1
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Shyanti RK, Haque M, Singh R, Mishra M. Optimizing iNKT-driven immune responses against cancer by modulating CD1d in tumor and antigen presenting cells. Clin Immunol 2024; 269:110402. [PMID: 39561929 DOI: 10.1016/j.clim.2024.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Two major antigen processing pathways represent protein Ags through major histocompatibility complexes (MHC class I and II) or lipid Ags through CD1 molecules influence the tumor immune response. Invariant Natural Killer T cells (iNKT) manage a significant role in cancer immunotherapy. CD1d, found on antigen-presenting cells (APCs), presents lipid Ags to iNKT cells. In many cancers, the number and function of iNKT cell are compromised, leading to immune evasion. Additionally impaired motility of iNKT cells may contribute to poor tumor prognosis. Emerging evidences suggest that CD1d, itself also influences cancer progression. Patient databases further highlight the importance of CD1d expression in different cancers and its correlation with patient survival outcomes. The ability of iNKT cells to activate and enhance the immune response renders them an attractive target for cancer immunotherapy. This review discusses all the possible ways of cancer immune evasion and restoration of immune responses mediated by CD1d-iNKT interactions.
Collapse
Affiliation(s)
- Ritis Kumar Shyanti
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Mazharul Haque
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Rajesh Singh
- Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
3
|
Derakhshandeh R, Zhu Y, Li J, Hester D, Younis R, Koka R, Jones LP, Sun W, Goloubeva O, Tkaczuk K, Bates J, Reader J, Webb TJ. Identification of Functional Immune Biomarkers in Breast Cancer Patients. Int J Mol Sci 2024; 25:12309. [PMID: 39596374 PMCID: PMC11595306 DOI: 10.3390/ijms252212309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer immunotherapy has emerged as an effective, personalized treatment for certain patients, particularly for those with hematological malignancies. However, its efficacy in breast cancer has been marginal-perhaps due to cold, immune-excluded, or immune-desert tumors. Natural killer T (NKT) cells play a critical role in cancer immune surveillance and are reduced in cancer patients. Thus, we hypothesized that NKT cells could serve as a surrogate marker for immune function. In order to assess which breast cancer patients would likely benefit from immune cell-based therapies, we have developed a quantitative method to rapidly assess NKT function using stimulation with artificial antigen presenting cells followed by quantitative real-time PCR for IFN-γ. We observed a significant reduction in the percentage of circulating NKT cells in breast cancer patients, compared to healthy donors; however, the majority of patients had functional NKT cells. When we compared BC patients with highly functional NKT cells, as indicated by high IFN-γ induction, to those with little to no induction, following stimulation of NKT cells, there was no significant difference in NKT cell number between the groups, suggesting functional loss has more impact than physical loss of this subpopulation of T cells. In addition, we assessed the percentage of tumor-infiltrating lymphocytes and PD-L1 expression within the tumor microenvironment in the low and high responders. Further characterization of immune gene signatures in these groups identified a concomitant decrease in the induction of TNFα, LAG3, and LIGHT in the low responders. We next investigated the mechanisms by which breast cancers suppress NKT-mediated anti-tumor immune responses. We found that breast cancers secrete immunosuppressive lipids, and treatment with commonly prescribed medications that modulate lipid metabolism, can reduce tumor growth and restore NKT cell responses.
Collapse
Affiliation(s)
- Roshanak Derakhshandeh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Yuyi Zhu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Junxin Li
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Danubia Hester
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Rania Younis
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
| | - Rima Koka
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laundette P. Jones
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenji Sun
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Olga Goloubeva
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine Tkaczuk
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
| | - Joshua Bates
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Jocelyn Reader
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tonya J. Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
| |
Collapse
|
4
|
Abstract
Natural Killer T (NKT) cells are distinct innate lymphocytes that recognize lipid antigens in the context of nonpolymorphic molecule CD1d. Multiple myeloma (MM) is a hematologic malignancy wherein malignant plasma cells express CD1d and are sensitive to lysis by NKT cells. Progressive malignancy in MM is characterized by NKT cell dysfunction. Several studies have tried to harness the anti-tumor properties of NKT cells in MM to mediate tumor regression. NKT cells are also attractive targets for approaches at immune redirection in MM with chimeric-antigen receptor NKT (CAR-NKT) and bispecific antibodies. In addition to the commonly studied invariant-NKT (iNKT) cells, MM patients often also exhibit alterations in type-II NKT cells and their ligands. In patients and mouse models with Gaucher disease (GD), an inherited lipid-storage disorder with markedly increased risk for MM, distinct type-II NKT cells exhibit a T-follicular helper (NKT-TFH) phenotype and provide help to lipid-specific B cells. Chronic immune activation in this setting eventually sets the stage for malignancy, which can be targeted in both mouse models and GD patients by reducing the underlying antigen. NKT cells are thus integrally linked to MM pathogenesis and an attractive target for MM immunotherapy.
Collapse
|
5
|
Das R. T Cell Receptor-Engaging Monoclonal Antibodies Mobilize the Anti-Tumor Functions of Invariant Natural Killer T Cells. Crit Rev Oncog 2024; 29:69-81. [PMID: 38421715 PMCID: PMC11062185 DOI: 10.1615/critrevoncog.2023049947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Invariant natural killer T cells (iNKTs) are innate-type T lymphocytes that directly kill tumor cells or tumor-growth promoting immunosuppressive cells such astumor-associated macrophages. Additionally, iNKTs robustly transactivate the antitumor functions of T, B, natural killer, and dendritic cells as well as reinvigorate exhausted immune cells in the tumor microenvironment. As such, iNKTs make excellent candidates for inclusion in anti-cancer cellular therapies. However, to capitalize on the potential benefits of iNKT cell-based approaches, it is imperative that we develop new and clinically viable strategies to enhance their antitumor function. To that end, two novel monoclonal antibodies (mAbs) that selectively bind to the human (NKTT320) or murine (NKT14m) invariant T cell receptor have been recently developed and characterized. Studies using purified human iNKTs (in vitro) and a model of non-human primate (in vivo) reveal that NKTT320 promotes swift, vigorous and sustained iNKT cell activation that is accompanied by robust production of inflammatory mediators and bystander immune cell activation. Furthermore, NKTT320 augments expression of cytotoxic markers and human iNKT cell degranulation. Similarly, NKT14m prompts dramatic murine iNKT cell activation and functional response both in vitro and in vivo. However, antitumor efficacy of a single dose of NKT14m injection in tumor-bearing mice is limited and tumor-model dependent. In contrast, combination treatment of NKT14m with either low dose interleukin (IL)-12 or the chemotherapeutic agent, cyclophosphamide results in a superior antitumor response in vivo. This is evident by activation of both iNKTs and other immune cells, prolonged survival of the tumor-challenged mice, and long-lasting immunity. Collectively, these recent studies justify further development of anti-iTCR mAbs that can be used alone or in conjunction with immunomodulatory agents to enhance iNKT cell antitumor immunity against various cancers.
Collapse
Affiliation(s)
- Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Irianto T, Gaipl US, Rückert M. Immune modulation during anti-cancer radio(immuno)therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:239-277. [PMID: 38225105 DOI: 10.1016/bs.ircmb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cancer can affect all human organs and tissues and ranks as a prominent cause of death as well as an obstruction to increasing life expectancy. A notable breakthrough in oncology has been the inclusion of the immune system in fighting cancer, potentially prolonging life and providing long-term benefits. The concept of "immunotherapy" has been discussed from the 19th and early 20th centuries by Wilhelm Busch, William B. Coley and Paul Ehrlich. This involves distinct approaches, including vaccines, non-specific cytokines and adoptive cell therapies. However, despite the advances made in recent years, questions on how to select the best therapeutic options or how to select the best combinations to improve clinical outcomes are still relevant for scientists and clinicians. More than half of cancer patients receive radiotherapy (RT) as part of their treatment. With the advances in RT and immunotherapy approaches, it is reasonable to consider how to enhance immunotherapy with radiation and vice versa, and to investigate whether combinations of these therapies would be beneficial. In this chapter, we will discuss how the immune system responds to cancer cells and different cancer therapies with a focus on combination of RT and immunotherapy (radioimmunotherapy, RIT).
