1
|
Seneviratne AN, Miller MR. Air pollution and atherosclerosis. Atherosclerosis 2025; 406:119240. [PMID: 40411956 DOI: 10.1016/j.atherosclerosis.2025.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Air pollution is associated with considerable cardiovascular mortality and morbidity. The vascular disease atherosclerosis underlies many cardiovascular conditions, with atherosclerotic plaque rupture being a trigger for stroke and myocardial infarction. The acute and chronic effects of air pollution have the potential to exacerbate many different facets of atherosclerosis. This review provides an overview of how air pollution promotes the development of atherosclerosis. The review summaries the epidemiological evidence between exposure to air pollution and morphological measures of atherosclerosis such as carotid intimal media thickness, coronary artery calcification and aortic artery calcification, before summarising the biological mechanisms by which air pollution promotes atherosclerosis at the different stages of disease progression. We offer our perspective of the weight of evidence between air pollution to atherosclerosis and make recommendations for future research to advance this field. Given the ubiquity of air pollution exposure, we stress the need for urgency in efforts to tackle air pollution and emphasise the potential health gains from minimising the effects of air pollutants on this common and often fatal cardiovascular pathology.
Collapse
Affiliation(s)
| | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Seneviratne AN, Majumdar A, Surendranath K, Miller MR. Environmental modulators of vascular physiology and inflammation. Exp Physiol 2025. [PMID: 40349311 DOI: 10.1113/ep092309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Environmental factors play a crucial role in modulating vascular inflammation, contributing significantly to the development of atherosclerosis and cardiovascular disease. This review synthesizes current evidence on how various environmental exposures influence vascular function and inflammation, with a focus on pollutants such as particulate matter and chemical toxins like bisphenols and per- and polyfluoroalkyl substances. These environmental stressors can trigger oxidative stress, chronic inflammation and vascular dysfunction, potentially accelerating the progression of atherosclerosis. We also explore the protective effects of natural compounds and exposure to green spaces in dampening inflammation and reducing cardiovascular risk. By examining the complex interplay between traditional risk factors and environmental exposures, this work highlights the need for comprehensive public health strategies that address both individual lifestyle factors and broader environmental determinants of cardiovascular health. We underscore the importance of further research to elucidate the precise cellular and molecular mechanisms by which environmental factors influence vascular function, with the aim of developing targeted interventions to mitigate their harmful effects and promote cardiovascular well-being.
Collapse
Affiliation(s)
- Anusha N Seneviratne
- Department of Health Studies, Royal Holloway University of London, Egham, Surrey, UK
| | - Anne Majumdar
- Department of Health Studies, Royal Holloway University of London, Egham, Surrey, UK
| | - Kalpana Surendranath
- Genome Engineering Laboratory, School of Life Sciences, University of Westminster, London, UK
| | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Badami MM, Aghaei Y, Sioutas C. Impact of Emission Standards on Fine Particulate Matter Toxicity: A Long-Term Analysis in Los Angeles. TOXICS 2025; 13:140. [PMID: 39997955 PMCID: PMC11861624 DOI: 10.3390/toxics13020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
This study examines long-term trends in fine particulate matter (PM2.5) composition and oxidative potential in Los Angeles based on data from the University of Southern California's Particle Instrumentation Unit, with chemical composition retrieved from the EPA's Air Quality System (AQS). While regulatory interventions have reduced PM2.5 mass concentration and primary combustion-related components, our findings reveal a more complex toxicity pattern. From 2001 to 2008, the PM2.5 oxidative potential, measured via the dithiothreitol (DTT) assay, declined from ~0.84 to ~0.16 nmol/min/m3 under stringent tailpipe controls. However, after this initial decline, PM2.5 DTT stabilized and gradually increased from ~0.35 in 2012 to ~0.97 nmol/min/m3 by 2024, reflecting the growing influence of non-tailpipe emissions such as brake/tire wear. Metals, such as iron (Fe, ~150 ng/m3) and zinc (Zn, ~10 ng/m3), remained relatively stable as organic and elemental carbon (OC and EC) declined, resulting in non-tailpipe contributions dominating PM2.5 toxicity. Although PM2.5 mass concentrations were effectively reduced, the growing contribution of non-tailpipe emissions (e.g., brake/tire wear and secondary organic aerosols) underscores the limitations of mass-based standards and tailpipe-focused strategies. Our findings emphasize the need to broaden regulatory strategies, targeting emerging sources that shape PM2.5 composition and toxicity and ensuring more improvements in public health outcomes.
Collapse
Affiliation(s)
| | | | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA; (M.M.B.); (Y.A.)
| |
Collapse
|
4
|
Gabet S, Puy L. Current trend in air pollution exposure and stroke. Curr Opin Neurol 2025; 38:54-61. [PMID: 39508397 PMCID: PMC11706348 DOI: 10.1097/wco.0000000000001331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
PURPOSE OF REVIEW Stroke is the second leading cause of death worldwide, and exposure to particulate air pollution is now recognized as one of the major modifiable risk factors. However, air pollution can vary in terms of physicochemical composition and exposition specificities. Therefore, its relationships with stroke outcomes remain under intense investigation. RECENT FINDINGS This review highlights, alongside particles, that short-term and long-term exposure to nitrogen dioxide (NO 2 ) and ozone is likely to be also linked to stroke-related morbidity and mortality. Moreover, air pollution may increase the risk of transitioning from a healthy status to incident stroke and morbimortality after stroke. Additionally, relationships may vary depending on the air pollution mixture (e.g., particle-related components, pollutant interactions), pollutant sources (e.g., traffic-related or not), stroke etiology (ischemic or hemorrhagic), or exposed individual's characteristics (e.g., age, sex, genetic predisposition, weight status). Nonlinear dose-response functions and short-term effect lags have been reported, but these features need further refinement. SUMMARY The relationship between stroke and air pollution is now well established. Nonetheless, future research should further consider the physicochemical properties of air pollutants, multiple exposures, and individual vulnerabilities. Moreover, advanced statistical methods should be more commonly used to better describe the relationship shapes.
Collapse
Affiliation(s)
- Stephan Gabet
- University Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l’Environnement Chimique sur la Santé (IMPECS)
| | - Laurent Puy
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| |
Collapse
|
5
|
Zhang JJ, Ye XR, Liu XS, Zhang HL, Qiao Q. Impact of sodium-glucose cotransporter-2 inhibitors on pulmonary vascular cell function and arterial remodeling. World J Cardiol 2025; 17:101491. [PMID: 39866213 PMCID: PMC11755123 DOI: 10.4330/wjc.v17.i1.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 01/21/2025] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling. Specifically, these inhibitors exhibit promising potential in enhancing pulmonary vascular endothelial cell function, suppressing pulmonary smooth muscle cell proliferation and migration, reversing pulmonary arterial remodeling, and maintaining hemodynamic equilibrium. This comprehensive review synthesizes current literature to delineate the mechanisms by which SGLT-2 inhibitors enhance pulmonary vascular cell function and reverse pulmonary remodeling, thereby offering novel therapeutic perspectives for pulmonary vascular diseases.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Rui Ye
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Song Liu
- Department of Biochemistry, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Qian Qiao
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China.
| |
Collapse
|
6
|
Ge Y, Nash MS, Farraj AK. Metabolomic profiling reveals systemic metabolic disruptions induced by combined exposure to particulate matter and ozone. Curr Res Toxicol 2025; 8:100216. [PMID: 39911777 PMCID: PMC11795073 DOI: 10.1016/j.crtox.2025.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Air pollution exposure, especially particulate matter (PM) and ozone (O3), poses significant health risks, but the systemic metabolic consequences of combined exposures to PM and O3, remain poorly understood. This study investigated systemic metabolic changes in male spontaneously hypertensive (SH) rats following inhalation exposure to concentrated ambient particles (CAPs) (PM2.5, 150 μg/m3), ozone (O3) (0.2 ppm), and their combination. Rats were exposed for 4 h, and serum samples were collected 1-hour post-exposure. Using targeted metabolomics, we identified significant alterations in metabolites involved in lipid metabolism (phosphatidylcholines), energy metabolism (acylcarnitine C3), and oxidative stress (glutamine). Notably, the combination exposure induced distinct metabolic changes, including increased acylcarnitine C3 levels, suggesting heightened mitochondrial dysfunction. Principal component analysis revealed overlapping profiles between CAPs and controls, indicating a subtler impact of CAPs compared to ozone or combined exposure. These systemic metabolic alterations are aligned with our previously published proteomics findings in cardiac tissues from the same rats, which showed elevated inflammatory markers (e.g., IL-6, TNF-α) and mitochondrial dysfunction. In conclusion, this study provides new insights into the systemic metabolic effects of air pollutant exposure, identifies novel metabolic targets of pollutant-induced toxicity, highlights the complex interactions resulting from combined exposure to multiple pollutants, and underscores the importance of assessing the combined effects of multiple pollutants in air pollution risk assessments.
Collapse
Affiliation(s)
- Yue Ge
- The Center for Computational Toxicology and Exposure, US Environmental Protection Agency, RTP, NC 27711, United States
| | - Maliha S. Nash
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, RTP, NC 27711, United States
| | - Aimen K. Farraj
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, RTP, NC 27711, United States
| |
Collapse
|
7
|
Gorini F, Tonacci A. Ambient Air Pollution and Congenital Heart Disease: Updated Evidence and Future Challenges. Antioxidants (Basel) 2025; 14:48. [PMID: 39857382 PMCID: PMC11761577 DOI: 10.3390/antiox14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Congenital heart disease (CHD) represents the major cause of infant mortality related to congenital anomalies globally. The etiology of CHD is mostly multifactorial, with environmental determinants, including maternal exposure to ambient air pollutants, assumed to contribute to CHD development. While particulate matter (PM) is responsible for millions of premature deaths every year, overall ambient air pollutants (PM, nitrogen and sulfur dioxide, ozone, and carbon monoxide) are known to increase the risk of adverse pregnancy outcomes. In this literature review, we provide an overview regarding the updated evidence related to the association between maternal exposure to outdoor air pollutants and CHD occurrence, also exploring the underlying biological mechanisms from human and experimental studies. With the exception of PM, for which there is currently moderate evidence of its positive association with overall CHD risk following exposure during the periconception and throughout pregnancy, and for ozone which shows a signal of association with increased risk of pooled CHD and certain CHD subtypes in the periconceptional period, for the other pollutants, the data are inconsistent, and no conclusion can be drawn about their role in CHD onset. Future epidemiological cohort studies in countries with different degree of air pollution and experimental research on animal models are warranted to gain a comprehensive picture of the possible involvement of ambient air pollutants in CHD etiopathogenesis. While on the one hand this information could also be useful for timely intervention to reduce the risk of CHD, on the other hand, it is mandatory to scale up the use of technologies for pollutant monitoring, as well as the use of Artificial Intelligence for data analysis to identify the non-linear relationships that will eventually exist between environmental and clinical variables.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
8
|
Lei Y, Lei TH, Lu C, Zhang X, Wang F. Wildfire Smoke: Health Effects, Mechanisms, and Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21097-21119. [PMID: 39516728 DOI: 10.1021/acs.est.4c06653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wildfires are becoming more frequent and intense on a global scale, raising concerns about their acute and long-term effects on human health. We conducted a systematic review of the current epidemiological evidence on wildfire health risks and a meta-analysis to investigate the association between wildfire smoke exposure and various health outcomes. We discovered that wildfire smoke increases the risk of premature deaths and respiratory morbidity in the general population. Meta-analysis of cause-specific mortality and morbidity revealed that wildfire smoke had the strongest associations with cardiovascular mortality (RR: 1.018, 95% CI: 1.014-1.021), asthma hospitalization (RR: 1.054, 95% CI: 1.026-1.082), and asthma emergency department visits (RR: 1.117, 95% CI: 1.035-1.204) in the general population. Subgroup analyses of age found that adults and elderly adults were more susceptible to the cardiopulmonary effects of wildfire smoke. Next, we systematically addressed the toxicological mechanisms of wildfire smoke, including direct toxicity, oxidative stress, inflammatory reactions, immune dysregulation, genotoxicity and mutations, skin allergies, inflammation, and others. We discuss wildfire smoke risk mitigation strategies including public health interventions, regulatory measures, and personal actions. We conclude by highlighting current research limitations and future directions for wildfire research, such as elucidating the complex interactions of wildfire smoke components on human health, developing personalized risk assessment tools, and improving resilience and adaptation strategies to mitigate the health effects of wildfires in changing climate.
