allowed for normal bacterial proliferation, while at intermediate concentrations (1.56 to 3.13%), inconsistent trends in growth were exhibited. At higher concentrations (25 and 50%), the EOB effectively halted bacterial growth, as indicated by flat growth curves. The increase in the lag phase and the decrease in the growth rate at a sub-MIC concentration (12.5%) suggest a significant effect on bacterial adaptation and survival. Relative fitness analyses further highlighted the inhibitory effects of higher essential oil concentrations. S. epidermidis and E. coli had a significant (p < 0.05) reduction in fitness starting from the 6.25% concentration, while the other two species experienced a significant (p < 0.001) reduction in relative fitness from a concentration of 12.5%. These findings underscore the potential of this EOB as an effective antimicrobial agent, particularly in the context of rising antibiotic resistance. Furthermore, the study suggests that the EOB used in the present study could be integrated into therapeutic strategies as a natural alternative or adjunct to traditional antibiotics, offering a promising avenue for combating resistant bacterial strains.
Collapse
Affiliation(s)
- Kelechi A. Ike
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (K.A.I.); (P.C.O.); (J.M.E.); (J.O.A.); (O.O.A.); (A.E.K.)
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.C.F.); (B.M.S.); (M.D.T.)
| | - Paul C. Omaliko
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (K.A.I.); (P.C.O.); (J.M.E.); (J.O.A.); (O.O.A.); (A.E.K.)
| | - Mizpha C. Fernander
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.C.F.); (B.M.S.); (M.D.T.)
| | - Brittany M. Sanders
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.C.F.); (B.M.S.); (M.D.T.)
| | - James M. Enikuomehin
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (K.A.I.); (P.C.O.); (J.M.E.); (J.O.A.); (O.O.A.); (A.E.K.)
| | - Joel O. Alabi
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (K.A.I.); (P.C.O.); (J.M.E.); (J.O.A.); (O.O.A.); (A.E.K.)
| | - Oludotun O. Adelusi
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (K.A.I.); (P.C.O.); (J.M.E.); (J.O.A.); (O.O.A.); (A.E.K.)
| | - Ahmed E. Kholif
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (K.A.I.); (P.C.O.); (J.M.E.); (J.O.A.); (O.O.A.); (A.E.K.)
| | - Misty D. Thomas
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.C.F.); (B.M.S.); (M.D.T.)
| | - Uchenna Y. Anele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (K.A.I.); (P.C.O.); (J.M.E.); (J.O.A.); (O.O.A.); (A.E.K.)
| |
Collapse
|
3
|
Kao Godinez AK, Villicaña C, Basilio Heredia J, Valdez-Torres JB, Muy-Rangel M, León-Félix J. Facing Foodborne Pathogen Biofilms with Green Antimicrobial Agents: One Health Approach. Molecules 2025; 30:1682. [PMID: 40333625 PMCID: PMC12029461 DOI: 10.3390/molecules30081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Food safety is a significant global and local concern due to the threat of foodborne pathogens to public health and food security. Bacterial biofilms are communities of bacteria adhered to surfaces and represent a persistent contamination source in food environments. Their resistance to conventional antimicrobials exacerbates the challenge of eradication, driving the search for alternative strategies to control biofilms. Unconventional or "green" antimicrobial agents have emerged as promising solutions due to their sustainability and effectiveness. These agents include bacteriophages, phage-derived enzymes, plant extracts, and combinations of natural antimicrobials, which offer novel mechanisms for targeting biofilms. This approach aligns with the "One Health" concept, which underscores the interconnectedness of human, animal, and environmental health and advocates for integrated strategies to address public health challenges. Employing unconventional antimicrobial agents to manage bacterial biofilms can enhance food safety, protect public health, and reduce environmental impacts by decreasing reliance on conventional antimicrobials and mitigating antimicrobial resistance. This review explores the use of unconventional antimicrobials to combat foodborne pathogen biofilms, highlighting their mechanisms of action, antibiofilm activities, and the challenges associated with their application in food safety. By addressing these issues from a "One Health" perspective, we aim to demonstrate how such strategies can promote sustainable food safety, improve public health outcomes, and support environmental health, ultimately fostering a more integrated approach to combating foodborne pathogen biofilms.
Collapse
Affiliation(s)
- Ana Karina Kao Godinez
- Centro de Investigación y Desarrollo, A.C., Culiacán 80110, Sinaloa, Mexico; (A.K.K.G.); (J.B.H.); (J.B.V.-T.); (M.M.-R.)
| | - Claudia Villicaña
- SECIHTI-Centro de Investigación en Alimentación y Desarrollo, A.C., Culiacán 80110, Sinaloa, Mexico;
| | - José Basilio Heredia
- Centro de Investigación y Desarrollo, A.C., Culiacán 80110, Sinaloa, Mexico; (A.K.K.G.); (J.B.H.); (J.B.V.-T.); (M.M.-R.)
| | - José Benigno Valdez-Torres
- Centro de Investigación y Desarrollo, A.C., Culiacán 80110, Sinaloa, Mexico; (A.K.K.G.); (J.B.H.); (J.B.V.-T.); (M.M.-R.)
| | - Maria Muy-Rangel
- Centro de Investigación y Desarrollo, A.C., Culiacán 80110, Sinaloa, Mexico; (A.K.K.G.); (J.B.H.); (J.B.V.-T.); (M.M.-R.)
| | - Josefina León-Félix
- Centro de Investigación y Desarrollo, A.C., Culiacán 80110, Sinaloa, Mexico; (A.K.K.G.); (J.B.H.); (J.B.V.-T.); (M.M.-R.)
| |
Collapse
|
4
|
Armah AA, Ofori KF, Sutherland K, Otchere E, Lewis WA, Long W. Antimicrobial Effectiveness of Clove Oil in Decontamination of Ready-to-Eat Spinach ( Spinacia oleracea L.). Foods 2025; 14:249. [PMID: 39856915 PMCID: PMC11765317 DOI: 10.3390/foods14020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Due to an increased demand for natural food additives, clove oil was assessed as a natural alternative to chemical disinfectants in produce washing. This study assessed the antimicrobial activity of 5 and 10% (v/v) clove oil-amended wash liquid (CO) using a zone of inhibition (ZIB) test and determined the time required to completely inactivate pathogenic bacteria using bacterial death curve analysis. A washing experiment was used to evaluate CO's ability to inhibit bacterial growth on inoculated RTE spinach and in the wash water. The findings showed that Shigella flexneri, Salmonella Typhimurium, and Salmonella enterica recovery were completely inhibited within 5 min. Escherichia coli and Staphylococcus aureus recovery were completely inhibited at 10 and 30 min, respectively. The ZIB test showed that 5% CO had the highest inhibitory effect on both Salmonella strains and E. coli with approximately 10 mm ZIB diameter. Additionally, 5% CO completely inactivated all bacterial strains on spinach samples and in the wash water except for S. aureus. A total of 80 mg/L peracetic acid (PAA) resulted in >2log CFU/mL recovery on experimental washed samples. These findings suggest that 5% CO was highly effective in inhibiting microbial growth on RTE spinach, potentially contributing to sustainable food safety and shelf-life extension strategies.
Collapse
Affiliation(s)
- Abigail A. Armah
- College of Agriculture, Science and Technology, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA; (K.F.O.); (K.S.); (E.O.); (W.A.L.)
| | | | | | | | | | - Wilbert Long
- College of Agriculture, Science and Technology, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA; (K.F.O.); (K.S.); (E.O.); (W.A.L.)
| |
Collapse
|
5
|
Ozma MA, Alileh NF, Abbasi A, Mahdavi S, Fadaee M, Nezhadi J, Ozma MA, Asgharzadeh M, Kafil HS. Antibacterial, antibiofilm, and gene expression assessment of ajwain (Trachyspermum ammi) essential oil on drug-resistant gastrointestinal pathogens and its combination effect with ampicillin. Lett Appl Microbiol 2025; 78:ovae138. [PMID: 39701813 DOI: 10.1093/lambio/ovae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
Essential oils are natural substances used as therapeutic agents and food preservatives to inhibit harmful microorganisms. This study aimed to assess the synergistic effect of Trachyspermum ammi essential oil and ampicillin on antibiotic-resistant gastrointestinal pathogens, including Escherichia coli, Enterococcus faecalis, Shigella flexneri, and Salmonella serotype Typhimurium. Using gas chromatography-mass spectrometry (GC-MS), the main components of T. ammi essential oil were identified as thymol, gamma terpenes, and cymene. The antibacterial and antibiofilm properties were evaluated by minimum inhibitory concentration (MIC), disk diffusion, and microtiter plate methods, revealing MIC values of 2, 1, 4, and 4 mg ml-1 for E. coli, E. faecalis, S. flexneri, and S. Typhimurium, respectively, and inhibition zones between 10 and 14 mm. Pathogens were examined for their biofilm-related virulence genes, including aggR, esp, icsA, and fliC, using real-time polymerase chain reaction (RT-PCR) in E. coli, E. faecalis, S. flexneri, and S. Typhimurium, respectively. The methyl thiazole tetrazolium (MTT) assay was used to evaluate the essential oil's effect on the viability of human embryonic kidney 293 (HEK293) cells, which showed cell viability of over 80%. The combination of T. ammi oil and ampicillin demonstrated a synergistic effect, and biofilm formation was inhibited. E. faecalis exhibited the greatest sensitivity, while S. flexneri exhibited the lowest sensitivity.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | | | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Sina Mahdavi
- Department of Microbiology and Virology, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Javad Nezhadi
- Department of Microbiology and Virology, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Masoud Asghari Ozma
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz 5157944533, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| |
Collapse
|
6
|
Kovačević Z, Čabarkapa I, Šarić L, Pajić M, Tomanić D, Kokić B, Božić DD. Natural Solutions to Antimicrobial Resistance: The Role of Essential Oils in Poultry Meat Preservation with Focus on Gram-Negative Bacteria. Foods 2024; 13:3905. [PMID: 39682977 DOI: 10.3390/foods13233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) is a major global health problem with implications on human and veterinary medicine, as well as food production. In the poultry industry, the overuse and misuse of antimicrobials has led to the development of resistant or multi-drug resistant (MDR) strains of bacteria such as Salmonella spp., Escherichia coli and Campylobacter spp., which pose a serious risk to meat safety and public health. The genetic transfer of resistance elements between poultry MDR bacteria and human pathogens further exacerbates the AMR crisis and highlights the urgent need for action. Traditional methods of preserving poultry meat, often based on synthetic chemicals, are increasingly being questioned due to their potential impact on human health and the environment. This situation has led to a shift towards natural, sustainable alternatives, such as plant-derived compounds, for meat preservation. Essential oils (EOs) have emerged as promising natural preservatives in the poultry meat industry offering a potential solution to the growing AMR problem by possessing inherent antimicrobial properties making them effective against a broad spectrum of pathogens. Their use in the preservation of poultry meat not only extends shelf life, but also reduces reliance on synthetic preservatives and antibiotics, which contribute significantly to AMR. The unique chemical composition of EOs, that contains a large number of different active compounds, minimizes the risk of bacteria developing resistance. Recent advances in nano-encapsulation technology have further improved the stability, bioavailability and efficacy of EOs, making them more suitable for commercial use. Hence, in this manuscript, the recent literature on the mechanisms of AMR in the most important Gram-negative poultry pathogens and antimicrobial properties of EOs on these meat isolates was reviewed. Additionally, chemical composition, extraction methods of EOs were discussed, as well as future directions of EOs as natural food preservatives. In conclusion, by integrating EOs into poultry meat preservation strategies, the industry can adopt more sustainable and health-conscious practices and ultimately contribute to global efforts to combat AMR.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department for Epizootiology, Clinical Diagnostic, Pathology and DDD, Scientific Veterinary Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana D Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
7
|
de Melo ALF, Rossato L, Velasques J, de Sousa VL, Pina Rodrigues GV, Cardoso CAL, Arantes JP, Lima BF, Simionatto S. Polymyxin combined with Ocimum gratissimum essential oil: one alternative strategy for combating polymyxin-resistant Klebsiella pneumoniae. J Med Microbiol 2024; 73. [PMID: 39292222 DOI: 10.1099/jmm.0.001891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Introduction. Multidrug-resistant infections present a critical public health due to scarce treatment options and high mortality. Ocimum gratissimum L. essential oil (O.geo) is a natural resource rich in eugenol known for its antimicrobial activity.Hypothesis/Gap Statement. O.geo may exert effective antimicrobial activity against polymyxin-resistant Klebsiella pneumoniae and, when combined with Polymyxin B (PMB), may exhibit a synergistic effect, enhancing treatment efficacy and reducing antimicrobial resistance.Aim. This study aims to investigate the antimicrobial activity of O.geo against polymyxin-resistant K. pneumoniae using in vitro tests and an in vivo Caenorhabditis elegans model.Methodology. The O.geo was obtained by hydrodistillation followed by gas chromatography. The MIC and antibiofilm activity were determined using broth microdilution. Checkerboard and time-kill assays evaluated the combination of O.geo and polymyxin B (PMB), whereas a protein leakage assay verified its action.Results. Eugenol (39.67%) was a major constituent identified. The MIC of the O.geo alone ranged from 128 to 512 µg ml-1. The fractional inhibitory concentration index (0.28) and time-kill assay showed a synergism. In addition, O.geo and PMB inhibited biofilm formation and increased protein leakage in the plasma membrane. The treatment was tested in vivo using a Caenorhabditis elegans model, and significantly increased survival without toxicity was observed.Conclusion. O.geo could be used as a potential therapeutic alternative to combat infections caused by multidrug-resistant bacteria, especially in combination with PMB.