Collapse
Affiliation(s)
- Teresa Irianto
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
7
|
Da M, Chen L, Enk A, Ring S, Mahnke K. The Multifaceted Actions of CD73 During Development and Suppressive Actions of Regulatory T Cells. Front Immunol 2022; 13:914799. [PMID: 35711418 PMCID: PMC9197450 DOI: 10.3389/fimmu.2022.914799] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine (Ado) has been shown to have immunosuppressive effects in a variety of diseases. It can either be released directly into the extracellular environment by cells, or it can be produced by degradation of ATP within the extracellular spaces. This extracellular pathway is facilitated by the concerted actions of the ectoenzymes CD39 and CD73. In a first step CD39 dephosphorylates ATP to ADP and AMP, respectively, and in a second step CD73 converts AMP to Ado. Thus, activity of CD73 on the cell surface of cells is the rate limiting step in the generation of extracellular Ado. Among T cells, CD73 is most abundantly expressed by regulatory T cells (Tregs) and is even upregulated after their activation. Functionally, the generation of Ado by CD73+ Tregs has been shown to play a role in immune suppression of dendritic cells, monocytes and T cells, and the defined expression of CD73 by Tregs in immunosuppressive environments, such as tumors, made CD73 a novel checkpoint inhibitor. Therefore, therapeutical intervention by anti-CD73 antibodies or by chemical inhibitors of the enzymatic function is currently under investigation in some preclinical animal models. In the following we summarize the expression pattern and the possible functions of CD73 in T cells and Tregs, and exemplify novel ways to manipulate CD73 functions in Tregs to stimulate anti-tumor immunity.
Collapse
|
8
|
Morandi F, Sabatini F, Podestà M, Airoldi I. Immunotherapeutic Strategies for Neuroblastoma: Present, Past and Future. Vaccines (Basel) 2021; 9:43. [PMID: 33450862 PMCID: PMC7828327 DOI: 10.3390/vaccines9010043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022] Open
Abstract
Neuroblastoma is the most common extracranial pediatric solid tumor with a heterogeneous clinical course, ranging from spontaneous regression to metastatic disease and death, irrespective of intensive chemotherapeutic regimen. On the basis of several parameters, children affected by neuroblastoma are stratified into low, intermediate and high risk. At present, more than 50% of high-risk patients with metastatic spread display an overall poor long-term outcome also complicated by devastating long-term morbidities. Thus, novel and more effective therapies are desperately needed to improve lifespan of high-risk patients. In this regard, adoptive cell therapy holds great promise and several clinical trials are ongoing, demonstrating safety and tolerability, with no toxicities. Starting from the immunological and clinical features of neuroblastoma, we here discuss the immunotherapeutic approaches currently adopted for high-risk patients and different innovative therapeutic strategies currently under investigation. The latter are based on the infusion of natural killer (NK) cells, as support of consolidation therapy in addition to standard treatments, or chimeric antigen receptor (CAR) T cells directed against neuroblastoma associated antigens (e.g., disialoganglioside GD2). Finally, future perspectives of adoptive cell therapies represented by γδ T lymphocyes and CAR NK cells are envisaged.
Collapse
Affiliation(s)
| | | | | | - Irma Airoldi
- Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Istituto Giannina Gaslini (Istituto di Ricerca e Cura a Carattere Scientifico—IRCCS), Via G. Gaslini 5, 16147 Genova, Italy; (F.M.); (F.S.); (M.P.)
| |
Collapse
|
9
|
Winkler I, Woś J, Bojarska-Junak A, Semczuk A, Rechberger T, Baranowski W, Markut-Miotła E, Tabarkiewicz J, Wolińska E, Skrzypczak M. An association of iNKT+/CD3+/CD161+ lymphocytes in ovarian cancer tissue with CA125 serum concentration. Immunobiology 2020; 225:152010. [PMID: 33130518 DOI: 10.1016/j.imbio.2020.152010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to investigate the association of iNKT (human invariant natural killer T) cells with the key marker of ovarian cancer (OC) - CA125 (cancer antigen125) in serum. The study reports the assessment of iNKT cells in peripheral blood and tissue of benign and borderline ovarian tumors (BOTs) and in the advanced-stage ovarian cancer. The study groups were as follows: 25 women with benign ovarian tumors, 11 women with BOTs, and 24 women with primary advanced-stage ovarian cancers. The control group consisted of 20 patients without the ovarian pathology. The rates of iNKT lymphocytes in the peripheral blood and tissue specimens were evaluated by a flow cytometry. Significant differences in the percentage of iNKT+/CD3+ of CD3+ lymphocytes, iNKT+/CD3+/CD161+ among CD3+ and iNKT+/CD3+/CD161+ among CD3+/iNKT+ between the control group and patients with ovarian tumors in the peripheral blood and tumor tissue were identified. Significant correlations were noticed between the proportion of lymphocytes iNKT+/CD3+/CD161+ among CD3+/iNKT cells in blood and in cancer tissue of both benign and malignant tumors. In the OC group, neither the ratio of iNKT cells in the blood (P = 0.07), nor the intra-tumor NKT-cell infiltration (P = 0.5) were independent prognostic factors for the follow-up. An increased rate of iNKT cells was detected in benign ovarian tumors compared to OCs. In patients with ovarian cancer, a higher rate of iNKT cells in tumor tissue was present related to that noted in the patient's blood. In addition, a correlation was discovered between the CA125 serum marker and NKT cells from the ovarian cancer tissue. This article has for the first time demonstrated a negative relationship between serum levels and NKT lymphocyte count from ovarian tissue. The inflammatory process in ovarian cancer tissue and the potential infiltration of endothelial immune cells, may result in a reduced number of NKT cells in the tumor microenvironment and increased circulation of the CA125 marker. Presented findings underscore new aspects of the iNKT cells involvement in the ovarian cancer development.
Collapse
Affiliation(s)
- Izabela Winkler
- IInd Department of Gynecology, Lublin Medical University, 8 Jaczewski Street, 20-954, Lublin, Poland; IInd Department of Gynecology, St' Johns Center Oncology, 7 Jaczewski Street, 20-090, Lublin, Poland.
| | - Justyna Woś
- Department of Clinical Immunology, Lublin Medical University, 4a Chodźki Street, 20-093, Lublin, Poland
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Lublin Medical University, 4a Chodźki Street, 20-093, Lublin, Poland
| | - Andrzej Semczuk
- IInd Department of Gynecology, Lublin Medical University, 8 Jaczewski Street, 20-954, Lublin, Poland
| | - Tomasz Rechberger
- IInd Department of Gynecology, Lublin Medical University, 8 Jaczewski Street, 20-954, Lublin, Poland
| | - Włodzimierz Baranowski
- IInd Department of Gynecology, St' Johns Center Oncology, 7 Jaczewski Street, 20-090, Lublin, Poland; Military Institute of Medicine, Department of Gynecology and Oncological Gynecology, 38 Szaserów street, Warsaw, Poland
| | - Ewa Markut-Miotła
- Department of Pediatric Pulmonology and Rheumatology, Lublin Medical University, 8 Jaczewski Street, 20-090, Lublin, Poland
| | - Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty of University of Rzeszów, 1A Warzywna Street, 35-959 Rzeszów, Poland
| | - Ewa Wolińska
- Department of Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Skrzypczak
- IInd Department of Gynecology, Lublin Medical University, 8 Jaczewski Street, 20-954, Lublin, Poland
| |
Collapse
|
10
|
VanderLaan PA, Reardon CA, Cabana VG, Wang CR, Getz GS. Invariant Natural Killer T-Cells and Total CD1d Restricted Cells Differentially Influence Lipid Metabolism and Atherosclerosis in Low Density Receptor Deficient Mice. Int J Mol Sci 2019; 20:ijms20184566. [PMID: 31540125 PMCID: PMC6770011 DOI: 10.3390/ijms20184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct subset of lymphocytes that bridge the innate and adaptive immune response and can be divided into type I invariant NKT cells (iNKT) and type II NKT cells. The objective of this study is to examine the effects of NKT cell on lipid metabolism and the initiation and progression of atherosclerosis in LDL receptor deficient (LDLR−/−) mice. Mice were fed an atherogenic diet for 4 or 8 weeks and plasma lipids, lipoproteins, and atherosclerosis were measured. The selective absence of iNKT cells in Jα18−/−LDLR−/− mice led to an increase in plasma cholesterol levels in female mice. Transgenic Vα14tg/LDLR−/− mice with elevated numbers of iNKT cells had increased late atherosclerosis of the innominate artery, though absence of either iNKT cells or all NKT cells and other CD1d expressing cells had varying effects on atherosclerotic lesion burden in the ascending aortic arch and aortic root. These studies not only highlight the potential modulatory role played by NKT cells in atherosclerosis and lipid metabolism, but also raise the possibility that divergent roles may be played by iNKT and CD1d restricted cells such as type II NKT cells or other CD1d expressing cells.
