1
|
Wiebe M, Ingebritson A, Sholeh M, Tichenor C, Visek C, Victoria J, Beck M, Tiwari R, Hardwidge P, Zhu L. Streptococcus suis manganese transporter mutant as a live attenuated vaccine: Safety, efficacy, and virulence reversion mechanisms. Vet Microbiol 2025; 305:110521. [PMID: 40239440 DOI: 10.1016/j.vetmic.2025.110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Streptococcus suis is the leading cause of mortality in piglets and is responsible for severe economic losses in the global pork industry. Severe invasive diseases caused by S. suis include sepsis, meningitis, arthritis, and endocarditis. S. suis disease prevention is hampered by the lack of safe and efficacious vaccines. In this study, we constructed an S. suis live attenuated vaccine candidate lacking the major streptococcal manganese transporter, a known virulence determinant of this organism. The safety and efficacy of this live vaccine were evaluated in swine. Our clinical study results showed that when administered at a dose of 1010 CFU, the vaccine strain was safe and efficacious. However, a lower dose of 109 CFU failed to generate significant immune protection. To investigate if an adjuvant could enhance the efficacy of the vaccine at a lower dose, we spiked the vaccine with a polymeric adjuvant and evaluated its performance. Surprisingly, four pigs receiving the adjuvanted vaccine died during the vaccination phase. Pathology, microbiology, and genetic analyses suggested that the vaccine strain reverted to virulence in these animals. Functional genetic analysis found that the vaccine strain acquired compensatory mutations that upregulated the expression of a secondary manganese transporter, which in turn restored the virulence of the vaccine strain. Our results provide a new understanding of S. suis host adaptation mechanisms and useful information for the design of future live-attenuated vaccines.
Collapse
Affiliation(s)
- Michelle Wiebe
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Melody Sholeh
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Callie Visek
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Michael Beck
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | - Raksha Tiwari
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Luchang Zhu
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA.
| |
Collapse
|
2
|
Tang J, Wang L, Fang W, Su CM, Kim J, Du Y, Yoo D. Coinfection with bacterial pathogens and genetic modification of PRRSV-2 for suppression of NF-κB and attenuation of proinflammatory responses. Virology 2025; 606:110484. [PMID: 40086205 DOI: 10.1016/j.virol.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infects pulmonary alveolar macrophages and induces inflammation in the respiratory system. In swine farms, coinfection with PRRSV and bacterial pathogens is common and can result in clinically complicated outcomes, including porcine respiratory disease complex. Coinfection can cause excessive expressions of proinflammatory mediators and may lead to cytokine-storm-like syndrome. An immunological hallmark of PRRSV-2 is the bidirectional regulation of NF-κB with the nucleocapsid (N) protein identified as the NF-κB activator. We generated an NF-κB-silencing mutant PRRSV-2 by mutating the N gene to block its binding to PIAS1 [protein inhibitor of activated STAT-1 (signal transducer and activator of transcription 1)]. PIAS1 functions as an NF-κB repressor, and thus, the PIAS1-binding modified N-mutant PRRSV-2 became NF-κB activation-resistant in its phenotype. During coinfection of pigs with PRRSV-2 and Streptococcus suis, the N-mutant PRRSV-2 decreased the expression of proinflammatory cytokines and showed clinical attenuation. This review describes the coinfection of pigs with various pathogens, the generation of mutant PRRSV for NF-κB suppression, inflammatory profiles during bacterial coinfection, and the potential application of these findings to designing a new vaccine candidate for PRRSV-2.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chia-Ming Su
- Department of Biochemistry and Cell Biology, School of Medicine, Boston University, Boston, MA, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yijun Du
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Boueroy P, Phetburom N, Duangjanchot R, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Hatrongjit R, Zheng H, Li J, Kerdsin A. Genomic characterization of Streptococcus suis serotype 31 isolated from one human and 17 clinically asymptomatic pigs in Thailand. Vet Microbiol 2025; 304:110482. [PMID: 40107014 DOI: 10.1016/j.vetmic.2025.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Streptococcus suis is a zoonotic pathogen capable of causing severe diseases in humans and pigs. Frequently, S. suis serotype 31 strains have been isolated from pigs. The first human case of S. suis was reported in Thailand in 2015. In total, 18 strains from one human and 17 clinically asymptomatic pigs in Thailand were analyzed to characterize S. suis serotype 31. In total, 11 different STs were identified, with the major ST being ST2767 (38.89 %; 7/18). The minimum core-genome (MCG) classification revealed that almost all of the serotype 31 strains belonged to MCG7 (94.44 %; 17/18). Genomic analysis revealed that the serotype 31 isolates were major clusters with the porcine-healthy strains from China, Viet Nam, and Thailand. The human serotype 31 ST221 isolate was closely related to S. suis serotype 5 and 24 strains (CC221/234) isolated from Thailand. All serotype 31 strains were multidrug resistant with resistance to azithromycin (100 %; 18/18) and tetracycline (100 %; 18/18). Notably, 10 (55.56 %) of the serotype 31 strains were resistant to penicillin, while 8 strains (44.44 %) showed intermediate resistance to this agent. High substitutions were observed in three penicillin-binding proteins (1 A, 2B, and 2X) of these serotype 31 strains. The most prevalent antimicrobial resistance genes were erm(B) (100 %; 18/18) and tet(O) (66.67 %; 12/18). Overall, 7 strains carried integrative conjugative elements (ICEs) that harbored antimicrobial resistance genes, such as erm(B), tet(O), and tet(W). This study contribute to understanding the genomic diversity and provide valuable information for public health awareness of multidrug-resistant S. suis serotype 31.