Collapse
Affiliation(s)
- Andressa Leite Ferraz de Melo
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Jannaína Velasques
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia - UFSB, Itabuna, Bahia, Brazil
| | - Virginia Lopes de Sousa
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia - UFSB, Itabuna, Bahia, Brazil
| | | | | | - Julia Pimentel Arantes
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Bruno Fernandes Lima
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Present address: Itahum km 12, Cidade Universitária, CEP: 79804970, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
8
|
Pimentel Arantes J, Dillis Faccin I, Coutinho EJ, Lima Cardoso CA, Lopes Fernandes SS, Rossato L, Simionatto E, Simionatto S. An approach to combat multidrug-resistant K. pneumoniae strain using synergistic effects of Ocotea diospyrifolia essential oil in combination with amikacin. Microb Pathog 2024; 193:106782. [PMID: 38969186 DOI: 10.1016/j.micpath.2024.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The natural antimicrobial properties of essential oils (EOs) have contributed to the battle against multidrug-resistant microorganisms by providing new ways to develop more effective antibiotic agents. In this study, we investigated the chemical composition of Ocotea diospyrifolia essential oil (OdOE) and its antimicrobial properties combined with amikacin (AMK). Through gas chromatography-mass spectrometry (GCMS) analysis, the primary constituents of OdOE were identified as α-bisabolol (45.8 %), β-bisabolene (9.4 %), γ-elemene (7.6 %), (Z)- β-farnesene (5.2 %), spathulenol (3.5 %), (Z)-caryophyllene (3.3 %), and (E)-caryophyllene (3.1 %). In vitro assessments showed that the combined administration of OdOE and AMK exerted a synergistic antibacterial effect on the multidrug-resistant K. pneumoniae strain. This synergistic effect demonstrated bacteriostatic action. OdEO combined with amikacin showed protein extravasation within 2 h of treatment, leading to bacterial death, which was determined by a reduction in viable cell count. The effective concentrations showed hemocompatibility. In vivo assessments using Caenorhabditis elegans as a model showed the survival of 85 % of infected nematodes. Therefore, the combination OdEO combined with amikacin exhibited antimicrobial activity against a multidrug-resistant K. pneumoniae strain. Thus, OdOE is a promising agent that may be considered for development of antimicrobial treatment.
Collapse
Affiliation(s)
- Julia Pimentel Arantes
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Izadora Dillis Faccin
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Eduardo João Coutinho
- Universidade Estadual de Mato Grosso do Sul - UEMS, Naviraí, Mato Grosso do Sul, Brazil
| | | | | | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Euclésio Simionatto
- Universidade Estadual de Mato Grosso do Sul - UEMS, Naviraí, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
9
|
Sharma K, Lanzilotto A, Yakubu J, Therkelsen S, Vöegel CD, Du Toit T, Jørgensen FS, Pandey AV. Effect of Essential Oil Components on the Activity of Steroidogenic Cytochrome P450. Biomolecules 2024; 14:203. [PMID: 38397440 PMCID: PMC10887332 DOI: 10.3390/biom14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) may impact the development of prostate cancer (PCa) by altering the steroid metabolism. Although their exact mechanism of action in controlling tumor growth is not known, EDCs may inhibit steroidogenic enzymes such as CYP17A1 or CYP19A1 which are involved in the production of androgens or estrogens. High levels of circulating androgens are linked to PCa in men and Polycystic Ovary Syndrome (PCOS) in women. Essential oils or their metabolites, like lavender oil and tea tree oil, have been reported to act as potential EDCs and contribute towards sex steroid imbalance in cases of prepubertal gynecomastia in boys and premature thelarche in girls due to the exposure to lavender-based fragrances. We screened a range of EO components to determine their effects on CYP17A1 and CYP19A1. Computational docking was performed to predict the binding of essential oils with CYP17A1 and CYP19A1. Functional assays were performed using the radiolabeled substrates or Liquid Chromatography-High-Resolution Mass Spectrometry and cell viability assays were carried out in LNCaP cells. Many of the tested compounds bind close to the active site of CYP17A1, and (+)-Cedrol had the best binding with CYP17A1 and CYP19A1. Eucalyptol, Dihydro-β-Ionone, and (-)-α-pinene showed 20% to 40% inhibition of dehydroepiandrosterone production; and some compounds also effected CYP19A1. Extensive use of these essential oils in various beauty and hygiene products is common, but only limited knowledge about their potential detrimental side effects exists. Our results suggest that prolonged exposure to some of these essential oils may result in steroid imbalances. On the other hand, due to their effect on lowering androgen output and ability to bind at the active site of steroidogenic cytochrome P450s, these compounds may provide design ideas for novel compounds against hyperandrogenic disorders such as PCa and PCOS.
Collapse
Affiliation(s)
- Katyayani Sharma
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Angelo Lanzilotto
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
| | - Jibira Yakubu
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Søren Therkelsen
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Clarissa Daniela Vöegel
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Department of Nephrology and Hypertension, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Therina Du Toit
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Department of Nephrology and Hypertension, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | | | - Amit V. Pandey
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
| |
Collapse
|
10
|
Zhang J, Zhang M, Ju R, Chen K, Bhandari B, Wang H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit Rev Food Sci Nutr 2023; 63:11482-11503. [PMID: 35766478 DOI: 10.1080/10408398.2022.2092834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Merino N, Berdejo D, Pagán E, Girard C, Kerros S, Spinozzi E, Pagán R, García-Gonzalo D. Phenotypic and Genotypic Comparison of Antimicrobial-Resistant Variants of Escherichia coli and Salmonella Typhimurium Isolated from Evolution Assays with Antibiotics or Commercial Products Based on Essential Oils. Pharmaceuticals (Basel) 2023; 16:1443. [PMID: 37895914 PMCID: PMC10610042 DOI: 10.3390/ph16101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
On account of the widespread development and propagation of antimicrobial-resistant (AMR) bacteria, essential oils (EOs) have emerged as potential alternatives to antibiotics. However, as already observed for antibiotics, recent studies have raised concerns regarding the potential emergence of resistant variants (RVs) to EOs. In this study, we assessed the emergence of RVs in Escherichia coli and Salmonella enterica Typhimurium after evolution assays under extended exposure to subinhibitory doses of two commercial EOs (AEN and COLIFIT) as well as to two antibiotics (amoxicillin and colistin). Phenotypic characterization of RVs from evolution assays with commercial EOs yielded no relevant increases in the minimum inhibitory concentration (MIC) of E. coli and did not even modify MIC values in S. Typhimurium. Conversely, RVs of E. coli and S. Typhimurium isolated from evolution assays with antibiotics showed increased resistance. Genotypic analysis demonstrated that resistance to commercial EOs was associated with enhanced protection against oxidative stress and redirection of cell energy toward efflux activity, while resistance to antibiotics was primarily linked to modifications in the cell binding sites of antibiotics. These findings suggest that AEN and COLIFIT could serve as safe alternatives to antibiotics in combating the emergence and dissemination of antimicrobial resistance within the agrifood system.
Collapse
Affiliation(s)
- Natalia Merino
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | | | | | - Eleonora Spinozzi
- Chemistry Interdiscplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
12
|
Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics (Basel) 2023; 12:1417. [PMID: 37760714 PMCID: PMC10525980 DOI: 10.3390/antibiotics12091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
13
|
D'Aquila P, Sena G, Crudo M, Passarino G, Bellizzi D. Effect of Essential Oils of Apiaceae, Lamiaceae, Lauraceae, Myrtaceae, and Rutaceae Family Plants on Growth, Biofilm Formation, and Quorum Sensing in Chromobacterium violaceum, Pseudomonas aeruginosa, and Enterococcus faecalis. Microorganisms 2023; 11:1150. [PMID: 37317124 DOI: 10.3390/microorganisms11051150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
The biological role played by essential oils extracted from aromatic plants is progressively being recognized. This study evaluated the potential antibacterial activity of ten essential oils against Chromobacterium violaceum, Pseudomonas aeruginosa, and Enterococcus faecalis by measuring their minimum inhibitory concentration. We found that essential oils exert different antimicrobial effects, with Origanum vulgare and Foeniculum vulgare demonstrating the most significant inhibitory effect on bacterial growth for C. violaceum and E. faecalis. The growth of P. aeruginosa was not affected by any essential oil concentration we used. Sub-inhibitory concentrations of essential oils reduced in C. violaceum and E. faecalis biofilm formation, violacein amount, and gelatinase activity, all of which are biomarkers of the Quorum Sensing process. These concentrations significantly affect the global methylation profiles of cytosines and adenines, thus leading to the hypothesis that the oils also exert their effects through epigenetic changes. Considering the results obtained, it is possible that essential oils can find a broad spectrum of applications in counteracting microbial contamination and preserving sterility of surfaces and foods, as well as inhibiting microbial growth of pathogens, alone or in combination with traditional antibiotics.
