1
|
Shibata S, Yamada K, Kon S. Carnosic acid inhibits integrin expression and prevents pulmonary metastasis of melanoma. Biosci Biotechnol Biochem 2025; 89:284-293. [PMID: 39577858 DOI: 10.1093/bbb/zbae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Carnosic acid is a naturally occurring, plant-derived polyphenolic abietane diterpene with antitumor properties. However, its underlying mechanisms are still unclear. Therefore, we investigated the effects of carnosic acid on lung metastasis in a murine melanoma model. C57BL/6 mice were intravenously injected with B16-BL6 cells, followed by carnosic acid treatment. Lung weights were recorded, and tumor cell colonies were counted at the end of the experiment. Integrin expression was evaluated using flow cytometry and cell adhesion assays. Lung weights were significantly lower in the carnosic acid group than in the control group, indicating the suppression of metastasis. Carnosic acid suppressed α4 integrin expression in B16-BL6 cells and inhibited α4 and α9 integrin-dependent cell adhesion. Thus, our data suggest that carnosic acid prevents lung metastasis, possibly by suppressing integrin expression. Our findings support the clinical application of carnosic acid as a potential natural antitumor agent, offering a complementary approach to conventional therapies.
Collapse
Affiliation(s)
- Sachi Shibata
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, Japan
| | - Kohei Yamada
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| |
Collapse
|
2
|
Pandey V, Khanal S, Shahi N, Parajuli R, Adhikari A, Pokharel YR. Anti-inflammatory and Anti-proliferative Role of Essential Oil of Leaves of Cleistocalyx operculatus (Roxb.) Merr. & Perry. Anticancer Agents Med Chem 2025; 25:232-243. [PMID: 39568110 DOI: 10.2174/0118715206304193240715043704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Phytochemicals have long remained an essential component of the traditional medicine system worldwide. Advancement of research in phytochemicals has led to the identification of novel constituents and metabolites from phytochemicals, performing various vital functions ranging from antimicrobial properties to anticarcinogenic roles. Cleistocalyx operculatus is traditionally used by local people to manage inflammation. In this study, we aim to extract and chemically profile the essential oil from the leaves of Cleistocalyx operculatus (Roxb.) Merr. & Perry and study of the anti-inflammatory and anti-proliferative role of essential oil. METHODS The hydro distillation method was used for the extraction of essential oil, and the GC-MS was applied for the chemical profiling. The percentage of cell viability was calculated using a crystal violet assay, colony formation assay was performed using Semiquantitative PCR, Propodium iodite staining was used for cell death assay, and Western blotting was used to determine antibodies and proteins. Schrodinger 2015 software was used for molecular docking. RESULTS Myrcene, a monoterpene, constitutes 56% of the oil and could be attributed to its anti-inflammatory potential. Treatment of LPS-challenged mouse macrophages RAW264.7 cells with essential oil resulted in a decline in the inflammatory markers, such as IL-1β, TNFα, iNOS, COX-2, and NFκB. Further, essential oil inhibited cancer PC-3, A431, A549, and MCF-7 cell lines at concentrations lower than normal PNT2 and HEK-293 cell lines. This decline in proliferative potential can be attributed to a decline in anti-apoptotic proteins, such as procaspase 3 and PARP, an increase in CKIs, such as p21, and a decline in the Akt signaling responsible for survival. CONCLUSION The essential oil of the plant Cleistocalyx operculatus may be a potential lead for anti-inflammatory and anti-proliferative function.
Collapse
MESH Headings
- Oils, Volatile/pharmacology
- Oils, Volatile/chemistry
- Oils, Volatile/isolation & purification
- Plant Leaves/chemistry
- Humans
- Cell Proliferation/drug effects
- Mice
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Animals
- Cell Survival/drug effects
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Structure-Activity Relationship
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/isolation & purification
- Molecular Structure
- RAW 264.7 Cells
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Vivek Pandey
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Sumnath Khanal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Nerina Shahi
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Rupak Parajuli
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Yuba Raj Pokharel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| |
Collapse
|
3
|
Bahrami A, Khalaji A, Bahri Najafi M, Sadati S, Raisi A, Abolhassani A, Eshraghi R, Khaksary Mahabady M, Rahimian N, Mirzaei H. NF-κB pathway and angiogenesis: insights into colorectal cancer development and therapeutic targets. Eur J Med Res 2024; 29:610. [PMID: 39702532 DOI: 10.1186/s40001-024-02168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Colorectal cancer (CRC) is currently ranked as the third most common type of cancer, contributing significantly to mortality and morbidity worldwide. Epigenetic and genetic changes occurred during CRC progression resulted in the cell proliferation, cancer progression, angiogenesis, and invasion. Angiogenesis is one of the crucial steps during cancer progression required for the delivery of essential nutrients to cancer cells and removes metabolic waste. During angiogenesis, different molecules are secreted from tumoral cells to trigger vascular formation including epidermal growth factor and the vascular endothelial growth factor (VEGF). The production and regulation of the secretion of these molecules are modulated by different subcellular pathways such as NF-κB. NF-κB is involved in regulation of different homeostatic pathways including apoptosis, cell proliferation, inflammation, differentiation, tumor migration, and angiogenesis. Investigation of different aspects of this pathway and its role in angiogenesis could provide a comprehensive overview about the underlying mechanisms and could be used for development of further therapeutic targets. In this review of literature, we comprehensively reviewed the current understanding and potential of NF-κB-related angiogenesis in CRC. Moreover, we explored the treatments that are based on the NF-κB pathway.
Collapse
Affiliation(s)
- Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Sadati
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Neda Rahimian
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Zhu Y, Kang N, Zhang L, Tao J, Xue W, Li H, Li Y, Zheng X, He W, Ma J. Targeting and degradation of OTUB1 by Erianin for antimetastasis in esophageal squamous cell carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155969. [PMID: 39566402 DOI: 10.1016/j.phymed.2024.155969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Metastasis is a major contributor to mortality in patients with esophageal squamous cell carcinoma (ESCC); effective treatment is currently lacking. Erianin, a bioactive ingredient of traditional Chinese medicine, Dendrobium chrysotoxum, has anti-tumor activity against multiple human tumors. However, the effect and associated underlying mechanism of Erianin on ESCC antimetastasis remain unclear. PURPOSE To investigate the anti-metastatic properties of Erianin in ESCC both in vitro and in vivo and associated molecular mechanisms. METHODS Wound healing assay, Transwell assay, CCK-8 assay, immunohistochemistry, and lung metastasis mouse model were carried out to examine ESCC cell migration and viability in vitro and in vivo. Drug affinity responsive target stability (DARTS), cellular thermal migration assay (CETSA), molecular docking, and Surface plasmon resonance (SPR) assay were used to confirm Erianin binding to ovarian tumor ubiquitin aldehyde-binding protein 1 (OTUB1) protein. Protein stability assay, cell transfection, and western blotting were used to confirm Erianin-mediated degradation of OTUB1 and Snail via the ubiquitin-proteasome pathway. qRT-PCR and western blotting were used to assess OTUB1expression in ESCC tissues. RESULTS Erianin suppressed the migration/invasion of ESCC cells without modulating cell viability in vitro and in vivo, bound to OTUB1 through DARTS, CETSA, and molecular docking, and SPR assay, and enhanced OTUB1 degradation via the ubiquitin-proteasome system. Moreover, Erianin inhibited the ESCC epithelial-mesenchymal transition by enhancing the ubiquitination and degradation of Snail via targeting OTUB1. CONCLUSION Erianin inhibited ESCC metastasis through ubiquitination and degradation of Snail via targeting OTUB1. Our findings suggest Erianin as a novel OTUB1 inhibitor for preventing ESCC metastasis.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ningning Kang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, PR China
| | - Li Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Jianju Tao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wen Xue
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Hui Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yingcan Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xucai Zheng
- Department of Head, Neck and Breast Surgery, the First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, PR China.
| | - Wei He
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Junting Ma
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
5
|
Batool A, Azizullah A, Ullah K, Shad S, Khan FU, Seleiman MF, Aziz T, Zeb U. Green synthesis of Zn-doped TIO 2 nanoparticles from Zanthoxylum armatum. BMC PLANT BIOLOGY 2024; 24:820. [PMID: 39215226 PMCID: PMC11365237 DOI: 10.1186/s12870-024-05525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Green synthesis is an easy, safe, and environmentally beneficial nanoparticle creation method. It is a great challenge to simultaneously improve the capping and stabilizing agent carrier separation efficiency of photocatalysts. Herein, Zn-doped Titanium dioxide (TiO2) nanoparticles with high exposure of 360 nm using a UV/visible spectrophotometer were prepared via a one-step hydrothermal decomposition method. A detailed analysis reveals that the electronic structures were modulated by Zn doping; thus, the responsive wavelength was extended to 600 nm, which effectively improved the visible light absorption of TiO2. We have optimized the different parameters like concentration, time, and temperature. The peak for TiO2 is located at 600 cm-1 in FTIR. A scanning electron microscope revealed that TiO2 has a definite shape and morphology. The synthesized Zn-doped TiO2NPs were applied against various pathogens to study their anti-bacterial potentials. The anti-bacterial activity of Zn-doped TiO2 has shown robust against two gram-ve bacteria (Salmonella and Escherichia coli) and two gram + ve bacteria (Staphylococcus epidermidis and Staphylococcus aureus). Synthesized Zn-doped TiO2 has demonstrated strong antifungal efficacy against a variety of fungi. Moreover, doping TiO2 nanoparticles with metal oxide greatly improves their characteristics; as a result, doped metal oxide nanoparticles perform better than doped and un-doped metal oxide nanoparticles. Compared to pure TiO2, Zn-doped TiO2 nanoparticles exhibit considerable applications including antimicrobial treatment and water purification.