Collapse
Affiliation(s)
- Paul A VanderLaan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, 633 Clark St, Evanston, IL 60208, USA.
| | - Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Punjabi NM, Samet JM. Sleeping, eating, and cancer risk. Int J Cancer 2018; 143:2367-2368. [DOI: 10.1002/ijc.31838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Krovi SH, Gapin L. Invariant Natural Killer T Cell Subsets-More Than Just Developmental Intermediates. Front Immunol 2018; 9:1393. [PMID: 29973936 PMCID: PMC6019445 DOI: 10.3389/fimmu.2018.01393] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a CD1d-restricted T cell population that can respond to lipid antigenic stimulation within minutes by secreting a wide variety of cytokines. This broad functional scope has placed iNKT cells at the frontlines of many kinds of immune responses. Although the diverse functional capacities of iNKT cells have long been acknowledged, only recently have distinct iNKT cell subsets, each with a marked functional predisposition, been appreciated. Furthermore, the subsets can frequently occupy distinct niches in different tissues and sometimes establish long-term tissue residency where they can impact homeostasis and respond quickly when they sense perturbations. In this review, we discuss the developmental origins of the iNKT cell subsets, their localization patterns, and detail what is known about how different subsets specifically influence their surroundings in conditions of steady and diseased states.
Collapse
Affiliation(s)
- S. Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
13
|
Wolf BJ, Choi JE, Exley MA. Novel Approaches to Exploiting Invariant NKT Cells in Cancer Immunotherapy. Front Immunol 2018; 9:384. [PMID: 29559971 PMCID: PMC5845557 DOI: 10.3389/fimmu.2018.00384] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 12/24/2022] Open
Abstract
iNKT cells are a subset of innate-like T cells that utilize an invariant TCR alpha chain complexed with a limited repertoire of TCR beta chains to recognize specific lipid antigens presented by CD1d molecules. Because iNKT cells have an invariant TCR, they can be easily identified and targeted in both humans and mice via standard reagents, making this a population of T cells that has been well characterized. iNKT cells are some of the first cells to respond during an infection. By making different types of cytokines in response to different infection stimuli, iNKT cells help determine what kind of immune response then develops. It has been shown that iNKT cells are some of the first cells to respond during infection with a pathogen and the type of cytokines that iNKT cells make help determine the type of immune response that develops in various situations. Indeed, along with immunity to pathogens, pre-clinical mouse studies have clearly demonstrated that iNKT cells play a critical role in tumor immunosurveillance. They can mediate anti-tumor immunity by direct recognition of tumor cells that express CD1d, and/or via targeting CD1d found on cells within the tumor microenvironment. Multiple groups are now working on manipulating iNKT cells for clinical benefit within the context of cancer and have demonstrated that targeting iNKT cells can have a therapeutic benefit in patients. In this review, we briefly introduce iNKT cells, then discuss preclinical data on roles of iNKT cells and clinical trials that have targeted iNKT cells in cancer patients. We finally discuss how future trials could be modified to further increase the efficacy of iNKT cell therapies, in particular CAR-iNKT and rTCR-iNKT cells.
Collapse
Affiliation(s)
| | - Jiyoung Elizabeth Choi
- Agenus Inc., Lexington, MA, United States.,Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark A Exley
- Agenus Inc., Lexington, MA, United States.,Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States.,University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Nair S, Dhodapkar MV. Natural Killer T Cells in Cancer Immunotherapy. Front Immunol 2017; 8:1178. [PMID: 29018445 PMCID: PMC5614937 DOI: 10.3389/fimmu.2017.01178] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy.
Collapse
Affiliation(s)
- Shiny Nair
- Yale University, New Haven, CT, United States
| | | |
Collapse
|
15
|
Rivers E, Thrasher AJ. Wiskott-Aldrich syndrome protein: Emerging mechanisms in immunity. Eur J Immunol 2017; 47:1857-1866. [DOI: 10.1002/eji.201646715] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022]
|
16
|
Grabarz F, Aguiar CF, Correa-Costa M, Braga TT, Hyane MI, Andrade-Oliveira V, Landgraf MA, Câmara NOS. Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis. Inflammopharmacology 2017; 26:491-504. [PMID: 28779430 DOI: 10.1007/s10787-017-0383-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
Pulmonary fibrosis is a result of an abnormal wound healing in lung tissue triggered by an excessive accumulation of extracellular matrix proteins, loss of tissue elasticity, and debit of ventilatory function. NKT cells are a major source of Th1 and Th2 cytokines and may be crucial in the polarization of M1/M2 macrophages in pulmonary fibrogenesis. Although there appears to be constant scientific progress in that field, pulmonary fibrosis still exhibits no current cure. From these facts, we hypothesized that NKT cells could influence the development of pulmonary fibrosis via modulation of macrophage activation. Wild type (WT) and NKT type I cell-deficient mice (Jα18-/-) were subjected to the protocol of bleomycin-induced pulmonary fibrosis with or without treatment with NKT cell agonists α-galactosylceramide and sulfatide. The participation of different cell populations, collagen deposition, and protein levels of different cytokines involved in inflammation and fibrosis was evaluated. The results indicate a benign role of NKT cells in Jα18-/- mice and in wild-type α-galactosylceramide-sulfatide-treated groups. These animals presented lower levels of collagen deposition, fibrogenic molecules such as TGF-β and vimentin and improved survival rates. In contrast, WT mice developed a Th2-driven response augmenting IL-4, 5, and 13 protein synthesis and increased collagen deposition. Furthermore, the arginase-1 metabolic pathway was downregulated in wild-type NKT-activated and knockout mice indicating lower activity of M2 macrophages in lung tissue. Hence, our data suggest that NKT cells play a protective role in this experimental model by down modulating the Th2 milieu, inhibiting M2 polarization and finally preventing fibrosis.
Collapse
Affiliation(s)
- Felipe Grabarz
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Cristhiane Favero Aguiar
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Matheus Correa-Costa
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Tárcio Teodoro Braga
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Meire I Hyane
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Vinícius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Maristella Almeida Landgraf
- Laboratory of Hypertension, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil. .,Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo, Brazil. .,Institute of Biomedical Sciences IV, University of São Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
17
|
Sex and age as determinants of rat T-cell phenotypic characteristics: influence of peripubertal gonadectomy. Mol Cell Biochem 2017; 431:169-185. [PMID: 28281185 DOI: 10.1007/s11010-017-2989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
The study examined the influence of age, sex and peripubertal gonadectomy on a set of T-cell phenotypic parameters. Rats of both sexes were gonadectomised at the age of 1 month and peripheral blood and spleen T lymphocytes from non-gonadectomised and gonadectomised 3- and 11-month-old rats were examined for the expression of differentiation/activation (CD90/CD45RC) and immunoregulatory markers. Peripheral blood T lymphocytes from non-gonadectomised rats showed age-dependent sexual dimorphisms in (1) total count (lower in female than male 11-month-old rats); (2) CD4+:CD8 + cell ratio (higher in female than male rats of both ages); (3) the proportion of recent thymic emigrants in CD8 + T cells (lower in female than male 3-month-old rats) and (4) the proportions of mature naïve and memory/activated cells (irrespective of age, the proportion of naïve cells was higher, whereas that of memory/activated cells was lower in females). Gonadectomy influenced magnitudes or direction of these sex differences. Additionally, sex differences in peripheral blood T-lymphocyte parameters did not fully correspond to those observed in T-splenocyte parameters, suggesting the compartment-specific regulation of the major T-cell subpopulations' and their subsets' composition. Furthermore, there was no sexual dimorphism in the proportion of either CD25 + Foxp3 + cells among CD4 + or CD161+ (NKT) cells within CD8 + T lymphocytes. However, there was gonadal hormone-independent age-associated sexual dimorphism in the proportion of CD161 + cells (NKT cells) in CD8 + T splenocytes. Overall, the study revealed age-dependent variations in sexual dimorphisms in T-cell parameters relevant for immune response efficacy and showed that they are T-cell compartment-specific and partly gonadal hormone-related.