Collapse
Affiliation(s)
- Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Michele Crudo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
14
|
Caneschi A, Bardhi A, Barbarossa A, Zaghini A. Plant Essential Oils as a Tool in the Control of Bovine Mastitis: An Update. Molecules 2023; 28:molecules28083425. [PMID: 37110657 PMCID: PMC10141161 DOI: 10.3390/molecules28083425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Bovine mastitis is a major concern for the dairy cattle community worldwide. Mastitis, subclinical or clinical, can be caused by contagious or environmental pathogens. Costs related to mastitis include direct and indirect losses, leading to global annual losses of USD 35 billion. The primary treatment of mastitis is represented by antibiotics, even if that results in the presence of residues in milk. The overuse and misuse of antibiotics in livestock is contributing to the development of antimicrobial resistance (AMR), resulting in a limited resolution of mastitis treatments, as well as a serious threat for public health. Novel alternatives, like the use of plant essential oils (EOs), are needed to replace antibiotic therapy when facing multidrug-resistant bacteria. This review aims to provide an updated overview of the in vitro and in vivo studies available on EOs and their main components as an antibacterial treatment against a variety of mastitis causing pathogens. There are many in vitro studies, but only several in vivo. Given the promising results of treatments with EOs, further clinical trials are needed.
Collapse
Affiliation(s)
- Alice Caneschi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Bologna, Italy
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Bologna, Italy
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Bologna, Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Bologna, Italy
| |
Collapse
|
15
|
Natural antimicrobial systems protected by complex polyhydroxyalkanoate matrices for food biopackaging applications - A review. Int J Biol Macromol 2023; 233:123418. [PMID: 36731700 DOI: 10.1016/j.ijbiomac.2023.123418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
Interest is growing in entrapping natural antimicrobial compounds (NACs) within polyhydroxyalkanoates (PHAs) to produce active food-biopackaging systems. PHAs are versatile polymeric macromolecules that can protect NAC activity by entrapment. This work reviews 75 original papers and 18 patents published in the last 11 years concerning PHAs as matrices for NACs to summarize the physicochemical properties, release, and antimicrobial activities of systems fabricated from PHAs and NACs (PHA/NAC systems). PHA/NAC systems have recently been used as active food biopackaging systems to inactivate foodborne pathogens and prolong food shelf life. PHAs protect NACs by increasing the degradation temperature of some NACs and decreasing their loss of mass when heated. Some NACs also transform the PHA/NAC systems into more thermostable, flexible, and resistant when interacting with PHAs while also improving the barrier properties of the systems. NAC release and activity are also prolonged when NACs are trapped within PHAs. PHA/NAC systems, therefore, represent ecologically friendly materials with promising applications.
Collapse
|
16
|
Sallam MF, Ahmed HMS, El-Nekeety AA, Diab KA, Abdel-Aziem SH, Sharaf HA, Abdel-Wahhab MA. Assessment of the Oxidative Damage and Genotoxicity of Titanium Dioxide Nanoparticles and Exploring the Protective Role of Holy Basil Oil Nanoemulsions in Rats. Biol Trace Elem Res 2023; 201:1301-1316. [PMID: 35416606 PMCID: PMC9898350 DOI: 10.1007/s12011-022-03228-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
This study was designed to evaluate the oxidative damage, genotoxicity, and DNA damage in the liver of rats treated with titanium nanoparticles (TiO2-NPs) with an average size of 28.0 nm and ξ-potential of - 33.97 mV, and to estimate the protective role of holy basil essential oil nanoemulsion (HBEON). Six groups of Male Sprague-Dawley rats were treated orally for 3 weeks as follows: the control group, HBEO or HBEON-treated groups (5 mg/kg b.w), TiO2-NPs-treated group (50 mg/kg b.w), and the groups treated with TiO2-NPs plus HBEO or HBEON. Samples of blood and tissues were collected for different analyses. The results revealed that 55 compounds were identified in HBEO, and linalool and methyl chavicol were the major compounds (53.9%, 12.63%, respectively). HBEON were semi-round with the average size and ζ-potential of 120 ± 4.5 nm and - 28 ± 1.3 mV, respectively. TiO2-NP administration increased the serum biochemical indices, oxidative stress markers, serum cytokines, DNA fragmentation, and DNA breakages; decreased the antioxidant enzymes; and induced histological alterations in the liver. Co-administration of TiO2-NPs plus HBEO or HBEON improved all the tested parameters and the liver histology, and HBEON was more effective than HBEO. Therefore, HEBON is a promising candidate able to protect against oxidative damage, disturbances in biochemical markers, gene expression, DNA damage, and histological changes resulting from exposure to TiO2-NPs and may be applicable in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Mohamed F Sallam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Helmy M S Ahmed
- Toxicology & Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Hafiza A Sharaf
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
17
|
Application of Lavender-Oil Microcapsules to Functionalized PET Fibers. Polymers (Basel) 2023; 15:polym15040917. [PMID: 36850201 PMCID: PMC9964015 DOI: 10.3390/polym15040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Surface treatments for textile substrates have received significant attention from researchers around the world. Ozone and plasma treatments trigger a series of surface alterations in textile substrates that can improve the anchoring of other molecules or particles on these substrates. This work aims to evaluate the effect of ozone and plasma treatments on the impregnation of polymeric microcapsules containing lavender oil in polyester fabrics (PES). Microcapsules with walls of chitosan and gum arabic were prepared by complex coacervation and impregnated in PES, plasma-treated PES, and ozone-treated PES by padding. The microcapsules were characterized for their size and morphology and the surface-treated PES was evaluated by FTIR, TGA, SEM, and lavender release. The microcapsules were spherical in shape, with smooth surfaces. The FTIR analyses of the textile substrates with microcapsules showed bands referring to the polymers of the microcapsules, but not to the lavender; this was most likely because the smooth surface of the outer wall did not retain the lavender. The mass loss and the degradation temperatures measured by TGA were similar for all the ozone-treated and plasma-treated polyester samples. In the SEM images, spherical microcapsules and the impregnation of the microcapsules of larger sizes were perceived. Through the lavender release, it was observed that the plasma and ozone treatments interfered both with the amount of lavender delivered and with the control of the delivery.
Collapse
|
18
|
Carvalho F, Coimbra AT, Silva L, Duarte AP, Ferreira S. Melissa officinalis essential oil as an antimicrobial agent against Listeria monocytogenes in watermelon juice. Food Microbiol 2023; 109:104105. [DOI: 10.1016/j.fm.2022.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
19
|
Razack SA, Lee Y, Shin H, Duraiarasan S, Chun BS, Kang HW. Cellulose nanofibrils reinforced chitosan-gelatin based hydrogel loaded with nanoemulsion of oregano essential oil for diabetic wound healing assisted by low level laser therapy. Int J Biol Macromol 2023; 226:220-239. [PMID: 36509199 DOI: 10.1016/j.ijbiomac.2022.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Diabetic foot ulcers are imperfections in the process of wound healing due to hyperglycemic conditions. Here, a nanoemulgel fabricated with oregano essential oil nanoemulsion, assisted by low-level laser therapy, was investigated for its efficacy in diabetic wound healing. A hydrogel- based healing patch, fabricated using biological polymers namely chitosan and gelatin and, polyvinyl pyrollidone. The hydrogel was reinforced with cellulose nanofibrils for enhanced stability and barrier properties. Nanoemulsion of oregano essential oil, with an average particle size of 293.7 ± 8.3 nm, was prepared via homogenization with chitosan as the coating agent. Nanoemulsion impregnated hydrogel, termed as the nanoemulgel, was assessed for its physio-mechanical properties and healing efficiency. The strong linkages in nanoemulgel demonstrated its large swelling capacity, high mechanical strength, and maximum thermal stability. The optimized conditions for low-level laser therapy using 808 nm were 1 W. cm-2 and 5 min. The optimized drug concentration of 128 μg. mL-1 exhibited viability of NIH/3 T3 fibroblasts as 75.5 ± 1.2 % after 24 h. Cell migration assay demonstrated that dual therapy facilitated wound healing, with a maximum closure rate of 100 % at 48 h. In vivo results revealed the rapid healing effects of the dual therapy in diabetic rat models with foot ulcers: a maximum healing rate of 97.5 %, minimum scar formation, increased granulation, enhanced reepithelialization, and a drastic decrease in inflammation and neutrophil infiltration within the treatment period compared to monotherapy and control. In summary, the combinatorial therapy of nanoemulgel and low-level laser therapy is a promising regimen for managing diabetic foot ulcers with a rapid healing effect.
Collapse
Affiliation(s)
- Sirajunnisa Abdul Razack
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| | - Yeachan Lee
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Hwarang Shin
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| | | | - Byung-Soo Chun
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Hyun Wook Kang
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
20
|
Jeevanandam J, Danquah MK. Phytosynthesized nanoparticles for antimicrobial treatment. EMERGING PHYTOSYNTHESIZED NANOMATERIALS FOR BIOMEDICAL APPLICATIONS 2023:145-169. [DOI: 10.1016/b978-0-12-824373-2.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Othman HIA, Alkatib HH, Zaid A, Sasidharan S, Rahiman SSF, Lee TP, Dimitrovski G, Althakafy JT, Wong YF. Phytochemical Composition, Antioxidant and Antiproliferative Activities of Citrus hystrix, Citrus limon, Citrus pyriformis, and Citrus microcarpa Leaf Essential Oils against Human Cervical Cancer Cell Line. PLANTS (BASEL, SWITZERLAND) 2022; 12:134. [PMID: 36616263 PMCID: PMC9823843 DOI: 10.3390/plants12010134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The essential oil derived from Citrus plants has long been used for medicinal purposes, due to its broad spectrum of therapeutic characteristics. To date, approximately 162 Citrus species have been identified, and many investigational studies have been conducted to explore the pharmacological potential of Citrus spp. oils. This study investigated the volatile constituents of essential oil distilled from the leaves of C. hystrix, C. limon, C. pyriformis, and C. microcarpa, using gas chromatography-quadrupole mass spectrometry. A total of 80 secondary compounds were tentatively identified, representing 84.88-97.99% of the total ion count and mainly comprising monoterpene (5.20-76.15%) and sesquiterpene (1.36-27.14%) hydrocarbons, oxygenated monoterpenes (3.91-89.52%) and sesquiterpenes (0.21-38.87%), and other minor chemical classes (0.10-0.52%). In particular, 27 compounds (1.19-39.06%) were detected across all Citrus species. Principal component analysis of the identified phytoconstituents and their relative quantities enabled differentiation of the Citrus leaf oils according to their species, with the loading variables contributing to these metabolic differences being identified. The Citrus leaf oils were tested for their antioxidant and antiproliferative activities using 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The results indicated that C. limon displayed the highest DPPH radical scavenging ability (IC50 value of 29.14 ± 1.97 mg/mL), while C. hystrix exhibited the lowest activity (IC50 value of 279.03 ± 10.37 mg/mL). On the other hand, all the Citrus oils exhibit potent antiproliferative activities against the HeLa cervical cancer cell line, with IC50 values of 11.66 μg/mL (C. limon), 20.41 μg/mL (C. microcarpa), 25.91 μg/mL (C. hystrix), and 87.17 μg/mL (C. pyriformis).