Collapse
Affiliation(s)
- Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| | - Nattamol Phetburom
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rapeephan Duangjanchot
- Siriraj Long-read Laboratory, Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Siriraj Long-read Laboratory, Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Siriraj Long-read Laboratory, Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Han Zheng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Sakon Nakhon, Huazhong Agricultural University, Wuhan, China
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
4
|
Lv R, Zhang W, Sun Z, Si X, Dong H, Liu X. Current prevalence and therapeutic strategies for porcine Streptococcus suis in China. Appl Environ Microbiol 2025; 91:e0216024. [PMID: 39998255 PMCID: PMC11921377 DOI: 10.1128/aem.02160-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Porcine Streptococcus suis is a zoonotic bacterial pathogen that poses serious threats to both human and animal health. S. suis is ubiquitously transmitted from the swine industry to the environments and human communities. However, the ambiguous epidemiological patterns and the escalating risk of antimicrobial resistance render S. suis infections a considerable challenge. Here, we review the current prevalence of S. suis infection worldwide, including identified bacterial strains, routes of infection, and transformation of resistance genes. This comprehensive overview of the prevalent patterns in S. suis offers detailed insights into therapeutic approaches for porcine infections and alternative strategies to address emerging resistant strains, highlighting potential multitarget prevention and treatment options to combat S. suis infection.
Collapse
Affiliation(s)
- Ruoyi Lv
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wenjing Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Zhigang Sun
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaohui Si
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Xiaoye Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
5
|
Kschonek J, Deters K, Miller M, Reinmold J, Twele L, Emmerich I, Kästner S, Kemper N, Kreienbrock L, Hennig-Pauka I, Wendt M, Beilage EG. Part II: understanding pain in pigs-pain assessment in pigs with spontaneously occurring diseases or injuries. Porcine Health Manag 2025; 11:13. [PMID: 40075420 PMCID: PMC11900645 DOI: 10.1186/s40813-025-00420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/17/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Pain in pigs needs to be managed and treated to the benefit of individual pigs. It is imperative for veterinarians and farmers to assure that pigs do not suffer from unnecessary pain that can be relieved. This review focusses on pain related to spontaneously occurring diseases and injuries since this topic is often neglected. The aim is to identify ways to accelerate knowledge and evidence in this area to prevent painful conditions in pigs in the future. METHODS A scoping review was conducted with results from a search of the electronic databases VetSearch and CABI Rxiv. The findings of selected publications are narratively synthesized and reported orienting on the PRISMA ScR guideline. RESULTS The results emphasize that pigs experience pain due to spontaneously occurring diseases and injuries, but systematic knowledge about this topic is scarce. More research is especially needed for rare diseases (such as UTIs). Moreover, research conducted about the topic pain in pigs should involve standardized protocols to document, analyse and share results on pain detection beyond a projects' timeframe. The findings of this review suggest that such a protocol would comprise validated pain identification measures over time and in relation to administered pain treatment. CONCLUSION The results of this study invite veterinary practitioners to reconsider in each pig patient whether pain and related indicators are present, how to handle the situation and document the process to ensure the welfare of individual compromised pigs.