Collapse
Affiliation(s)
- Amina Batool
- Department of Biology, Faculty of Biological and Biomedical Science, The University Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Azizullah Azizullah
- Department of Biology, Faculty of Biological and Biomedical Science, The University Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Kamran Ullah
- Department of Biology, Faculty of Biological and Biomedical Science, The University Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Salma Shad
- Department of Chemistry, The University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Farman Ullah Khan
- Department of Chemistry, University of Science and Technology Bannu, Khyber Pakhtunkhwa, 28100, Pakistan
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, 212013, China.
| | - Umar Zeb
- Department of Biology, Faculty of Biological and Biomedical Science, The University Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Wang Z, Li Q, Liang B. Hypoxia as a Target for Combination with Transarterial Chemoembolization in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2024; 17:1057. [PMID: 39204162 PMCID: PMC11357673 DOI: 10.3390/ph17081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Hypoxia is a hallmark of solid tumors, including hepatocellular carcinoma (HCC). Hypoxia has proven to be involved in multiple tumor biological processes and associated with malignant progression and resistance to therapy. Transarterial chemoembolization (TACE) is a well-established locoregional therapy for patients with unresectable HCC. However, TACE-induced hypoxia regulates tumor angiogenesis, energy metabolism, epithelial-mesenchymal transition (EMT), and immune processes through hypoxia-inducible factor 1 (HIF-1), which may have adverse effects on the therapeutic efficacy of TACE. Hypoxia has emerged as a promising target for combination with TACE in the treatment of HCC. This review summarizes the impact of hypoxia on HCC tumor biology and the adverse effects of TACE-induced hypoxia on its therapeutic efficacy, highlighting the therapeutic potential of hypoxia-targeted therapy in combination with TACE for HCC.
Collapse
Affiliation(s)
- Zizhuo Wang
- Hubei Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan 430022, China;
| | - Qing Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Bin Liang
- Hubei Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan 430022, China;
| |
Collapse
|
7
|
Huang X, Zeng J, Ruan S, Lei Z, Zhang J, Cao H. The use of matrine to inhibit osteosarcoma cell proliferation via the regulation of the MAPK/ERK signaling pathway. Front Oncol 2024; 14:1338811. [PMID: 39161382 PMCID: PMC11330765 DOI: 10.3389/fonc.2024.1338811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Matrine is an alkaloid extracted from Sophorus beans of the legume family, and it has significant effects and a variety of pharmacological activities. Osteosarcoma(OS) is a common malignant bone tumor that is characterized by high incidence and rapid progression. There have been some preliminary studies on the therapeutic effect of matrine on OS, but the specific mechanism remains unclear. Objective The aim of this study was to investigate the antitumor effect of matrine on HOS cells and the underlying molecular mechanism. Methods The effects of matrine on the proliferation, apoptosis and cell cycle progression of HOS cells were determined by CCK-8 assay, TUNEL assay and flow cytometry in vitro. Wound healing and Transwell invasion assays were used to observe the effect of matrine on the migration and invasion of HOS cells. The mechanism underlying the antitumor effect of matrine on HOS cells was investigated by Western blotting. Results Matrine significantly inhibited HOS cell proliferation, promoted HOS cell apoptosis, and arrested HOS cells in the G1 phase of the cell cycle. Both wound healing and Transwell invasion assays showed that matrine inhibited HOS cell migration and invasion. Western blotting results showed that matrine inhibited the activation of the MAPK/ERK signaling pathway. We found that matrine also downregulated Bcl-2 expression, which may be related to protein synthesis inhibition. Conclusion Matrine can inhibit the proliferation of HOS cells, arrest HOS cells in the G1 phase, and promote HOS cell apoptosis through the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Xincheng Huang
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zeng
- Department of Anesthesiology, Shiyan People’s Hospital, Shiyan, China
| | - Siyuan Ruan
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhuolin Lei
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jingyuan Zhang
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Hong Cao
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
8
|
Ghosh S, Das SK, Sinha K, Ghosh B, Sen K, Ghosh N, Sil PC. The Emerging Role of Natural Products in Cancer Treatment. Arch Toxicol 2024; 98:2353-2391. [PMID: 38795134 DOI: 10.1007/s00204-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata, 700064, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata, 700013, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
9
|
Yang J, Sun Q, Liu X, Yang Y, Rong R, Yan P, Xie Y. Targeting Notch signaling pathways with natural bioactive compounds: a promising approach against cancer. Front Pharmacol 2024; 15:1412669. [PMID: 39092224 PMCID: PMC11291470 DOI: 10.3389/fphar.2024.1412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Notch signaling pathway is activated abnormally in solid and hematological tumors, which perform essential functions in cell differentiation, survival, proliferation, and angiogenesis. The activation of Notch signaling and communication among Notch and other oncogenic pathways heighten malignancy aggressiveness. Thus, targeting Notch signaling offers opportunities for improved survival and reduced disease incidence. Already, most attention has been given to its role in the cancer cells. Recent research shows that natural bioactive compounds can change signaling molecules that are linked to or interact with the Notch pathways. This suggests that there may be a link between Notch activation and the growth of tumors. Here, we sum up the natural bioactive compounds that possess inhibitory effects on human cancers by impeding the Notch pathway and preventing Notch crosstalk with other oncogenic pathways, which provoke further study of these natural products to derive rational therapeutic regimens for the treatment of cancer and develop novel anticancer drugs. This review revealed Notch as a highly challenging but promising target in oncology.
Collapse
Affiliation(s)
- Jia Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Yang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Peiyu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
11
|
Rostkowska E, Poleszak E, Przekora A, Wójcik M, Typek R, Wojciechowska K, Dos Santos Szewczyk K. Novel Insights into Phaseolus vulgaris L. Sprouts: Phytochemical Analysis and Anti-Aging Properties. Molecules 2024; 29:3058. [PMID: 38999009 PMCID: PMC11243055 DOI: 10.3390/molecules29133058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Skin aging is an inevitable and intricate process instigated, among others, by oxidative stress. The search for natural sources that inhibit this mechanism is a promising approach to preventing skin aging. The purpose of our study was to evaluate the composition of phenolic compounds in the micellar extract of Phaseolus vulgaris sprouts. The results of a liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of thirty-two constituents, including phenolic acids, flavanols, flavan-3-ols, flavanones, isoflavones, and other compounds. Subsequently, the extract was assessed for its antioxidant, anti-inflammatory, anti-collagenase, anti-elastase, anti-tyrosinase, and cytotoxic properties, as well as for the evaluation of collagen synthesis. It was demonstrated that micellar extract from common bean sprouts has strong anti-aging properties. The performed WST-8 (a water-soluble tetrazolium salt) assay revealed that selected concentrations of extract significantly increased proliferation of human dermal fibroblasts compared to the control cells in a dose-dependent manner. A similar tendency was observed with respect to collagen synthesis. Our results suggest that micellar extract from Phaseolus vulgaris sprouts can be considered a promising anti-aging compound for applications in cosmetic formulations.
Collapse
Affiliation(s)
- Ewelina Rostkowska
- Student Research Group belonging to Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Ewa Poleszak
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (E.P.); (K.W.)
| | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland; (A.P.); (M.W.)
| | - Michał Wójcik
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland; (A.P.); (M.W.)
| | - Rafał Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031 Lublin, Poland;
| | - Katarzyna Wojciechowska
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (E.P.); (K.W.)
| | | |
Collapse
|
12
|
Capuozzo M, Santorsola M, Ianniello M, Ferrara F, Zovi A, Petrillo N, Castiello R, Fantuz MR, Ottaiano A, Savarese G. Innovative Drug Modalities for the Treatment of Advanced Prostate Cancer. Diseases 2024; 12:87. [PMID: 38785742 PMCID: PMC11119780 DOI: 10.3390/diseases12050087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate cancer, a prevalent malignancy affecting the prostate gland, is a significant global health concern. Androgen-deprivation therapy (ADT) has proven effective in controlling advanced disease, with over 50% of patients surviving at the 10-year mark. However, a diverse spectrum of responses exists, and resistance to ADT may emerge over time. This underscores the need to explore innovative treatment strategies for effectively managing prostate cancer progression. Ongoing research endeavors persist in unraveling the complexity of prostate cancer and fostering the development of biologic and innovative approaches, including immunotherapies and targeted therapies. This review aims to provide a valuable synthesis of the dynamic landscape of emerging drug modalities in this context. Interestingly, the complexities posed by prostate cancer not only present a formidable challenge but also serve as a model and an opportunity for translational research and innovative therapies in the field of oncology.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy; (M.C.); (F.F.)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Francesco Ferrara
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy; (M.C.); (F.F.)