Collapse
Affiliation(s)
- Haneen Ibrahim Al Othman
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| | - Huda Hisham Alkatib
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| | - Atiqah Zaid
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| | | | - Tien Ping Lee
- RCSI & UCD Malaysia Campus, 4 Jalan Sepoy Lines, George Town 10450, Penang, Malaysia
| | - George Dimitrovski
- Ajoya Capital Limited, World Trade Centre 1, Jl. Jenderal Sudirman Kav. 29-31, Jakarta 12920, Indonesia
| | - Jalal T. Althakafy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yong Foo Wong
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| |
Collapse
|
22
|
Zaineb T, Uzair B, Rizg WY, Alharbi WS, Alkhalidi HM, Hosny KM, Khan BA, Bano A, Alissa M, Jamil N. Synthesis and Characterization of Calcium Alginate-Based Microspheres Entrapped with TiO 2 Nanoparticles and Cinnamon Essential Oil Targeting Clinical Staphylococcus aureus. Pharmaceutics 2022; 14:pharmaceutics14122764. [PMID: 36559258 PMCID: PMC9782131 DOI: 10.3390/pharmaceutics14122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
It is important to create new generations of materials that can destroy multidrug-resistant bacterial strains, which are a serious public health concern. This study focused on the biosynthesis of an essential oil entrapped in titanium dioxide (TiO2) calcium alginate-based microspheres. In this research, calcium alginate-based microspheres with entrapped TiO2 nanoparticles and cinnamon essential oil (CI-TiO2-MSs) were synthesized, using an aqueous extract of Nigella sativa seeds for TiO2 nanoparticle preparation, and the ionotropic gelation method for microsphere preparation. The microspheres obtained were spherical, uniformly sized, microporous, and rough surfaced, and they were fully loaded with cinnamon essential oil and TiO2 nanoparticles. The synthesized microspheres were analyzed for antibacterial activity against the clinical multidrug-resistant strain of Staphylococcus aureus. Disc diffusion and flow cytometry analysis revealed strong antibacterial activity by CI-TiO2-MSs. The synthesized CI-TiO2-MSs were characterized by the SEM/EDX, X-ray diffraction, and FTIR techniques. Results showed that the TiO2 nanoparticles were spherical and 99 to 150 nm in size, whereas the CI-TiO2-MSs were spherical and rough surfaced. Apoptosis analysis and SEM micrography revealed that the CI-TiO2-MSs had strong bactericidal activity against S. aureus. The in vitro antibacterial experiments proved that the encapsulated CI-TiO2-MSs had strong potential for use as a prolonged controlled release system against multidrug-resistant clinical S. aureus.
Collapse
Affiliation(s)
- Tayyaba Zaineb
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
- Correspondence: (B.U.); (K.M.H.)
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (B.U.); (K.M.H.)
| | - Barkat Ali Khan
- Drug Delivery and Cosmetics Lab (DDCL), GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Asma Bano
- Department of Microbiology, University of Haripur, Haripur 22620, Pakistan
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nazia Jamil
- Department of Microbiology & Molecular Genetics, Punjab University, Lahore 54000, Pakistan
| |
Collapse
|
23
|
Higher Resistance of Yersinia enterocolitica in Comparison to Yersinia pseudotuberculosis to Antibiotics and Cinnamon, Oregano and Thyme Essential Oils. Pathogens 2022; 11:pathogens11121456. [PMID: 36558790 PMCID: PMC9784965 DOI: 10.3390/pathogens11121456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Yersiniosis is an important zoonotic disease; however, data are scarce on the resistance of enteropathogenic yersiniae, especially that of Y. pseudotuberculosis. Minimum inhibitory concentrations (MIC) of 21 antibiotics and 3 essential oils (EOs) were determined by broth microdilution for Y. enterocolitica bioserotype 4/O:3 strains isolated from domestic swine (n = 132) and Y. pseudotuberculosis strains isolated from wild boars (n = 46). For 15 of 21 antibiotics, statistically significant differences were found between MIC values of Y. enterocolitica and Y. pseudotuberculosis. While Y. enterocolitica was more resistant to amoxiclav, ampicillin, cefotaxime, cefuroxime, gentamicin, imipenem, meropenem, tetracycline, tobramycin, and trimethoprim, Y. pseudotuberculosis was more resistant to cefepime, ceftazidime, colistin, erythromycin, and nitrofurantoin. Statistically significant differences were found between various essential oils (p < 0.001) and species (p < 0.001). The lowest MICs for multiresistant Y. enterocolitica (n = 12) and Y. pseudotuberculosis (n = 12) were obtained for cinnamon (median 414 and 207 μg/mL, respectively) and oregano EOs (median 379 and 284 μg/mL), whereas thyme EO showed significantly higher MIC values (median 738 and 553 μg/mL; p < 0.001). There was no difference between Y. enterocolitica strains of plant (1A) and animal (4/O:3) origin (p = 0.855). The results show that Y. enterocolitica is generally more resistant to antimicrobials than Y. pseudotuberculosis.
Collapse
|
24
|
Kanekar S, Rao SS, Yuvarajan S, Surya S, Rekha P. Linalool-encapsulated alginate microspheres as anti-virulence target against wound infections using In vitro and In vivo models. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Development and Physicochemical Characterization of Eugenia brejoensis Essential Oil-Doped Dental Adhesives with Antimicrobial Action towards Streptococcus mutans. J Funct Biomater 2022; 13:jfb13030149. [PMID: 36135584 PMCID: PMC9502856 DOI: 10.3390/jfb13030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Dental caries is a multifactorial, biofilm-dependent infectious disease that develops when detrimental changes occur in the oral cavity microenvironment. The antimicrobial and antivirulence properties of the essential oil obtained from the leaves of Eugenia brejoensis Mazine (EBEO) have been reported against Gram-positive and Gram-negative bacteria. Herein, the antimicrobial action of EBEO towards Streptococcus mutans is reported, along with the development and characterization of dental adhesives doped with. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EBEO were determined against S. mutans, while its toxicity was analyze using Tenebrio molitor larvae. EBEO (MIC and 10×MIC) was incorporated into the Ambar Advanced Polymerization System® (Ambar APS), a two-step total-etch adhesive system (FGM Dental Group), and the antibiofilm action was evaluated. The reflective strength, modulus of elasticity, degree of conversion, and maximum rate of polymerization of each adhesive were also determined. The MIC and MBC values of EBEO against S. mutans were 62.5 µg/mL. The tested concentrations of EBEO were non-toxic to T. molitor larvae. The formation of S. mutans biofilms was significantly inhibited by EBEO and EBEO-coated resin discs (p < 0.05). Importantly, EBEO incorporation did not affect the mechanical and physicochemical properties in relation to oil-free adhesive version. EBEO showed strong antibacterial and antibiofilm activity against S. mutans, no toxicity effect against T. molitor larvae, and did not jeopardize the physical-chemical properties tested.
Collapse
|
26
|
Hawkins AN, Licea SJ, Sleeper SA, Swearingen MC. Calcium sulfate beads made with antibacterial essential oil-water emulsions exhibit growth inhibition against Staphylococcus aureus in agar pour plates. PLoS One 2022; 17:e0271209. [PMID: 35802739 PMCID: PMC9269935 DOI: 10.1371/journal.pone.0271209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Calcium sulfate bone void filler beads are fully absorbable in the body, and are often used in complicated orthopedic infection cases to release a relatively high dose of antibiotics locally to the body site over time. However, the antibiotic resistance crisis and/or inability to treat chronic biofilm infections remains to be a formidable and increasing health threat. In this report, we tested the hypothesis that plant essential oils (PEOs) with anti-staphylococcal qualities could inhibit the growth of Staphylococcus aureus (a major etiological agent of periprosthetic joint infection) in agar pour plates when infused in calcium sulfate beads. To begin, we conducted a screen of 57 single plant PEOs for anti-staphylococcal activity via disk diffusions assays. We observed that 55/57 of the PEOs had significant growth inhibitory activity compared to the null hypothesis, and 41/57 PEOs exhibited activity similar-to-or-higher-than a vancomycin minimum inhibitory control. When PEOs were infused in beads, we observed that 17/57 PEOs tested exhibited significant bacterial growth inhibition when encased in S. aureus-seeded agar compared to a null hypothesis of six millimeters (bead size). However, none of the PEO-beads had activity similar to a vancomycin bead control made according to a clinically relevant formula. To the best of our knowledge, this is the first report and screen of PEOs for growth inhibitory activity when infused in lab-made calcium sulfate beads. These data indicate that antibacterial PEOs warrant further investigations, and may be useful in developing new treatment strategies for periprosthetic joint infection.
Collapse
Affiliation(s)
- Allison N. Hawkins
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Sara J. Licea
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Sierra A. Sleeper
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Matthew C. Swearingen
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Coimbra A, Ferreira S, Duarte AP. Biological properties of Thymus zygis essential oil with emphasis on antimicrobial activity and food application. Food Chem 2022; 393:133370. [PMID: 35667177 DOI: 10.1016/j.foodchem.2022.133370] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022]
Abstract
The Thymus plants have been used for centuries in traditional medicine and as a food spice, among this genus, Thymus zygis (red thyme) is a widespread plant, vastly used as a culinary flavouring agent. Its essential oil has demonstrated diverse bioactive properties, such as antimicrobial, insecticidal, larvicidal and antiparasitic activities. Numerous studies have characterized this essential oil showing that it possesses a broad antimicrobial spectrum and may even enhance the effect of certain antimicrobial agents. Its potential application as a food preservative has been analysed on different matrixes pointing to its antimicrobial activity against spoilage and pathogenic microorganisms in food. This review provides an insight in the chemical composition, antimicrobial, insecticidal, larvicidal and antiparasitic activities and toxicity of T. zygis essential oil, as well as its potential application in food as a preservative.
Collapse
Affiliation(s)
- Alexandra Coimbra
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana Paula Duarte
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
28
|
Yasir M, Nawaz A, Ghazanfar S, Okla MK, Chaudhary A, Al WH, Ajmal MN, AbdElgawad H, Ahmad Z, Abbas F, Wadood A, Manzoor Z, Akhtar N, Din M, Hameed Y, Imran M. Anti-bacterial activity of essential oils against multidrug-resistant foodborne pathogens isolated from raw milk. BRAZ J BIOL 2022; 84:e259449. [PMID: 35544793 DOI: 10.1590/1519-6984.259449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The presence of pathogenic bacteria in food is considered as a primary cause of food-borne illness and food quality deterioration worldwide. The present study aimed to determine the effectiveness of five essential oils (EOs) against multidrug-resistant foodborne pathogens. In the current study Gram-negative bacteria (Escherichia, Enterobacter, Citrobacter, Proteus, Pseudomonas, and Klebsiella) and the Gram-positive bacteria Staphylococcus were isolated from raw milk and biochemically characterized. The anti-bacterial effect of different antibiotics and EOs (thyme, oregano, lemongrass, mint, and rosemary) was determined using the standard disc diffusion method. The antibiogram study revealed that Gram-negative bacteria were highly resistant to penicillin while Staphylococcus was resistant to streptomycin, amoxicillin, and lincomycin. Moderate resistance was observed to doxycycline, amikacin, enrofloxacin, kanamycin and cefixime. Isolates were found less resistant to gentamycin, chloramphenicol, and ciprofloxacin. EOs showed a broad range of antimicrobial activity against all bacteria except P. aeruginosa. Of these, thyme was more effective against most of the multi-drug resistant bacterial strains and formed the largest zone of inhibition (26 mm) against Escherichia followed by oregano oil (18 mm) against Staphylococcus (p<0.05). Klebsiella spp and Citrobacter spp showed resistance to mint and lemongrass oil respectively. The EOs such as lemongrass, mint and rosemary were less active against all the bacteria. The findings of the recent study suggest the use of EOs as natural antibacterial agents for food preservation.