Collapse
Affiliation(s)
- Julia Kschonek
- Institute for Biometry, Epidemiology and Information Processing (IBEI), University of Veterinary Medicine, Foundation, Bünteweg 2, 30559, Hannover, Germany.
| | - Kathrin Deters
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Büscheler Str. 9, 49456, Hannover, Bakum, Germany
| | - Moana Miller
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Jennifer Reinmold
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Büscheler Str. 9, 49456, Hannover, Bakum, Germany
| | - Lara Twele
- Clinic for Horses, University of Veterinary Medicine, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Ilka Emmerich
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University Leipzig, An Den Tierkliniken 39, 04103, Leipzig, Germany
| | - Sabine Kästner
- Clinic for Small Animals, University of Veterinary Medicine, Foundation, Bünteweg 2, 30559, Hannover, Germany
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Lothar Kreienbrock
- Institute for Biometry, Epidemiology and Information Processing (IBEI), University of Veterinary Medicine, Foundation, Bünteweg 2, 30559, Hannover, Germany
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Büscheler Str. 9, 49456, Hannover, Bakum, Germany
| | - Michael Wendt
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Elisabeth Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Büscheler Str. 9, 49456, Hannover, Bakum, Germany
| |
Collapse
|
6
|
Benea SN, Moroti R, Deaconu T, Ciont C, Benea MA, Savulescu Fiedler I. Streptococcus suis: A Possible Emerging Zoonotic Pathogen in Romania. Microorganisms 2025; 13:335. [PMID: 40005702 PMCID: PMC11857877 DOI: 10.3390/microorganisms13020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Streptococcus suis is a common germ in pig populations, with high carrier rates. Recent studies identify it as an emerging zoonotic pathogen, particularly in Southeast Asia, where raw pork is traditionally consumed. Data on Streptococcus suis infection in Europe, especially Eastern European countries like Romania, are limited. Our study reviewed data from an infectious diseases tertiary hospital in Bucharest between 2001 and 2024, including eight patients diagnosed with a Streptococcus suis invasive infection. The median age was 53.3 years, with a male-to-female ratio 3:1. Three patients had risk factors such as contact with pigs or handling fresh pork. Seven patients were initially diagnosed with meningitis and one with endocarditis. During hospitalization, an additional endocarditis case was identified among the meningitis patients. Laboratory samples indicated bacterial infection, with Streptococcus suis isolated from CSF in six cases and blood cultures in two cases. All strains tested were susceptible to beta-lactam antibiotics, but resistant to lincosamides and macrolides. There were no deaths, but half of our patients experienced severe meningitis-related sequelae, mainly hearing loss. Clinicians should be aware of Streptococcus suis as an etiologic agent of meningitis in non-endemic areas like Romania, especially in patients with risk factors (contact with pigs, pork).
Collapse
Affiliation(s)
- Serban Nicolae Benea
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania;
| | - Ruxandra Moroti
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania;
| | - Teodora Deaconu
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania;
| | - Corina Ciont
- “Marius Nasta” Institute of Pneumology, 050159 Bucharest, Romania;
| | - Mihaela Anca Benea
- Clinical Hospital of Infectious and Tropical Diseases “Dr. Victor Babes”, 030303 Bucharest, Romania;
| | - Ilinca Savulescu Fiedler
- Department of Internal Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| |
Collapse
|
7
|
Fusco G, Paradiso R, Cardillo L, Salvia MA, Dodaro S, Del Monaco V, Scarpelli G, Greco F, Rinaldi A, Barca L, Ambrogio S, Limone A, De Carlo E, Borriello G. Streptococcus suis-associated neonatal meningitis and sepsis: characterization, antimicrobial resistance, and public health implications. Front Microbiol 2025; 16:1519247. [PMID: 39935635 PMCID: PMC11811072 DOI: 10.3389/fmicb.2025.1519247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
Neonatal meningitis and sepsis were diagnosed in a 32-day-old preterm-born infant. Streptococcus (S.) suis was isolated from cerebrospinal fluid and blood. Next-generation sequencing revealed that the strain was serotype 2 sequence type 1, and contained the ermB and tet(W) genes, which are responsible for resistance to macrolides and tetracycline, along with several pilus-associated genes and 20 virulence factors. High homology was observed with previously identified human and swine strains in the same area. S. suis meningitis and sepsis are mainly reported in adults, related to direct contact with pigs or contaminated pork meat consumption, while it is rarely reported in children. Herein, we describe the first case of S. suis in a newborn associated with meningitis and antimicrobial resistance. The rates of resistance to tetracyclines, lincosamides, and macrolides for this bacterium are increasing and are creating concern worldwide. Altogether, our findings highlight the importance of investigating S. suis in cases of neonatal meningitis, as well as the necessity of assessing the antimicrobial profile to obtain useful information for developing targeted therapies.