Collapse
Affiliation(s)
- Ying Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tze-Huan Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410008, China
| | - Xue Zhang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| |
Collapse
|
9
|
Bouredji A, Lakhmi R, Muresan-Paslaru B, Pourchez J, Forest V. Exposure of RAW264.7 macrophages to exhaust emissions (gases and PAH) and non-exhaust emissions (tire particles) induces additive or synergistic TNF-α production depending on the tire particle size. Toxicology 2024; 509:153990. [PMID: 39504919 DOI: 10.1016/j.tox.2024.153990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Road traffic is a major contributor to air pollution and consequently negatively affects human health. Car pollution originates both from exhaust emissions (EE) and non-exhaust emissions (NEE, such as tire and brake wear particles, erosion of road surfaces and resuspension of road dust). While the toxicity of EE and NEE has been characterized separately, their combined effects are poorly documented. However, we are constantly exposed to a mixture of pollutants and their interactions should not be neglected as they may significantly impact their toxicological profile resulting in additive, synergistic or antagonistic effects. To fill this gap, we investigated in vitro the combined toxicity of exhaust gases and benzo[a]pyrene (representative of EE) and tire particles (representative of NEE). Macrophages from the RAW264.7 cell line were exposed for 24 h to tire particles (TP) of variable size (6-113 µm), alone or in combination with exhaust gases (CO2, CO, NO, NO2) and benzo[a]pyrene (B[a]P) as an archetype of polycyclic aromatic hydrocarbon (PAH). The cell response was assessed in terms of cytotoxicity, proinflammatory response and oxidative stress. TP, gases and B[a]P, alone or in combination triggered neither cytotoxicity nor oxidative stress. On the contrary, a proinflammatory response was elicited with two different profiles depending on the size of the TP: TNF-α production was either slightly (with the finest TP) or strongly (with coarse TP) increased in the presence of gases and B[a]P, suggesting that the effects of TP, gases and B[a]P were either additive or synergistic, depending on TP size.
Collapse
Affiliation(s)
- Abderrahmane Bouredji
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne 42023, France
| | - Riadh Lakhmi
- Mines Saint-Etienne, Univ Lyon, CNRS, UMR 5307 LGF, Centre SPIN, Saint-Etienne 42023, France
| | | | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne 42023, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne 42023, France.
| |
Collapse
|
10
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4421-4448. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
11
|
Rocha-Velasco OA, Morales-Suárez-Varela M, Llopis-González A. Dietary Flavonoids: Mitigating Air Pollution's Cardiovascular Risks. Nutrients 2024; 16:2647. [PMID: 39203784 PMCID: PMC11356943 DOI: 10.3390/nu16162647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Air pollution significantly impacts cardiovascular health, yet pollution reduction strategies in cardiovascular disease prevention remain limited. Dietary flavonoids show promise in protecting cardiovascular health, but their potential to mitigate air-pollution-induced risks is unexplored. This study investigates this research gap. Following PRISMA-ScR guidelines, literature from 2014-2024 was searched across MedLine/PubMed, ScienceDirect, and MDPI databases. Of 463 identified studies, 53 were eligible for analysis based on PICO criteria. Findings revealed significant impacts of air pollution on cardiovascular health, including increased disease risks and mortality. Flavonoid intake demonstrated protective effects against these risks. Flavonoid mechanisms include improved endothelial function, antioxidant and anti-inflammatory effects, blood pressure regulation, antiplatelet effects, cardioprotection, and enhanced lipid and glucose metabolism. Higher flavonoid intake was consistently associated with reduced cardiovascular risks. While reducing pollution remains crucial, promoting flavonoid-rich diets is a promising complementary strategy. Public health initiatives should raise awareness about these benefits. Further research on direct interactions between flavonoid intake and air pollution exposure is needed. Current evidence supports integrating dietary interventions into broader strategies to reduce air pollution's cardiovascular impacts.
Collapse
Affiliation(s)
- Oscar Andrés Rocha-Velasco
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, Spain; (O.A.R.-V.); (A.L.-G.)
| | - María Morales-Suárez-Varela
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, Spain; (O.A.R.-V.); (A.L.-G.)
- Biomedical Research Center in Epidemiology and Public Health Network (CIBERESP), Carlos III Health Institute, Av. Monforte de Lemos 3-5 Pabellón 11 Planta 0, 28029 Madrid, Spain
| | - Agustín Llopis-González
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, Spain; (O.A.R.-V.); (A.L.-G.)
- Biomedical Research Center in Epidemiology and Public Health Network (CIBERESP), Carlos III Health Institute, Av. Monforte de Lemos 3-5 Pabellón 11 Planta 0, 28029 Madrid, Spain
| |
Collapse
|
12
|
Chang C, Louie A, Zhou Y, Gupta R, Liang F, Xanthou G, Ereso J, Koletic C, Yang JC, Sedighian F, Lagishetty V, Arias-Jayo N, Altuwayjiri A, Tohidi R, Navab M, Reddy ST, Sioutas C, Hsiai T, Araujo JA, Jacobs JP. Ambient Particulate Matter Induces In Vitro Toxicity to Intestinal Epithelial Cells without Exacerbating Acute Colitis Induced by Dextran Sodium Sulfate or 2,4,6-Trinitrobenzenesulfonic Acid. Int J Mol Sci 2024; 25:7184. [PMID: 39000289 PMCID: PMC11241079 DOI: 10.3390/ijms25137184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an immunologically complex disorder involving genetic, microbial, and environmental risk factors. Its global burden has continued to rise since industrialization, with epidemiological studies suggesting that ambient particulate matter (PM) in air pollution could be a contributing factor. Prior animal studies have shown that oral PM10 exposure promotes intestinal inflammation in a genetic IBD model and that PM2.5 inhalation exposure can increase intestinal levels of pro-inflammatory cytokines. PM10 and PM2.5 include ultrafine particles (UFP), which have an aerodynamic diameter of <0.10 μm and biophysical and biochemical properties that promote toxicity. UFP inhalation, however, has not been previously studied in the context of murine models of IBD. Here, we demonstrated that ambient PM is toxic to cultured Caco-2 intestinal epithelial cells and examined whether UFP inhalation affected acute colitis induced by dextran sodium sulfate and 2,4,6-trinitrobenzenesulfonic acid. C57BL/6J mice were exposed to filtered air (FA) or various types of ambient PM reaerosolized in the ultrafine size range at ~300 μg/m3, 6 h/day, 3-5 days/week, starting 7-10 days before disease induction. No differences in weight change, clinical disease activity, or histology were observed between the PM and FA-exposed groups. In conclusion, UFP inhalation exposure did not exacerbate intestinal inflammation in acute, chemically-induced colitis models.
Collapse
Affiliation(s)
- Candace Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Allen Louie
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Zhou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- West China Medical Center, Sichuan University, Chengdu 610017, China
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fengting Liang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Georgina Xanthou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Jason Ereso
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Carolina Koletic
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Julianne Ching Yang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Farzaneh Sedighian
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Nerea Arias-Jayo
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Abdulmalik Altuwayjiri
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
- Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Ramin Tohidi
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
- Air Quality Planning and Science Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, CA 92507, USA
| | - Mohamad Navab
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
| | - Srinivasa Tadiparthi Reddy
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- West China Medical Center, Sichuan University, Chengdu 610017, China
- Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Constantinos Sioutas
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
| | - Tzung Hsiai
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Ilaghi M, Kafi F, Shafiei M, Zangiabadian M, Nasiri MJ. Dietary supplementations to mitigate the cardiopulmonary effects of air pollution toxicity: A systematic review of clinical trials. PLoS One 2024; 19:e0304402. [PMID: 38870164 PMCID: PMC11175466 DOI: 10.1371/journal.pone.0304402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND There is a consistent association between exposure to air pollution and elevated rates of cardiopulmonary illnesses. As public health activities emphasize the paramount need to reduce exposure, it is crucial to examine strategies like the antioxidant diet that could potentially protect individuals who are unavoidably exposed. METHODS A systematic search was performed in PubMed/Medline, EMBASE, CENTRAL, and ClinicalTrials.gov up to March 31, 2023, for clinical trials assessing dietary supplements against cardiovascular (blood pressure, heart rate, heart rate variability, brachial artery diameter, flow-mediated dilation, and lipid profile) or pulmonary outcomes (pulmonary function and airway inflammation) attributed to air pollution exposure. RESULTS After reviewing 4681 records, 18 studies were included. There were contradictory findings on the effects of fish oil and olive oil supplementations on cardiovascular outcomes. Although with limited evidence, fish oil offered protection against pulmonary dysfunction induced by pollutants. Most studies on vitamin C did not find protective cardiovascular effects; however, the combination of vitamin C and E offered protective effects against pulmonary dysfunction but showed conflicting results for cardiovascular outcomes. Other supplements like sulforaphane, L-arginine, n-acetylcysteine, and B vitamins showed potential beneficial effects but need further research due to the limited number of existing trials. CONCLUSIONS Although more research is needed to determine the efficacy and optimal dose of anti-inflammatory and antioxidant dietary supplements against air pollution toxicity, this low-cost preventative strategy has the potential to offer protection against outcomes of air pollution exposure.
Collapse
Affiliation(s)
- Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Kafi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Shafiei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moein Zangiabadian
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Meldrum K, Evans SJ, Burgum MJ, Doak SH, Clift MJD. Determining the toxicological effects of indoor air pollution on both a healthy and an inflammatory-comprised model of the alveolar epithelial barrier in vitro. Part Fibre Toxicol 2024; 21:25. [PMID: 38760786 PMCID: PMC11100169 DOI: 10.1186/s12989-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/20/2024] [Indexed: 05/19/2024] Open
Abstract
Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| | - Stephen J Evans
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
15
|
Gao Y, Zhang X, Li X, Zhang J, Lv Z, Guo D, Mao H, Wang T. Lipid Dysregulation Induced by Gasoline and Diesel Exhaust Exposure and the Interaction with Age. TOXICS 2024; 12:303. [PMID: 38668526 PMCID: PMC11054039 DOI: 10.3390/toxics12040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Limited knowledge exists regarding gasoline and diesel exhaust effects on lipid metabolism. This study collected gasoline and diesel exhaust under actual driving conditions and conducted inhalation exposure on male young and middle-aged C57BL/6J mice for 4 h/day for 5 days to simulate commuting exposure intensity. Additionally, PM2.5 from actual roadways, representing gasoline and diesel vehicles, was generated for exposure to human umbilical vein endothelial cells (HUVECs) and normal liver cells (LO2) for 24, 48, and 72 h to further investigate exhaust particle toxicity. Results showed that diesel exhaust reduced total cholesterol and low-density lipoprotein cholesterol levels in young mice, indicating disrupted lipid metabolism. Aspartate aminotransferase and alanine aminotransferase levels increased by 53.7% and 21.7%, respectively, suggesting potential liver injury. Diesel exhaust exposure decreased superoxide dismutase and increased glutathione peroxidase levels. Cell viability decreased, and reactive oxygen species levels increased in HUVECs and LO2 following exposure to exhaust particles, with dose- and time-dependent effects. Diesel exhaust particles exhibited more severe inhibition of cell proliferation and oxidative damage compared to gasoline exhaust particles. These findings provide novel evidence of the risk of disrupted lipid metabolism due to gasoline and diesel exhaust, emphasizing the toxicity of diesel exhaust.
Collapse
Affiliation(s)
- Yutong Gao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xinzhuo Zhang
- Department of Visual Optics Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Xinting Li
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jinsheng Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zongyan Lv
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Dongping Guo
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Bonanni LJ, Wittkopp S, Long C, Aleman JO, Newman JD. A review of air pollution as a driver of cardiovascular disease risk across the diabetes spectrum. Front Endocrinol (Lausanne) 2024; 15:1321323. [PMID: 38665261 PMCID: PMC11043478 DOI: 10.3389/fendo.2024.1321323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of diabetes is estimated to reach almost 630 million cases worldwide by the year 2045; of current and projected cases, over 90% are type 2 diabetes. Air pollution exposure has been implicated in the onset and progression of diabetes. Increased exposure to fine particulate matter air pollution (PM2.5) is associated with increases in blood glucose and glycated hemoglobin (HbA1c) across the glycemic spectrum, including normoglycemia, prediabetes, and all forms of diabetes. Air pollution exposure is a driver of cardiovascular disease onset and exacerbation and can increase cardiovascular risk among those with diabetes. In this review, we summarize the literature describing the relationships between air pollution exposure, diabetes and cardiovascular disease, highlighting how airborne pollutants can disrupt glucose homeostasis. We discuss how air pollution and diabetes, via shared mechanisms leading to endothelial dysfunction, drive increased cardiovascular disease risk. We identify portable air cleaners as potentially useful tools to prevent adverse cardiovascular outcomes due to air pollution exposure across the diabetes spectrum, while emphasizing the need for further study in this particular population. Given the enormity of the health and financial impacts of air pollution exposure on patients with diabetes, a greater understanding of the interventions to reduce cardiovascular risk in this population is needed.