Collapse
Affiliation(s)
- M Yasir
- University of Baluchistan, Department of Microbiology, Quetta, Pakistan
| | - A Nawaz
- Government College University Faisalabad, Department of Zoology, Faisalabad, Pakistan
| | - S Ghazanfar
- National Agricultural Research Centre, Functional Genomics and Bioinformatics, Islamabad, Pakistan
| | - M K Okla
- King Saud University, College of Science, Botany and Microbiology Department, Riyadh, Saudi Arabia
| | - A Chaudhary
- University of Central Punjab, Department of Biochemistry, Lahore, Pakistan
| | - Wahidah H Al
- King Saud University, College of Food & Agriculture Sciences, Department of Food Sciences & Nutrition, Riyadh, Saudi Arabia
| | - M N Ajmal
- University of Jhang, Department of Microbiology, Jhang, Pakistan
| | - H AbdElgawad
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research, Antwerpen, Belgium
| | - Z Ahmad
- University of Balochistan, Center for Advanced Studies in Vaccinology and Biotechnology, Quetta, Pakistan
| | - F Abbas
- University of Balochistan, Center for Advanced Studies in Vaccinology and Biotechnology, Quetta, Pakistan
| | - A Wadood
- University of Baluchistan, Department of Microbiology, Quetta, Pakistan
| | - Z Manzoor
- Pir Mehr Ali Shah Arid Agriculture University, Department of Parasitology and Microbiology, Rawalpindi, Pakistan
| | - N Akhtar
- Department of Biological Sciences, National University of Medical Science, Rawalpindi, Pakistan
| | - M Din
- Bolan Medical College, Department of Pathology, Quetta, Pakistan
| | - Y Hameed
- The Islamia University of Bahawalpur, Department of Biochemistry and Biotechnology, Bahawalpur, Pakistan
| | - M Imran
- Quaid-i-Azam University, Faculty of Biological Sciences, Department of Microbiology, Islamabad, Pakistan
| |
Collapse
|
29
|
Xu X, Chen J, Lv H, Xi Y, Ying A, Hu X. Molecular mechanism of Pyrrosia lingua in the treatment of nephrolithiasis: Network pharmacology analysis and in vivo experimental verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153929. [PMID: 35104754 DOI: 10.1016/j.phymed.2022.153929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence exists reporting that Pyrrosia lingua (PL, Xinhui Pharmaceutical, Polypodiaceae) alleviates nephrolithiasis in rat models. The precipitation of calcium oxalate may result in kidney stones, and the intestinal microbiota is critical for oxalate metabolism. Therefore, we attempt to delineate the molecular mechanism underlying the effect of PL on nephrolithiasis and its association with gut microbiota. METHODS Following differential flora analysis in gutMEGA, the network relationship of PL and nephrolithiasis was analyzed based on the TCMSP, DisGeNET and STRING databases. Moreover, the kidney stone model rats were fed with different doses of PL powder and PL extract. In addition, metabolomics technology was employed to identify the active ingredients in PL extract and the microbial metabolites in rat feces. RESULTS The effect of PL on the nephrolithiasis was based on quercetin and kaempferol by mediating the toll-like receptor signaling pathway and regulating the expression levels of interleukin 6, tumor necrosis factor, mitogen activated protein kinase 8, and secreted phosphoprotein 1. PL significantly reduced the levels of urine oxalic acid, urine calcium, and osteopontin (OPN) levels in rat models of nephrolithiasis. Notably, PL extract decreased these two indicators to lower levels. Furthermore, contents of Oxalobacter formigenes, Bacteriodetes, Bifidobacterium and Fecalibacterium were obviously reduced after treatment with PL extract. CONCLUSION PL powder and its active extracts reduce the oxalate level in urine by regulating oxalate metabolism, thus ameliorating the damage of kidney tissues and preventing kidney stone formation. This study suggests the use of PL and its extracts as an alternative source of promising agents that might directly or indirectly inhibit the progression of kidney stone diseases.
Collapse
Affiliation(s)
- Xiangwei Xu
- Department of Pharmacy, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, PR China
| | - Jun Chen
- Department of Pharmacy, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, PR China
| | - Haiou Lv
- Department of Urology Surgery, Yongkang First people's Hospital Affiliated to Hangzhou Medical College, 599 jinshan West Road, Dongcheng Street, Yongkang, Zhejiang Province 321300, PR China
| | - Yiyuan Xi
- School of Pharmacy, Wenzhou Medical University, PR China
| | - Aiying Ying
- Department of Urology Surgery, Yongkang First people's Hospital Affiliated to Hangzhou Medical College, 599 jinshan West Road, Dongcheng Street, Yongkang, Zhejiang Province 321300, PR China
| | - Xiang Hu
- Department of Urology Surgery, Yongkang First people's Hospital Affiliated to Hangzhou Medical College, 599 jinshan West Road, Dongcheng Street, Yongkang, Zhejiang Province 321300, PR China.
| |
Collapse
|
30
|
Gambino E, Maione A, Guida M, Albarano L, Carraturo F, Galdiero E, Di Onofrio V. Evaluation of the Pathogenic-Mixed Biofilm Formation of Pseudomonas aeruginosa/ Staphylococcus aureus and Treatment with Limonene on Three Different Materials by a Dynamic Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063741. [PMID: 35329426 PMCID: PMC8955688 DOI: 10.3390/ijerph19063741] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023]
Abstract
Background: Biofilms have been found growing on implantable medical devices. This can lead to persistent clinical infections. The highly antibiotic-resistant property of biofilms necessitates the search for both potent antimicrobial agents and novel antibiofilm strategies. Natural product-based anti-biofilm agents were found to be as efficient as chemically synthesized counterparts with fewer side effects. In the present study, the effects of limonene as an antibiofilm agent were evaluated on Pseudomonas aeruginosa and Staphylococcus aureus biofilm formed on different surfaces using the CDC model system in continuous flow. The flgK gene and the pilA gene expression in P. aeruginosa, and the icaA gene and eno gene in S. aureus, which could be considered as efficient resistance markers, were studied. Methods: Mono- and dual-species biofilms were grown on polycarbonate, polypropylene, and stainless-steel coupons in a CDC biofilm reactor (Biosurface Technologies, Bozeman, MT, USA). To evaluate the ability of limonene to inhibit and eradicate biofilm, a sub-MIC concentration (10 mL/L) was tested. The gene expression of P. aeruginosa and S. aureus was detected by SYBR Green quantitative Real-Time PCR assay (Meridiana Bioline, Brisbane, Australia). Results: The limonene added during the formation of biofilms at sub-MIC concentrations works very well in inhibiting biofilms on all three materials, reducing their growth by about 2 logs. Of the same order of magnitude is the ability of limonene to eradicate both mono- and polymicrobial mature biofilms on all three materials. Greater efficacy was observed in the polymicrobial biofilm on steel coupons. The expression of some genes related to the virulence of the two microorganisms was differently detected in mono- and polymicrobial biofilm. Conclusions: These data showed that the limonene treatment expressed different levels of biofilm-forming genes, especially when both types of strains alone and together grew on different surfaces. Our findings showed that limonene treatment is also very efficient when biofilm has been grown under shear stress causing significant and irreversible damage to the biofilm structure. The effectiveness of the sanitation procedures can be optimized by applying antimicrobial combinations with natural compounds (e.g., limonene).
Collapse
Affiliation(s)
- Edvige Gambino
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Angela Maione
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Marco Guida
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Luisa Albarano
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Federica Carraturo
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Emilia Galdiero
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
- Correspondence: ; Tel.: +39-081-679182
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples “Parthenope”, 80143 Naples, Italy;
| |
Collapse
|
31
|
Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Basils of the genus Ocimum are aromatic plants grown widely throughout the tropical and temperate regions. The essential oils obtained from their aerial parts are enriched with volatile organic compounds with high market demand for food and pharmaceutical industries. The volatile organic compounds have been shown to exhibit biological activities. Therefore, their novel applications have been extensively explored in the last few decades. The most widely available basils in the tropical areas include white holy basil (O. sanctum var. Shyama), red holy basil (O. sanctum var. Rama), Thai basil (O. basilicum var. thyrsiflorum), lemon basil (O. citriodorum), and tree basil (O. gratissimum). Over 60 volatiles of different classes have been exclusively described, and some of them could be useful as biomarkers for genotype specification. The major volatile ingredient is the phenylpropanoids, such as methyl eugenol, which has the potential as a natural product for mitigating Oriental fruit fly (Bactrocera dorsalis) during tropical fruit production. Moreover, basil essential oils are also used to control diseases of the fruits during post-harvest storage. As a result, the application of basil essential oils as a sustainable defect control strategy for tropical fruit value chains seems intriguing. This review provides comprehensive information on plant taxonomy and volatile compositions of the essential oil fractions from different basil species. Their biological activities and applications are also discussed, mainly during the pre- and post-production of tropical fruits. Additionally, the available techniques to enhance the efficacy of the volatile active compounds are also described.
Collapse
|
32
|
Innovative next-generation therapies in combating multi-drug-resistant and multi-virulent Escherichia coli isolates: insights from in vitro, in vivo, and molecular docking studies. Appl Microbiol Biotechnol 2022; 106:1691-1703. [PMID: 35133473 DOI: 10.1007/s00253-022-11781-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023]
Abstract
Despite notable advances in vaccine and antimicrobial therapies, treatment failure has been increasingly reported worldwide. Of note, multi-drug-resistant (MDR) Escherichia coli (E. coli) strains have a considerable share in the evolution of this crisis. So, current practice guidelines are directed towards complementary and alternative therapies. Therefore, we evaluated the antibacterial and antivirulence activities of curcumin, thymol, and eugenol essential oils (EOs) as well as EOs-EOs and EOs-antibiotics interactions on MDR and multi-virulent E. coli isolates. Unfortunately, MDR E. coli could be isolated with a prevalence rate of 95.6% (86/90). Additionally, the majority of our isolates harbored both fimH (95.6%) and ompA (91.1%) genes, and half of them (45/90) were multi-virulent. Interestingly, all the tested EOs, especially curcumin, exhibited inhibitory activities against all MDR and multi-virulent E. coli isolates. The addition of thymol enhanced the antibacterial activities of curcumin and eugenol. Moreover, the activities of piperacillin/tazobactam and imipenem were increased by adding any one of the tested EOs. Regarding the antivirulence activities of the tested EOs, the cell surfaces of treated E. coli isolates under transmission electron microscope (TEM) were uneven. The cells appeared damaged and lost their appendages. Furthermore, EOs strongly reduced the transcription of ompA and fimH genes. The antibacterial and antivirulence activities of the used EOs were confirmed by in silico and mice protection assays. Hereby, we introduced the promising uses of curcumin, thymol, and eugenol oils as complementary and alternative therapies for combating MDR and multi-virulent E. coli isolates. KEY POINTS: • Our promising results confirmed that we were right for renewed interest of EOs. • The EOs, especially curcumin, can be used to prevent treatment failure. • We supposed a new pharmaceutical formulation of antibiotic powders dissolved in EOs.