Collapse
|
18
|
Kourtzelis I, Rafail S. The dual role of complement in cancer and its implication in anti-tumor therapy. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:265. [PMID: 27563652 DOI: 10.21037/atm.2016.06.26] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic inflammation has been linked to the initiation of carcinogenesis, as well as the advancement of established tumors. The polarization of the tumor inflammatory microenvironment can contribute to either the control, or the progression of the disease. The emerging participation of members of the complement cascade in several hallmarks of cancer, renders it a potential target for anti-tumor treatment. Moreover, the presence of complement regulatory proteins (CRPs) in most types of tumor cells is known to impede anti-tumor therapies. This review focuses on our current knowledge of complement's potential involvement in shaping the inflammatory tumor microenvironment and its role on the regulation of angiogenesis and hypoxia. Furthermore, we discuss approaches using complement-based therapies as an adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stavros Rafail
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
19
|
Favreau M, Vanderkerken K, Elewaut D, Venken K, Menu E. Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma? Oncotarget 2016; 7:23128-40. [PMID: 26895468 PMCID: PMC5029615 DOI: 10.18632/oncotarget.7440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
Natural killer T (NKT) cells constitute a unique subset of innate-like T lymphocytes which differ from conventional T cells by recognizing lipid antigens presented by the non-polymorphic major histocompatibility complex (MHC) I-like molecule CD1d. Despite being a relatively infrequent population of lymphocytes, NKT cells can respond rapidly upon activation with glycosphingolipids by production of cytokines which aim to polarize different axes of the immune system. Due to their dual effector capacities, NKT cells can play a vital role in cancer immunity, infection, inflammation and autoimmune diseases. It is believed that modulation of their activity towards immune activation can be a useful tool in anti-tumor immunotherapeutic strategies. Here we summarize the characteristics of NKT cells and discuss their involvement in immunosurveillance. Furthermore, an update is given about their role and the progress that has been made in the field of multiple myeloma (MM). Finally, some challenges are discussed that are currently hampering further progress.
Collapse
Affiliation(s)
- Mérédis Favreau
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, VIB Inflammation Research Center and Ghent University, Ghent, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, VIB Inflammation Research Center and Ghent University, Ghent, Belgium
| | - Koen Venken
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, VIB Inflammation Research Center and Ghent University, Ghent, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
20
|
Invariant natural killer T cells in hematopoietic stem cell transplantation: killer choice for natural suppression. Bone Marrow Transplant 2016; 51:629-37. [DOI: 10.1038/bmt.2015.335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 11/08/2022]
|
21
|
Laganà AS, Triolo O, Salmeri FM, Granese R, Palmara VI, Ban Frangež H, Vrtčnik Bokal E, Sofo V. Natural Killer T cell subsets in eutopic and ectopic endometrium: a fresh look to a busy corner. Arch Gynecol Obstet 2016; 293:941-9. [DOI: 10.1007/s00404-015-4004-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022]
|
22
|
Liu D, Staveley-O’Carroll KF, Li G. Immune-based Therapy Clinical Trials in Hepatocellular Carcinoma. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2015; 6:376. [PMID: 26877890 PMCID: PMC4750497 DOI: 10.4172/2155-9899.1000376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality and continues to increase. Current standard of care for patients with HCC only provides limited therapeutic benefit. Development of innovative strategies is urgently needed. Experience with immunotherapy in HCC is quite early, but rapidly rise in the recent 15 years. Multifaceted immune-based approaches have shown efficacy in achieving disease regression, representing the most promising new treatment approach. Here, we classify the ongoing or completed clinical trials in HCC in terms of the immune strategies to be used and assess their clinical outcomes. The generated information may be helpful in the design of future immune-based therapies for achieving ideal tumor control and maximizing anti-tumor immunity.
Collapse
Affiliation(s)
- Dai Liu
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
23
|
Antitumor Responses of Invariant Natural Killer T Cells. J Immunol Res 2015; 2015:652875. [PMID: 26543874 PMCID: PMC4620262 DOI: 10.1155/2015/652875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/26/2015] [Indexed: 01/18/2023] Open
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that were first described in the late 1980s. Since their initial description, numerous studies have collectively shed light on their development and effector function. These studies have highlighted the unique requirements for the activation of these lymphocytes and the functional responses that distinguish these cells from other effector lymphocyte populations such as conventional T cells and NK cells. This body of literature suggests that NKT cells play diverse nonredundant roles in a number of disease processes, including the initiation and propagation of airway hyperreactivity, protection against a variety of pathogens, development of autoimmunity, and mediation of allograft responses. In this review, however, we focus on the role of a specific lineage of NKT cells in antitumor immunity. Specifically, we describe the development of invariant NKT (iNKT) cells and the factors that are critical for their acquisition of effector function. Next, we delineate the mechanisms by which iNKT cells influence and modulate the activity of other immune cells to directly or indirectly affect tumor growth. Finally, we review the successes and failures of clinical trials employing iNKT cell-based immunotherapies and explore the future prospects for the use of such strategies.
Collapse
|
24
|
Wu N, Zhang XY, Huang B, Zhang N, Zhang XJ, Guo X, Chen XL, Zhang Y, Wu H, Li S, Li AH, Zhang YA. Investigating the potential immune role of fish NCAMs: Molecular cloning and expression analysis in mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2015; 46:765-777. [PMID: 26277647 DOI: 10.1016/j.fsi.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
The immune role of NCAMs has been revealed in mammals, yet there is no such report in fish. Hence, we analyzed the molecular characterizations and immune-associated expression patterns of NCAMs in mandarin fish. Three NCAM members, named mfNCAM1a, mfNCAM1b and mfNCAM2, were identified. Among the cDNA sequences of mfNCAMs, AU-rich elements in the 3' UTRs of mfNCAM1b and mfNCAM2 as well as VASE sequences in the fourth Ig-like domain-encoding regions of mfNCAM1a and mfNCAM1b were discovered. Moreover, the syntenic analysis suggested that the duplication of NCAM1 is fish-specific. At mRNA and protein levels, the expression analyses revealed that mfNCAMs existed in both systemic and mucosal immune tissues, and located within lymphoid cells. Upon stimulated either by LPS or poly I:C, the expression level of mfNCAM1a was significantly up-regulated in head kidney, spleen, liver, and gut, whereas mfNCAM1b only in head kidney and liver, and mfNCAM2 only in liver. Additionally, the cells coexpressed mfNCAM1 and mfNCCRP-1 might imply the equivalents to mammalian NK cells. Our finding firstly demonstrates the member-specific immune-related tissue expression pattern and immune activity for fish NCAMs. Current data indicate that mfNCAM2 has little immune activity, while the immune activity of mfNCAM1a exists in more tissues than mfNCAM1b, and mfNCAM1a may tend to respond more actively to viral while mfNCAM1b to bacterial stimulants. Additionally, NCAM1b should be a fish-specific member with unique immune function, judging from its different expression pattern, immune activity as well as phylogenetic relationship to mfNCAM1a.
Collapse
Affiliation(s)
- Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Huang
- College of Fisheries, Jimei University, Xiamen 361021, China
| | - Nu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Shanghai Ocean University, Shanghai 201306, China
| | - Xia Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 4302231, China
| | - Xiao-Ling Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Han Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ai-Hua Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
25
|
Neumann S, Young K, Compton B, Anderson R, Painter G, Hook S. Synthetic TRP2 long-peptide and α-galactosylceramide formulated into cationic liposomes elicit CD8+ T-cell responses and prevent tumour progression. Vaccine 2015; 33:5838-5844. [PMID: 26363382 DOI: 10.1016/j.vaccine.2015.08.083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 12/22/2022]
Abstract
The lipid antigen α-galactosylceramide (α-GalCer) is a potent activator of invariant natural killer T-cells (iNKT cells) and can stimulate cytotoxic and anti-tumour immune responses. However optimal responses appear to be induced by α-GalCer when cell-based vaccines are delivered intravenously. Here we investigated if co-delivery of protein and peptide antigens along with α-GalCer in a liposomal formulation could stimulate therapeutic anti-tumour immune responses. Cationic liposomes were inherently immune-stimulatory and induced cytotoxic immune responses when delivered both by intravenous and subcutaneous injection. However, only vaccine delivered intravenously stimulated therapeutic anti-tumour immune responses to a peptide antigen. Surface modification with polyethylene glycol (PEG) did not improve immune responses to either intravenously or subcutaneously delivered vaccines. Immune responses to short and long peptide sequences (CD8 and CD4 epitopes) of the self-antigen tyrosinase-related protein 2 (TRP2) as a vaccine antigen, co-delivered with α-GalCer in either cationic liposomes or PBS were further examined. Enhanced production of IFN-γ, increased cytotoxic T-cell responses and tumour survival were observed when a long TRP2-peptide was delivered with α-GalCer in cationic liposomes.