Collapse
Affiliation(s)
- Luke J. Bonanni
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Sharine Wittkopp
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Clarine Long
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - José O. Aleman
- Division of Endocrinology, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Jonathan D. Newman
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| |
Collapse
|
17
|
Shin HJ, Yang WK, Lee YC, Kim S, Moon SO, Kwon YJ, Noh HJ, Kim KH, Kim BK, Shin CH, Chae MY, Yun SH, Kim SH. Protective effect of the mixture of Lactiplantibacillus plantarum KC3 and Leonurus Japonicas Houtt extract on respiratory disorders. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115856. [PMID: 38134637 DOI: 10.1016/j.ecoenv.2023.115856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Air pollutants, such as particulate matter (PM) and diesel exhaust particles (DEP), are associated with respiratory diseases. Therefore, preventive and therapeutic strategies against PM-and DEP (PM10D)-induced respiratory diseases are needed. Herein, we evaluate the protective effects of a mixture of Lactiplantibacillus plantarum KC3 and Leonurus Japonicas Houtt (LJH) extract against airway inflammation associated with exposure to PM10D. To determine the anti-inflammatory effects of the LJH extract, reactive oxygen species (ROS) production and the expression of inflammatory pathways were determined in PM10-induced MH-S cells. For the respiratory protective effects, BALB/c mice were exposed to PM10D via intranasal injection, and a mixture of L. plantarum KC3 and LJH extract was administered orally for 12 days. LJH extract inhibited ROS production and the phosphorylation of downstream factors of NF-κB in PM10-stimulated MH-S cells. The mixture of L. plantarum KC3 and LJH repressed the infiltration of neutrophils, reduced the immune cells number, and suppressed the proinflammatory mediators and cyclooxygenase (COX)-2 expressions in PM10D-induced airway inflammation with reduced phosphorylation of downstream factors of NF-κB. In addition, these effects were not observed in an alveolar macrophage depleted PM10D-induced mouse model using clodronate liposomes. The extract mixture also regulated gut microbiota in feces and upregulated the mRNA expression of Foxp3, transforming growth factor (TGF)-β1, and interleukin (IL)-10 in the colon. The L. plantarum KC3 and LJH extract mixture may inhibit alveolar macrophage- and neutrophil-mediated inflammatory responses and regulate gut microbiota and immune response in PM10D-induced airway inflammation, suggesting it is a potential remedy to prevent and cure airway inflammation and respiratory disorders.
Collapse
Affiliation(s)
- Han Jae Shin
- KT&G Research Institute, Daejeon 34128, the Republic of Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, the Republic of Korea
| | - Young Chul Lee
- KT&G Research Institute, Daejeon 34128, the Republic of Korea
| | - Soeun Kim
- KT&G Research Institute, Daejeon 34128, the Republic of Korea
| | - Sung Ok Moon
- KT&G Research Institute, Daejeon 34128, the Republic of Korea
| | - Yoo Jin Kwon
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Hye-Ji Noh
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Chang Hun Shin
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Min-Young Chae
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, the Republic of Korea
| | - Su-Hyeon Yun
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, the Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, the Republic of Korea.
| |
Collapse
|
18
|
Chen Y, Fan Y, Huang Y, Liao X, Xu W, Zhang T. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115905. [PMID: 38171230 DOI: 10.1016/j.ecoenv.2023.115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Coal fly ash (CFA), a byproduct of coal combustion, is a hazardous industrial solid waste. Its excessive global production, coupled with improper disposal practices, insufficient utilization and limited awareness of its inherent hazards, poses a significant threat to both ecological environment and human health. Based on the physicochemical properties of CFA and its leachates, we elucidate the forms of CFA and potential pathways for its entry into the human body, as well as the leaching behavior, maximum tolerance and biological half-life of toxic elements present in CFA. Furthermore, we provide an overview of current strategies and methods for mitigating the leaching of these harmful elements from CFA. Moreover, we systemically summarize toxic effect of CFA on organisms across various tiers of complexity, analyze epidemiological findings concerning the human health implications resulting from CFA exposure, and delve into the biotoxicological mechanisms of CFA and its leachates at cellular and molecular levels. This review aims to enhance understanding of the potential toxicity of CFA, thereby promoting increased public awareness regarding the disposal and management of this industrial waste.
Collapse
Affiliation(s)
- Yi Chen
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yingjie Fan
- Chongqing Research Center for Jialing River Development, Institute of Intelligent Manufacturing and Automotive, Chongqing Technology and Business Institute, Chongqing 401520, China
| | - Yu Huang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenfeng Xu
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Tao Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; JINSHAN Science & Technology (Group) Co., Ltd., Chongqing 401120, China.
| |
Collapse
|
19
|
Zhu F, Yu H, Fan X, Ding Z, Wang Q, Zhou J. Particulate air pollution and cardiovascular disease mortality in Jiangsu Province, China: a time-series analysis between 2015 and 2021. Front Public Health 2023; 11:1218479. [PMID: 38174084 PMCID: PMC10761421 DOI: 10.3389/fpubh.2023.1218479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Previous time-series studies have revealed a positive association between particulate matter (PM) and acute cardiovascular effects. However, the evidence mostly comes from developed countries and regions, while the majority of air-pollution-related deaths occur in developing countries. To assess the effect of short-term exposure to PM on daily cause-specific cardiovascular disease (CVD) mortality in Jiangsu Province, China, we investigated 1,417,773 CVD deaths from 2015 to 2021 in Jiangsu. Methods The city-specific association was estimated using generalized additive models with quasi-Poisson regression, and then, random effects meta-analysis was performed to estimate the pooled provincial-average associations between acute exposure to PM2.5 and PM10 and cardiovascular disease mortality. To test the independence of PM from gaseous pollutants, we fitted two-pollutant models. Mortality data were also stratified by sex, age, and region to investigate the modification of associations. The exposure-response (E-R) curve from each city was combined using meta-analysis to drive the provincial-level E-R curve. Results The results showed that each 10-μg/m3 increase in the PM2.5 concentration was associated with a 0.723% [95% confidence interval (CI): 0.512, 0.935] increase in daily total CVD mortality, a 0.669% (95% CI: 0.461, 0.878) increase in CHD mortality, a 0.758% (95% CI: 0.584, 0.931) increase in stroke mortality, a 0.512% (95% CI: 0.245, 0.780) increase in ICH mortality, and a 0.876% (95% CI: 0.637, 1.116) increase in CI mortality. The corresponding increases in daily mortality rates for the same increase in the PM10 concentration were 0.424% (95% CI: 0.293, 0.556), 0.415% (95% CI: 0.228, 0.602), 0.444% (95% CI: 0.330, 0.559), 0.276% (95% CI: 0.026, 0.526), and 0.510% (95% CI: 0.353, 0.667), respectively. The association between PM and total CVD mortality remained significant after adjusting for gaseous pollutants. Females, older adults and districts with lower average PM levels are more sensitive, especially for PM10. The E-R curve for PM on CVD mortality is steeper at lower concentrations and flattens out at higher concentrations. The estimates remained generally consistent in sensitivity analyses when excluding the data during the COVID-19 pandemic period. Discussion Our time-series study provides evidence of positive associations between acute exposure to PM2.5 and PM10 and total and cause-specific cardiovascular disease mortality in developing countries.
Collapse
Affiliation(s)
- Fangyu Zhu
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hao Yu
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xikang Fan
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhen Ding
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qingqing Wang
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jinyi Zhou
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
20
|
Yaar S, Filatova TS, England E, Kompella SN, Hancox JC, Bechtold DA, Venetucci L, Abramochkin DV, Shiels HA. Global Air Pollutant Phenanthrene and Arrhythmic Outcomes in a Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117002. [PMID: 37909723 PMCID: PMC10619431 DOI: 10.1289/ehp12775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The three-ringed polycyclic aromatic hydrocarbon (PAH) phenanthrene (Phe) has been implicated in the cardiotoxicity of petroleum-based pollution in aquatic systems, where it disrupts the contractile and electrical function of the fish heart. Phe is also found adsorbed to particulate matter and in the gas phase of air pollution, but to date, no studies have investigated the impact of Phe on mammalian cardiac function. OBJECTIVES Our objectives were to determine the arrhythmogenic potential of acute Phe exposure on mammalian cardiac function and define the underlying mechanisms to provide insight into the toxicity risk to humans. METHODS Ex vivo Langendorff-perfused mouse hearts were used to test the arrhythmogenic potential of Phe on myocardial function, and voltage- and current-clamp recordings were used to define underlying cellular mechanisms in isolated cardiomyocytes. RESULTS Mouse hearts exposed to ∼ 8 μ M Phe for 15-min exhibited a significantly slower heart rate (p = 0.0006 , N = 10 hearts), a prolonged PR interval (p = 0.036 , N = 8 hearts), and a slower conduction velocity (p = 0.0143 , N = 7 hearts). Whole-cell recordings from isolated cardiomyocytes revealed action potential (AP) duration prolongation (at 80% repolarization; p = 0.0408 , n = 9 cells) and inhibition of key murine repolarizing currents-transient outward potassium current (I to ) and ultrarapid potassium current (I Kur )-following Phe exposure. A significant reduction in AP upstroke velocity (p = 0.0445 , n = 9 cells) and inhibition of the fast sodium current (I Na ; p = 0.001 , n = 8 cells) and calcium current (I Ca ; p = 0.0001 ) were also observed, explaining the slowed conduction velocity in intact hearts. Finally, acute exposure to ∼ 8 μ M Phe significantly increased susceptibility to arrhythmias (p = 0.0455 , N = 9 hearts). DISCUSSION To the best of our knowledge, this is the first evidence of direct inhibitory effects of Phe on mammalian cardiac electrical activity at both the whole-heart and cell levels. This electrical dysfunction manifested as an increase in arrhythmia susceptibility due to impairment of both conduction and repolarization. Similar effects in humans could have serious health consequences, warranting greater regulatory attention and toxicological investigation into this ubiquitous PAH pollutant generated from fossil-fuel combustion. https://doi.org/10.1289/EHP12775.
Collapse
Affiliation(s)
- Sana Yaar
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Tatiana S. Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Ellie England
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Shiva N. Kompella
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David A. Bechtold
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Luigi Venetucci
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Denis V. Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Holly A. Shiels
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Hu L, Xu C, Tang X, Yu S, Wang L, Li Q, Zhou X. Fine particulate matter promotes airway inflammation and mucin production by activating endoplasmic reticulum stress and the IRE1α/NOD1/NF‑κB pathway. Int J Mol Med 2023; 52:96. [PMID: 37654182 PMCID: PMC10555484 DOI: 10.3892/ijmm.2023.5299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Fine particulate matter (PM2.5) is a type of small particle that is <2.5 µm in diameter that may cause airway inflammation. Thus, the present study aimed to explore the effects of PM2.5 on endoplasmic reticulum (ER) stress and airway inflammation in human airway epithelial cells. For this purpose, HBE135‑E6E7 airway epithelial cells were cultured and exposed to specific concentrations of PM2.5 for various periods of time, and cell viability was determined using a Cell Counting Kit‑8 assay. The results of the present study demonstrated that exposure to PM2.5 increased the mRNA and protein expression levels of interleukin (IL)‑6, tumor necrosis factor (TNF)‑α and mucin 5AC (MUC5AC). Moreover, the expression levels of ER stress‑related proteins, such as glucose‑regulated protein 78, CCAAT‑enhancer binding protein homologous protein, activating transcription factor 6, protein kinase R‑like ER kinase (PERK), phosphorylated (p‑)PERK, inositol‑requiring enzyme 1α (IRE1α) and p‑IRE1α, and nucleotide‑binding oligomerization domain 1 (NOD1) expression levels were increased following exposure to PM2.5. Transfection with IRE1α small interfering RNA (siRNA) led to the increased production of IL‑6, TNF‑α and MUC5AC. Moreover, the expression of NOD1 and the translocation of NF‑κB p65 were inhibited following transfection with IRE1α siRNA. In addition, the results of the present study demonstrated that transfection with NOD1 siRNA decreased the production of IL‑6, TNF‑α and MUC5AC, and decreased the translocation of NF‑κB p65. The expression levels of IL‑6, TNF‑α and MUC5AC were increased in the HBE135‑E6E7 cells following treatment with C12‑iE‑DAP, a NOD1 agonist. Moreover, treatment with C12‑iE‑DAP led to the activation of NF‑κB p65. Collectively, the results of the present study suggest that PM2.5 promotes airway inflammation and mucin production by activating ER stress in HBE135‑E6E7 airway epithelial cells, and that the IRE1α/NOD1/NF‑κB pathway may be involved in this process.