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy;
| | - Nadia Petrillo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Rosa Castiello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Maria Rosaria Fantuz
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| |
Collapse
|
13
|
Alharbi WS, Alshehri AA, Ahmed TA, Shadab M, Almehmady AM, Alshabibi MA, Altamimi RM, El-Say KM. Enhancing the Antiproliferative Activity of Perillyl Alcohol against Glioblastoma Cell Lines through Synergistic Formulation with Natural Oils. Curr Pharm Des 2024; 30:1075-1084. [PMID: 38532602 DOI: 10.2174/0113816128293758240318080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Due to its volatility, photostability, and gastrointestinal toxicity, Perillyl Alcohol (POH), a monoterpenoid component of various plant species, is a chemotherapeutic drug with insufficient efficacy. Many naturally occurring bioactive compounds have well-known antiproliferative properties, including sefsol, jojoba, tea tree, and moringa oils. OBJECTIVE This study sought to develop an oil-based Self Nanoemulsifying Drug Delivery System (SNEDDS) using tween 80 as the surfactant and Dimethyl Sulfoxide (DMSO) or Polyethylene Glycol (PEG) 400 as the cosurfactant; the oils were used in a range of 10-20% to boost POH's anticancer efficacy. METHODS The formulations' size, charge, and impact on the viability of glioma cell lines, ANGM-CSS and A172, were evaluated. RESULTS The developed SNEDDS formulations ranged from 3 nm to 362 nm in size, with electronegative surface charges between 5.05 and 17.0 mV and polydispersity indices between 0.3 and 1.0. CONCLUSION The findings indicated that the antiproliferative effect of POH-loaded Nanoemulsion (NE) could be used as a possible anticancer therapy for glioblastoma in vitro, particularly when paired with the tested natural oils. Before asserting that this delivery technique is appropriate for glioblastoma therapy, additional in vitro and in vivo investigations are required.
Collapse
Affiliation(s)
- Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Shadab
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal A Alshabibi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Reem M Altamimi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Nejatollahi F, Nadimi E, Noorafshan A, Moazen S, Alizadeh AM, Khalighfard S, Sahebkar A. Reduced Tumor Volume and Increased Necrosis of Human Breast Tumor Xenograft in Mice Pretreated by a Cocktail of Three Specific Anti-HER2 scFvs. Curr Protein Pept Sci 2024; 25:409-418. [PMID: 38018211 DOI: 10.2174/0113892037269645231031095145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE We aimed to assess the effects of a cocktail comprising three specific anti- HER2 scFvs on breast tumor formation in a xenograft mouse model and to evaluate quantitative changes in the tumor using stereological analysis. METHODS Three specific anti-HER2 phage antibodies were produced from a scFv-library using phage display technology. The cell binding capacities of the antibodies were assessed via FACS analysis. Soluble forms of the antibodies were prepared by infecting HB2151-E. coli cells and purified using a centrifugal ultrafiltration method. The purification process was evaluated by SDSPAGE analysis. Two forms of scFv cocktails were prepared, soluble scFv and phage-scFv cocktail, which contained an equal amount/phage of each of the three antibodies. Inbred female BALB/c mice were pretreated with 5 and 20 mg/kg of the soluble scFv cocktail and 1011 phage-scFv cocktail/ kg. The mice were then injected with 2×106 SKBR-3 human breast cancer cells. Total tumor, inflammatory and non-inflammatory volumes were estimated using the Cavalieri principle after preparing photomicrograph slides. RESULTS The anti-HER2 scFvs showed significantly higher binding to SKBR-3 cells compared to the isotype control. SDS-PAGE analysis confirmed the high purification of the scFvs. Stereological analysis revealed that the group pretreated with 20 mg/kg of the soluble scFv cocktail exhibited the highest reductions in total tumor volume, non-inflammatory volume, and inflammatory volume, with reductions of 73%, 78%, and 72%, respectively, compared to PBS-pretreated mice (P-value < 0.0001). The volumetric ratio of necrotic tissue to total tumor volume increased by 2.2-fold and 2- fold in the 20 mg/kg of soluble scFv cocktail and phage-scFv cocktail groups, respectively, compared to the PBS-treated mice (P-value < 0.05). CONCLUSION Pre-treatment with a 20 mg/kg anti-HER2 scFv cocktail resulted in a significant reduction in tumor volume and increased necrotic area in a human breast cancer xenograft model, indicating the remarkable anti-tumor effect of the cocktail in vivo.
Collapse
Affiliation(s)
- Foroogh Nejatollahi
- Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Department of Neuroscience, City University in Canada, Vancouver, BC, Canada
| | - Setareh Moazen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver BC, Canada
| | | | - Solmaz Khalighfard
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Ayoub EA, Azoubi Z, Nadia Z, Assia M, Mohammed M. Relationships of Prodiginins Mechanisms and Molecular Structures to their Antiproliferative Effects. Anticancer Agents Med Chem 2024; 24:1383-1395. [PMID: 39113301 DOI: 10.2174/0118715206314212240805105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 10/26/2024]
Abstract
The Prodiginins (PGs) natural pigments are secondary metabolites produced by a broad spectrum of gram-negative and gram-positive bacteria, notably by species within the Serratia and Streptomyces genera. These compounds exhibit diverse and potent biological activities, including anticancer, immunosuppressive, antimicrobial, antimalarial, and antiviral effects. Structurally, PGs share a common tripyrrolic core but possess variable side chains and undergo cyclization, resulting in structural diversity. Studies have investigated their antiproliferative effects on various cancer cell lines, with some PGs advancing to clinical trials for cancer treatment. This review aims to illuminate the molecular mechanisms underlying PG-induced apoptosis in cancer cells and explore the structure-activity relationships pertinent to their anticancer properties. Such insights may serve as a foundation for further research in anticancer drug development, potentially leading to the creation of novel, targeted therapies based on PGs or their derivatives.
Collapse
Affiliation(s)
- El Abbassi Ayoub
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Zineb Azoubi
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Zougagh Nadia
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Mouslim Assia
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Menggad Mohammed
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| |
Collapse
|
16
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
17
|
Ullah A, Razzaq A, Zhou C, Ullah N, Shehzadi S, Aziz T, Alfaifi MY, Elbehairi SEI, Iqbal H. Biological Significance of EphB4 Expression in Cancer. Curr Protein Pept Sci 2024; 25:244-255. [PMID: 37909437 DOI: 10.2174/0113892037269589231017055642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Eph receptors and their Eph receptor-interacting (ephrin) ligands comprise a vital cell communication system with several functions. In cancer cells, there was evidence of bilateral Eph receptor signaling with both tumor-suppressing and tumor-promoting actions. As a member of the Eph receptor family, EphB4 has been linked to tumor angiogenesis, growth, and metastasis, which makes it a viable and desirable target for drug development in therapeutic applications. Many investigations have been conducted over the last decade to elucidate the structure and function of EphB4 in association with its ligand ephrinB2 for its involvement in tumorigenesis. Although several EphB4-targeting drugs have been investigated, and some selective inhibitors have been evaluated in clinical trials. This article addresses the structure and function of the EphB4 receptor, analyses its possibility as an anticancer therapeutic target, and summarises knowledge of EphB4 kinase inhibitors. To summarise, EphB4 is a difficult but potential treatment option for cancers.
Collapse
Affiliation(s)
- Asmat Ullah
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chuanzan Zhou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Najeeb Ullah
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, 818 Nelson Ave, 71272, USA
| | - Somia Shehzadi
- University Institute of Medical Laboratory Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Tariq Aziz
- Westlake University, School of Engineering, Hangzhou, Zhejiang Province, 310024, China
| | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | | | - Haroon Iqbal
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
18
|
Raghav RS, Verma S, Monika. A Comprehensive Review on Potential Chemical and Herbal Permeation Enhancers Used in Transdermal Drug Delivery Systems. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:21-34. [PMID: 38258784 DOI: 10.2174/0126673878272043240114123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 01/24/2024]
Abstract
Using skin patches to deliver drugs is dependable and doesn't have the same issues as permeation enhancers, which help drugs get through the skin but struggle because of the skin's natural barrier. Strategies are required to increase topical bioavailability to enhance drug absorption. Natural compounds offer a promising solution by temporarily reducing skin barrier resistance and improving drug absorption. Natural substances allow a wider variety of medications to be distributed through the stratum corneum, offering a dependable approach to enhancing transdermal drug delivery. Natural substances have distinct advantages as permeability enhancers. They are pharmacologically effective and safe, inactive, non-allergenic, and non-irritating. These characteristics ensure their suitability for use without causing adverse effects. Natural compounds are readily available and well tolerated by the body. Studies investigating the structure-activity relationship of natural chemicals have demonstrated significant enhancer effects. By understanding the connection between chemical composition and enhancer activity, researchers can identify effective natural compounds for improving drug penetration. In conclusion, current research focuses on utilizing natural compounds as permeability enhancers in transdermal therapy systems. These substances offer safety, non-toxicity, pharmacological inactivity, and non-irritation. Through structure-activity relationship investigations, promising advancements have been made in enhancing drug delivery. Using natural compounds holds enormous potential for improving the penetration of trans-dermally delivered medications.