Collapse
Affiliation(s)
- Silke Neumann
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Katie Young
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Benji Compton
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone, 5046 Wellington, New Zealand
| | - Regan Anderson
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone, 5046 Wellington, New Zealand
| | - Gavin Painter
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone, 5046 Wellington, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
26
|
Dowds CM, Blumberg RS, Zeissig S. Control of intestinal homeostasis through crosstalk between natural killer T cells and the intestinal microbiota. Clin Immunol 2015; 159:128-33. [PMID: 25988859 PMCID: PMC4817350 DOI: 10.1016/j.clim.2015.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 02/08/2023]
Abstract
The human host and the intestinal microbiota co-exist in a mutually beneficial relationship, which contributes to host and microbial metabolism as well as maturation of the host's immune system, among many other pathways (Tremaroli and Backhed, 2012; Hooper et al., 2012). At mucosal surfaces, and particularly in the intestine, the commensal microbiota provides 'colonization resistance' to invading pathogens and maintains homeostasis through microbial regulation of mucosal innate and adaptive immunity (Renz et al., 2012). Recent evidence suggests that natural killer T cells (NKT cells), a subgroup of lipid-reactive T cells, play central roles in bidirectional interactions between the host and the commensal microbiota, which govern intestinal homeostasis and prevent inflammation. Here, we provide a brief overview of recently identified pathways of commensal microbial regulation of NKT cells, discuss feedback mechanisms of NKT cell-dependent control of microbial colonization and composition, and highlight the critical role of host-microbial cross-talk for prevention of NKT cell-dependent mucosal inflammation.
Collapse
Affiliation(s)
- C Marie Dowds
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany; Department of Medicine I, University Medical Center Dresden, Technical University Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany.
| |
Collapse
|
27
|
Nakamura T, Kuroi M, Harashima H. Influence of Endosomal Escape and Degradation of α-Galactosylceramide Loaded Liposomes on CD1d Antigen Presentation. Mol Pharm 2015; 12:2791-9. [PMID: 26107189 DOI: 10.1021/mp500704e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alpha-galactosylceramide (GC), a lipid antigen present on CD1d molecules, is a unique adjuvant that enables a strong antitumor effect to be induced via activation of natural killer T cells. We previously reported that a liposomal formulation of GC significantly enhanced GC presentation via CD1d and antitumor immunity. However, the influence of the intracellular fate of liposomes controlled by the lipid composition on GC presentation using GC-loaded liposomes (GC-Lip) remains unclear. In this study, we prepared a GC-Lip formulation by incorporating dioleoyl-phosphatidylethanolamine (DOPE)/cholesterol, egg phosphatidylcholine (EPC)/cholesterol, and distearoyl phosphocholine (DSPC)/cholesterol, and investigated the relationship between the intracellular trafficking of GC-Lip and GC presentation in antigen-presenting cells. When GC-Lip was prepared using DOPE, a fusogenic lipid, the endosomal escape of liposomes was enhanced, resulting in a decrease in GC presentation of CD1d, compared to the EPC based GC-Lip (EPC/GC-Lip). The stability of liposomes in endosomes/lysosomes had no influence on GC presentation. The DSPC based GC-Lip (DSPC/GC-Lip) induced GC presentation without any detectable degradation in liposomal structure, although the EPC/GC-Lip induced GC presentation with degradation of liposomal structure. The efficiency of GC presentation between EPC/GC-Lip and DSPC/GC-Lip was comparable. These GC presentations that were independent of the degradation of liposomes were dominated by saposins, sphingolipid activator proteins. Our findings reveal that GC presentation on CD1d from the fluid liposomes involves the action of saposins, regardless of whether liposome degradation occurs. This insight can be of use in terms of developing GC-Lip formulation for efficient GC presentation.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Moeka Kuroi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
28
|
Gao Y, Williams AP. Role of Innate T Cells in Anti-Bacterial Immunity. Front Immunol 2015; 6:302. [PMID: 26124758 PMCID: PMC4463001 DOI: 10.3389/fimmu.2015.00302] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023] Open
Abstract
Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 h) upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely, invariant NKT cells, mucosal associated invariant T cells, and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1, and CD1a. They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review, we focus on the functional properties of these three innate T cell populations and how they are purposed for antimicrobial defense. Furthermore, we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly, we speculate on future roles of these cell types in therapeutic settings such as vaccination.
Collapse
Affiliation(s)
- Yifang Gao
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK
| | - Anthony P Williams
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK ; Wessex Investigational Sciences Hub (WISH) Laboratory, Department of Allergy, Asthma and Clinical Immunology, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
29
|
Filatenkov A, Baker J, Mueller AMS, Kenkel J, Ahn GO, Dutt S, Zhang N, Kohrt H, Jensen K, Dejbakhsh-Jones S, Shizuru JA, Negrin RN, Engleman EG, Strober S. Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions. Clin Cancer Res 2015; 21:3727-39. [PMID: 25869387 DOI: 10.1158/1078-0432.ccr-14-2824] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/15/2015] [Indexed: 01/19/2023]
Abstract
PURPOSE The goals of the study were to elucidate the immune mechanisms that contribute to desirable complete remissions of murine colon tumors treated with single radiation dose of 30 Gy. This dose is at the upper end of the ablative range used clinically to treat advanced or metastatic colorectal, liver, and non-small cell lung tumors. EXPERIMENTAL DESIGN Changes in the tumor immune microenvironment of single tumor nodules exposed to radiation were studied using 21-day (>1 cm in diameter) CT26 and MC38 colon tumors. These are well-characterized weakly immunogenic tumors. RESULTS We found that the high-dose radiation transformed the immunosuppressive tumor microenvironment resulting in an intense CD8(+) T-cell tumor infiltrate, and a loss of myeloid-derived suppressor cells (MDSC). The change was dependent on antigen cross-presenting CD8(+) dendritic cells, secretion of IFNγ, and CD4(+)T cells expressing CD40L. Antitumor CD8(+) T cells entered tumors shortly after radiotherapy, reversed MDSC infiltration, and mediated durable remissions in an IFNγ-dependent manner. Interestingly, extended fractionated radiation regimen did not result in robust CD8(+) T-cell infiltration. CONCLUSIONS For immunologically sensitive tumors, these results indicate that remissions induced by a short course of high-dose radiotherapy depend on the development of antitumor immunity that is reflected by the nature and kinetics of changes induced in the tumor cell microenvironment. These results suggest that systematic examination of the tumor immune microenvironment may help in optimizing the radiation regimen used to treat tumors by adding a robust immune response.