Collapse
Affiliation(s)
- Lihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Chaoqun Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Emergency and Trauma College, Hainan Medical University, Haikou, Hainan 579199, P.R. China
| | - Xiang Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Shanjun Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Lijun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| |
Collapse
|
22
|
Mahmood R, Said A, Kanagala SG, Gupta V, Jain R. Unraveling the link: exploring the effects of environmental change on the cardiovascular system. Future Cardiol 2023; 19:649-659. [PMID: 37830331 DOI: 10.2217/fca-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Climate change has a particularly detrimental effect on the cardiovascular system, which is highly vulnerable to harmful impacts. The accumulation of particulate matter (PM) and greenhouse gasses in the environment negatively impacts the cardiovascular system through several mechanisms. The burden of climate change-related diseases falls disproportionately on vulnerable populations, including the elderly, the poor, and those with pre-existing health conditions. A key component of addressing the complex interplay between climate change and cardiovascular diseases is acknowledging health disparities among vulnerable populations resulting from climate change, familiarizing themselves with strategies for adapting to changing conditions, educating patients about climate-related cardiovascular risks, and advocating for policies that promote cleaner environments and sustainable practices.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Avalon University School of Medicine, Willemstad, Curaçao
| | - Aimen Said
- CMH Lahore Medical College, Punjab, Pakistan
| | | | - Vasu Gupta
- Dayanand Medical College & Hospital, Ludhiana, India
| | - Rohit Jain
- Department of Internal Medicine Institution: Avalon University School of Medicine, WTC, Piscaderaweg z/n, Willemstad, Curaçao
| |
Collapse
|
23
|
Liu Y, Yan M. Association of physical activity and PM2.5-attributable cardiovascular disease mortality in the United States. Front Public Health 2023; 11:1224338. [PMID: 37841709 PMCID: PMC10568068 DOI: 10.3389/fpubh.2023.1224338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Objective The study aimed to explore the association between physical activity (PA) and PM2. 5-attributable cardiovascular disease (CVD) mortality trends across the United States (US) at the state level. Methods We conducted a cross-sectional study using data from the Global Burden of Disease 2019 study for PM2.5-attributable CVD mortality and the Behavioral Risk Factor Surveillance System for PA prevalence. The study covered all 50 US states and the District of Columbia from 2001 to 2019. We utilized Joinpoint Regression to calculate AAPC from 2011 to 2019 and Pearson correlation coefficients to assess state-level associations between PA and PM2.5-attributable CVD mortality AAPC. Results During 2011-2019, a total of 244,318 PM2.5-attributable CVD deaths were recorded. The age-adjusted mortality rates (AAMR) of PM2.5-attributable CVD declined substantially from 2011 to 2019 across all US states, with the most pronounced reductions observed in industrialized states such as West Virginia (51% decline), Kentucky (32%), and Ohio (22%). AAMR ratios for the US states varied substantially, ranging from 0.1 in Hawaii to 1.7 in Arkansas. The AAPC ranged from -9.4% (West Virginia) to -1.7% (New Mexico) in the majority of states, while a few states such as Alaska, Wyoming, and Washington saw slight positive AAPCs from 0.9 to 2.9%. A significant correlation was found between PA and PM2.5-attributable CVD mortality trends (r = 0.454, p = 0.001), with similar results in subgroup analyses. Conclusion Our findings suggest a correlation between increased physical activity (PA) and increased PM2.5-attributable CVD mortality, highlighting the potential need to consider PM2.5 exposure when engaging in PA to mitigate adverse cardiovascular health impacts. However, further research is warranted to establish causality and underlying mechanisms in the relationship between PA and PM2.5-attributable CVD mortality. Potential limitations include reliance on self-reported PA data.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Health Management and Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mengmeng Yan
- School of Healthcare and Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
24
|
Wang Q, Wang Z, Chen M, Mu W, Xu Z, Xue M. Causality of particulate matter on cardiovascular diseases and cardiovascular biomarkers. Front Public Health 2023; 11:1201479. [PMID: 37732088 PMCID: PMC10507646 DOI: 10.3389/fpubh.2023.1201479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Background Previous observational studies have shown that the prevalence of cardiovascular diseases (CVDs) is related to particulate matter (PM). However, given the methodological limitations of conventional observational research, it is difficult to identify causality conclusively. To explore the causality of PM on CVDs and cardiovascular biomarkers, we conducted a Mendelian randomization (MR) analysis. Method In this study, we obtained summary-level data for CVDs and cardiovascular biomarkers including atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), ischemic stroke (IS), stroke subtypes, body mass index (BMI), lipid traits, fasting glucose, fasting insulin, and blood pressure from several large genome-wide association studies (GWASs). Then we used two-sample MR to assess the causality of PM on CVDs and cardiovascular biomarkers, 16 single nucleotide polymorphisms (SNPs) for PM2.5 and 6 SNPs for PM10 were obtained from UK Biobank participants. Inverse variance weighting (IVW) analyses under the fixed effects model were used as the main analytical method to calculate MR Estimates, followed by multiple sensitivity analyses to confirm the robustness of the results. Results Our study revealed increases in PM2.5 concentration were significantly related to a higher risk of MI (odds ratio (OR), 2.578; 95% confidence interval (CI), 1.611-4.127; p = 7.920 × 10-5). Suggestive evidence was found between PM10 concentration and HF (OR, 2.015; 95% CI, 1.082-3.753; p = 0.027) and IS (OR, 2.279; 95% CI,1.099-4.723; p = 0.027). There was no evidence for an effect of PM concentration on other CVDs. Furthermore, PM2.5 concentration increases were significantly associated with increases in triglyceride (TG) (OR, 1.426; 95% CI, 1.133-1.795; p = 2.469 × 10-3) and decreases in high-density lipoprotein cholesterol (HDL-C) (OR, 0.779; 95% CI, 0.615-0.986; p = 0.038). The PM10 concentration increases were also closely related to the decreases in HDL-C (OR, 0.563; 95% CI, 0.366-0.865; p = 8.756 × 10-3). We observed no causal effect of PM on other cardiovascular biomarkers. Conclusion At the genetic level, our study suggested the causality of PM2.5 on MI, TG, as well HDL-C, and revealed the causality of PM10 on HF, IS, and HDL-C. Our findings indicated the need for continued improvements in air pollution abatement for CVDs prevention.
Collapse
Affiliation(s)
- Qiubo Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhimiao Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Mingyou Chen
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Wei Mu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Zhenxing Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Mei Xue
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| |
Collapse
|
25
|
Ben Attia T, Ben Ali R, Nahdi A, Galai S, Ghali R, Rammeh S, Véronique El may M, Mhamdi A. Olea europaea L. leaf extract mitigates oxidative and histological damage in rat heart tissue exposed to combined noise and toluene: An experimental study. Saudi Pharm J 2023; 31:101683. [PMID: 37576861 PMCID: PMC10415226 DOI: 10.1016/j.jsps.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
In many occupational settings, workers are frequently exposed to toluene and noise. However, the individual and combined effects of these exposures on the cardiovascular system have not been fully elucidated. Therefore, this study aimed to investigate the impact of simultaneous exposure to toluene and noise on the rat heart, while also evaluating the potential preventive effect of olive leaf extract (OLE). Forty-eight male Wistar rats were randomly assigned to eight groups (n = 6/group): control group (C), control group that received OLE (C + OLE), group exposed to noise (N), group exposed to noise and receiving OLE (N + OLE), group exposed to toluene (T), group exposed to toluene and receiving OLE (T + OLE), group co-exposed to noise and toluene (NT), and group co-exposed to noise and toluene and receiving OLE (NT + OLE). The rats in this study were subjected to simultaneous exposure to toluene and noise for a duration of six weeks, within a custom-built plexiglass chamber. Toluene was administered at a concentration of 300 ppm, while the noise level was set to 85 dB(A). The exposure chamber was equipped with a generation system, an exposure system, and a monitoring system, ensuring precise and accurate exposure conditions. After the six-week period, heart and blood samples were collected from the rats for subsequent analysis. Plasma levels of cholesterol (CHOL), triglycerides (TG), lactate dehydrogenase (LDH), and creatine kinase (CK) were measured, and histopathological investigation was conducted using HE staining. Additionally, superoxide dismutase (SOD) and catalase (CAT) activities, as well as malondialdehyde (MDA) levels in heart tissue were measured. Our results showed that simultaneous exposure to noise and toluene altered CHOL, TG, LDH, and CK levels, and also caused an increase in lipid peroxidation levels and superoxide dismutase activity, along with a decrease in catalase activity in the heart. A significant alteration in the myocardium was also observed. However, treatment with OLE was found to modulate these oxidative and histological changes, ultimately correcting the deleterious effects induced by the combined exposure to noise and toluene. Therefore, our study suggests that OLE could be a potential preventive measure for individuals exposed to toluene and noise in industrial settings.
Collapse
Affiliation(s)
- Takoua Ben Attia
- University of Tunis El Manar, Research Unit n° 17/ES/13, Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Ridha Ben Ali
- University of Tunis El Manar, Research Unit n° 17/ES/13, Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Unit of Experimental Medicine, Faculty of Medicine of Tunis, Tunisia
| | - Afef Nahdi
- University of Tunis El Manar, Research Unit n° 17/ES/13, Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Said Galai
- Research Laboratory of Neurological Diseases of the Child (LR18SP04)-Department of Clinical Biology -National Institute Mongi Ben Hmida of Neurology at Tunis, Tunisia
| | - Ridha Ghali
- Laboratory of Environmental Toxicology Research, Faculty of Pharmaceutical Sciences, University of Monastir, Monastir, Tunisia
| | - Soumeya Rammeh
- University of Tunis El Manar, Tunis, Research Unit n° 17ES15- Department of Pathology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Michèle Véronique El may
- University of Tunis El Manar, Research Unit n° 17/ES/13, Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Unit of Experimental Medicine, Faculty of Medicine of Tunis, Tunisia
| | - Abada Mhamdi
- University of Tunis El Manar, Research Unit n° 17/ES/13, Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, Tunis, Tunisia
| |
Collapse
|
26
|
Santos-Aguilar P, Bernal-Ramírez J, Vázquez-Garza E, Vélez-Escamilla LY, Lozano O, García-Rivas GDJ, Contreras-Torres FF. Synthesis and Characterization of Rutile TiO 2 Nanoparticles for the Toxicological Effect on the H9c2 Cell Line from Rats. ACS OMEGA 2023; 8:19024-19036. [PMID: 37273591 PMCID: PMC10233665 DOI: 10.1021/acsomega.3c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
The widespread use of titanium dioxide (TiO2) has raised concerns about potential health risks associated with its cytotoxicity in the cardiovascular system. To evaluate the cytotoxicity of TiO2 particles, the H9c2 rat cardiomyoblasts were used as a biological model, and their toxicological susceptibility to TiO2-anatase and TiO2-rutile particles was studied in vitro. The study examined dose and time exposure responses. The cell viability was evaluated based on metabolic inhibition and membrane integrity loss. The results revealed that both TiO2-anatase and TiO2-rutile particles induced similar levels of cytotoxicity at the inhibition concentrations IC25 (1.4-4.4 μg/cm2) and IC50 (7.2-9.3 μg/cm2). However, at more significant concentrations, TiO2-rutile appeared to be more cytotoxic than TiO2-anatase at 24 h. The study found that the TiO2 particles induced apoptosis events, but necrosis was not observed at any of the concentrations of particles used. The study considered the effects of microstructural properties, crystalline phase, and particle size in determining the capability of TiO2 particles to induce cytotoxicity in H9c2 cardiomyoblasts. The microstress in TiO2 particles was assessed using powder X-ray diffraction through Williamson-Hall and Warren-Averbach analysis. The analysis estimated the apparent crystallite domain and microstrain of TiO2-anatase to be 29 nm (ε = 1.03%) and TiO2-rutile to be 21 nm (ε = 0.53%), respectively. Raman spectroscopy, N2 adsorption isotherms, and dynamic light scattering were used to identify the presence of pure crystalline phases (>99.9%), comparative surface areas (10 m2/g), and ζ-potential values (-24 mV). The difference in the properties of TiO2 particles made it difficult to attribute the cytotoxicity solely to one variable.