Collapse
Affiliation(s)
- Giovanna Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Rubina Paradiso
- Departmental Unit of Genetics, Bioinformatics, and Biobank, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Lorena Cardillo
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Maria Antonia Salvia
- Unit of Neonatology and Neonatal Intensive Care, “Annunziata” Hub Hospital, Azienda Ospedaliera di Cosenza, Cosenza, Italy
| | - Saveria Dodaro
- Unit of Microbiology and Virology, “Annunziata” Hub Hospital, Azienda Ospedaliera di Cosenza, Cosenza, Italy
| | - Veronica Del Monaco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Gianfranco Scarpelli
- Unit of Neonatology and Neonatal Intensive Care, “Annunziata” Hub Hospital, Azienda Ospedaliera di Cosenza, Cosenza, Italy
| | - Francesca Greco
- Unit of Microbiology and Virology, “Annunziata” Hub Hospital, Azienda Ospedaliera di Cosenza, Cosenza, Italy
| | - Antonio Rinaldi
- Departmental Unit of Genetics, Bioinformatics, and Biobank, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Lorella Barca
- Cosenza Section, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Cosenza, Italy
| | - Stefania Ambrogio
- Cosenza Section, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Cosenza, Italy
| | - Antonio Limone
- General Direction, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Esterina De Carlo
- Sanitary Direction, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Giorgia Borriello
- Departmental Unit of Genetics, Bioinformatics, and Biobank, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| |
Collapse
|
8
|
Risser J, Tessman R, Bade D, Sahin O, Clavijo MJ, Dhup S, Hoffmann P. Pradofloxacin Minimum Inhibitory Concentration Profiling of Streptococcus suis Isolates: Insights into Antimicrobial Susceptibility in Swine. Pathogens 2025; 14:88. [PMID: 39861050 PMCID: PMC11768269 DOI: 10.3390/pathogens14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study evaluated the minimum inhibitory concentration (MIC) of pradofloxacin against various swine respiratory pathogens, including Bordetella bronchiseptica, Glaesserella parasuis, Mycoplasma hyopneumoniae, Pasteurella multocida, and Streptococcus suis (S. suis), associated with disease in swine. This research was conducted in two phases: the initial phase examined isolates from the lungs that could be either commensal or pathogenic, while the second phase focused on systemic S. suis strains that spread from the respiratory tract to the brain. The pradofloxacin MIC values of the second phase were within the MIC range of the initial phase, with MIC50 and MIC90 values highlighting its potential as an effective antimicrobial agent. Quality control data validated the reliability of our MIC findings, with all pradofloxacin MIC values for control organisms within approved ranges. These findings suggest that pradofloxacin has broad-spectrum activity against Gram-positive and Gram-negative bacteria and may serve as a reliable therapeutic option for managing S. suis and other swine respiratory infections. This study highlights pradofloxacin as an alternative antimicrobial therapy for swine respiratory diseases, offering a potential solution amidst rising concerns over antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Don Bade
- Microbial Research Incorporated, Fort Collins, CO 80525, USA
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA (M.J.C.)
| | - Maria J. Clavijo
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA (M.J.C.)
| | - Saumya Dhup
- Elanco Innovation and Alliance Centre, Bangalore 560008, India;
| | | |
Collapse
|
9
|
Zhu S, Li S, Wu B, Yang Z, Zhang Y, Chen J, Zhang Y, Fang L. Uncovering a cryptic Streptococcus suis endemic post-outbreak: Evidence of host switching to humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178307. [PMID: 39754947 DOI: 10.1016/j.scitotenv.2024.178307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Streptococcus suis (S. suis) is a neglected and emerging pathogen that leads to severe economic losses in swine industry. Despite its epidemic potential, the zoonotic threat posed by S. suis remains underappreciated, even after the unprecedented Sichuan outbreak, which highlighted its ability to cause fatal human infections. Understanding of the dynamics and evolution of this pathogen in human populations is crucial for preventing future outbreaks. Our study revealed the emergence of highly pathogenic S. suis lineages in Zhejiang Province following the Sichuan outbreak, showing an increasingly specialized lifestyle that has persisted for nearly two decades. Phylogenetic analysis traced the zoonotic transmission of this pathogen back to a livestock lineage in the Netherlands prior to 1990, which eventually led to the Sichuan outbreak lineage in 2005 and its subsequent spread to Zhejiang the same year. Two independent evolved sub-lineages were identified in Zhejiang, suggesting a cryptic, regional endemicity following the Sichuan outbreak. Furthermore, the accumulation of lineage-specific resistance and metabolic acclimation after divergence from the Sichuan population suggested potential regional evolutionary shifts in S. suis. These new findings could help inform future intervention strategies and guide public health policies.