Collapse
Affiliation(s)
- Alexander Filatenkov
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| | - Jeanette Baker
- Division of Blood and Bone Marrow Transplantation, Department of Medicine, Stanford University, School of Medicine, Stanford, California
| | - Antonia M S Mueller
- Division of Blood and Bone Marrow Transplantation, Department of Medicine, Stanford University, School of Medicine, Stanford, California
| | - Justin Kenkel
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - G-One Ahn
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suparna Dutt
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Nigel Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Holbrook Kohrt
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Kent Jensen
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Sussan Dejbakhsh-Jones
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Judith A Shizuru
- Division of Blood and Bone Marrow Transplantation, Department of Medicine, Stanford University, School of Medicine, Stanford, California
| | - Robert N Negrin
- Division of Blood and Bone Marrow Transplantation, Department of Medicine, Stanford University, School of Medicine, Stanford, California
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Samuel Strober
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
30
|
Bi J, Wang J, Zhou K, Wang Y, Fang M, Du Y. Synthesis and Biological Activities of 5-Thio-α-GalCers. ACS Med Chem Lett 2015; 6:476-80. [PMID: 25941558 DOI: 10.1021/acsmedchemlett.5b00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/22/2023] Open
Abstract
NKT cells, a unique subset of T cells that recognizes glycolipid antigens presented by CD1d molecules, are believed to produce key cytokines of both Th1 and Th2 T cells and are thus involved in the control of several types of immune response. As an active glycolipid antigen having α-galactosyl ceramide core structure, KRN7000 showed promising immunostimulation activity and was selected as an anticancer drug candidate for further clinical application. In this report, three new KRN7000 structural analogues were designed and synthesized, in which the ring oxygen of the galactopyranose residue is replaced by a sulfur atom along with the variation on the lipid chain. Their abilities for stimulating mouse NKT cells to produce IFN-γ and IL-4 were evaluated both in vivo and in vitro.
Collapse
Affiliation(s)
- Jingjing Bi
- State
Key Laboratory of Environmental Chemistry and Eco-toxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Jing Wang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Zhou
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuancheng Wang
- State
Key Laboratory of Environmental Chemistry and Eco-toxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Fang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuguo Du
- State
Key Laboratory of Environmental Chemistry and Eco-toxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
31
|
MATYSZEWSKI ARTUR, CZARNECKA ANNAM, SOLAREK WOJCIECH, KORZEŃ PIOTR, SAFIR ILANJ, KUKWA WOJCIECH, SZCZYLIK CEZARY. Molecular basis of carcinogenesis in diabetic patients (Review). Int J Oncol 2015; 46:1435-43. [DOI: 10.3892/ijo.2015.2865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/10/2014] [Indexed: 11/05/2022] Open
|
32
|
Abstract
Chronic inflammation including B-cell activation is commonly observed in both inherited (Gaucher disease [GD]) and acquired disorders of lipid metabolism. However, the cellular mechanisms underlying B-cell activation in these settings remain to be elucidated. Here, we report that β-glucosylceramide 22:0 (βGL1-22) and glucosylsphingosine (LGL1), 2 major sphingolipids accumulated in GD, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT) cells. Human βGL1-22- and LGL1-reactive CD1d tetramer-positive T cells have a distinct T-cell receptor usage and genomic and cytokine profiles compared with the classical type I NKT cells. In contrast to type I NKT cells, βGL1-22- and LGL1-specific NKT cells constitutively express T-follicular helper (TFH) phenotype. Injection of these lipids leads to an increase in respective lipid-specific type II NKT cells in vivo and downstream induction of germinal center B cells, hypergammaglobulinemia, and production of antilipid antibodies. Human βGL1-22- and LGL1-specific NKT cells can provide efficient cognate help to B cells in vitro. Frequency of LGL1-specific T cells in GD mouse models and patients correlates with disease activity and therapeutic response. Our studies identify a novel type II NKT-mediated pathway for glucosphingolipid-mediated dysregulation of humoral immunity and increased risk of B-cell malignancy observed in metabolic lipid disorders.
Collapse
|
33
|
Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 2014; 10:e1004300. [PMID: 25299581 PMCID: PMC4192596 DOI: 10.1371/journal.ppat.1004300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-conventional T lymphocytes constitute a special arm of the immune system and act as sentinels against pathogens at mucosal surfaces. These non-conventional T cells (including mucosal-associated invariant T [MAIT] cells, gamma delta [γδ] T cells, and natural killer T [NKT] cells) display several innate cell-like features and are rapidly activated by the recognition of conserved, stress-induced, self, and microbial ligands. Here, we review the role of non-conventional T cells during respiratory infections, with a particular focus on the encapsulated extracellular pathogen Streptococcus pneumoniae, the leading cause of bacterial pneumonia worldwide. We consider whether MAIT cells, γδ T cells, and NKT cells might offer opportunities for preventing and/or treating human pneumococcus infections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
34
|
Thakur MS, Khurana A, Kronenberg M, Howell AR. Synthesis of a 2"-deoxy-β-GalCer. Molecules 2014; 19:10090-102. [PMID: 25014535 PMCID: PMC4409828 DOI: 10.3390/molecules190710090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022] Open
Abstract
Structural studies of ternary complexes of CD1d/glycosyl ceramides/iNKT cells and CD1d/sulfatide/sulfatide reactive Type II NKT cells have shown how the polar moieties on the glycolipids interact with both the antigen presenting protein (CD1d) and the T cell receptors. However, these structures alone do not reveal the relative importance of these interactions. This study focuses on the synthesis of the previously unknown 2"-deoxy-β-galactosyl ceramide 2. This glycolipid is also evaluated for its ability to stimulate iNKT cells and sulfatide-reactive Type II NKT cells.
Collapse
Affiliation(s)
- Meena S Thakur
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd., Storrs, CT 06269, USA
| | - Archana Khurana
- La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Mitchell Kronenberg
- La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd., Storrs, CT 06269, USA.
| |
Collapse
|
35
|
Lepore M, de Lalla C, Gundimeda SR, Gsellinger H, Consonni M, Garavaglia C, Sansano S, Piccolo F, Scelfo A, Häussinger D, Montagna D, Locatelli F, Bonini C, Bondanza A, Forcina A, Li Z, Ni G, Ciceri F, Jenö P, Xia C, Mori L, Dellabona P, Casorati G, De Libero G. A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. ACTA ACUST UNITED AC 2014; 211:1363-77. [PMID: 24935257 PMCID: PMC4076585 DOI: 10.1084/jem.20140410] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c(+) acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c(+) human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy.
Collapse
Affiliation(s)
- Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - S Ramanjaneyulu Gundimeda
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Heiko Gsellinger
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Garavaglia
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sebastiano Sansano
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Francesco Piccolo
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Scelfo
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniel Häussinger
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Daniela Montagna
- Laboratorio di Immunologia, Dipartimento di Pediatria, Università di Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Bambino Gesù Hospital, 00165 Rome, Italy
| | - Chiara Bonini
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Attilio Bondanza
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Forcina
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Zhiyuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guanghui Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Fabio Ciceri
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paul Jenö
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Chengfeng Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore 138648
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore 138648
| |
Collapse
|
36
|
Guo W, Dong A, Xing C, Lin X, Pan X, Lin Y, Zhu B, He M, Yao RX. CD1d levels in peripheral blood of patients with acute myeloid leukemia and acute lymphoblastic leukemia. Oncol Lett 2014; 8:825-830. [PMID: 25009659 PMCID: PMC4081415 DOI: 10.3892/ol.2014.2208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 05/07/2014] [Indexed: 01/16/2023] Open
Abstract
The antitumor effect of natural killer T cells has been reported in several studies analyzing the expression of CD1d on antigen-presenting cells (APCs). Therefore, the present study questioned whether APCs may be abnormal in the peripheral blood (PB) of acute leukemia (AL) patients, particularly the levels of CD1d. To improve the understanding of the role of CD1d on APCs, the levels of CD1d on monocytes were analyzed in healthy controls, AL patients and AL patients with complete remission (CR). In addition, the correlation between the number of CD3+CD56+ T lymphocytes and levels of CD1d on monocytes was analyzed. Flow cytometry was used to determine the levels of CD1d on monocytes and lymphocytes. A significant decrease was observed in the levels of CD1d on monocytes in the PB of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients compared with the healthy controls. Simultaneously, significantly different levels of CD1d on monocytes were identified between the CR-AML and the CR-ALL patients; the levels of CD1d on monocytes remained low in the CR-AML patients, while the levels of CD1d on monocytes recovered in the CR-ALL patients. A significantly negative correlation was observed between the number of CD3+CD56+ T lymphocytes and the levels of CD1d on monocytes in AL patients. However, a significantly positive correlation was identified between the cytotoxicity of the CD3+CD56+ T lymphocytes and the levels of CD1d on monocytes. These results suggested that the significantly low levels of CD1d on monocytes may contribute to AML and ALL progression. In addition, a significant correlation was observed between the levels of CD1d on monocytes and the number/cytotoxicity of CD3+CD56+ T lymphocytes in AML and ALL patients.