Collapse
Affiliation(s)
- Pamela Santos-Aguilar
- Escuela
de Ingeniería y Ciencias, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| | - Judith Bernal-Ramírez
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
| | - Eduardo Vázquez-Garza
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
| | | | - Omar Lozano
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
- The
Institute for Obesity Research, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| | - Gerardo de Jesús García-Rivas
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
- The
Institute for Obesity Research, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| | - Flavio F. Contreras-Torres
- Escuela
de Ingeniería y Ciencias, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
- The
Institute for Obesity Research, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| |
Collapse
|
27
|
Han Z, Zhao X, Xu Z, Wang J, Jin R, Liu Y, Wu Z, Zhang J, Li X, Guo X, Tao L. Associations of time-weighted individual exposure to ambient particulate matter with carotid atherosclerosis in Beijing, China. Environ Health 2023; 22:45. [PMID: 37248518 DOI: 10.1186/s12940-023-00995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Time-location information (time spent on commuting, indoors and outdoors around residential and work places and physical activity) and infiltrated outdoor pollution was less considered estimating individual exposure to ambient air pollution. Studies investigating the association between individual exposure to particulate matter (PM) with aerodynamic diameter < 10 μm (PM10) and < 2.5 μm (PM2.5) and carotid atherosclerosis presented inconsistent results. Moreover, combined effect of pollutants on carotid atherosclerosis was not fully explored. We aimed to investigate the association between long-term individual time-weighted average exposure to PM2.5 and PM10 and the risk of carotid atherosclerosis, and further explore the overall effect of co-exposure to pollutants on carotid atherosclerosis. METHODS The study population included 3069 participants derived from the Beijing Health Management Cohort (BHMC) study. Daily concentration of ambient air pollutants was estimated by land-use regression model at both residential and work addresses, and one- and two-year time-weighted average individual exposure was calculated by further considering personal activity pattern and infiltration of ambient air pollution indoors. We explored the association of PM2.5 and PM10 with carotid atherosclerosis and pooled the overall effect of co-exposure to ambient air pollutants by quantile g-computation. RESULTS A significant association between time-weighted average exposure to PM2.5 and PM10 and carotid atherosclerosis was observed. Per interquartile range increase in two-year exposure to PM2.5 (Hazard ratio (HR): 1.322, 95% confidence interval (CI): 1.219-1.434) and PM10 (HR:1.213, 95% CI: 1.116-1.319) showed the strongest association with carotid atherosclerosis, respectively. Individuals in higher quartiles of pollutants were at higher risk for carotid atherosclerosis compared with those in the lowest quartile group. Concentration response functions documented the nearly linear and nonlinear relationship and interpreted the upward trends of the risk for carotid atherosclerosis with increasing level of pollutant concentrations. Moreover, effect estimates for the mixture of pollutants and carotid atherosclerosis were larger than any of the individual pollutants (HR (95% CI) was 1.510 (1.338-1.704) and 1.613 (1.428-1.822) per quartile increase for one-year and two-year time-weighted average exposure, respectively). CONCLUSIONS Individual time-weighted average exposure to PM2.5 and PM10 was associated with carotid atherosclerosis. Co-exposure to ambient air pollution was also positively associated with carotid atherosclerosis.
Collapse
Affiliation(s)
- Ze Han
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Xiaoyu Zhao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Zongkai Xu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Jinqi Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Rui Jin
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Yueruijing Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Zhiyuan Wu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Department of Public Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Jie Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, 3086, Australia
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Lixin Tao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| |
Collapse
|
28
|
Chen L, Li H, Ru Y, Song Y, Shen Y, Zhao L, Huang G, Chen Y, Qi Z, Li R, Dong C, Fang J, Lam TKY, Yang Z, Cai Z. Xanthine-derived reactive oxygen species exacerbates adipose tissue disorders in male db/db mice induced by real-ambient PM2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163592. [PMID: 37087002 DOI: 10.1016/j.scitotenv.2023.163592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Epidemiological and experimental data have associated exposure to fine particulate matter (PM2.5) with various metabolic dysfunctions and diseases, including overweight and type 2 diabetes. Adipose tissue is an energy pool for storing lipids, a necessary regulator of glucose homeostasis, and an active endocrine organ, playing an essential role in developing various related diseases such as diabetes and obesity. However, the molecular mechanisms underlying PM2.5-impaired functions in adipose tissue have rarely been explored. In this work, metabolomics based on liquid chromatography-mass spectrometry was performed to study the adverse impacts of PM2.5 exposure on brown adipose tissue (BAT) and white adipose tissue (WAT) in the diabetic mouse model. We found the effects of PM2.5 exposure by comparing the different metabolites in both adipose tissues of male db/db mice using real-ambient PM2.5 exposure. The results showed that PM2.5 exposure changed the purine metabolism in mice, especially the dramatic increase of xanthine content in both WAT and BAT. These changes led to significant oxidative stress. Then the results from real-time quantitative polymerase chain reaction showed that PM2.5 exposure could cause the production of inflammatory factors in both adipose tissues. Moreover, the increased reactive oxygen species (ROS) promoted triglyceride accumulation in WAT and inhibited its decomposition, causing increased WAT content in db/db mice. In addition, PM2.5 exposure significantly suppressed thermogenesis and affected energy metabolism in the BAT of male db/db mice, which may deteriorate insulin sensitivity and blood glucose regulation. This research demonstrated the impact of PM2.5 on the adipose tissue of male db/db mice, which may be necessary for public health.
Collapse
Affiliation(s)
- Leijian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Yi Ru
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Yuting Shen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Gefei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Yi Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Zenghua Qi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jiacheng Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Thomas Ka-Yam Lam
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
29
|
Zhang L, Fang B, Wang H, Zeng H, Wang N, Wang M, Wang X, Hao Y, Wang Q, Yang W. The role of systemic inflammation and oxidative stress in the association of particulate air pollution metal content and early cardiovascular damage: A panel study in healthy college students. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121345. [PMID: 36841422 DOI: 10.1016/j.envpol.2023.121345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with adverse cardiovascular outcomes. However, the effects of toxic metals in PM2.5 on cardiovascular health remain unknown. To investigate the early cardiovascular effects of specific PM2.5 metal constituents at the personal level, we conducted a panel study on 45 healthy college students in Caofeidian, China. Personal exposure concentrations and cardiovascular effect markers were monitored simultaneously within one year in four study periods. Four linear mixed-effects models were used to analyze the relationship between personal exposure to PM2.5 and 15 metal fractions (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, and Pb) with soluble CD36 (sCD36), C-reactive protein (CRP), and oxidized low-density lipoprotein (OX-LDL) levels, heart rate, and blood pressure. The concentrations of most individual metals (Mn, Cu, Zn, As, Se, Mo, Cd, Sb and Pb) were the highest in winter. Meanwhile, there were significant differences in inflammatory (sCD36 and CRP) and oxidative stress (OX-LDL) markers in the serum of participants over the four seasons. In particular, the estimated effects of personal metal exposure (such as V, As, Se, Cd, and Pb) on sCD36 and pulse pressure (PP) levels were consistently significant across the four LME models. A significant mediating role of sCD36 was also found in the relationship between personal exposure to Zn and Cr and changes in PP levels. Our findings provide clues and potential mechanisms regarding the cardiovascular effects of specific toxic constituents of PM2.5 in healthy young adults.
Collapse
Affiliation(s)
- Lei Zhang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Affiliated Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, Henan, China
| | - Haotian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Nan Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - ManMan Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Xuesheng Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| |
Collapse
|
30
|
Mandal M, Popek R, Przybysz A, Roy A, Das S, Sarkar A. Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations. PLANTS (BASEL, SWITZERLAND) 2023; 12:1545. [PMID: 37050171 PMCID: PMC10097214 DOI: 10.3390/plants12071545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The issue of air pollution from particulate matter (PM) is getting worse as more and more people move into urban areas around the globe. Due to the complexity and diversity of pollution sources, it has long been hard to rely on source control techniques to manage this issue. Due to the fact that urban trees may provide a variety of ecosystem services, there is an urgent need to investigate alternative strategies for dramatically improving air quality. PM has always been a significant concern due to its adverse effects on humans and the entire ecosystem. The severity of this issue has risen in the current global environmental context. Numerous studies on respiratory and other human disorders have revealed a statistical relationship between human exposure to outdoor levels of particles or dust and harmful health effects. These risks are undeniably close to industrial areas where these airborne, inhalable particles are produced. The combined and individual effects of the particle and gaseous contaminants on plants' general physiology can be detrimental. According to research, plant leaves, the primary receptors of PM pollution, can function as biological filters to remove significant amounts of particles from the atmosphere of urban areas. This study showed that vegetation could provide a promising green infrastructure (GI) for better air quality through the canopy and leaf-level processes, going beyond its traditional role as a passive target and sink for air pollutants. Opportunities exist for urban GI as a natural remedy for urban pollution caused by PMs.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Arkadiusz Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| |
Collapse
|
31
|
Kureshi RR, Thakker D, Mishra BK, Barnes J. From Raising Awareness to a Behavioural Change: A Case Study of Indoor Air Quality Improvement Using IoT and COM-B Model. SENSORS (BASEL, SWITZERLAND) 2023; 23:3613. [PMID: 37050669 PMCID: PMC10098860 DOI: 10.3390/s23073613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The topic of indoor air pollution has yet to receive the same level of attention as ambient pollution. We spend considerable time indoors, and poorer indoor air quality affects most of us, particularly people with respiratory and other health conditions. There is a pressing need for methodological case studies focusing on informing households about the causes and harms of indoor air pollution and supporting changes in behaviour around different indoor activities that cause it. The use of indoor air quality (IAQ) sensor data to support behaviour change is the focus of our research in this paper. We have conducted two studies-first, to evaluate the effectiveness of the IAQ data visualisation as a trigger for the natural reflection capability of human beings to raise awareness. This study was performed without the scaffolding of a formal behaviour change model. In the second study, we showcase how a behaviour psychology model, COM-B (Capability, Opportunity, and Motivation-Behaviour), can be operationalised as a means of digital intervention to support behaviour change. We have developed four digital interventions manifested through a digital platform. We have demonstrated that it is possible to change behaviour concerning indoor activities using the COM-B model. We have also observed a measurable change in indoor air quality. In addition, qualitative analysis has shown that the awareness level among occupants has improved due to our approach of utilising IoT sensor data with COM-B-based digital interventions.