Collapse
Affiliation(s)
- Shuirong Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shengkai Li
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhangnv Yang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yuwen Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jiancai Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Hatrongjit R, Sittichottumrong K, Boueroy P, Chopjitt P, Gottschalk M, Nuanualsuwan S, Kerdsin A. Modified multiplex PCR for serotyping and pathotyping of Streptococcus suis. J Med Microbiol 2025; 74. [PMID: 39773320 DOI: 10.1099/jmm.0.001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Introduction. Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans who have been in close contact with infected pigs or contaminated pork-derived products. There is currently no consensus on the universal virulence factors or markers that can differentiate pathogenic from non-pathogenic or commensal S. suis isolates.Gap statement. A diagnostic tool for serotyping and pathotyping of S. suis is required for active public health surveillance and the One-Health approach.Aim. To improve the former multiplex PCR to serotyping all 29 recognized 'true' serotypes and distinguish pathogenic pathotypes using primers targeting the capsule and ROK pathogenic marker genes.Methodology. Four sets of multiplex PCRs were modified and improved to detect all 29 recognized serotypes of S. suis and distinguish their pathogenic pathotypes using the ROK gene.Results. This multiplex PCR allowed for the simultaneous amplification of S. suis-specific, serotype-specific and pathogenic pathotypes from the DNA of each serotype in each reaction. The accuracy, sensitivity, specificity, positive predictive value and negative predictive value of the pathogenic ROK marker genes were 84.7% (625/738), 96.4% (423/439), 67.6% (202/299), 81.4% (423/520) and 92.7% (202/218), respectively. There was a significant (P-value <0.001), high positive likelihood ratio [2.9 with 2.5-3.5 of 95% confidence interval (CI)] and a significant odds ratio (55.1 with 31.6-95.9 of 95 % CI), which indicated that the ROK gene could be used as the pathogenic pathotype marker. No cross-reactions were observed with other bacterial species.Conclusion. This modified multiplex PCR was able to distinguish 29 well-known serotypes and predicted the pathogenic pathotypes of S. suis isolates from humans and pigs in a single assay. It is useful for One-Health surveillance of human and pig isolates of S. suis.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Kulsatri Sittichottumrong
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Qubec, Canada
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| |
Collapse
|
11
|
Ma J, Wu H, Ma Z, Wu Z. Bacterial and host factors involved in zoonotic Streptococcal meningitis. Microbes Infect 2025; 27:105335. [PMID: 38582147 DOI: 10.1016/j.micinf.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou 511400, China.
| |
Collapse
|
12
|
Xu J, Chen L, Pang S, Zhang Q, Deng S, Zhu J, Chen X, Langford PR, Huang Q, Zhou R, Li L. HylS', a fragment of truncated hyaluronidase of Streptococcus suis, contributes to immune evasion by interaction with host complement factor C3b. Virulence 2024; 15:2306691. [PMID: 38251716 PMCID: PMC10854370 DOI: 10.1080/21505594.2024.2306691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Pathogenic bacteria have evolved many strategies to evade surveillance and attack by complements. Streptococcus suis is an important zoonotic pathogen that infects humans and pigs. Hyaluronidase (HylA) has been reported to be a potential virulence factor of S. suis. However, in this study, it was discovered that the genomic region encoding HylA of the virulent S. suis strain SC19 and other ST1 strains was truncated into four fragments when aligned with a strain containing intact HylA and possessing hyaluronidase activity. As a result, SC19 had no hyaluronidase activity, but one truncated HylA fragment, designated as HylS,' directly interacted with complement C3b, as confirmed by western ligand blotting, pull-down, and ELISA assays. The deposition of C3b and membrane attack complex (MAC) formation on the surface of a HylS'-deleted mutant (ΔhylS') was significantly increased compared to wild-type SC19. In human sera and whole blood, ΔhylS' survival was significantly reduced compared to that in SC19. The resistance of ΔhylS' to macrophages and human polymorphonuclear neutrophil PMNs also decreased. In a mouse infection model, ΔhylS' showed reduced lethality and lower bacterial load in the organs compared to that of SC19. We conclude that the truncated hyaluronidase HylS' fragment contributes to complement evasion and the pathogenesis of S. suis.