Collapse
Affiliation(s)
- Wenjian Guo
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Aishu Dong
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Chao Xing
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Xiaoji Lin
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Xiahui Pan
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Ying Lin
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Baoling Zhu
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Muqing He
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Rong-Xing Yao
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| |
Collapse
|
37
|
McKee SJ, Mattarollo SR, Leggatt GR. Immunosuppressive roles of natural killer T (NKT) cells in the skin. J Leukoc Biol 2014; 96:49-54. [DOI: 10.1189/jlb.4ru0114-001r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
38
|
Ondondo BO. Fallen angels or risen apes? A tale of the intricate complexities of imbalanced immune responses in the pathogenesis and progression of immune-mediated and viral cancers. Front Immunol 2014; 5:90. [PMID: 24639678 PMCID: PMC3944202 DOI: 10.3389/fimmu.2014.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/20/2014] [Indexed: 12/13/2022] Open
Abstract
Excessive immune responses directed against foreign pathogens, self-antigens, or commensal microflora can cause cancer establishment and progression if the execution of tight immuno-regulatory mechanisms fails. On the other hand, induction of potent tumor antigen-specific immune responses together with stimulation of the innate immune system is a pre-requisite for effective anti-tumor immunity, and if suppressed by the strong immuno-regulatory mechanisms can lead to cancer progression. Therefore, it is crucial that the inevitable co-existence of these fundamental, yet conflicting roles of immune-regulatory cells is carefully streamlined as imbalances can be detrimental to the host. Infection with chronic persistent viruses is characterized by severe immune dysfunction resulting in T cell exhaustion and sometimes deletion of antigen-specific T cells. More often, this is due to increased immuno-regulatory processes, which are triggered to down-regulate immune responses and limit immunopathology. However, such heightened levels of immune disruption cause a concomitant loss of tumor immune-surveillance and create a permissive microenvironment for cancer establishment and progression, as demonstrated by increased incidences of cancer in immunosuppressed hosts. Paradoxically, while some cancers arise as a consequence of increased immuno-regulatory mechanisms that inhibit protective immune responses and impinge on tumor surveillance, other cancers arise due to impaired immuno-regulatory mechanisms and failure to limit pathogenic inflammatory responses. This intricate complexity, where immuno-regulatory cells can be beneficial in certain immune settings but detrimental in other settings underscores the need for carefully formulated interventions to equilibrate the balance between immuno-stimulatory and immuno-regulatory processes.
Collapse
|
39
|
Dowds CM, Kornell SC, Blumberg RS, Zeissig S. Lipid antigens in immunity. Biol Chem 2014; 395:61-81. [PMID: 23999493 PMCID: PMC4128234 DOI: 10.1515/hsz-2013-0220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity.
Collapse
Affiliation(s)
- C. Marie Dowds
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Sabin-Christin Kornell
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham
and Women’s Hospital, Harvard Medical School, 75 Francis Street,
Boston, MA 02115, USA
| | - Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| |
Collapse
|
40
|
Zeissig S, Blumberg RS. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr Opin Immunol 2013; 25:690-6. [PMID: 24210255 PMCID: PMC3867259 DOI: 10.1016/j.coi.2013.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/09/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022]
Abstract
Natural Killer T (NKT) cells are a phenotypically and functionally diverse subset of T cells, which recognizes self- and microbial lipids in the context of the atypical MHC class I molecule CD1d. NKT cells exhibit potent effector functions and play critical roles in antimicrobial defense, cancer immunosurveillance and the modulation of immune-mediated disorders. Recent evidence has revealed extensive cross-regulation between the mucosal microbiota and CD1d as well as NKT cells. Microbial exposure at mucosal surfaces, particularly during early postnatal development, regulates NKT cell trafficking and function in the intestine and the lung and determines the susceptibility to NKT cell-mediated inflammatory disorders. Conversely, CD1d controls the composition of the intestinal microbiota; perhaps through the regulation of Paneth cell function. Here, we provide an overview of recent findings on the crosstalk between the microbiota and NKT cells and discuss the implication for mucosal homeostasis and its dysregulation in inflammatory disorders.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
42
|
Huen NY, Pang ALY, Tucker JA, Lee TL, Vergati M, Jochems C, Intrivici C, Cereda V, Chan WY, Rennert OM, Madan RA, Gulley JL, Schlom J, Tsang KY. Up-regulation of proliferative and migratory genes in regulatory T cells from patients with metastatic castration-resistant prostate cancer. Int J Cancer 2013; 133:373-82. [PMID: 23319273 PMCID: PMC3695702 DOI: 10.1002/ijc.28026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022]
Abstract
A higher frequency of regulatory T cells (Tregs) has been observed in peripheral blood mononuclear cells (PBMC) of patients with different types of solid tumors and hematological malignancies as compared to healthy donors. In prostate cancer patients, Tregs in PBMC have been shown to have increased suppressive function. Tumor-induced biological changes in Tregs may enable tumor cells to escape immunosurveillance. We performed genome-wide expression analyses comparing the expression levels of more than 38,500 genes in Tregs with similar suppressive activity, isolated from the peripheral blood of healthy donors and patients with metastatic castration-resistant prostate cancer (mCRPC). The differentially expressed genes in mCRPC Tregs are involved in cell cycle processes, cellular growth and proliferation, immune responses, hematological system development and function and the interleukin-2 (IL-2) and transforming growth factor-β (TGF-β) pathways. Studies revealed that the levels of expression of genes responsible for T-cell proliferation (C-FOS, C-JUN and DUSP1) and cellular migration (RGS1) were greater in Tregs from mCRPC patients as compared to values observed in healthy donors. Increased RGS1 expression in Tregs from mCRPC patients suggests a decrease in these Tregs' migratory ability. In addition, the higher frequency of CD4(+) CD25(high) CD127(-) Tregs in the peripheral blood of mCRPC patients may be the result of an increase in Treg proliferation capacity. Results also suggest that the alterations observed in gene expression profiles of Tregs in mCRPC patients may be part of the mechanism of tumor escape from host immune surveillance.
Collapse
Affiliation(s)
- Ngar-Yee Huen
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan Lap-Yin Pang
- Laboratory of Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Jo A. Tucker
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tin-Lap Lee
- Laboratory of Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Matteo Vergati
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chiara Intrivici
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vittore Cereda
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wai-Yee Chan
- Laboratory of Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Owen M. Rennert
- Laboratory of Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi A. Madan
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L. Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwong Y. Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
The nanoparticulation by octaarginine-modified liposome improves α-galactosylceramide-mediated antitumor therapy via systemic administration. J Control Release 2013; 171:216-24. [PMID: 23860186 DOI: 10.1016/j.jconrel.2013.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/30/2013] [Accepted: 07/07/2013] [Indexed: 11/21/2022]
Abstract
Alpha-galactosylceramide (αGC), a lipid antigen present on CD1d molecules, is predicted to have clinical applications as a new class of adjuvant, because αGC strongly activates natural killer T (NKT) cells which produce large amounts of IFN-γ. Here, we incorporated αGC into stearylated octaarginine-modified liposomes (R8-Lip), our original delivery system developed for vaccines, and investigated the effect of nanoparticulation. Unexpectedly, the systemic administered R8-Lip incorporating αGC (αGC/R8-Lip) failed to improve the immune responses mediated by αGC compared with soluble αGC in vivo, although αGC/R8-Lip drastically enhanced αGC presentation on CD1d in antigen presenting cells in vitro. Thus, we optimized the αGC/R8-Lip in vivo to overcome this inverse correlation. In optimization in vivo, we found that size control of liposome and R8-modification were critical for enhancing the production of IFN-γ. The optimization led to the accumulation of αGC/R8-Lip in the spleen and a positive therapeutic effect against highly malignant B16 melanoma cells. The optimized αGC/R8-Lip also enhanced αGC presentation on CD1d in antigen presenting cells and resulted in an expansion in the population of NKT cells. Herein, we show that R8-Lip is a potent delivery system, and size control and R8-modification in liposomal construction are promising techniques for achieving systemic αGC therapy.