Collapse
|
33
|
Abass S, Parveen R, Irfan M, Jan B, Husain SA, Ahmad S. Synergy based extracts of medicinal plants: Future antimicrobials to combat multidrug resistance. Curr Pharm Biotechnol 2022; 23:1527-1540. [PMID: 35081888 DOI: 10.2174/1389201023666220126115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
The use of herbal medicines and supplements in the last thirty years has increased enormously. Herbal medication has demonstrated promising and effective potential against various diseases. Herbal and phytoconstituent medications are gaining popularity globally and many people are adopting herbal remedies to deal with different health issues. The indiscriminate use of antibiotics, due to the development of antimicrobial resistance, poses an unprecedented problem for human civilization. Bacterial infections are difficult to cure because of the propensity of microbes to acquire resistance to a wide range of antimicrobial drugs. New compounds are being explored and quantified for possible antibacterial activity with little or no side effects. Researchers are investigating the range of therapeutic plants mentioned in Unani, Ayurveda, and Siddha around the globe. Known and commonly acclaimed global databases such as PubMed, Research Gate, Science Direct, Google Scholar, were searched using different search strings such as Indian medicinal plants, multidrug resistance (MDR), thin layer chromatography (TLC), antimicrobials, and Synergism were used in diverse combinations to reclaim numerous citations associated with this area. Thus, the current review aims to shed a light on the information of medicinal plants as a potential foundation of herbal drugs and elucidate how synergism and TLC bioautography plays a crucial role in finding antimicrobial compounds.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rabea Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Bisma Jan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
34
|
Lees P, Bäumer W, Toutain PL. The Decline and Fall of Materia Medica and the Rise of Pharmacology and Therapeutics in Veterinary Medicine. Front Vet Sci 2022; 8:777809. [PMID: 35127879 PMCID: PMC8810541 DOI: 10.3389/fvets.2021.777809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Materia Medica is a Latin term, relating to the history of pharmacy. It describes the sources (vegetable, animal and mineral), nature, preparation, and properties of substances or mixtures of substances, which were used as remedies for the treatment of diseases. Bourgelat authored the first veterinary Materia Medica book. This review describes the evolution and ultimate downfall of Materia Medica concepts and practices. Its survival for more than two millennia reflected the impact of religion and dogmas on therapy. The consignment of Materia Medica to history was signified by publication of the first modern book of veterinary pharmacology and therapeutics by Meyer Jones in 1953. Previously, the dominance of Materia Medica was linked to an hippiatry culture, which was shared with farriers and quacks. The Pasteurian and pharmacological revolutions of the second half of the nineteenth century led to its gradual abandonment. This review explains why the existence of authentically active substances, such as opioid analgesics, cardiotonics and general anesthetics either were not used for those actions or were badly prescribed, in part because of historical precedence and in part from lack of pathophysiological knowledge to justify rational use. The modern concept of dosage, in particular inter-species differences, was not understood. There were also major dogmas, supporting false indications, such as failure to recognize pain as a symptom to be treated, whereas inflammation was only a disease symptom involving excess of activity of the blood system, which had to be vigorously addressed by bleeding and purging. This review covers a well-defined period, ranging from Bourgelat, who wrote the first book of Materia Medica for veterinary studies to the first edition of Meyer Jones textbook in 1953, which marked the end of Materia Medica and the beginning of pharmacology in veterinary medicine.
Collapse
Affiliation(s)
- Peter Lees
- The Royal Veterinary College, University of London, London, United Kingdom
| | - Wolfgang Bäumer
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Pierre-Louis Toutain
- The Royal Veterinary College, University of London, London, United Kingdom
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
| |
Collapse
|
35
|
Berdejo D, Pagán E, Merino N, Botello-Morte L, Pagán R, García-Gonzalo D. Salmonella enterica serovar Typhimurium genetic variants isolated after lethal treatment with Thymbra capitata essential oil (TCO) showed increased resistance to TCO in milk. Int J Food Microbiol 2021; 360:109443. [PMID: 34710810 DOI: 10.1016/j.ijfoodmicro.2021.109443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
The high prevalence of Salmonella enterica in milk poses a risk of considerable concern in the preservation of certain dairy products, mainly those elaborated from raw milk. Essential oils (EOs) have been proposed as a promising food preservative for such products due to their strong antimicrobial properties. Additionally, these natural antimicrobials have been shown to be effective against multi-drug resistant strains. They can thus also be utilized to prevent the dissemination of antimicrobial resistances (AMR). However, recent evidence of the development of bacterial resistance under EO treatments may call their use into question. This study sought to assess the emergence of antimicrobial resistant genetic variants of S. enterica serovar Typhimurium from survivors after cyclic exposure to lethal doses (>5 log10 cycles of inactivation) of Thymbra capitata EO (TCO), in order to evaluate the impact that it could have on milk preservation, to ascertain whether cross-resistance to antibiotics occurs, and to identify the genomic changes responsible for their phenotype. Isolated strains by TCO (SeTCO) showed a two-fold increase in minimum inhibitory and bactericide concentrations (MIC and MBC) of TCO compared to Salmonella enterica serovar Typhimurium wild-type strain (SeWT) in laboratory growth medium, as well as a greater adaptation and growth rate in the presence of the EOs and a higher survival to TCO treatments in buffers of pH 4.0 and 7.0. The increased resistance of SeTCO was confirmed in skimmed milk: 300 μL/L TCO reduced only 1 log10 cycle of SeTCO population, whereas it inactivated more than 5 log10 cycles in SeWT. Moreover, SeTCO showed an increased cross-resistance against aminoglycosides, quinolones and tetracyclines. Whole genome sequencing revealed 5 mutations in SeTCO: 2 in genes involved in O-antigens synthesis (rfbV and rfbX), 2 in genes related to adaptation to the growing medium (trkA and glpK), and 1 in a redox-sensitive transcriptional regulator (soxR). The phenotypic characterization of a constructed SeWT strain with mutant soxRSeTCO demonstrated that the mutation of soxR was the main cause of the increased resistance and tolerance observed in SeTCO against TCO and antibiotics. The emergence of resistant strains against EOs might jeopardize their use as food preservatives. Further studies will thus be required to determine under which conditions such resistant strains might occur, and to assess the food risk they may pose, as well as to ascertain their impact on the spread of AMR.
Collapse
Affiliation(s)
- Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Natalia Merino
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Laura Botello-Morte
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain.
| |
Collapse
|
36
|
Maia DO, Santos VF, Barbosa CRS, Fróes YN, Muniz DF, Santos ALE, Santos MHC, Silva RRS, Silva CGL, Souza ROS, Sousa JCS, Coutinho HDM, Teixeira CS. Nickel (II) chloride schiff base complex: Synthesis, characterization, toxicity, antibacterial and leishmanicidal activity. Chem Biol Interact 2021; 351:109714. [PMID: 34710376 DOI: 10.1016/j.cbi.2021.109714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023]
Abstract
The use of schiff base complex against microbial agentes a has recently received more attention as a strategy to combat infections caused by multidrug-resistant bacteria and leishmania. This study aimed to evaluate the toxicity, antibacterial and leishmanicidal activities of the nickel (II) chloride schiff base complex ([Ni(L2)] against Leishmania amazonensis promastigote, multi-resistant bacterial strains and evaluate to modulate antibiotic activity against multi-resistant bacterial. The schiff base complex was characterized by the techniques of elemental analysis, Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy and thermal analysis (TGA/DTG/DSC). The [Ni(L2)] complex presented moderate toxicity in saline artemia (LC50 = 150.8 μg/mL). In leishmanicidal assay, the NiL2 complex showed values of IC50 of (6.079 μg/mL ± 0.05656 at the 24 h), (0.854 μg/mL ± 0.02474, 48 h) and (1.076 μg/mL ± 0.04039, 72 h). In antibacterial assay, the [Ni(L2)] complex presented significant inhibited the bacterial growth of P. aeruginosa (MIC = 256 μg/mL). However, [Ni(L2)] complex did not present clinically relevant minimum inhibitory concentration (MIC ≥1024 μg/mL) against S. aureus and E. coli. The combination of [Ni(L2)] complex and antibacterial drugs resulted in the increased antibiotic activity of gentamicin and amikacin against S. aureus and E.coli multi-resistant strains. Thus, our results showed that [Ni(L2)] complex is a promising molecule for the development of new therapies associated with aminoglycoside antibiotics and in disease control related to resistant bacteria and leishmaniasis.
Collapse
Affiliation(s)
- Danielle O Maia
- Agrarian and Environmental Sciences Center, Federal University of Maranhão, Chapadinha, Maranhão, Brazil
| | - Valdenice F Santos
- Agrarian and Environmental Sciences Center, Federal University of Maranhão, Chapadinha, Maranhão, Brazil
| | - Cristina R S Barbosa
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Yuri N Fróes
- Postgraduate Program in Microbial Biology, CEUMA, University of São Luis, Maranhão, Brazil
| | - Debora F Muniz
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Ana L E Santos
- Medical School, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - Maria H C Santos
- Agrarian and Environmental Sciences Center, Federal University of Maranhão, Chapadinha, Maranhão, Brazil
| | - Romério R S Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cláudio G L Silva
- Medical School, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - Racquel O S Souza
- Medical School, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - Joicy C S Sousa
- Postgraduate Program in Microbial Biology, CEUMA, University of São Luis, Maranhão, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Claudener S Teixeira
- Agrarian and Biodiversity Sciences Center, Federal University of Cariri, Crato, Ceará, Brazil.
| |
Collapse
|
37
|
Felix E Silva A, Pires IC, da Costa MM, Melo JFB, Lorenzo VP, de Melo FVST, Copatti CE. Antibacterial and antibiofilm activities and synergism with florfenicol from the essential oils of Lippia sidoides and Cymbopogon citratus against Aeromonas hydrophila. J Appl Microbiol 2021; 132:1802-1812. [PMID: 34689393 DOI: 10.1111/jam.15336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
AIMS Aeromonas hydrophila is an opportunistic bacterium, with a high capacity for biofilm production, which can cause severe damage in aquaculture. The objective of this study was to identify the chemical compounds of the essential oils of Lippia sidoides (EOLS) and Cymbopogon citratus (EOCC), and to evaluate the biocidal, antibiofilm and synergistic action with the antimicrobial florfenicol of these essential oils (EOs) against A. hydrophila. METHODS AND RESULTS The antibacterial activity of EOLS and EOCC was verified by the minimum bactericidal concentration and by the action of these EOs against both forming and consolidated biofilms. The synergistic activity of EOs with florfenicol was performed using the checkerboard technique. The main component of EOLS and EOCC was carvacrol (44.50%) and α-citral (73.56%), respectively. Both EOs showed weak inhibitory activity (≥3125.00 µg ml-1 ). Two bacterial isolates were able to produce biofilm, and EOLS and EOCC acted upon the bacterial isolates to prevent biofilm formation. A bactericidal effect was verified for EOLS in the previously consolidated biofilm for both isolates and for EOCC in only one of the isolates. In general, EOLS had a synergistic effect with florfenicol, while EOCF had an additive effect. CONCLUSIONS Both EOs were able to interfere with biofilm formation and did not have an antagonistic effect in combination with florfenicol. The best results were found for EOLS, which showed a synergistic effect with florfenicol and the ability to interfere in the formation of consolidated biofilm. SIGNIFICANCE AND IMPACT OF THE STUDY This study highlights the potential of EOLS and EOCC to interfere in biofilm and act in synergy with florfenicol to reduce the occurrence of A. hydrophila. Development of these compounds may contribute to the development of herbal medicines in aquaculture.