Collapse
Affiliation(s)
- Rajat Singh Raghav
- Department of Pharmacy, Faculty of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Sushma Verma
- Department of Pharmacy, Faculty of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Monika
- Department of Pharmacy, Faculty of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| |
Collapse
|
19
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
20
|
Paul K, Gowda BHJ, Hani U, Chandan RS, Mohanto S, Ahmed MG, Ashique S, Kesharwani P. Traditional Uses, Phytochemistry, and Pharmacological Activities of Coleus amboinicus: A Comprehensive Review. Curr Pharm Des 2024; 30:519-535. [PMID: 38321896 DOI: 10.2174/0113816128283267240130062600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Coleus amboinicus Benth., also known as Plectranthus amboinicus (Lour.) Spreng., is a perennial plant from the Lamiaceae family commonly found in tropical and warm regions of Africa, Asia, and Australia. Folk medicine commonly employs this remedy to address various ailments, including but not limited to asthma, headaches, skin disorders, coughs, constipation, colds, and fevers. Several phytoconstituents from various phytochemical classes, such as phenolics, terpenoids, phenolic acids, flavonoids, flavones, and tannins, have been identified in Coleus amboinicus up to the present time. Numerous pharmacological properties of Coleus amboinicus crude extracts have been documented through both in vitro and in vivo studies, including but not limited to antitumor, antibacterial, antifungal, antiprotozoal, anti-inflammatory, antioxidant, antidiabetic, wound healing, analgesic, antirheumatic, and various other therapeutic effects. Due to its extensive history of traditional usage, the diverse array of bioactive phytochemicals, and numerous established pharmacological activities, Coleus amboinicus is widely regarded as having significant potential for clinical applications and warrants further exploration, development, and exploitation through research. With this context, the present study gathers information on the occurrence, biological description, cultivation, and nutritional values of Coleus amboinicus. Furthermore, it thoroughly discusses various phytoconstituents, along with their classes, present in Coleus amboinicus, followed by detailed descriptions of their pharmacological activities based on recent literature.
Collapse
Affiliation(s)
- Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Benachakal Honnegowda Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ravandur Shivanna Chandan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Sumel Ashique
- Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology (BIT), Meerut 250103, India
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713346, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
21
|
Wang KD, Zhu ML, Qin CJ, Dong RF, Xiao CM, Lin Q, Wei RY, He XY, Zang X, Kong LY, Xia YZ. Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region. Br J Pharmacol 2023; 180:3175-3193. [PMID: 37501645 DOI: 10.1111/bph.16202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteosarcoma, a primary malignant bone tumour prevalent among adolescents and young adults, remains a considerable challenge despite protracted progress made in enhancing patient survival rates over the last 40 years. Consequently, the development of novel therapeutic approaches for osteosarcoma is imperative. Sanguinarine (SNG), a compound with demonstrated potent anticancer properties against various malignancies, presents a promising avenue for exploration. Nevertheless, the intricate molecular mechanisms underpinning SNG's actions in osteosarcoma remain elusive, necessitating further elucidation. EXPERIMENTAL APPROACH Single-stranded DNA-binding protein 1 (SSBP1) was screened out by differential proteomic analysis. Apoptosis, cell cycle, reactive oxygen species (ROS) and mitochondrial changes were assessed via flow cytometry. Western blotting and quantitative real-time reverse transcription PCR (qRT-PCR) were used to determine protein and gene levels. The antitumour mechanism of SNG was explored at a molecular level using chromatin immunoprecipitation (ChIP) and dual luciferase reporter plasmids. KEY RESULTS Our investigation revealed that SNG exerted an up-regulated effect on SSBP1, disrupting mitochondrial function and inducing apoptosis. In-depth analysis uncovered a mechanism whereby SNG hindered the JAK/signal transducer and activator of transcription 3 (STAT3) signalling pathway, relieved the inhibitory effect of STAT3 on SSBP1 transcription, and inhibited the downstream PI3K/Akt/mTOR signalling axis, ultimately activating apoptosis. CONCLUSIONS AND IMPLICATIONS The study delved further into elucidating the anticancer mechanism of SNG in osteosarcoma. Notably, we unravelled the previously undisclosed apoptotic potential of SSBP1 in osteosarcoma cells. This finding holds substantial promise in advancing the development of novel anticancer drugs and identification of therapeutic targets.
Collapse
Affiliation(s)
- Kai-Di Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao-Lin Zhu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Cheng-Jiao Qin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui-Fang Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Mei Xiao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qing Lin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong-Yuan Wei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-Yu He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Zang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Fan JY, Liu J, Zhang WQ, Lin T, Hu XR, Zhou FL, Tang L, He YC, Shi HJ. Anti-Nasopharyngeal carcinoma mechanism of sanguinarine based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e36477. [PMID: 38050231 PMCID: PMC10695581 DOI: 10.1097/md.0000000000036477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the mechanism of sanguinarine (SAN) against nasopharyngeal carcinoma (NPC) by means of network pharmacology, molecular docking technique, and experimental verification. METHODS The SAN action targets were predicted using the Swiss Target Prediction database, the related NPC targets were determined using the GEO database, and the intersection of drug and disease pathway targets were considered to be the potential targets of SAN against NPC. The target-protein interaction network map was constructed using the STRING database, and the core target genes of SAN against NPC were obtained via topological network analysis. "R" language gene ontology (GO) function and Kyoto encyclopedia of genes and genome (KEGG) pathway enrichment analyses were used to dock the core target genes with SAN with the help of AutodockVina. Cell proliferation was detected using MTT and xCELLigence real-time cell analysis. Apoptosis was identified via Hoechst 33342 staining, JC-1 mitochondrial membrane staining, and annexin V-FITC/PI double fluorescence staining, while protein expression was quantified using western blotting. RESULTS A total of 95 SAN against NPC targets were obtained using target intersection, and 8 core targets were obtained by topological analysis and included EGFR, TP53, F2, FN1, PLAU, MMP9, SERPINE1, and CDK1. Gene ontology enrichment analysis identified 530 items, and 42 items were obtained by Kyoto encyclopedia of genes and genome pathway enrichment analysis and were mainly related to the PI3K/AKT, MAPK, and p53 signaling pathways. Molecular docking results showed that SAN had good binding activity to the core target. SAN inhibited the proliferation of NPC cells, induced apoptosis, reduced the expression levels of survivin and Bcl2, and increased the expression levels of Bax and cleaved caspase-8. It also decreased the expression levels of the key proteins p-c-Raf, p-MEK, and p-ERK1/2 in the MAPK/ERK signaling pathway in NPC cells. CONCLUSION SAN inhibits the proliferation and induces the apoptosis of NPC cells through the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Jing-Ying Fan
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Liu
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Ting Lin
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xi-Ran Hu
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Fang-Liang Zhou
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Le Tang
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Ying-Chun He
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Jian Shi
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Al Amin M, Emran TB, Khan J, Zehravi M, Sharma I, Patil A, Gupta JK, Jeslin D, Krishnan K, Das R, Nainu F, Ahmad I, Wilairatana P. Research Progress of Indole Alkaloids: Targeting MAP Kinase Signaling Pathways in Cancer Treatment. Cancers (Basel) 2023; 15:5311. [PMID: 38001572 PMCID: PMC10670446 DOI: 10.3390/cancers15225311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the leading cause of morbidity and mortality in people throughout the world. There are many signaling pathways associated with cancerous diseases, from which the Mitogen-activated protein kinase (MAPK) pathway performs a significant role in this regard. Apoptosis and proliferation are correlated with MAPK signaling pathways. Plenty of experimental investigations were carried out to assess the role of indole alkaloids in MAPK-mediated cancerous diseases. Previous reports established that indole alkaloids, such as vincristine and evodiamine are useful small molecules in cancer treatment via the MAPK signaling system. Indole alkaloids have the anticancer potential through different pathways. Vincristine and evodiamine are naturally occurring indole alkaloids that have strong anticancer properties. Additionally, much research is ongoing or completed with molecules belonging to this group. The current review aims to evaluate how indole alkaloids affect the MAPK signaling pathway in cancer treatment. Additionally, we focused on the advancement in the role of indole alkaloids, with the intention of modifying the MAPK signaling pathways to investigate potential new anticancer small molecules. Furthermore, clinical trials with indole alkaloids in cancer treatment are also highlighted.
Collapse
Affiliation(s)
- Md. Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru 560010, Karnataka, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | - D. Jeslin
- Department of Pharmaceutics, Sree Balaji Medical College and Hospital Campus, Bharath Institute of Higher Education and Research, Chromepet, Chennai 600044, Tamil Nadu, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai 600117, Tamil Nadu, India;
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61411, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
24
|
Rani B, Ignatz-Hoover JJ, Rana PS, Driscoll JJ. Current and Emerging Strategies to Treat Urothelial Carcinoma. Cancers (Basel) 2023; 15:4886. [PMID: 37835580 PMCID: PMC10571746 DOI: 10.3390/cancers15194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Urothelial cell carcinoma (UCC, bladder cancer, BC) remains a difficult-to-treat malignancy with a rising incidence worldwide. In the U.S., UCC is the sixth most incident neoplasm and ~90% of diagnoses are made in those >55 years of age; it is ~four times more commonly observed in men than women. The most important risk factor for developing BC is tobacco smoking, which accounts for ~50% of cases, followed by occupational exposure to aromatic amines and ionizing radiation. The standard of care for advanced UCC includes platinum-based chemotherapy and programmed cell death (PD-1) or programmed cell death ligand 1 (PD-L1) inhibitors, administered as frontline, second-line, or maintenance therapy. UCC remains generally incurable and is associated with intrinsic and acquired drug and immune resistance. UCC is lethal in the metastatic state and characterized by genomic instability, high PD-L1 expression, DNA damage-response mutations, and a high tumor mutational burden. Although immune checkpoint inhibitors (ICIs) achieve long-term durable responses in other cancers, their ability to achieve similar results with metastatic UCC (mUCC) is not as well-defined. Here, we discuss therapies to improve UCC management and how comprehensive tumor profiling can identify actionable biomarkers and eventually fulfill the promise of precision medicine for UCC patients.