Collapse
Affiliation(s)
- Rameez Raja Kureshi
- School of Computer Science, University of Hull, Kingston upon Hull HU6 7RX, UK; (R.R.K.); (B.K.M.)
| | - Dhavalkumar Thakker
- School of Computer Science, University of Hull, Kingston upon Hull HU6 7RX, UK; (R.R.K.); (B.K.M.)
| | - Bhupesh Kumar Mishra
- School of Computer Science, University of Hull, Kingston upon Hull HU6 7RX, UK; (R.R.K.); (B.K.M.)
| | - Jo Barnes
- Air Quality Management Resource Centre, University of the West of England, Bristol BS16 1QY, UK;
| |
Collapse
|
32
|
Liu Y, Ning N, Sun T, Guan H, Liu Z, Yang W, Ma Y. Association between solid fuel use and nonfatal cardiovascular disease among middle-aged and older adults: Findings from The China Health and Retirement Longitudinal Study (CHARLS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159035. [PMID: 36191716 DOI: 10.1016/j.scitotenv.2022.159035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Few studies have been conducted on the association between domestic solid fuel combustion and incident nonfatal cardiovascular disease (CVD). We assessed the prospective association between domestic fuel type and incident nonfatal CVD among Chinese adults aged ≥45 years. METHODS This was a prospective cohort study using data from the China Longitudinal Study of Health and Retirement (CHARLS) that recruited 8803 participants ≥45 years in 2013. Household fuel types were assessed based on self-reports, including solid fuel (coal, crop residue, or wood fuel) and clean fuel (central heating, solar power, natural gas, liquefied petroleum gas, electricity, or marsh gas). Nonfatal CVD was defined as self-reported physician-diagnosed nonfatal CVD. We established Cox proportional hazard regression models with age as the time scale and strata by sex to evaluate the hazard ratios (HRs) and 95 % confidence intervals (95 % CIs). RESULTS After a median follow-up of five years, 970 (11.02 %) nonfatal CVD cases were documented, including 423 (9.96 %) in males and 547 (12.01 %) in females. Participants with exposure to solid fuel for cooking and clean fuel for heating [HR (95 % CI):2.01 (1.36-2.96)], solid fuel for heating and clean fuel for cooking [HR (95 % CI):1.45 (1.06-1.99)], and solid fuel for both heating and cooking [HR (95 % CI):1.43 (1.07-1.92)] had an elevated nonfatal CVD risk compared to users of cleaner fuel for both cooking and heating. Those whom self-reported switching from solid fuels to cleaner fuels for cooking had significantly decreased nonfatal CVD risk [HR (95 % CI):0.76 (0.58-0.99)] than participants who did not switch to cleaner fuels. CONCLUSIONS Exposure to domestic solid fuel burning for cooking or heating is associated with an elevated nonfatal CVD risk. Notably, switching cooking fuels from solid to cleaner fuels is related to a reduced risk of nonfatal CVD.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ning Ning
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ting Sun
- School of Nursing, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongcai Guan
- School of Public Health, Peking University, Beijing, China
| | - Zuyun Liu
- School of Public Health and the Second Affiliated Hospital, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
33
|
Hawchar A, Ould S, Bennett NS. Carbon Dioxide Monitoring inside an Australian Brewery Using an Internet-of-Things Sensor Network. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249752. [PMID: 36560121 PMCID: PMC9781494 DOI: 10.3390/s22249752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/12/2023]
Abstract
Maintaining a high standard of indoor air quality (IAQ) is vital to ensuring good human health. The concentration of CO2 in air is a good proxy for IAQ, while high levels of CO2 have been shown to cause cognitive or physiological impairment. Work environments that generate CO2 as an inherent part of their business present a unique and significant risk in terms of poor IAQ. Craft breweries generate CO2 and, unlike larger breweries, often lack the technology to capture and re-use the fermentation CO2 for beer carbonation. The purpose of this study is to demonstrate that the venting of fermentation CO2 and the unintentional venting of CO2 during the filling of CO2 storage tanks can cause the indoor CO2 levels to rise significantly. This is shown by monitoring CO2 levels inside an Australian craft brewery using a newly developed system containing three Internet of Things (IoT) sensor nodes positioned strategically in different sections of the brewery. The maximum CO2 level recorded was in excess of 18,000 ppm, with the maximum time period levels exceeding 1000 and 10,000 ppm being equivalent to 425 and 26 min, respectively. The identification of differences in measured CO2 at different times and locations throughout the brewery reveals that a single hard-wired CO2 sensor may be inadequate to support IAQ monitoring. For this purpose, a network of portable or wearable CO2 sensor nodes may be most suitable. The battery life of the sensors is a key consideration, and the current sensor battery life is too short. Low-power sensors and communication protocols are recommended for this task.
Collapse
Affiliation(s)
- Amer Hawchar
- Centre for Advanced Manufacturing, University of Technology Sydney, Broadway, Ultimo, NSW 2007, Australia
| | - Solomon Ould
- Centre for Advanced Manufacturing, University of Technology Sydney, Broadway, Ultimo, NSW 2007, Australia
| | - Nick S. Bennett
- Centre for Advanced Manufacturing, University of Technology Sydney, Broadway, Ultimo, NSW 2007, Australia
- Radio Frequency and Communication Technologies Laboratory, University of Technology Sydney, Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
34
|
Song J, Lin X, Ee LY, Li SFY, Huang M. A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing. ADVANCED FIBER MATERIALS 2022; 5:429-460. [PMID: 36530770 PMCID: PMC9734373 DOI: 10.1007/s42765-022-00237-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/13/2022] [Indexed: 05/26/2023]
Abstract
Rapid industrialization is accompanied by the deterioration of the natural environment. The deepening crisis associated with the ecological environment has garnered widespread attention toward strengthening environmental monitoring and protection. Environmental sensors are one of the key technologies for environmental monitoring, ultimately enabling environmental protection. In recent decades, micro/nanomaterials have been widely studied and applied in environmental sensing owing to their unique dimensional properties. Electrospinning has been developed and adopted as a facile, quick, and effective technology to produce continuous micro- and nanofiber materials. The technology has advanced rapidly and become one of the hotspots in the field of nanomaterials research. Environmental sensors made from electrospun nanofibers possess many advantages, such as having a porous structure and high specific surface area, which effectively improve their performance in environmental sensing. Furthermore, by introducing functional nanomaterials (carbon nanotubes, metal oxides, conjugated polymers, etc.) into electrospun fibers, synergistic effects between different materials can be utilized to improve the catalytic activity and sensitivity of the sensors. In this review, we aimed to outline the progress of research over the past decade on electrospinning nanofibers with different morphologies and functional characteristics in environmental sensors.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Xuanhao Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- National University of Singapore Environmental Research Institute, T Lab Bldg, 5A Engineering Drive 1, Singapore, 117411 Singapore
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620 People’s Republic of China
| |
Collapse
|
35
|
Exploring the Link Between the Serum/Blood Levels of Heavy Metals (Pb, As, Cd, and Cu) and 2 Novel Biomarkers of Cardiovascular Stress (Growth Differentiation Factor 15 and Soluble Suppression of Tumorigenicity 2) in Copper Smelter Workers. J Occup Environ Med 2022; 64:976-984. [PMID: 35902369 DOI: 10.1097/jom.0000000000002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Studying the association between the occupational exposure to Pb, As, Cd, and Cu with the serum levels of 2 novel biomarkers of cardiovascular stress; growth differentiation factor 15 and soluble suppression of tumorigenicity 2, in some Egyptian Cu smelter workers. METHODS Forty-one exposed workers and 41 administrative controls were clinically evaluated. Serum/blood levels of heavy metals and biomarkers were measured for both groups. RESULTS The smelter workers showed significantly elevated levels of heavy metals and biomarkers compared with controls. The elevated serum levels of both biomarkers were significantly and positively correlated with each other, the levels of heavy metals, and the duration of employment of the exposed workers. CONCLUSIONS There was a significant association between the levels of heavy metals and both biomarkers among the smelter workers. Further prospective studies should be performed.
Collapse
|
36
|
Mirowsky JE, Carraway MS, Dhingra R, Tong H, Neas L, Diaz-Sanchez D, Cascio WE, Case M, Crooks JL, Hauser ER, Dowdy ZE, Kraus WE, Devlin RB. Exposures to low-levels of fine particulate matter are associated with acute changes in heart rate variability, cardiac repolarization, and circulating blood lipids in coronary artery disease patients. ENVIRONMENTAL RESEARCH 2022; 214:113768. [PMID: 35780850 PMCID: PMC11969562 DOI: 10.1016/j.envres.2022.113768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Exposure to air pollution is a major risk factor for cardiovascular disease, disease risk factors, and mortality. Specifically, particulate matter (PM), and to some extent ozone, are contributors to these effects. In addition, exposures to these pollutants may be especially dangerous for susceptible populations. In this repeated-visit panel study, cardiovascular markers were collected from thirteen male participants with stable coronary artery disease. For 0-4 days prior to the health measurement collections, daily concentrations of fine PM (PM2.5) and ozone were obtained from local central monitoring stations located near the participant's homes. Then, single (PM2.5) and two-pollutant (PM2.5 and ozone) models were used to assess whether there were short-term changes in cardiovascular health markers. Per interquartile range increase in PM2.5, there were decrements in several heart rate variability metrics, including the standard deviation of the normal-to-normal intervals (lag 3, -5.8%, 95% confidence interval (CI) = -11.5, 0.3) and root-mean squared of successive differences (five day moving average, -8.1%, 95% CI = -15.0, -0.7). In addition, increases in PM2.5 were also associated with changes in P complexity (lag 1, 4.4%, 95% CI = 0.5, 8.5), QRS complexity (lag 1, 4.9%, 95% CI = 1.4, 8.5), total cholesterol (five day moving average, -2.1%, 95% CI = -4.1, -0.1), and high-density lipoprotein cholesterol (lag 2, -1.6%, 95% CI = -3.1, -0.1). Comparisons to our previously published work on ozone were conducted. We found that ozone affected inflammation and endothelial function, whereas PM2.5 influenced heart rate variability, repolarization, and lipids. All the health changes from these two studies were found at concentrations below the United States Environmental Protection Agency's National Ambient Air Quality Standards. Our results imply clear differences in the cardiovascular outcomes observed with exposure to the two ubiquitous air pollutants PM2.5 and ozone; this observation suggests different mechanisms of toxicity for these exposures.
Collapse
Affiliation(s)
- Jaime E Mirowsky
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA; Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.
| | - Martha Sue Carraway
- Department of Medicine, Pulmonary and Critical Care Medicine, Durham VA Medical Center, Durham, NC, USA
| | - Radhika Dhingra
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Haiyan Tong
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lucas Neas
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David Diaz-Sanchez
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Wayne E Cascio
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Martin Case
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - James L Crooks
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA; Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA; Cooperative Studies Program Epidemiology Center, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Z Elaine Dowdy
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
| | - Robert B Devlin
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Mainka A, Żak M. Synergistic or Antagonistic Health Effects of Long- and Short-Term Exposure to Ambient NO 2 and PM 2.5: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14079. [PMID: 36360958 PMCID: PMC9657687 DOI: 10.3390/ijerph192114079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 05/31/2023]
Abstract
Studies on adverse health effects associated with air pollution mostly focus on individual pollutants. However, the air is a complex medium, and thus epidemiological studies face many challenges and limitations in the multipollutant approach. NO2 and PM2.5 have been selected as both originating from combustion processes and are considered to be the main pollutants associated with traffic; moreover, both elicit oxidative stress responses. An answer to the question of whether synergistic or antagonistic health effects of combined pollutants are demonstrated by pollutants monitored in ambient air is not explicit. Among the analyzed studies, only a few revealed statistical significance. Exposure to a single pollutant (PM2.5 or NO2) was mostly associated with a small increase in non-accidental mortality (HR:1.01-1.03). PM2.5 increase of <10 µg/m3 adjusted for NO2 as well as NO2 adjusted for PM2.5 resulted in a slightly lower health risk than a single pollutant. In the case of cardiovascular heart disease, mortality evoked by exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed an antagonistic effect on health risk compared to the single pollutant. Both short- and long-term exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed a synergistic effect appearing as higher mortality from respiratory diseases.
Collapse
Affiliation(s)
- Anna Mainka
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland
| | | |
Collapse
|
38
|
Electronic Cigarette and Atherosclerosis: A Comprehensive Literature Review of Latest Evidences. Int J Vasc Med 2022; 2022:4136811. [PMID: 36093338 PMCID: PMC9453087 DOI: 10.1155/2022/4136811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Coronary artery diseases (CAD), also known as coronary heart disease (CHD), are the world’s leading cause of death. The basis of coronary artery disease is the narrowing of the heart coronary artery lumen due to atherosclerosis. The use of electronic cigarettes has increased significantly over the years. However, harmful effects of electronic cigarettes are still not firm. The aim of this article is to review the impact of electronic cigarette and its role in the pathogenesis of atherosclerosis from recent studies. The results showed that several chemical compounds, such as nicotine, propylene glycol, particulate matters, heavy metals, and flavorings, in electronic cigarette induce atherosclerosis with each molecular mechanism that lead to atherosclerosis progression by formation of ROS, endothelial dysfunction, and inflammation. Further research is still needed to determine the exact mechanism and provide more clinical evidence.