Collapse
Affiliation(s)
- Jiajia Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Long Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Siqi Pang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Qiuhong Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Simin Deng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiaqi Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary’s Campus, London, UK
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei, China
| | - Lu Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei, China
| |
Collapse
|
13
|
Zhu J, Wang J, Kang W, Zhang X, Kerdsin A, Yao H, Zheng H, Wu Z. Streptococcus suis serotype 4: a population with the potential pathogenicity in humans and pigs. Emerg Microbes Infect 2024; 13:2352435. [PMID: 38703011 PMCID: PMC11097711 DOI: 10.1080/22221751.2024.2352435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Streptococcus suis is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Surveillance data highlight the significance of S. suis serotype 4 (SS4) in swine streptococcusis, a pathotype causing human infections. However, except for a few epidemiologic studies, the information on SS4 remains limited. In this study, we investigated the population structure, pathogenicity, and antimicrobial characteristics of SS4 based on 126 isolates, including one from a patient with septicemia. We discovered significant diversities within this population, clustering into six minimum core genome (MCG) groups (1, 2, 3, 4, 7-2, and 7-3) and five lineages. Two main clonal complexes (CCs), CC17 and CC94, belong to MCG groups 1 and 3, respectively. Numerous important putative virulence-associated genes are present in these two MCG groups, and 35.00% (7/20) of pig isolates from CC17, CC94, and CC839 (also belonging to MCG group 3) were highly virulent (mortality rate ≥ 80%) in zebrafish and mice, similar to the human isolate ID36054. Cytotoxicity assays showed that the human and pig isolates of SS4 strains exhibit significant cytotoxicity to human cells. Antimicrobial susceptibility testing showed that 95.83% of strains isolated from our labs were classified as multidrug-resistant. Prophages were identified as the primary vehicle for antibiotic resistance genes. Our study demonstrates the public health threat posed by SS4, expanding the understanding of SS4 population structure and pathogenicity characteristics and providing valuable information for its surveillance and prevention.
Collapse
Affiliation(s)
- Jinlu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, People’s Republic of China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, People’s Republic of China
| | - Jianping Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Weiming Kang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiyan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, People’s Republic of China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, People’s Republic of China
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, People’s Republic of China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou, People’s Republic of China
| |
Collapse
|
14
|
Deng S, Liao J, Li H, Xu J, Fan J, Xia J, Wang J, Lei L, Chen M, Han Y, Zhai R, Zhou C, Zhou R, Cheng C, Song H. Streptococcus suis subtilisin-like serine proteases SspA-1 and SspA-2 interplay with complement C3a and C5a to facilitate bacterial immune evasion and infection. Virulence 2024; 15:2301246. [PMID: 38170683 PMCID: PMC10795781 DOI: 10.1080/21505594.2023.2301246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Streptococcus suis (S. suis), a significant zoonotic bacterial pathogen impacting swine and human, is associated with severe systemic diseases such as streptococcal toxic shock-like syndrome, meningitis, septicaemia, and abrupt fatality. The multifaceted roles of complement components C5a and C3a extend to orchestrating inflammatory cells recruitment, oxidative burst induction, and cytokines release. Despite the pivotal role of subtilisin-like serine proteases in S. suis pathogenicity, their involvement in immune evasion remains underexplored. In the present study, we identify two cell wall-anchored subtilisin-like serine proteases in S. suis, SspA-1 and SspA-2, as binding partners for C3a and C5a. Through Co-Immunoprecipitation, Enzyme-Linked Immunosorbent and Far-Western Blotting Assays, we validate their interactions with the aforementioned components. However, SspA-1 and SspA-2 have no cleavage activity against complement C3a and C5a performed by Cleavage assay. Chemotaxis assays reveal that recombinant SspA-1 and SspA-2 effectively attenuate monocyte chemotaxis towards C3a and C5a. Notably, the ΔsspA-1, ΔsspA-1, and ΔsspA-1/2 mutant strains exhibit compromised survival in blood, and resistance of opsonophagocytosis, alongside impaired survival in blood and in vivo colonization compared to the parental strain SC-19. Critical insights from the murine and Galleria mellonella larva infection models further underscore the significance of sspA-1 in altering mortality rates. Collectively, our findings indicate that SspA-1 and SspA-2 are novel binding proteins for C3a and C5a, thereby shedding light on their pivotal roles in S. suis immune evasion and the pathogenesis.