Collapse
Affiliation(s)
- Berkha Rani
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
25
|
Wang LL, Li RT, Zang ZH, Song YX, Zhang YZ, Zhang TF, Wang FZ, Hao GP, Cao L. 6-Methoxydihydrosanguinarine exhibits cytotoxicity and sensitizes TRAIL-induced apoptosis of hepatocellular carcinoma cells through ROS-mediated upregulation of DR5. Med Oncol 2023; 40:266. [PMID: 37566135 DOI: 10.1007/s12032-023-02129-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
6-methoxydihydrosanguinarine (6-MS), a natural benzophenanthridine alkaloid extracted from Macleaya cordata (Willd.) R. Br, has shown to trigger apoptotic cell death in cancer cells. However, the exact mechanisms involved have not yet been clarified. The current study reveals the underlying mechanisms of 6-MS-induced cytotoxicity in hepatocellular carcinoma (HCC) cells and investigates whether 6-MS sensitizes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis. 6-MS was shown to suppress cell proliferation and trigger cell cycle arrest, DNA damage, and apoptosis in HCC cells. Mechanisms analysis indicated that 6-MS promoted reactive oxygen species (ROS) generation, JNK activation, and inhibits EGFR/Akt signaling pathway. DNA damage and apoptosis induced by 6-MS were reversed following N-acetyl-l-cysteine (NAC) treatment. The enhancement of PARP cleavage caused by 6-MS was abrogated by pretreatment with JNK inhibitor SP600125. Furthermore, 6-MS enhanced TRAIL-mediated HCC cells apoptosis by upregulating the cell surface receptor DR5 expression. Pretreatment with NAC attenuated 6-MS-upregulated DR5 protein expression and alleviated cotreatment-induced viability reduction, cleavage of caspase-8, caspase-9, and PARP. Overall, our results suggest that 6-MS exerts cytotoxicity by modulating ROS generation, EGFR/Akt signaling, and JNK activation in HCC cells. 6-MS potentiates TRAIL-induced apoptosis through upregulation of DR5 via ROS generation. The combination of 6-MS with TRAIL may be a promising strategy and warrants further investigation.
Collapse
Affiliation(s)
- Lin-Lin Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Ruo-Tong Li
- Department of Pathology, Tai' an Central Hospital, Taian, 271000, People's Republic of China
| | - Zi-Heng Zang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Yun-Xuan Song
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Yu-Zhe Zhang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Teng-Fei Zhang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Feng-Ze Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People's Republic of China
| | - Gang-Ping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China.
| | - Lu Cao
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People's Republic of China.
| |
Collapse
|
26
|
Sadeghi L, Wright APH. GSK-J4 Inhibition of KDM6B Histone Demethylase Blocks Adhesion of Mantle Cell Lymphoma Cells to Stromal Cells by Modulating NF-κB Signaling. Cells 2023; 12:2010. [PMID: 37566089 PMCID: PMC10416905 DOI: 10.3390/cells12152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Multiple signaling pathways facilitate the survival and drug resistance of malignant B-cells by regulating their migration and adhesion to microenvironmental niches. NF-κB pathways are commonly dysregulated in mantle cell lymphoma (MCL), but the exact underlying mechanisms are not well understood. Here, using a co-culture model system, we show that the adhesion of MCL cells to stromal cells is associated with elevated levels of KDM6B histone demethylase mRNA in adherent cells. The inhibition of KDM6B activity, using either a selective inhibitor (GSK-J4) or siRNA-mediated knockdown, reduces MCL adhesion to stromal cells. We showed that KDM6B is required both for the removal of repressive chromatin marks (H3K27me3) at the promoter region of NF-κB encoding genes and for inducing the expression of NF-κB genes in adherent MCL cells. GSK-J4 reduced protein levels of the RELA NF-κB subunit and impaired its nuclear localization. We further demonstrated that some adhesion-induced target genes require both induced NF-κB and KDM6B activity for their induction (e.g., IL-10 cytokine gene), while others require induction of NF-κB but not KDM6B (e.g., CCR7 chemokine gene). In conclusion, KDM6B induces the NF-κB pathway at different levels in MCL, thereby facilitating MCL cell adhesion, survival, and drug resistance. KDM6B represents a novel potential therapeutic target for MCL.
Collapse
Affiliation(s)
- Laia Sadeghi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | | |
Collapse
|
27
|
Akhunzianov AA, Nesterova AI, Wanrooij S, Filina YV, Rizvanov AA, Miftakhova RR. Unravelling the Therapeutic Potential of Antibiotics in Hypoxia in a Breast Cancer MCF-7 Cell Line Model. Int J Mol Sci 2023; 24:11540. [PMID: 37511298 PMCID: PMC10380719 DOI: 10.3390/ijms241411540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotics inhibit breast cancer stem cells (CSCs) by suppressing mitochondrial biogenesis. However, the effectiveness of antibiotics in clinical settings is inconsistent. This inconsistency raises the question of whether the tumor microenvironment, particularly hypoxia, plays a role in the response to antibiotics. Therefore, the goal of this study was to evaluate the effectiveness of five commonly used antibiotics for inhibiting CSCs under hypoxia using an MCF-7 cell line model. We assessed the number of CSCs through the mammosphere formation assay and aldehyde dehydrogenase (ALDH)-bright cell count. Additionally, we examined the impact of antibiotics on the mitochondrial stress response and membrane potential. Furthermore, we analyzed the levels of proteins associated with therapeutic resistance. There was no significant difference in the number of CSCs between cells cultured under normoxic and hypoxic conditions. However, hypoxia did affect the rate of CSC inhibition by antibiotics. Specifically, azithromycin was unable to inhibit sphere formation in hypoxia. Erythromycin and doxycycline did not reduce the ratio of ALDH-bright cells, despite decreasing the number of mammospheres. Furthermore, treatment with chloramphenicol, doxycycline, and tetracycline led to the overexpression of the breast cancer resistance protein. Our findings suggest that hypoxia may weaken the inhibitory effects of antibiotics on the breast cancer model.
Collapse
Affiliation(s)
- Almaz A Akhunzianov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alfiya I Nesterova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Republican Clinical Oncology Dispensary Named after Prof. M.Z. Sigal, 420029 Kazan, Russia
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Faculty of Medicine, Umeå University, 907 36 Umeå, Sweden
| | - Yulia V Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Regina R Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
28
|
Guerra P, Martini A, Pontisso P, Angeli P. Novel Molecular Targets for Immune Surveillance of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:3629. [PMID: 37509293 PMCID: PMC10377787 DOI: 10.3390/cancers15143629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and aggressive cancer with a high mortality rate. The incidence of HCC is increasing worldwide, and the lack of effective screening programs often results in delayed diagnosis, making it a challenging disease to manage. Immunotherapy has emerged as a promising treatment option for different kinds of cancers, with the potential to stimulate the immune system to target cancer cells. However, the current immunotherapeutic approaches for HCC have shown limited efficacy. Since HCC arises within a complex tumour microenvironment (TME) characterized by the presence of various immune and stromal cell types, the understanding of this interaction is crucial for the identification of effective therapy. In this review, we highlight recent advances in our understanding of the TME of HCC and the immune cells involved in anti-tumour responses, including the identification of new possible targets for immunotherapy. We illustrate a possible classification of HCC based on the tumour immune infiltration and give evidence about the role of SerpinB3, a serine protease inhibitor involved in the regulation of the immune response in different cancers.
Collapse
Affiliation(s)
- Pietro Guerra
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| | - Andrea Martini
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| |
Collapse
|
29
|
Nguyen AT, Kim HK. Recent Advances of 68Ga-Labeled PET Radiotracers with Nitroimidazole in the Diagnosis of Hypoxia Tumors. Int J Mol Sci 2023; 24:10552. [PMID: 37445730 DOI: 10.3390/ijms241310552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging method extensively applied in the detection and treatment of various diseases. Hypoxia is a common phenomenon found in most solid tumors. Nitroimidazole is a group of bioreducible pharmacophores that selectively accumulate in hypoxic regions of the body. Over the past few decades, many scientists have reported the use of radiopharmaceuticals containing nitroimidazole for the detection of hypoxic tumors. Gallium-68, a positron-emitting radioisotope, has a favorable half-life time of 68 min and can be conveniently produced by 68Ge/68Ga generators. Recently, there has been significant progress in the preparation of novel 68Ga-labeled complexes bearing nitroimidazole moieties for the diagnosis of hypoxia. This review provides a comprehensive overview of the current status of developing 68Ga-labeled radiopharmaceuticals with nitroimidazole moieties, their pharmacokinetics, and in vitro and in vivo studies, as well as PET imaging studies for hypoxic tumors.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
30
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
31
|
Huynh KN, Rao S, Roth B, Bryan T, Fernando DM, Dayyani F, Imagawa D, Abi-Jaoudeh N. Targeting Hypoxia-Inducible Factor-1α for the Management of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2738. [PMID: 37345074 DOI: 10.3390/cancers15102738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a transcription factor that regulates the cellular response to hypoxia and is upregulated in all types of solid tumor, leading to tumor angiogenesis, growth, and resistance to therapy. Hepatocellular carcinoma (HCC) is a highly vascular tumor, as well as a hypoxic tumor, due to the liver being a relatively hypoxic environment compared to other organs. Trans-arterial chemoembolization (TACE) and trans-arterial embolization (TAE) are locoregional therapies that are part of the treatment guidelines for HCC but can also exacerbate hypoxia in tumors, as seen with HIF-1α upregulation post-hepatic embolization. Hypoxia-activated prodrugs (HAPs) are a novel class of anticancer agent that are selectively activated under hypoxic conditions, potentially allowing for the targeted treatment of hypoxic HCC. Early studies targeting hypoxia show promising results; however, further research is needed to understand the effects of HAPs in combination with embolization in the treatment of HCC. This review aims to summarize current knowledge on the role of hypoxia and HIF-1α in HCC, as well as the potential of HAPs and liver-directed embolization.