Collapse
|
44
|
Snyder-Cappione JE, Nixon DF, Chi JC, Nguyen MLT, Kirby CK, Milush JM, Koth LL. Invariant natural killer T (iNKT) cell exhaustion in sarcoidosis. Eur J Immunol 2013; 43:2194-205. [PMID: 23661497 DOI: 10.1002/eji.201243185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/27/2013] [Accepted: 05/03/2013] [Indexed: 01/23/2023]
Abstract
Invariant natural killer T (iNKT) cells are integral components of immune responses during many chronic diseases, yet their surface phenotypes, subset distribution, and polyfunctional capacity in this environment are largely unknown. Therefore, using flow cytometry, we determined iNKT cell phenotypic and functional characteristics in subjects with chronic inflammatory disease sarcoidosis and matched controls. We found that sarcoidosis subjects displayed lower iNKT-cell frequencies, which correlated with lung fibrosis, C-reactive protein levels, and other measures of clinical disease. The CD4(-) CD8(-) (double negative, DN) iNKT-cell population was selectively lower in diseased individuals and the remaining DN iNKT cells exhibited higher frequencies of the activation markers CD69 and CD56. Functionally, both total IFN-γ(+) and the dual-functional IFN-γ(+) TNF-α(+) iNKT cells were decreased in sarcoidosis subjects and these functional defects correlated with total iNKT-cell circulating frequencies. As the loss of polyfunctionality can reflect functional exhaustion, we measured the surface antigens programmed death-1 receptor and CD57 and found that levels inversely correlated with dual-functional iNKT-cell percentages. These findings reveal that, similar to traditional T cells, iNKT cells may also undergo functional exhaustion, and that circulating iNKT-cell frequencies reflect these defects. Programmed death-1 receptor antagonists may therefore be attractive therapeutic candidates for sarcoidosis and other iNKT-cell-mediated chronic diseases.
Collapse
Affiliation(s)
- Jennifer E Snyder-Cappione
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Jervis P, Polzella P, Wojno J, Jukes JP, Ghadbane H, Garcia
Diaz YR, Besra GS, Cerundolo V, Cox LR. Design, synthesis, and functional activity of labeled CD1d glycolipid agonists. Bioconjug Chem 2013; 24:586-94. [PMID: 23458425 PMCID: PMC3630740 DOI: 10.1021/bc300556e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/21/2013] [Indexed: 02/01/2023]
Abstract
Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR-α-GalCer-CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR-glycolipid-CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for attaching a label to a range of CD1d agonists. The flexibility of the synthetic strategy, and late-stage incorporation of the label, opens up the possibility of using this labeling approach to study the in vivo behavior of a wide range of CD1d agonists.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/chemistry
- Antigens, CD1d/drug effects
- Antigens, CD1d/immunology
- Cells, Cultured
- Cytokines/analysis
- Cytokines/biosynthesis
- Cytokines/immunology
- Drug Design
- Galactosylceramides/chemistry
- Galactosylceramides/immunology
- Galactosylceramides/pharmacology
- Humans
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Molecular Conformation
- Natural Killer T-Cells/chemistry
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Peter
J. Jervis
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Paolo Polzella
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Justyna Wojno
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - John-Paul Jukes
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Hemza Ghadbane
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Yoel R. Garcia
Diaz
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Vincenzo Cerundolo
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Liam R. Cox
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| |
Collapse
|
46
|
Hamzavi M, Tadbir AA, Rezvani G, Ashraf MJ, Fattahi MJ, Khademi B, Sardari Y, Jeirudi N. Tissue Expression, Serum and Salivary Levels of IL-10 in Patients with Head and Neck Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2013; 14:1681-5. [DOI: 10.7314/apjcp.2013.14.3.1681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
A novel function of adipocytes in lipid antigen presentation to iNKT cells. Mol Cell Biol 2012; 33:328-39. [PMID: 23149942 DOI: 10.1128/mcb.00552-12] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Systemic low-grade chronic inflammation has been intensively investigated in obese subjects. Recently, various immune cell types, such as macrophages, granulocytes, helper T cells, cytotoxic T cells, and B cells, have been implicated in the pathogenesis of adipose tissue inflammation. However, the roles of invariant natural killer T cells (iNKT cells) and the regulation of iNKT cell activity in adipose tissue are not thoroughly understood. Here, we demonstrated that iNKT cells were decreased in number in the adipose tissue of obese subjects. Interestingly, CD1d, a molecule involved in lipid antigen presentation to iNKT cells, was highly expressed in adipocytes, and CD1d-expressing adipocytes stimulated iNKT cell activity through physical interaction. iNKT cell population and CD1d expression were reduced in the adipose tissue of obese mice and humans compared to those of lean subjects. Moreover, iNKT cell-deficient Jα18 knockout mice became more obese and exhibited increased adipose tissue inflammation at the early stage of obesity. These data suggest that adipocytes regulate iNKT cell activity via CD1d and that the interaction between adipocytes and iNKT cells may modulate adipose tissue inflammation in obesity.
Collapse
|
48
|
Rhost S, Sedimbi S, Kadri N, Cardell SL. Immunomodulatory type II natural killer T lymphocytes in health and disease. Scand J Immunol 2012; 76:246-55. [PMID: 22724893 DOI: 10.1111/j.1365-3083.2012.02750.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Natural killer T (NKT) lymphocytes are αβ T cells activated by lipid-based ligands presented on the non-polymorphic CD1d-molecule. Type I NKT cells that carry an invariant Vα14 (in the mouse) or Vα24 (in humans) T cell receptor α-chain rearrangement have received significant attention for their involvement in a diversity of immune reactions. Their sister population, CD1d-restricted type II NKT cells, has been more difficult to study because of the lack of molecular markers that specify these cells. In the last few years, however, significant progress has been made, demonstrating that type II NKT cells have unique functions in immune responses to tumours and infections, in autoimmunity, obesity and graft-versus-host disease. Type II NKT cells appear more frequent than type I NKT cells in humans and accumulate in certain diseases such as ulcerative colitis, hepatitis and multiple myeloma. Recently, novel type II NKT cell ligands have been identified, and it is becoming clear that the type II NKT cell population may be oligoclonal. Here, we review the recent progress in the study of type II NKT cells, supporting the view that type II NKT cells may be attractive targets for immunotherapy.
Collapse
Affiliation(s)
- S Rhost
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
49
|
Pilones KA, Aryankalayil J, Demaria S. Invariant NKT cells as novel targets for immunotherapy in solid tumors. Clin Dev Immunol 2012; 2012:720803. [PMID: 23118781 PMCID: PMC3483734 DOI: 10.1155/2012/720803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/02/2012] [Accepted: 09/02/2012] [Indexed: 12/15/2022]
Abstract
Natural killer T (NKT) cells are a small population of lymphocytes that possess characteristics of both innate and adaptive immune cells. They are uniquely poised to respond rapidly to infection and inflammation and produce cytokines that critically shape the ensuing adaptive cellular response. Therefore, they represent promising therapeutic targets. In cancer, NKT cells are attributed a role in immunosurveillance. NKT cells also act as potent activators of antitumor immunity when stimulated with a synthetic agonist in experimental models. However, in some settings, NKT cells seem to act as suppressors and regulators of antitumor immunity. Here we briefly review current data supporting these paradoxical roles of NKT cells and their regulation. Increased understanding of the signals that determine the function of NKT cells in cancer will be essential to improve current strategies for NKT-cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karsten A. Pilones
- Department of Pathology, NYU School of Medicine, 550 First Avenue, MSB-521, New York, NY 10016, USA
| | - Joseph Aryankalayil
- Department of Pathology, NYU School of Medicine, 550 First Avenue, MSB-521, New York, NY 10016, USA
| | - Sandra Demaria
- Department of Pathology, NYU School of Medicine, 550 First Avenue, MSB-521, New York, NY 10016, USA
| |
Collapse
|
50
|
The dual role of inflammation in colon carcinogenesis. Int J Mol Sci 2012; 13:11071-11084. [PMID: 23109839 PMCID: PMC3472731 DOI: 10.3390/ijms130911071] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation characterizing patients with inflammatory bowel disease (IBD) represents a major risk factor for the development of colorectal cancer. Mechanisms underlying this neoplastic transformation are not fully understood though studies in experimental models of colon carcinogenesis suggest that inflammatory cell-derived cytokines either directly or indirectly stimulate the uncontrolled growth of cancer cells. Nevertheless, under specific inflammatory conditions, immune cells can boost an anti-tumor immune response with the down-stream effect of eliminating dysplastic and cancerous cells. This review outlines the beneficial and detrimental role of inflammation in colon carcinogenesis.
Collapse
|