Collapse
|
39
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
40
|
Li Z, Liu M, Wu Z, Liu Y, Li W, Liu M, Lv S, Yu S, Jiang Y, Gao B, Wang X, Li X, Wang W, Lin H, Guo X, Liu X. Association between ambient air pollution and hospital admissions, length of hospital stay and hospital cost for patients with cardiovascular diseases and comorbid diabetes mellitus: Base on 1,969,755 cases in Beijing, China, 2014-2019. ENVIRONMENT INTERNATIONAL 2022; 165:107301. [PMID: 35598418 DOI: 10.1016/j.envint.2022.107301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Evidence on the effects of the air pollutants on the hospital admissions, hospital cost and length of stay (LOS) among patients with comorbidities remains limited in China, particularly for patients with cardiovascular diseases and comorbid diabetes mellitus (CVD-DM). METHODS We collected daily data on CVD-DM patients from 242 hospitals in Beijing between 2014 and 2019. Generalized additive model was employed to quantify the associations between admissions, LOS, and hospital cost for CVD-DM patients and air pollutants. We further evaluated the attributable risk posed by air pollutants to CVD-DM patients, using both Chinese and WHO air quality guidelines as reference. RESULTS Per 10 ug/m3 increase of particles with an aerodynamic diameter < 2.5 μm (PM2.5), particles with an aerodynamic diameter < 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbonic oxide (CO) and ozone (O3) corresponded to a 0.64% (95% CI: 0.57 to 0.71), 0.52% (95% CI: 0.46 to 0.57), 0.93% (95% CI: 0.67 to 1.20), 0.98% (95% CI: 0.81 to 1.16), 1.66% (95% CI: 1.18 to 2.14) and 0.53% (95% CI: 0.45 to 0.61) increment for CVD-DM patients' admissions. Among the six pollutants, particulate pollutants (PM2.5 and PM10) in most lag days exhibited adverse effects on LOS and hospital cost. For every 10 ug/m3 increase in PM2.5 and PM10, the absolute increase with LOS will increase 62.08 days (95% CI: 28.93 to 95.23) and 51.77 days (95% CI:22.88 to 80.66), respectively. The absolute increase with hospital cost will increase 105.04 Chinese Yuan (CNY) (95% CI: 49.27 to 160.81) and 81.76 CNY (95% CI: 42.01 to 121.51) in PM2.5 and PM10, respectively. Given WHO 2021 air quality guideline as the reference, PM2.5 had the maximum attributable fraction of 3.34% (95% CI: 2.94% to 3.75%), corresponding to an avoidable of 65,845 (95% CI: 57,953 to 73,812) patients with CVD-DM. CONCLUSION PM2.5 and PM10 are positively associated with hospital admissions, hospital cost and LOS for patients with CVD-DM. Policy changes to reduce air pollutants exposure may reduce CVD-DM admissions and substantial savings in health care spending and LOS.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Mengyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yue Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Weiming Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Mengmeng Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Shiyun Lv
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Siqi Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yanshuang Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Bo Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiaonan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne 3086, Australia
| | - Wei Wang
- School of Medical Sciences and Health, Edith Cowan University, WA6027 Perth, Australia
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China; School of Medical Sciences and Health, Edith Cowan University, WA6027 Perth, Australia; National Institute for Data Science in Health and Medicine, Capital Medical University, China.
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| |
Collapse
|
41
|
Zhang AL, Balmes JR, Lutzker L, Mann JK, Margolis HG, Tyner T, Holland N, Noth EM, Lurmann F, Hammond SK, Holm SM. Traffic-related air pollution, biomarkers of metabolic dysfunction, oxidative stress, and CC16 in children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:530-537. [PMID: 34417545 PMCID: PMC8858324 DOI: 10.1038/s41370-021-00378-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Previous research has revealed links between air pollution exposure and metabolic syndrome in adults; however, these associations are less explored in children. OBJECTIVE This study aims to investigate the association between traffic-related air pollutants (TRAP) and biomarkers of metabolic dysregulation, oxidative stress, and lung epithelial damage in children. METHODS We conducted cross-sectional analyses in a sample of predominantly Latinx, low-income children (n = 218) to examine associations between air pollutants (nitrogen dioxide (NO2), nitrogen oxides (NOx), elemental carbon, polycyclic aromatic hydrocarbons, carbon monoxide (CO), fine particulates (PM2.5)) and biomarkers of metabolic function (high-density lipoprotein (HDL), hemoglobin A1c (HbA1c), oxidative stress (8-isoprostane), and lung epithelial damage (club cell protein 16 (CC16)). RESULTS HDL cholesterol showed an inverse association with NO2 and NOx, with the strongest relationship between HDL and 3-month exposure to NO2 (-15.4 mg/dL per IQR increase in 3-month NO2, 95% CI = -27.4, -3.4). 8-isoprostane showed a consistent pattern of increasing values with 1-day and 1-week exposure across all pollutants. Non-significant increases in % HbA1c were found during 1-month time frames and decreasing CC16 in 3-month exposure time frames. CONCLUSION Our results suggest that TRAP is significantly associated with decreased HDL cholesterol in longer-term time frames and elevated 8-isoprostane in shorter-term time frames. TRAP could have the potential to influence lifelong metabolic patterns, through metabolic effects in childhood.
Collapse
Affiliation(s)
- Amy L Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - John R Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
- Western States Pediatric Environmental Health Specialty Unit, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Liza Lutzker
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer K Mann
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Helene G Margolis
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Tim Tyner
- University of California, San Francisco-Fresno, Fresno, CA, USA
- Central California Asthma Collaborative, Fresno, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Elizabeth M Noth
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | | | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Stephanie M Holm
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
- Western States Pediatric Environmental Health Specialty Unit, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
42
|
Chen L, Xie J, Ma T, Chen M, Gao D, Li Y, Ma Y, Wen B, Jiang J, Wang X, Zhang J, Chen S, Wu L, Li W, Liu X, Dong B, Wei J, Guo X, Huang S, Song Y, Dong Y, Ma J. Greenness alleviates the effects of ambient particulate matter on the risks of high blood pressure in children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152431. [PMID: 34942264 DOI: 10.1016/j.scitotenv.2021.152431] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Both ambient particulate matter (PM) and decrease of greenness have been suggested as risk factors for high blood pressure (HBP) in children and adolescents. But most evidence were from cross-sectional studies with limited data from prospective cohorts. In this cohort study, we included 588,004 children and adolescents aged 7 to 18 years without HBP from 2005 to 2018 in Beijing (240,081) and Zhongshan (347,923) city of China. The cumulative incidence of HBP was 32.04%, and incidence rate was 14.86 per 100 person-year. After adjustment for confounders, the ten-unit increase in PM1, PM2.5, and PM10 exposure was significantly associated with 43%, 70%, and 43%- higher risks of HBP, respectively, but the 0.1-unit increase in NDVI exposure was significantly associated with a 25% lower risk of HBP. The HRs of PM1 on the HBP risk were 1.486 and 1.150 in the low and the high-level of greenness, and they were 2.635 and 2.507 for PM2.5, and for PM10 1.367 and 1.702 in the two groups. The attributable fraction (AFs) of PM1, PM2.5, and PM10 on HBP incidents were 13.74%, 40.08%, and 15.47% in the low-level of greenness, which simultaneously was higher than those in the high-level of greenness (AF = 4.62%, 17.28%, and 9.96%). The exposure to higher ambient PM air pollution and lower greenness around schools were associated with a higher risk of HBP in children and adolescents, but higher greenness alleviated the adverse effects of ambient PM1 and PM2.5 on the HBP risks. Our findings highlighted a synergic strategy in preventing childhood HBP by decreasing air pollution reduction and improving greenness concurrently.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Junqing Xie
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Di Gao
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yanhui Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Ying Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Bo Wen
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Jun Jiang
- Department of Plant Science and Landscape Architecture, University of Maryland, USA
| | - Xijie Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; Wanke School of Public Health, Tsinghua University, Beijing, China
| | - Jingbo Zhang
- Beijing Health Center for Physical Examination, Beijing 100191, China
| | - Shuo Chen
- Beijing Health Center for Physical Examination, Beijing 100191, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Weiming Li
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Bin Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Sizhe Huang
- Zhongshan Health Care Centers for Primary and Secondary School, Zhongshan 528403, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| |
Collapse
|
43
|
Opuntia ficus-indica Alleviates Particulate Matter 10 Plus Diesel Exhaust Particles (PM10D)—Induced Airway Inflammation by Suppressing the Expression of Inflammatory Cytokines and Chemokines. PLANTS 2022; 11:plants11040520. [PMID: 35214853 PMCID: PMC8877671 DOI: 10.3390/plants11040520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 01/02/2023]
Abstract
Particulate matter (PM) exposure may cause adverse health effects such as respiratory disorders. We evaluated the protective effects of various Opuntia ficus-indica (OFI) extracts on airway inflammation associated with exposure to PM10D with an aerodynamic diameter <10 μm (PM10) and diesel exhaust particles (DEP). BALB/c mice were exposed to PM10D via intranasal tracheal injection three times over a period of 12 days and various OFI extracts (water, 30% ethanolic, or 50% ethanolic extracts) were administered orally for 12 days. All OFI extracts suppressed neutrophil infiltration and the number of immune cells (CD3+/CD4+, CD3+/CD8+, and Gr-1+/CD11b) in bronchoalveolar lavage fluid (BALF) and lungs. OFI extracts decreased the expression of cytokines and chemokines, including chemokine (C-X-C motif) ligand (CXCL)-1, interleukin (IL)-17, macrophage inflammatory protein-2, tumor necrosis factor (TNF)-α, cyclooxygenase-2, IL-1α, IL-1β, IL-5, IL-6, transient receptor potential cation channel subfamily V member 1, and mucin 5AC, and inhibited IRAK-1, TNF-α, and CXCL-1 localization in BALF and lungs of mice with PM10D-induced airway inflammation. Serum asymmetric and symmetric dimethyl arginine levels were also decreased by OFI extracts treatment. Moreover, all OFI extracts restored histopathological damage in the trachea and lungs of mice with PM10D-induced airway inflammation. These results indicate that OFI extracts may be used to prevent and treat airway inflammation and respiratory diseases.
Collapse
|
44
|
Wu S, Chen Z, Yang L, Zhang Y, Luo X, Guo J, Shao Y. Particle-bound PAHs induced glucose metabolism disorders through HIF-1 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149132. [PMID: 34311363 DOI: 10.1016/j.scitotenv.2021.149132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Vehicle exhaust, as one of the most important compositions of air pollution, induced various adverse health effects, especially diabetes, on human beings. Even though monitoring and epidemiological data indicates that particle-bound polycyclic aromatic hydrocarbons (PAHs) is an inducing factor of diabetes, the specific causative mechanisms are still unclear. In the current study, the concentration of particulate matters (PMs, including PM1.0, PM2.5 and PM10.0) and PAHs was investigated at rush hour of weekday in three urban underground parking garages (UPGs). To evaluate the impacts of particle-bound PAHs on human beings, analysis of non-target metabolomics and unmetabolized PAHs were conducted for UPG and non-UPG worker urine samples. The results showed that the highest concentrations of PMs and total PAHs were found at the UPG entrance. The concentrations of unmetabolized 5-6 rings PAHs in the UPG worker urine were significantly higher than that in non-UPG worker urine samples, which induced glucose metabolism disorders through hypoxia-inducible factor 1 (HIF-1) signaling pathway. This could be a reason for particle-bound PAHs induced-diabetes on road workers, drivers and garage staff. These findings can serve as a step towards air pollution management and the pathological mechanism analysis of environmental factor induced-diseases.
Collapse
Affiliation(s)
- Siqi Wu
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China
| | - Li Yang
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China
| | - Yulin Zhang
- Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba disctrict, 400030 Chongqing, China; Chongqing Cancer Institute, 181 Hanyu Road, Shapingba disctrict, 400030 Chongqing, China; Chongqing Cancer Hospital, 181 Hanyu Road, Shapingba disctrict, 400030 Chongqing, China
| | - Xiaohe Luo
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, 404000 Chongqing, China; Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, 404000 Chongqing, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China.
| |
Collapse
|
45
|
Potentiating the Benefits of Melatonin through Chemical Functionalization: Possible Impact on Multifactorial Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms222111584. [PMID: 34769013 PMCID: PMC8583879 DOI: 10.3390/ijms222111584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although melatonin is an astonishing molecule, it is possible that chemistry will help in the discovery of new compounds derived from it that may exceed our expectations regarding antioxidant protection and perhaps even neuroprotection. This review briefly summarizes the significant amount of data gathered to date regarding the multiple health benefits of melatonin and related compounds. This review also highlights some of the most recent directions in the discovery of multifunctional pharmaceuticals intended to act as one-molecule multiple-target drugs with potential use in multifactorial diseases, including neurodegenerative disorders. Herein, we discuss the beneficial activities of melatonin derivatives reported to date, in addition to computational strategies to rationally design new derivatives by functionalization of the melatonin molecular framework. It is hoped that this review will promote more investigations on the subject from both experimental and theoretical perspectives.