Collapse
Affiliation(s)
- Kenneth N Huynh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Sriram Rao
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Bradley Roth
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Theodore Bryan
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Dayantha M Fernando
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Farshid Dayyani
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA 92868, USA
| | - David Imagawa
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Nadine Abi-Jaoudeh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
32
|
Lin TH, Kuo CH, Zhang YS, Chen PT, Chen SH, Li YZ, Lee YR. Piperlongumine Induces Cellular Apoptosis and Autophagy via the ROS/Akt Signaling Pathway in Human Follicular Thyroid Cancer Cells. Int J Mol Sci 2023; 24:ijms24098048. [PMID: 37175755 PMCID: PMC10179299 DOI: 10.3390/ijms24098048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recently, the global incidence of TC has increased rapidly. Differentiated thyroid cancer includes papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC), which are the most common types of TC. Although PTCs and FTCs exert good prognoses and high survival rates, FTCs tend to be more aggressive than PTCs. There is an urgent need to improve patient outcomes by developing effective therapeutic agents for FTCs. Piperlongumine exerts anti-cancer effects in various human carcinomas, including human anaplastic TCs and PTCs. However, the anti-cancer effects of piperlongumine in FTCs and the underlying mechanisms are yet to be elucidated. Therefore, in the present study, we evaluated the effect of piperlongumine on cell proliferation, cell cycle, apoptosis, and autophagy in FTC cells with flowcytometry and Western blot. We observed that piperlongumine caused growth inhibition, cell cycle arrest, apoptosis induction, and autophagy elevation in FTC cells. Activities of reactive oxygen species and the downstream PI3K/Akt pathway were the underlying mechanisms involved in piperlongumine mediated anti-FTC effects. Advancements in our understanding of the effects of piperlongumine in FTC hold promise for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Tsung-Hsing Lin
- Department of Emergency Medicine, Kuang Tien General Hospital, Taichung City 433, Taiwan
| | - Chin-Ho Kuo
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Sheng Zhang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Pin-Tzu Chen
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
33
|
Muraro E, Vinante L, Fratta E, Bearz A, Höfler D, Steffan A, Baboci L. Metronomic Chemotherapy: Anti-Tumor Pathways and Combination with Immune Checkpoint Inhibitors. Cancers (Basel) 2023; 15:2471. [PMID: 37173937 PMCID: PMC10177461 DOI: 10.3390/cancers15092471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Increasing evidence pinpoints metronomic chemotherapy, a frequent and low dose drug administration with no prolonged drug-free intervals, as a potential tool to fight certain types of cancers. The primary identified targets of metronomic chemotherapy were the tumor endothelial cells involved in angiogenesis. After this, metronomic chemotherapy has been shown to efficiently target the heterogeneous population of tumor cells and, more importantly, elicit the innate and adaptive immune system reverting the "cold" to "hot" tumor immunologic phenotype. Although metronomic chemotherapy is primarily used in the context of a palliative setting, with the development of new immunotherapeutic drugs, a synergistic therapeutic role of the combined metronomic chemotherapy and immune checkpoint inhibitors has emerged at both the preclinical and clinical levels. However, some aspects, such as the dose and the most effective scheduling, still remain unknown and need further investigation. Here, we summarize what is currently known of the underlying anti-tumor effects of the metronomic chemotherapy, the importance of the optimal therapeutic dose and time-exposure, and the potential therapeutic effect of the combined administration of metronomic chemotherapy with checkpoint inhibitors in preclinical and clinical settings.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.M.); (E.F.); (A.S.)
| | - Lorenzo Vinante
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.M.); (E.F.); (A.S.)
| | - Alessandra Bearz
- Medical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Daniela Höfler
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.M.); (E.F.); (A.S.)
| | - Lorena Baboci
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.M.); (E.F.); (A.S.)
| |
Collapse
|
34
|
Ku JM, Kim MJ, Choi YJ, Lee SY, Im JY, Jo YK, Yoon S, Kim JH, Cha JW, Shin YC, Ko SG. JI017 Induces Cell Autophagy and Apoptosis via Elevated Levels of Reactive Oxygen Species in Human Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24087528. [PMID: 37108692 PMCID: PMC10145189 DOI: 10.3390/ijms24087528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is one of the most common malignant tumors and a leading cause of cancer-related death in the worldwide. Various anticancer drugs, such as cisplatin and pemetrexed, have been developed for lung cancer treatment but due their drug resistance and side effects, novel treatments need to be developed. In this study, the efficacy of the natural drug JI017, which is known to have few side effects, was tested in lung cancer cells. JI017 inhibited A549, H460, and H1299 cell proliferation. JI017 induced apoptosis, regulated apoptotic molecules, and inhibited colony formation. Additionally, JI017 increased intracellular ROS generation. JI017 downregulated PI3K, AKT, and mTOR expression. JI017 increased the cytosolic accumulation of LC3. We found that JI017 promoted apoptosis through ROS-induced autophagy. Additionally, the xenograft tumor size was smaller in JI017-treated mice. We found that JI017 treatment increased MDA concentrations, decreased Ki-67 protein levels, and increased cleaved caspase-3 and LC3 levels in vivo. JI017 decreased cell proliferation and increased apoptosis by inducing autophagy signaling in H460 and H1299 lung cancer cells. Targeting JI017 and autophagy signaling could be useful in lung cancer treatment.
Collapse
Affiliation(s)
- Jin Mo Ku
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
| | - Min Jeong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Seo Yeon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji-Yeong Im
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yong-Kyu Jo
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sanghoon Yoon
- Department of Applied Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji-Hyun Kim
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jie Won Cha
- Department of Applied Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
| |
Collapse
|
35
|
Hu H, Bai H, Huang L, Yang B, Zhao H. Eupalinolide J Inhibits Cancer Metastasis by Promoting STAT3 Ubiquitin-Dependent Degradation. Molecules 2023; 28:molecules28073143. [PMID: 37049904 PMCID: PMC10096386 DOI: 10.3390/molecules28073143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023] Open
Abstract
Eupalinolide J (EJ) is an active component from Eupatorium lindleyanum DC. (EL), which was reported to have good antitumor activity via STAT3 and Akt signaling pathways. In this study, we identified Eupalinolide J (EJ) as a potential anti-cancer metastatic agent by target prediction and molecular docking technique screening. Follow-up experiments demonstrated that EJ exhibited a good inhibitory effect on cancer cell metastasis both in vitro and in vivo, and could effectively reduce the expression of STAT3, MMP-2, and MMP-9 proteins in cells, while the knockdown of STAT3 could weaken the inhibitory effect of EJ on cancer cell metastasis. Further molecular biology experiments revealed that EJ promoted STAT3 ubiquitin-dependent degradation, and thus, downregulated the expression of the metastasis-related genes MMP-2 and MMP-9. In conclusion, our study revealed that EJ, a sesquiterpene lactone from EL, could act as a STAT3 degradation agent to inhibit cancer cell metastasis and is expected to be applied in cancer therapy.
Collapse
|
36
|
Labyrinthin Expression Is Associated with Poor Prognosis in Patients with Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15030924. [PMID: 36765881 PMCID: PMC9913764 DOI: 10.3390/cancers15030924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
To determine Labyrinthin (LAB) expression in non-small-cell lung cancer (NSCLC), we immunostained and scored for LAB immunohistochemistry (IHC) expression on sections of tissue microarrays (TMAs) prepared from 256 archival tissue blocks of NSCLC. Propensity-score-weighted Kaplan-Meier curves and weighted Cox models were used to associate LAB expression with overall survival. LAB mRNA expression was assessed in The Cancer Genome Atlas (TCGA) and correlated with clinical phenotype and outcome. Positive LAB IHC expression (>5% of tumor cells) was detected in 208/256 (81.3%) of NSCLC samples, and found in both lung adenocarcinomas (LUAD) and lung squamous cell cancer (LUSC). LAB positivity was associated with poor overall survival (HR = 3.56, 95% CI: 2.3-5.4; p < 0.0001) and high tumor differentiation grade or metastasis compared with negative LAB expression. Univariant and multivariate survival analyses demonstrated LAB expression as an independent prognostic factor for NSCLC patients. LAB RNA expression in TCGA-LUAD was higher in primary and advanced-stage tumors than in normal tissue, and was associated with poorer overall survival. No significant differences or associations were found with LAB RNA expression in TCGA-LUSC. The LAB IHC assay is being used to identify candidate cancer patients for the first-in-human phase I trial evaluating the LAB vaccines (UCDCC#296, NCT051013560).