Collapse
Affiliation(s)
- Simin Deng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Junhui Liao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Haojie Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jingyan Fan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Yue Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Ruidong Zhai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Chang Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Rui Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
15
|
Yuan F, Zheng L, Wang M, Liu W, Li X, Gao T, Guo R, Liu Z, Yang K, Li C, Wu Q, Zhu J, Tian Y, Zhou D. Study on the Effect of Phillyrin on Streptococcus suis In Vivo and In Vitro. Biomolecules 2024; 14:1542. [PMID: 39766249 PMCID: PMC11673059 DOI: 10.3390/biom14121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025] Open
Abstract
As a zoonotic pathogen, S. suis serotype 2 (SS2) can cause severe diseases in both pigs and humans, and develop resistance to antibiotics. Plant natural compounds are regarded as promising alternatives to conventional antibiotics. Phillyrin is the major bioactive components of Chinese herbal medicine Forsythia suspensa. In this study, we explored the activity and action mechanism of phillyrin against SS2. The results showed that phillyrin could disrupt membrane integrity, destroy intracellular structures, and increase the exosmosis of DNA. Results of PCR revealed that phillyrin affected bacterial-virulence-related genes' expression levels. Meanwhile, phillyrin significantly decreased the adhesion activity, inhibited lactate dehydrogenase (LDH) secretion, and reduced biofilm formation of SS2 in Newborn pig trachea epithelial (NPTr) cells. Furthermore, phillyrin protected tight junction protein of NPTr cells from SS2. We reported that phillyrin (0.1 mg/kg) treatment after bacterial challenge significantly improved the survival rate, ameliorated pulmonary inflammation, and inhibited the accumulation of multiple cytokines (IL-1, IL-6, IL-8, and TNF-α). Molecular docking showed that phillyrin had a good binding activity with the Ala88 and Asp111 of suilysin (SLY), one of the most important virulence factors of SS2. Collectively, phillyrin possesses antibacterial and anti-inflammatory activities, and is a promising candidate for preventing SS2 infection.
Collapse
Affiliation(s)
- Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Lihan Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.)
| | - Mengzhe Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.)
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Xiaoyue Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.)
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Jiajia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| |
Collapse
|
16
|
Liu J, Zhang Z, Pu W, Pan X, Li P, Bai Q, Liang S, Li C, Yu Y, Yao H, Ma J. A multi-epitope subunit vaccine providing broad cross-protection against diverse serotypes of Streptococcus suis. NPJ Vaccines 2024; 9:216. [PMID: 39543108 PMCID: PMC11564553 DOI: 10.1038/s41541-024-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Streptococcus suis infection represents a major challenge in pig farming and public health due to its zoonotic potential and diverse serotypes, while existing vaccines lack effective cross-protection. This study employed reverse vaccinology and immunoinformatics to identify 8 conserved proteins across 11 prevalent serotypes of S. suis. 16 candidate epitopes were selected to design three multi-epitope antigens against S. suis (designated as MEASs), which fused with a dendritic cell-targeting peptide to improve antigen presentation in host. Purified MEASs displayed favorable cross-reactogenicity against 29 serotype-specific antiserums. Robust humoral and cellular immune responses can be induced by MEAS 1 and MEAS 3 in a mouse model, which provided substantial protection against virulent strains from two different serotypes. In particular, their immune serums exhibited positive opsonization effects within bloodstream and macrophage phagocytosis. Taken together, we identified two promising MEASs with excellent cross-protection, offering potential in preventing S. suis infections in a mouse model.
Collapse
Affiliation(s)
- Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Zhen Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Wanxia Pu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Song Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Caiying Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Yong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
17
|
Li K, Lacouture S, Lewandowski E, Thibault E, Gantelet H, Gottschalk M, Fittipaldi N. Molecular characterization of Streptococcus suis isolates recovered from diseased pigs in Europe. Vet Res 2024; 55:117. [PMID: 39334446 PMCID: PMC11429987 DOI: 10.1186/s13567-024-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis is a major swine pathogen and zoonotic agent, causing important economic losses to the porcine industry. Here, we used genomics approaches to characterize 251 S. suis isolates recovered from diseased pigs across Belgium, France, Germany, Hungary, the Netherlands, Spain, and the United Kingdom. We identified 13 serotypes, being serotypes 9 and 2 the most prevalent, and 34 sequence types (STs), including 16 novel STs, although ST16 and ST1 dominated the strain population. Phylogenetic analysis revealed complex genetic relationships, notable geographic clustering, and potential differential capacity for capsular switching among serotype 9 isolates. We found antimicrobial resistance (AMR) genes in 85.3% of the isolates, with high frequencies of genes conferring resistance to tetracyclines and macrolides. Specifically, 49.4% of the isolates harbored the tetO gene, and 64.9% possessed the ermB gene. Additionally, we observed a diverse array of virulence-associated genes (VAGs), including the classical VAGs mrp, epf, and sly, with variable presence across different genotypes. The high genetic diversity among European S. suis isolates highlights the importance of targeted antimicrobial use and flexible vaccine strategies. Rapid strain characterization is crucial for optimizing swine health management, enabling tailored interventions like the development of autovaccines to mitigate S. suis infections.