Collapse
Affiliation(s)
- Altiery Felix E Silva
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Isabelle C Pires
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - Mateus M da Costa
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - José F B Melo
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - Vitor P Lorenzo
- Instituto Federal do Sertão Pernambucano, Campus Petrolina Setor Rural, Petrolina, PE, Brazil
| | | | - Carlos E Copatti
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Salvador, BA, Brazil
| |
Collapse
|
38
|
Zhang L, Feng XZ, Xiao ZQ, Fan GR, Chen SX, Liao SL, Luo H, Wang ZD. Design, Synthesis, Antibacterial, Antifungal and Anticancer Evaluations of Novel β-Pinene Quaternary Ammonium Salts. Int J Mol Sci 2021; 22:11299. [PMID: 34681957 PMCID: PMC8539267 DOI: 10.3390/ijms222011299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022] Open
Abstract
β-pinene is a monoterpene isolated from turpentine oil and numerous other plants' essential oils, which has a broad spectrum of biological activities. In the current work, six novel β-pinene quaternary ammonium (β-PQA) salts were synthesized and evaluated in vitro for their antifungal, antibacterial and anticancer activities. The in vitro assay results revealed that compounds 4a and 4b presented remarkable antimicrobial activity against the tested fungi and bacteria. In particular, compound 4a showed excellent activities against F. oxysporum f.sp. niveum, P. nicotianae var.nicotianae, R. solani, D. pinea and Fusicoccumaesculi, with EC50 values of 4.50, 10.92, 9.45, 10.82 and 6.34 μg/mL, respectively. Moreover, compound 4a showed the best antibacterial action against E. coli, P. aeruginosa, S. aureus and B. subtilis, with MIC at 2.5, 0.625, 1.25 and 1.25 μg/mL, respectively. The anticancer activity results demonstrated that compounds 4a, 4b, 4c and 4f exhibited remarkable activity against HCT-116 and MCF-7 cell lines, with IC50 values ranged from 1.10 to 25.54 μM. Notably, the compound 4c displayed the strongest cytotoxicity against HCT-116 and MCF-7 cell lines, with the IC50 values of 1.10 and 2.46 μM, respectively. Furthermore, preliminary antimicrobial mechanistic studies revealed that compound 4a might cause mycelium abnormalities of microbial, cell membrane permeability changes and inhibition of the activity of ATP. Altogether, these findings open interesting perspectives to the application of β-PQA salts as a novel leading structure for the development of effective antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Li Zhang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (L.Z.); (G.-R.F.); (S.-X.C.); (S.-L.L.)
| | - Xue-Zhen Feng
- National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China;
| | - Zhuan-Quan Xiao
- College of Chemistry, Jiangxi Normal University, Nanchang 330022, China;
| | - Guo-Rong Fan
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (L.Z.); (G.-R.F.); (S.-X.C.); (S.-L.L.)
| | - Shang-Xing Chen
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (L.Z.); (G.-R.F.); (S.-X.C.); (S.-L.L.)
| | - Sheng-Liang Liao
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (L.Z.); (G.-R.F.); (S.-X.C.); (S.-L.L.)
| | - Hai Luo
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (L.Z.); (G.-R.F.); (S.-X.C.); (S.-L.L.)
| | - Zong-De Wang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (L.Z.); (G.-R.F.); (S.-X.C.); (S.-L.L.)
| |
Collapse
|
39
|
Guo T, Li M, Sun X, Wang Y, Yang L, Jiao H, Li G. Synergistic Activity of Capsaicin and Colistin Against Colistin-Resistant Acinetobacter baumannii: In Vitro/Vivo Efficacy and Mode of Action. Front Pharmacol 2021; 12:744494. [PMID: 34603057 PMCID: PMC8484878 DOI: 10.3389/fphar.2021.744494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen predominantly associated with nosocomial infections. With emerging resistance against polymyxins, synergistic combinations of drugs are being investigated as a new therapeutic approach. Capsaicin is a common constituent of the human diet and is widely used in traditional alternative medicines. The present study evaluated the antibacterial activities of capsaicin in combination with colistin against three unrelated colistin-resistant Acinetobacter baumannii strains in vitro and in vivo, and then further studied their synergistic mechanisms. Using the checkerboard technique and time-kill assays, capsaicin and colistin showed a synergistic effect on colistin-resistant A. baumannii. A mouse bacteremia model confirmed the in vivo effects of capsaicin and colistin. Mechanistic studies shown that capsaicin can inhibit the biofilm formation of both colistin-resistant and non-resistant A. baumannii. In addition, capsaicin decreased the production of intracellular ATP and disrupted the outer membrane of A. baumannii. In summary, the synergy between these drugs may enable a lower concentration of colistin to be used to treat A. baumannii infection, thereby reducing the dose-dependent side effects. Hence, capsaicin–colistin combination therapy may offer a new treatment option for the control of A. baumannii infection.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Mengying Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Department of Pharmacy, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xiaoli Sun
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Yuhang Wang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Liying Yang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Hongmei Jiao
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guocai Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| |
Collapse
|
40
|
The Impact of Geographical Location on the Chemical Compositions of Pimpinella lutea Desf. Growing in Tunisia. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Essential oils are generally produced to confer the protection of medicinal plants against several natural enemies. Variations of chemical and physical environmental factors exert significant influences on plant development. They hence may affect the quality and quantity of volatile organic metabolites of interest and, therefore, the economic applications of essential oils. This research focused on the effects of the harvest region on the production and analytes present in Tunisian Pimpinella lutea Desf. Apiaceae that were collected in three different growing environments (North and South Bizerta and Tabarka). Essential oils extracted from a variety of genotypes were analyzed, for the first time, using gas chromatography and mass spectrometry (GC/FID and GC/MS). The determination of the percentage of essential oil components allowed the recognition of three chemotypes: α-trans-Bergamotene quantified at a percentage of 18.1% in North Bizerta (NBEO), muurola-4,10(14)-dien-1-β-ol identified in South Bizerta (10.1%, SBEO) and acora-3,7(14)-dien present in a high level of 29.1% in Tabarka population (TEO). The richness of different populations in sesquiterpenes (60.2–78.1%) suggests that Pimpinella lutea Desf. may be used in different industrial segments.
Collapse
|
41
|
Ouf SA, Galal AMF, Ibrahim HS, Hassan AZ, Mekhael MKG, El-Yasergy KF, El-Ghany MNA, Rizk MA, Hanna AG. Phytochemical and antimicrobial investigation of the leaves of five Egyptian mango cultivars and evaluation of their essential oils as preservatives materials. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3130-3142. [PMID: 34294975 PMCID: PMC8249502 DOI: 10.1007/s13197-020-04816-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
The sterols, hydrocarbons and fatty acids constituents of the leaves of five mango cultivars locally implanted in Egypt were identified. The effect of their essential oils (EOs) against food borne microorganisms was studied as preservative materials. The chemical constituents of the EOs isolated from mango leaves were identified by Gas Chromatography-Mass spectrometry (GC-MS) technique. Trans-caryophyllene, α-humulene and α-elemene were identified as terpene hydrocarbons, while 4-hydroxy-4-methyl-2-pentanone as oxygenated compounds were recorded in all tested cultivars with variable amounts. Results showed that Staphylococcus aureus and Escherichia coli were the most sensitive microorganisms tested for Alphonso EOs. On the other hand, Salmonella typhimrium was found to be less susceptible to the EOs of the studied cultivars. The EOs of different mango cultivars induced a steady decrease in the activity of amylase, protease and lipase at the minimum inhibitory concentration (MIC). The treatment of the tested bacteria with the EOs of mango cultivars caused a steady loss in enterotoxins even when applied at the sub-MIC. Bacteria-inoculated apple juice treated with minimum bactericidal concentration of Alphonso oil was free from the bacteria after 5 days of incubation at 25 °C. Eighteeen volatile compounds were found to reduce the activity of the amylase enzyme and the most active was cedrelanol (-7.6 kcal mol-1) followed by alpha-eudesmol (-7.3 kcal mol-1) and humulene oxide (-7 kcal mol-1). The binding mode of both of cedrelanol and alpha-eudesmol with amylase enzyme was illustrated.
Collapse
Affiliation(s)
- Salama A. Ouf
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Alaaeldin M. F. Galal
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, 12622 Egypt
| | - Heba S. Ibrahim
- Desert Research Centre, Medicinal and Aromatic Plants Department, Ecology and Dry Lands Agriculture Division, Cairo, Egypt
| | - Amal Z. Hassan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, 12622 Egypt
| | - Maged K. G. Mekhael
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, 12622 Egypt
| | - Khaled F. El-Yasergy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | | | - Mohamed A. Rizk
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Atef G. Hanna
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, 12622 Egypt
| |
Collapse
|
42
|
Qi X, Feng Y, Pang X, Zeng D, Du S. Chemical composition and biological activities of essential oils of different plants of Ligusticum genus against three stored insects. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1942042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaojie Qi
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - YiXi Feng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Xue Pang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Ding Zeng
- Department of Burns and Plastic Surgery, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Shushan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
43
|
Galvan D, Effting L, Torres Neto L, Conte-Junior CA. An overview of research of essential oils by self-organizing maps: A novel approach for meta-analysis study. Compr Rev Food Sci Food Saf 2021; 20:3136-3163. [PMID: 34125485 DOI: 10.1111/1541-4337.12773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/13/2021] [Accepted: 04/24/2021] [Indexed: 12/17/2022]
Abstract
Essential oils (EOs) are commercially important products, sources of compounds with antioxidant and antimicrobial activities considered indispensable for several fields, such as the food industry, cosmetics, perfumes, pharmaceuticals, sanitary and agricultural industries. In this context, this systematic review and meta-analysis, a novel approach will be presented using chemometric tools to verify and recognize patterns of antioxidant, antibacterial, and antifungal activities of EOs according to their geographic, botanical, chemical, and microbiological distribution. Scientific papers were selected following the Preferred Reporting Items for Systematic Review and Meta-Analyses statement flow diagram, and the data were evaluated by the self-organizing map and hierarchical cluster analysis. Overall, this novel approach allowed us to draw an overview of antioxidants and antimicrobials activities of EOs reported in 2019, through 585 articles evaluated, obtaining a dataset with more than 10,000 data, distributed in more than 80 countries, 290 plant genera, 150 chemical compounds, 30 genera of bacteria, and 10 genera of fungi. The networks for geographic, botanical, chemical, and microbiological distribution indicated that Brazil, Asia, the botanical genus Thymus, species Thymus vulgaris L. "thyme," the Lamiaceae family, limonene, and the oxygenated monoterpene class were the most representative in the dataset, while the species Escherichia coli and Candida albicans were the most used to assess the antimicrobial activity of EOs. This work can be seen as a guide for the processing of metadata using a novel approach with non-conventional statistical methods. However, this preliminary approach with EOs can be extended to other sources or areas of food science.
Collapse
Affiliation(s)
- Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Luiz Torres Neto
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Study on the Grafting of Chitosan-Essential Oil Microcapsules onto Cellulosic Fibers to Obtain Bio Functional Material. COATINGS 2021. [DOI: 10.3390/coatings11060637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this work was to prepare chitosan–essential oil microcapsules using the simple coacervation method and to graft them onto cellulosic fibers to obtain bio functional textile. The microcapsules morphology was characterized by optical microscopy. The 2D dimethyloldihydroxyethylene urea resin (DMDHEU) was used as a binding agent to graft microcapsules on the surface of cellulosic fibers. Scanning Electron Microscopy (SEM) photographs and Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) analyses were performed to prove the interaction between cellulosic fibers and microcapsules. Furthermore, the properties of the different fabrics such as mechanical strength and air permeability were investigated. Furthermore, washing durability was evaluated. Finally, the antibacterial activity of the finished fibers against the strains Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated. The results evidence the ability of treated fabrics to induce bacteria growth inhibition. The coacervation method is a simple process to incorporate cinnamon essential oil on the cellulosic fiber’s surface. The use of essential oils as active agents seems to be a promising tool for many protective textile substrates such as antimicrobial masks, bacteriostatic fabrics and healthcare textiles.