Collapse
|
37
|
Effects of Modulation of the Hedgehog and Notch Signaling Pathways on Osteoblast Differentiation Induced by Titanium with Nanotopography. J Funct Biomater 2023; 14:jfb14020079. [PMID: 36826878 PMCID: PMC9968096 DOI: 10.3390/jfb14020079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The events of bone formation and osteoblast/titanium (Ti) interactions may be affected by Hedgehog and Notch signalling pathways. Herein, we investigated the effects of modulation of these signalling pathways on osteoblast differentiation caused by the nanostructured Ti (Ti-Nano) generated by H2SO4/H2O2. METHODS Osteoblasts from newborn rat calvariae were cultured on Ti-Control and Ti-Nano in the presence of the Hedgehog agonist purmorphamine or antagonist cyclopamine and of the Notch antagonist N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or agonist bexarotene. Osteoblast differentiation was evaluated by alkaline phosphatase activity and mineralization, and the expression of Hedgehog and Notch receptors was also evaluated. RESULTS In general, purmorphamine and DAPT increased while cyclopamine and bexarotene decreased osteoblast differentiation and regulated the receptor expression on both Ti surfaces, with more prominent effects on Ti-Nano. The purmorphamine and DAPT combination exhibited synergistic effects on osteoblast differentiation that was more intense on Ti-Nano. CONCLUSION Our results indicated that the Hedgehog and Notch signalling pathways drive osteoblast/Ti interactions more intensely on nanotopography. We also demonstrated that combining Hedgehog activation with Notch inhibition exhibits synergistic effects on osteoblast differentiation, especially on Ti-Nano. The uncovering of these cellular mechanisms contributes to create strategies to control the process of osseointegration based on the development of nanostructured surfaces.
Collapse
|
38
|
Emerging Role of Plant-Based Dietary Components in Post-Translational Modifications Associated with Colorectal Cancer. Life (Basel) 2023; 13:life13020264. [PMID: 36836621 PMCID: PMC9962725 DOI: 10.3390/life13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Its main modifiable risk factors are diet, alcohol consumption, and smoking. Thus, the right approach through lifestyle changes may lead to its prevention. In fact, some natural dietary components have exhibited chemopreventive activity through modulation of cellular processes involved in CRC development. Although cancer is a multi-factorial process, the study of post-translational modifications (PTMs) of proteins associated with CRC has recently gained interest, as inappropriate modification is closely related to the activation of cell signalling pathways involved in carcinogenesis. Therefore, this review aimed to collect the main PTMs associated with CRC, analyse the relationship between different proteins that are susceptible to inappropriate PTMs, and review the available scientific literature on the role of plant-based dietary compounds in modulating CRC-associated PTMs. In summary, this review suggested that some plant-based dietary components such as phenols, flavonoids, lignans, terpenoids, and alkaloids may be able to correct the inappropriate PTMs associated with CRC and promote apoptosis in tumour cells.
Collapse
|
39
|
Ibáñez Gaspar V, McMorrow T. The Curcuminoid EF24 in Combination with TRAIL Reduces Human Renal Cancer Cell Migration by Decreasing MMP-2/MMP-9 Activity through a Reduction in H 2O 2. Int J Mol Sci 2023; 24:ijms24021043. [PMID: 36674555 PMCID: PMC9863498 DOI: 10.3390/ijms24021043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cancer cells present high levels of oxidative stress, and although an increase in reactive oxygen species (ROS), such as H2O2, can lead to apoptosis, it can also induce cell invasion and metastasis. As the increase in ROS can lead to an increase in the expression of MMP-2 and MMP-9, thus causing the degradation of the extracellular matrix, an increase in the ROS H2O2 might have an impact on MMP-2/MMP-9 activity. The natural compound curcumin has shown some anticancer effects, although its bioavailability hinders its therapeutic potential. However, curcumin and its analogues were shown to resensitize kidney cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. This study shows that the curcuminoid EF24 in combination with TRAIL increases peroxidase activity in the renal adenocarcinoma cell line ACHN, reducing the level of intracellular H2O2 and MMP-2/MMP-9 activity, a mechanism that is also observed after treatment with curcumin and TRAIL.
Collapse
|
40
|
Chauhan N, Kumar M, Chaurasia S, Garg Y, Chopra S, Bhatia A. A Comprehensive Review on Drug Therapies and Nanomaterials used in Orthodontic Treatment. Curr Pharm Des 2023; 29:3154-3165. [PMID: 38018198 DOI: 10.2174/0113816128276153231117054242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
Orthodontic treatment typically requires an extended duration of 1-2 years to complete the treatment. Accelerating the rate of tooth movement during orthodontic treatment is essential for shortening the overall treatment duration. After the completion of orthodontic treatment, a prominent concern arises in the form of orthodontic relapse, where the teeth tend to revert to their original positions. This issue affects approximately 60% of the global population, underscoring the importance of implementing effective measures to address orthodontic relapse. An approach in this regard involves the targeted administration of herbal and synthetic drugs applied directly to the specific area of interest to facilitate tooth movement and prevent orthodontic relapse. Apart from this, researchers are investigating the feasibility of utilizing different types of nanoparticles to improve the process of orthodontic tooth movement. In recent years, there has been a noticeable increase in the number of studies examining the effects of various drugs on orthodontics. However, the currently available literature does not provide significant evidence relating to orthodontic tooth movement. In this review, the authors provide valuable information about the drugs and nanomaterials that are capable of further enhancing the rate of orthodontic tooth movement and reducing the risk of orthodontic relapse. However, a notable hurdle remains, i.e., there is no marketed formulation available that can enhance orthodontic tooth movement and reduce treatment time. Therefore, researchers should try herbal-synthetic approaches to achieve a synergistic effect that can enhance orthodontic tooth movement. In this nutshell, there is an urgent need to develop a non-invasive, patient-compliant, and cost-effective formulation that will provide quality treatment and ultimately reduce the treatment time. Another critical issue is orthodontic relapse, which can be addressed by employing drugs that slow down osteoclastogenesis, thereby preventing tooth movement after treatment. Nevertheless, extensive research is still required to overcome this challenge in the future.
Collapse
Affiliation(s)
- Nitasha Chauhan
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Simran Chaurasia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| |
Collapse
|
41
|
Garshasbi HR, Naghib SM. Smart Stimuli-responsive Alginate Nanogels for Drug Delivery Systems and Cancer Therapy: A Review. Curr Pharm Des 2023; 29:3546-3562. [PMID: 38115614 DOI: 10.2174/0113816128283806231211073031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Nanogels are three-dimensional networks at the nanoscale level that can be fabricated through physical or chemical processes using polymers. These nanoparticles' biocompatibility, notable stability, efficacious drug-loading capacity, and ligand-binding proficiency make them highly suitable for employment as drug-delivery vehicles. In addition, they exhibit the ability to react to both endogenous and exogenous stimuli, which may include factors such as temperature, illumination, pH levels, and a diverse range of other factors. This facilitates the consistent administration of the drug to the intended site. Alginate biopolymers have been utilized to encapsulate anticancer drugs due to their biocompatible nature, hydrophilic properties, and cost-effectiveness. The efficacy of alginate nano gel-based systems in cancer treatment has been demonstrated through multiple studies that endorse their progress toward clinical implementation. This paper comprehensively reviews alginate and its associated systems in drug delivery systems.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
42
|
Chrysophanol-Induced Autophagy Disrupts Apoptosis via the PI3K/Akt/mTOR Pathway in Oral Squamous Cell Carcinoma Cells. Medicina (B Aires) 2022; 59:medicina59010042. [PMID: 36676666 PMCID: PMC9864245 DOI: 10.3390/medicina59010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background and Objectives: Natural products are necessary sources for drug discovery and have contributed to cancer chemotherapy over the past few decades. Furthermore, substances derived from plants have fewer side effects. Chrysophanol is an anthraquinone derivative that is isolated from rhubarb. Although the anticancer effect of chrysophanol on several cancer cells has been reported, studies on the antitumor effect of chrysophanol on oral squamous-cell carcinoma (OSCC) cells have yet to be elucidated. Therefore, in this study, we investigated the anticancer effect of chrysophanol on OSCC cells (CAL-27 and Ca9-22) via apoptosis and autophagy, among the cell death pathways. Results: It was found that chrysophanol inhibited the growth and viability of CAL-27 and Ca9-22 and induced apoptosis through the intrinsic pathway. It was also found that chrysophanol activates autophagy-related factors (ATG5, beclin-1, and P62/SQSTM1) and LC3B conversion. That is, chrysophanol activated both apoptosis and autophagy. Here, we focused on the roles of chrysophanol-induced apoptosis and the autophagy pathway. When the autophagy inhibitor 3-MA and PI3K/Akt inhibitor were used to inhibit the autophagy induced by chrysophanol, it was confirmed that the rate of apoptosis significantly increased. Therefore, we confirmed that chrysophanol induces apoptosis and autophagy at the same time, and the induced autophagy plays a role in interfering with apoptosis processes. Conclusions: Therefore, the potential of chrysophanol as an excellent anticancer agent in OSCC was confirmed via this study. Furthermore, the combined treatment of drugs that can inhibit chrysophanol-induced autophagy is expected to have a tremendous synergistic effect in overcoming oral cancer.