Collapse
|
46
|
Lim Y, Jørgensen JT, So R, Cole‐Hunter T, Mehta AJ, Amini H, Bräuner EV, Westendorp RGJ, Liu S, Mortensen LH, Hoffmann B, Loft S, Ketzel M, Hertel O, Brandt J, Jensen SS, Backalarz C, Simonsen MK, Tasic N, Maric M, Andersen ZJ. Long-Term Exposure to Air Pollution, Road Traffic Noise, and Heart Failure Incidence: The Danish Nurse Cohort. J Am Heart Assoc 2021; 10:e021436. [PMID: 34612059 PMCID: PMC8751865 DOI: 10.1161/jaha.121.021436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023]
Abstract
Background We examined the association of long-term exposure to air pollution and road traffic noise with incident heart failure (HF). Methods And Results Using data on female nurses from the Danish Nurse Cohort (aged >44 years), we investigated associations between 3-year mean exposures to air pollution and road traffic noise and incident HF using Cox regression models, adjusting for relevant confounders. Incidence of HF was defined as the first hospital contact (inpatient, outpatient, or emergency) between cohort baseline (1993 or 1999) and December 31, 2014, based on the Danish National Patient Register. Annual mean levels of particulate matter with a diameter <2.5 µm since 1990 and NO2 and road traffic noise since 1970 were estimated at participants' residences. Of the 22 189 nurses, 484 developed HF. We detected associations with all 3 pollutants, with hazard ratios (HRs) of 1.17 (95% CI, 1.01-1.36), 1.10 (95% CI, 0.99-1.22), and 1.12 (95% CI, 0.99-1.26) per increase of 5.1 µg/m3 in particulate matter with a diameter <2.5 µm, 8.6 µg/m3 in NO2, and 9.3 dB in road traffic noise, respectively. We observed an enhanced risk of HF incidence for those exposed to high levels of the 3 pollutants; however, the effect modification of coexposure was not statistically significant. Former smokers and nurses with hypertension showed the strongest associations with particulate matter with a diameter <2.5 µm (Peffect modification<0.05). Conclusions We found that long-term exposures to air pollution and road traffic noise were independently associated with HF.
Collapse
Affiliation(s)
- Youn‐Hee Lim
- Section of Environmental HealthDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
- Seoul National University Medical Research CenterSeoulRepublic of Korea
| | - Jeanette T. Jørgensen
- Section of Environmental HealthDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Rina So
- Section of Environmental HealthDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Tom Cole‐Hunter
- Section of Environmental HealthDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
- Centre for Air Pollution, Energy and Health ResearchUniversity of SydneyAustralia
| | - Amar J. Mehta
- Statistics DenmarkCopenhagenDenmark
- Section of EpidemiologyDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Heresh Amini
- Section of Environmental HealthDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMA
| | - Elvira V. Bräuner
- Department of Growth and ReproductionCopenhagen University Hospital–RigshospitaletUniversity of CopenhagenDenmark
| | - Rudi G. J. Westendorp
- Section of EpidemiologyDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Center for Healthy AgingUniversity of CopenhagenDenmark
| | - Shuo Liu
- Section of Environmental HealthDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Laust H. Mortensen
- Statistics DenmarkCopenhagenDenmark
- Section of EpidemiologyDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental MedicineCentre for Health and SocietyMedical FacultyHeinrich‐Heine‐University of DüsseldorfGermany
| | - Steffen Loft
- Section of Environmental HealthDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Matthias Ketzel
- Department of Environmental ScienceAarhus UniversityRoskildeDenmark
- Global Centre for Clean Air ResearchUniversity of SurreyUnited Kingdom
| | - Ole Hertel
- Department of Environmental ScienceAarhus UniversityRoskildeDenmark
| | - Jørgen Brandt
- Department of Environmental ScienceAarhus UniversityRoskildeDenmark
- iClimate–Aarhus University Interdisciplinary Center for Climate ChangeAarhus UniversityRoskildeDenmark
| | | | | | - Mette K. Simonsen
- DiakonissestiftelsenFrederiksbergDenmark
- The Parker InstituteCopenhagen University HospitalBispebjerg and FrederiksbergFrederiksbergDenmark
| | - Nebojsa Tasic
- Institute of Cardiovascular Diseases “Dedinje”BelgradeSerbia
| | - Matija Maric
- Institute of Cardiovascular Diseases “Dedinje”BelgradeSerbia
| | - Zorana J. Andersen
- Section of Environmental HealthDepartment of Public HealthFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| |
Collapse
|
47
|
The cardiovascular effects of air pollution: Prevention and reversal by pharmacological agents. Pharmacol Ther 2021; 232:107996. [PMID: 34571110 PMCID: PMC8941724 DOI: 10.1016/j.pharmthera.2021.107996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Air pollution is associated with staggering levels of cardiovascular morbidity and mortality. Airborne particulate matter (PM), in particular, has been associated with a wide range of detrimental cardiovascular effects, including impaired vascular function, raised blood pressure, alterations in cardiac rhythm, blood clotting disorders, coronary artery disease, and stroke. Considerable headway has been made in elucidating the biological processes underlying these associations, revealing a labyrinth of multiple interacting mechanistic pathways. Several studies have used pharmacological agents to prevent or reverse the cardiovascular effects of PM; an approach that not only has the advantages of elucidating mechanisms, but also potentially revealing therapeutic agents that could benefit individuals that are especially susceptible to the effects of air pollution. This review gathers investigations with pharmacological agents, offering insight into the biology of how PM, and other air pollutants, may cause cardiovascular morbidity.
Collapse
|
48
|
Eze UU, Eke IG, Anakwue RC, Oguejiofor CF, Onyejekwe OB, Udeani IJ, Onunze CJ, Obed UJ, Eze AA, Anaga AO, Anene BM. Effects of Controlled Generator Fume Emissions on the Levels of Troponin I, C-Reactive Protein and Oxidative Stress Markers in Dogs: Exploring Air Pollution-Induced Cardiovascular Disease in a Low-Resource Country. Cardiovasc Toxicol 2021; 21:1019-1032. [PMID: 34533688 DOI: 10.1007/s12012-021-09693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Exhaust fumes from petrol/diesel-powered electric generators contribute significantly to air pollution in many developing countries, constituting health hazards to both humans and animals. This study evaluated the serum concentrations of Troponin I (TnI), C-reactive protein (CRP) and serum levels/activities of oxidative stress markers: catalase (CAT), reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) in dogs experimentally exposed to graded levels of petrol generator exhaust fume (PGEF). Sixteen (16) healthy and adult male Basenji dogs were randomly assigned into four groups (A-D). Group A was the unexposed control while groups B, C and D were exposed to PGEF for 1, 2 and 3 h per day, respectively, for 90 days. Repeated analysis were performed at the baseline, and every thirty days, for a total of 90 days. There was a significant interaction (p < 0.05) between the effects of PGEF exposure level (in h/day) and duration of exposure (in months) on all the tested serum parameters. There was a significant main effect (p < 0.05) for PGEF exposure level on the serum parameters. As the level of PGEF exposure was increased, the serum concentrations of TnI, CRP, CAT, MDA and NO increased, GSH decreased, whereas SOD activity increased by day 30 but declined at the end. Moreover, there was a significant simple main effect (p < 0.05) for duration of PGEF exposure. All the parameters increased as the duration of PGEF exposure was increased to 90 days except GSH concentration which decreased, whereas SOD activity increased initially but declined at the end of the study. Thus, there was increased serum concentrations of TnI, CRP and increased oxidative stress in the PGEF-exposed dogs. These findings are instructive and could be grounds for further studies on air pollutants-induced cardiovascular disease given the widespread use of electricity generators in many low-resource countries.
Collapse
Affiliation(s)
- U U Eze
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - I G Eke
- Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - R C Anakwue
- Departments of Medicine, Pharmacology/Therapeutics, Faculty of Medical Sciences, University of Nigeria, Enugu Campus, Enugu, Nigeria. .,Environment and Health Research Group, University of Nigeria, Nsukka, Enugu, Nigeria.
| | - C F Oguejiofor
- Department of Veterinary Obstetrics and Reproductive Diseases, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - O B Onyejekwe
- Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - I J Udeani
- Veterinary Teaching Hospital, University of Nigeria, Nsukka, Enugu, Nigeria
| | - C J Onunze
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - U J Obed
- Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - A A Eze
- Department of Veterinary Obstetrics and Reproductive Diseases, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - A O Anaga
- Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - B M Anene
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| |
Collapse
|
49
|
Kaumbekova S, Torkmahalleh MA, Shah D. Impact of ultrafine particles and secondary inorganic ions on early onset and progression of amyloid aggregation: Insights from molecular simulations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117147. [PMID: 33894535 DOI: 10.1016/j.envpol.2021.117147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, associated with the aggregation of amyloid beta (Aβ) peptides and formation of plaques. The impact of airborne particulate matter (PM) and ultrafine particles (UFPs), on early onset and progression of AD has been recently hypothesized. Considering their small size, carbon black nanoparticles and UFPs can penetrate into human organism and affect Alzheimer's progression. While experiments show that the exposure of PM and UFPs can lead to enhanced concentrations of Aβ peptides, the interactions between the peptides and UFPs remain obscured. Particularly, the impact of UFPs on the initial rate of aggregation of the peptides is ambiguous. Herein, we perform molecular dynamics simulations to investigate the aggregation of Aβ16-21 peptides, an aggregation-prone segment of Aβ, in the presence of UFPs, mimicked by C60, under different salt solutions suggesting the presence of the inorganic constituents of PM in the blood. In particular, the simulations were performed in the presence of Na+, Cl- and CO3-2 ions to characterize typical buffer environments and electrolytes present in human blood. Furthermore, NH4+, NO3- and SO4-2 ions, found in PM, were used in the simulations. The results revealed high propensity for the aggregation of Aβ16-21 peptides. Moreover, the peptides made clusters with C60 molecules, that would be expected to act as a nucleation site for the formation of amyloid plaques. Taken together, the results showed that UFPs affected the peptide aggregation differently, depending on the type of ions present in the simulation environment. In the presence of C60, SO4-2 and NO3- ions accelerated the aggregation of Aβ16-21 peptides, however, NH4+ ions decelerated their aggregation. In addition, UFP lowered β-sheets amounts at all environments, except NaCl solution.
Collapse
Affiliation(s)
- Samal Kaumbekova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kazakhstan
| | - Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kazakhstan
| | - Dhawal Shah
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kazakhstan.
| |
Collapse
|
50
|
Wolhuter K, Arora M, Kovacic JC. Air pollution and cardiovascular disease: Can the Australian bushfires and global COVID-19 pandemic of 2020 convince us to change our ways? Bioessays 2021; 43:e2100046. [PMID: 34106476 PMCID: PMC8209912 DOI: 10.1002/bies.202100046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Air pollution is a major global challenge for a multitude of reasons. As a specific concern, there is now compelling evidence demonstrating a causal relationship between exposure to airborne pollutants and the onset of cardiovascular disease (CVD). As such, reducing air pollution as a means to decrease cardiovascular morbidity and mortality should be a global health priority. This review provides an overview of the cardiovascular effects of air pollution and uses two major events of 2020-the Australian bushfires and COVID-19 pandemic lockdown-to illustrate the relationship between air pollution and CVD. The bushfires highlight the substantial human and economic costs associated with elevations in air pollution. Conversely, the COVID-19-related lockdowns demonstrated that stringent measures are effective at reducing airborne pollutants, which in turn resulted in a potential reduction in cardiovascular events. Perhaps one positive to come out of 2020 will be the recognition that tough measures are effective at reducing air pollution and that these measures have the potential to stop thousands of deaths from CVD.
Collapse
Affiliation(s)
| | - Manish Arora
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jason C. Kovacic
- Victor Chang Cardiac Research InstituteSydneyAustralia
- St Vincent's Clinical SchoolUniversity of New South WalesSydneyAustralia
- Zena and Michael A. Wiener Cardiovascular InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|