Collapse
|
45
|
Franco-Vega A, Reyes-Jurado F, González-Albarrán D, Ramírez-Corona N, Palou E, López-Malo A. Developments and Advances of High Intensity Pulsed Light and its Combination with Other Treatments for Microbial Inactivation in Food Products. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09280-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Li T, Chen M, Ren G, Hua G, Mi J, Jiang D, Liu C. Antifungal Activity of Essential Oil From Zanthoxylum armatum DC. on Aspergillus flavus and Aflatoxins in Stored Platycladi Semen. Front Microbiol 2021; 12:633714. [PMID: 33815316 PMCID: PMC8017187 DOI: 10.3389/fmicb.2021.633714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
The major objective of this study was to evaluate the inhibitory effect of essential oil (EO) from Zanthoxylum armatum DC. on Aspergillus flavus. The chemical composition of the EO was identified by gas chromatography–mass spectrometer. The minimum inhibitory concentration (MIC) of EO was investigated by liquid fermentation. The morphology, colony number, and aflatoxin content of A. flavus in platycladi semen were investigated by stereomicroscopy, scanning electron microscopy, plate counting, and high-performance liquid chromatography. The results indicated that the MIC of EO was 0.8 μL⋅mL–1, and the main components were β-phellandrene (7.53%), D-limonene (13.24%), linalool (41.73%), terpinen-4-ol (5.33%), and trans-nerolidol (6.30%). After the EO fumigated the platycladi semen, the growth of A. flavus slowed, and the mycelium shrank considerably. The number of colonies after EO treatment at room temperature and cold storage was significantly reduced, the inhibition effect was better under cold storage, and the aflatoxin B1 content did not exceed the standard within 100 days. Therefore, this study demonstrated the good potential of A. flavus growth inhibition during the storage of platycladi semen.
Collapse
Affiliation(s)
- Ting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxi Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guodong Hua
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiu Mi
- Tibet University of Tibetan Medicine, Lhasa, China
| | - Dan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunsheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
In vitro evaluation of the antibacterial effects of Cinnamomum zeylanicum essential oil against clinical multidrug-resistant Shigella isolates. Mol Biol Rep 2021; 48:2583-2589. [PMID: 33796990 DOI: 10.1007/s11033-021-06309-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/19/2021] [Indexed: 01/14/2023]
Abstract
As there are little data about the antimicrobial effects of the cinnamon essential oils (EO) against multidrug-resistant (MDR) Shigella species, this study aimed to evaluate the antibacterial activities of Cinnamomum zeylanicum EO against the clinical MDR Shigella isolates. Totally 50 MDR Shigella isolates including 17 (34%) S. flexneri, 20 (40%) S. sonnei, and 13 (26%) S. boydii were collected. The isolates were identified by standard phenotypic and molecular methods. The MDR phenotypes were determined as resistant to three antibiotic classes using disc diffusion. The C. zeylanicum EO was analyzed by gas chromatography/mass spectrometry (GC/MS). The minimum inhibitory concentration (MIC) of cinnamon EO was evaluated by microtiter broth dilution. The most Shigella isolates 38% (n = 19) were resistant to six antibiotics. The ampicillin-amikacin-cefotaxime-erythromycin-ciprofloxacin-cotrimoxazole resistotype was the most prevalent pattern detected in five S. sonnei, four S. boydii, and three S. flexneri isolates. The result of GC/MS revealed the cinnamaldehyde (84.8%) as the main ingredient of C. zeylanycum EO. The most susceptible strain to the C. zeylanycum EO was S. boydii (MIC range = 0.15-0.62 μl/ml) followed by S. flexneri (MIC range = 0.07-1.25 μl/ml), and S. sonnei (MIC range = 0.15-1.25 μl/ml). The observed ranges of MIC and MBC values of cinnamon EO against Shigella spp. were 0.07-1.25 μl/ml and 0.31-1.25 μl/ml, respectively. The antibacterial effects of cinnamon EO in this study may increase the hope of finding suitable plant compounds to treat infections caused by MDR Shigella isolates.
Collapse
|
48
|
Allemailem KS. Antimicrobial Potential of Naturally Occurring Bioactive Secondary Metabolites. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:155-162. [PMID: 34349474 PMCID: PMC8291113 DOI: 10.4103/jpbs.jpbs_753_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/04/2022] Open
Abstract
The use of traditional medicines of natural origin has been prevalent since ancient times globally as the plants produce a great diversity in their secondary metabolites. The naturally occurring bioactive constituents in food and other plant materials have shown widespread attention for their use as alternative medicine to prevent and cure microbial growth with the least toxic manifestations. The inclusion of these contents revealed their crucial role to improve the therapeutic efficacy of the classical drugs against various pathogenic microorganisms. Furthermore, several metabolites have also been explored in combination with antimicrobial agents to overcome the problems associated with drug resistance. This current review discusses the antimicrobial activities of secondary metabolites as well as their role in drug sensitivity against multiple-drug resistant pathogenic microbes.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
49
|
Debbabi H, El Mokni R, Nardoni S, Chaieb I, Maggi F, Nzekoue FK, Caprioli G, Hammami S. Chemical diversity and biological activities of essential oils from native populations of Clinopodium menthifolium subsp. ascendens (Jord.) Govaerts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13624-13633. [PMID: 33190203 DOI: 10.1007/s11356-020-11523-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
This study is focused on the analysis of regional variation of the chemical compositions of three Clinopodium menthifolium subsp. ascendens (Jord.) Govaerts Tunisian accession, as well as their inhibition toward fungi and insect pests. The diversity of the chemical constituents and biological activities in front of the aforementioned variations was found to be remarkable. Essential oils were obtained by hydrodistillation of the aerial parts and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 41, 42, and 30 compounds were identified respectively from Clinopodium menthifolium essential oils harvested from three Tunisian regions, namely Ain-Draham (ADEO), Babouch (BEO), and Tabarka (TEO). All analyzed oils were rich in oxygenated monoterpenes with different major constituents. Piperitenone (34.5%), cis-piperitone oxide (26.1%), and pulegone (47.9%) were the dominant compounds in the three volatile oils, respectively. The antifungal activity was investigated in vitro using six targeted fungal strains (Aspergillus flavus, Aspergillus terreus, Candida albicans, Microsporum canis, Microsporum gypseum, and Trichophyton mentagrophytes). The toxicity and repellency of essential oils were evaluated against the stored product pest Tribolium confusum. The tested samples were differently effective toward the target fungi and the pest depending on the variability of their chemical compositions. BEO exhibited the highest fungitoxic properties toward A. terreus mold, M. canis dermatophyte, and C. albicans yeast (the MIC values ranged from 40 to 400 μg mL-1). In addition, the data showed that TEO repelled T. confusum moderately (PR = 42.5% at 2 h after exposure). Concerning the contact treatment, both ADEO and BEO were proved to possess slightly toxic effects toward T. confusum pest (% of mortality 27.5-32.5% at 5% concentration). The results showed that the geographic origin greatly influenced the chemical composition and the associated bioactivities of Clinopodium menthifolium subsp. ascendens.
Collapse
Affiliation(s)
- Haïfa Debbabi
- Research Unit 13ES63, Applied Chemistry and Environment, Faculty of Sciences of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Ridha El Mokni
- Department Pharmaceutical Sciences "A", Laboratory of Botany, Cryptogamy and Plant Biology, Faculty of Pharmacy of Monastir, University of Monastir, BP 207 Avenue Avicenna, 5000, Monastir, Tunisia
- IRESA, Laboratory of Forest Ecology, I.N.R.G.R.E.F, BP N°10, 2080, Ariana, Tunisia
| | - Simona Nardoni
- Dipartimento di Scienze Veterinarie, Università degli Studi di Pisa, 56124, Pisa, PI, Italy
| | - Ikbal Chaieb
- Regional Centre of Research on Horticulture and Organic Agriculture, University of Sousse, 57, Chott Mariem, TN-4042, Sousse, Tunisia
| | - Filippo Maggi
- Dipartimento di Scienze Chimiche, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Franks Kamgang Nzekoue
- Dipartimento di Scienze Chimiche, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giovanni Caprioli
- Dipartimento di Scienze Chimiche, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Saoussen Hammami
- Research Unit 13ES63, Applied Chemistry and Environment, Faculty of Sciences of Monastir, University of Monastir, 5000, Monastir, Tunisia.
| |
Collapse
|
50
|
Müller-Sepúlveda A, Chevecich CC, Jara JA, Belmar C, Sandoval P, Meyer RS, Quijada R, Moura S, López-Muñoz R, Díaz-Dosque M, Molina-Berríos A. Chemical Characterization of Lavandula dentata Essential Oil Cultivated in Chile and Its Antibiofilm Effect against Candida albicans. PLANTA MEDICA 2020; 86:1225-1234. [PMID: 32663893 DOI: 10.1055/a-1201-3375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Candida albicans is the most common human fungal pathogen, and with the increase in resistance rates worldwide, it is necessary to search for new pharmacological alternatives. Lavandula dentata L. essential oil is recognized as having antimicrobial properties. However, its effect against fungal biofilms has been poorly described. C. albicans-related infections involve the development of biofilms, which are highly resistant to conventional antifungals. In this work, we evaluated the antibiofilm effect of L. dentata L. essential oil against C. albicans. First, we characterized the essential oil by gas chromatography-mass spectrometry. The antifungal effect on C. albicans reference strains was evaluated by a disk diffusion assay and the minimal inhibitory concentration was obtained through a microdilution assay. The effect of the essential oil on the adhesion ability of C. albicans was determined through a crystal violet assay, and morphogenesis inhibition was assessed by light microscopy. The effect of the essential oil on the microarchitecture of biofilms was evaluated through scanning electron microscopy. Finally, the antibiofilm effect was evaluated through an adapted biofilm scratch assay and XTT viability assay. The main constituent of the essential oil was the monoterpenoid eucalyptol (60%). The essential oil presented minimal inhibitory concentrations of 156 and 130 µg/mL against two strains assayed. This minimal inhibitory concentration inhibited adhesion, morphogenesis, biofilm formation, altered microarchitecture, and decreased the viability of established biofilms formed on abiotic surfaces for both strains assayed. This study demonstrates that the essential oil from L. dentata could be a promising treatment against C. albicans biofilms.
Collapse
Affiliation(s)
- Andrea Müller-Sepúlveda
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, Chile
- Institute of Agrifood, Animals and Environmental Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Camila Cid Chevecich
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Carolina Belmar
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Pablo Sandoval
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rocío Santander Meyer
- Departament of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Raúl Quijada
- Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Sidnei Moura
- Laboratory of Biotechnology of Natural and Synthetic Products, Biotechnology Institute, Universidade de Caixas do Sul, Caixas do Sul, Brazil
| | - Rodrigo López-Muñoz
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Mario Díaz-Dosque
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alfredo Molina-Berríos
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|