Collapse
|
43
|
Rawangkan A, Wongsirisin P, Pook-In G, Siriphap A, Yosboonruang A, Kiddee A, Chuerduangphui J, Reukngam N, Duangjai A, Saokaew S, Praphasawat R. Dinactin: A New Antitumor Antibiotic with Cell Cycle Progression and Cancer Stemness Inhibiting Activities in Lung Cancer. Antibiotics (Basel) 2022; 11:antibiotics11121845. [PMID: 36551502 PMCID: PMC9774622 DOI: 10.3390/antibiotics11121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Lung cancer, especially non-small cell lung cancer (NSCLC), is one of the most complex diseases, despite the existence of effective treatments such as chemotherapy and immunotherapy. Since cancer stem cells (CSCs) are responsible for chemo- and radio-resistance, metastasis, and cancer recurrence, finding new therapeutic targets for CSCs is critical. Dinactin is a natural secondary metabolite produced by microorganisms. Recently, dinactin has been revealed as a promising antitumor antibiotic via various mechanisms. However, the evidence relating to cell cycle progression regulation is constrained, and effects on cancer stemness have not been elucidated. Therefore, the aim of this study is to evaluate the new function of dinactin in anti-NSCLC proliferation, focusing on cell cycle progression and cancer stemness properties in Lu99 and A549 cells. Flow cytometry and immunoblotting analyses revealed that 0.1-1 µM of dinactin suppresses cell growth through induction of the G0/G1 phase associated with down-regulation of cyclins A, B, and D3, and cdk2 protein expression. The tumor-sphere forming capacity was used to assess the effect of dinactin on the cancer stemness potential in NSCLC cells. At a concentration of 1 nM, dinactin reduced both the number and size of the tumor-spheres. The quantitative RT-PCR analyses indicated that dinactin suppressed sphere formation by significantly reducing expression of CSC markers (i.e., ALDH1A1, Nanog, Oct4, and Sox2) in Lu99 cells. Consequently, dinactin could be a promising strategy for NSCLC therapy targeting CSCs.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
- UNIt of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Pattama Wongsirisin
- Department of Medical Services, National Cancer Institute, Bangkok 10400, Thailand
| | - Grissana Pook-In
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Achiraya Siriphap
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Atchariya Yosboonruang
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Anong Kiddee
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | | | - Nanthawan Reukngam
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- UNIt of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Ratsada Praphasawat
- Department of Pathology, School of Medicine, University of Phayao, Phayao 56000, Thailand
- Correspondence: ; Tel.: +66-54466666 (ext. 3824) or +66-86-926-2448
| |
Collapse
|
44
|
Dihydromyricetin Inhibited Migration and Invasion by Reducing S100A4 Expression through ERK1/2/β-Catenin Pathway in Human Cervical Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms232315106. [PMID: 36499426 PMCID: PMC9735508 DOI: 10.3390/ijms232315106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Cervical cancer has a poor prognosis and is the fourth most common cancer among women. Dihydromyricetin (DHM), a flavonoid compound, exhibits several pharmacological activities, including anticancer effects; however, the effects of DHM on cervical cancer have received insufficient research attention. This study examined the antitumor activity and underlying mechanisms of DHM on human cervical cancer. Our results indicated that DHM inhibits migration and invasion in HeLa and SiHa cell lines. Mechanistically, RNA sequencing analysis revealed that DHM suppressed S100A4 mRNA expression in HeLa cells. Moreover, DHM inhibited the protein expressions of β-catenin and GSK3β through the regulated extracellular-signal-regulated kinase (ERK)1/2 signaling pathway. By using the ERK1/2 activator, T-BHQ, reverted β-catenin and S100A4 protein expression and cell migration, which were reduced in response to DHM. In conclusion, our study indicated that DHM inhibited cell migration by reducing the S100A4 expression through the ERK1/2/β-catenin pathway in human cervical cancer cell lines.
Collapse
|
45
|
Xu Z, Eichler B, Klausner EA, Duffy-Matzner J, Zheng W. Lead/Drug Discovery from Natural Resources. Molecules 2022; 27:8280. [PMID: 36500375 PMCID: PMC9736696 DOI: 10.3390/molecules27238280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Natural products and their derivatives have been shown to be effective drug candidates against various diseases for many years. Over a long period of time, nature has produced an abundant and prosperous source pool for novel therapeutic agents with distinctive structures. Major natural-product-based drugs approved for clinical use include anti-infectives and anticancer agents. This paper will review some natural-product-related potent anticancer, anti-HIV, antibacterial and antimalarial drugs or lead compounds mainly discovered from 2016 to 2022. Structurally typical marine bioactive products are also included. Molecular modeling, machine learning, bioinformatics and other computer-assisted techniques that are very important in narrowing down bioactive core structural scaffolds and helping to design new structures to fight against key disease-associated molecular targets based on available natural products are considered and briefly reviewed.
Collapse
Affiliation(s)
- Zhihong Xu
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
- Institute of Interventional & Vascular Surgery, Tongji University, Shanghai 200072, China
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Barrett Eichler
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Eytan A. Klausner
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Jetty Duffy-Matzner
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, 1801 Fayetteville St., Durham, NC 27707, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Pharmaco-Toxicological Assessment of the Combined Cytotoxic Effects of Digoxin and Betulinic Acid in Melanoma Cells. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111855. [PMID: 36430989 PMCID: PMC9694166 DOI: 10.3390/life12111855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Betulinic acid, a small molecule from pentacyclic triterpenes class, has been widely studied for its antitumor activity, revealing that it induces the apoptosis of tumor cells in a selective manner. In recent years, digoxin, a cardiac glycoside found particularly in the plant species Digitalis lanata, has drawn interest for its potential antitumor properties. The present study was designed to evaluate the antimelanoma potential of betulinic acid (BA), digoxin (DG), and their association (DG + BA). In vitro assessments were performed 24 h post-treatment on two human melanoma cell lines (SK-Mel-28 and RPMI-7951). In addition, the potential irritant effects of the test samples were evaluated using the chorioallantoic membrane of hen's eggs. BA and DG exhibit a concentration-dependent cytotoxic activity, with the combination of the two having a more marked effect on the decrease in cell viability (~17% for SK-Mel-28 cells and ~23% for RPMI-7951 cells). Further, morphological changes (rounding of the cells and their separation from the plaque) and alterations in the nucleus and actin fibers (condensation of chromatin and actin fibers, formation of apoptotic bodies) were observed, indicating an apoptotic-like process. Moreover, no irritating effects were observed in ovo. As a result, DG + BA acid may have synergistic potential in the antitumor treatment of melanoma, but future studies are needed in order to clarify the biological mechanisms involved.
Collapse
|
47
|
Liu H, Li Y, Xiong J. The Role of Hypoxia-Inducible Factor-1 Alpha in Renal Disease. Molecules 2022; 27:molecules27217318. [PMID: 36364144 PMCID: PMC9657345 DOI: 10.3390/molecules27217318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Partial pressure of oxygen (pO2) in the kidney is maintained at a relatively stable level by a unique and complex functional interplay between renal blood flow, glomerular filtration rate (GFR), oxygen consumption, and arteriovenous oxygen shunting. The vulnerability of this interaction renders the kidney vulnerable to hypoxic injury, leading to different renal diseases. Hypoxia has long been recognized as an important factor in the pathogenesis of acute kidney injury (AKI), especially renal ischemia/reperfusion injury. Accumulating evidence suggests that hypoxia also plays an important role in the pathogenesis and progression of chronic kidney disease (CKD) and CKD-related complications, such as anemia, cardiovascular events, and sarcopenia. In addition, renal cancer is linked to the deregulation of hypoxia pathways. Renal cancer utilizes various molecular pathways to respond and adapt to changes in renal oxygenation. Particularly, hypoxia-inducible factor (HIF) (including HIF-1, 2, 3) has been shown to be activated in renal disease and plays a major role in the protective response to hypoxia. HIF-1 is a heterodimer that is composed of an oxygen-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. In renal diseases, the critical characteristic of HIF-1α is protective, but it also has a negative effect, such as in sarcopenia. This review summarizes the mechanisms of HIF-1α regulation in renal disease.
Collapse
Affiliation(s)
| | | | - Jing Xiong
- Correspondence: ; Tel.: +86-027-8572-6713
| |
Collapse
|
48
|
Eom S, Lee S, Lee J, Yeom HD, Lee SG, Lee J. DDX3 Upregulates Hydrogen Peroxide-Induced Melanogenesis in Sk-Mel-2 Human Melanoma Cells. Molecules 2022; 27:molecules27207010. [PMID: 36296601 PMCID: PMC9606883 DOI: 10.3390/molecules27207010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
DDX3 is a DEAD-box RNA helicase with diverse biological functions through multicellular pathways. The objective of this study was to investigate the role of DDX3 in regulating melanogenesis by the exploring signaling pathways involved. Various concentrations of hydrogen peroxide were used to induce melanogenesis in SK-Mel-2 human melanoma cells. Melanin content assays, tyrosinase activity analysis, and Western blot analysis were performed to determine how DDX3 was involved in melanogenesis. Transient transfection was performed to overexpress or silence DDX3 genes. Immunoprecipitation was performed using an antityrosinase antibody. Based on the results of the cell viability test, melanin content, and activity of tyrosinase, a key melanogenesis enzyme, in SK-Mel-2 human melanoma cells, hydrogen peroxide at 0.1 mM was chosen to induce melanogenesis. Treatment with H2O2 notably increased the promoter activity of DDX3. After treatment with hydroperoxide for 4 h, melanin content and tyrosinase activity peaked in DDX3-transfected cells. Overexpression of DDX3 increased melanin content and tyrosinase expression under oxidative stress induced by H2O2. DDX3 co-immunoprecipitated with tyrosinase, a melanogenesis enzyme. The interaction between DDX3 and tyrosinase was strongly increased under oxidative stress. DDX3 could increase melanogenesis under the H2O2-treated condition. Thus, targeting DDX3 could be a novel strategy to develop molecular therapy for skin diseases.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
| | - Jiwon Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
| | | | - Seong-Gene Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
- Correspondence: (S.-G.L.); (J.L.); Tel.: +82-62-530-2160 (S.-G.L.); +82-62-530-2164 (J.L.)
| | - Junho Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
- Correspondence: (S.-G.L.); (J.L.); Tel.: +82-62-530-2160 (S.-G.L.); +82-62-530-2164 (J.L.)
| |
Collapse
|