Collapse
Affiliation(s)
- Kevin Li
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Sonia Lacouture
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Nahuel Fittipaldi
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada.
| |
Collapse
|
18
|
Hasegawa Y, Akita T, Kuchibiro T, Miyoshi-Akiyama T, Tomida J, Kutsuna R, Mori R, Okuno M, Ogura Y, Kawamura Y. Streptococcus suis subsp. hashimotonensis subsp. nov.: Lancefield group A antigen-positive organisms isolated from human clinical specimens and wild boar oral cavity samples. Syst Appl Microbiol 2024; 47:126538. [PMID: 39053043 DOI: 10.1016/j.syapm.2024.126538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Three Streptococcus suis-like strains positive for Lancefield antigen group A were isolated from human boar bite wounds and the oral cavities of boars in Hashimoto City, Wakayama Prefecture, Japan, and their taxonomic positions were investigated. Application of the VITEK2 system identified all three isolates as S. suis with > 94 % probability. The isolates were assigned to S. suis based on the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis (Biotyper score of 2.382) but were differentiated according to the characteristic signal peaks (4709 m/z and 9420 m/z) that were not present for S. suis. Sequence analysis of the 16S rRNA and sodA genes determined that the isolates were similar to S. suis; however, these genes appeared on a phylogenetic sub-branch. Phylogenetic analysis of the whole chromosomal DNA showed that the isolate formed a cluster with S. suis but with clear divergence. The average nucleotide index using BLAST between the clinical isolate (PAGU 2482) and a closely related reference strain of S. suis was 94.75 %, which was not clearly conclusive; however, digital DNA-DNA hybridization showed a value of 61.2 %. Biochemical reactions, including those with acid phosphatase, α-chymotrypsin, and tagatose (acidification), distinguished our isolates from S. suis. Thus, based on phylogenetic, genomic, and phenotypic characteristics and MALDI-TOF-MS signal patterns, we propose that the isolate with Lancefield group A positive characteristics be designated as a novel subspecies, Streptococcus suis subsp. hashimotonensis subsp. nov., with the type strain PAGU 2482T (GTC 18290T = CCUG 77434T).
Collapse
Affiliation(s)
- Yuki Hasegawa
- LSI Medience Laboratory, Hashimoto Municipal Hospital, 2-8-1 Ominedai, Hashimoto, Wakayama 648-0005, Japan
| | - Toyokazu Akita
- Department of Clinical Laboratory, Hashimoto Municipal Hospital, 2-8-1 Ominedai, Hashimoto, Wakayama 648-0005, Japan
| | - Tomokazu Kuchibiro
- Department of Clinical Laboratory, Naga Municipal Hospital, 1282 Uchita, Kinokawa, Wakayama 649-6414, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya, Aichi 464-8650, Japan
| | - Ryo Kutsuna
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya, Aichi 464-8650, Japan
| | - Ryota Mori
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya, Aichi 464-8650, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya, Aichi 464-8650, Japan.
| |
Collapse
|
19
|
Laconi A, Cecconello A, Molinari S, Rilievo G, Cencini A, Tonolo F, Krystofova A, Majethia HN, Tolosi R, Schiavon E, Nicoletto C, Piccirillo A, Vianello F, Magro M. Highly Specific Polyphenolic Colloids as Alternatives to Antimicrobials in Livestock Production. Int J Mol Sci 2024; 25:9363. [PMID: 39273312 PMCID: PMC11395071 DOI: 10.3390/ijms25179363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The dispersion of antibiotics in livestock farming represents a health concern worldwide, contributing to the spread of antimicrobial-resistant bacteria through animals, the environment, and humans. Phenolic compounds could be alternatives to antibiotics, once drawbacks such as their low water solubility, bioavailability, and reduced stability are overcome. Although nano- or micro-sized formulations could counter these shortcomings, they do not represent cost-effective options. In this study, three phenolic compounds, obtained from wood-processing manufacturers, were characterized, revealing suitable features such as their antioxidant activity, size, and chemical and colloidal stability for in-field applications. The minimum inhibitory concentration (MIC) of these colloidal suspensions was measured against six bacterial strains isolated from livestock. These particles showed different inhibition behaviors: Colloidal chestnut was effective against one of the most threatening antibiotic-resistant pathogens, i.e., S. aureus, but ineffective toward E. coli. Instead, colloidal pine showed a weak effect on S. aureus but specificity toward E. coli. The present proof-of-concept points at colloidal polyphenols as valuable alternatives for antimicrobial substitutes in the livestock context.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Simone Molinari
- Department of Geosciences and CIRCe Centre, University of Padua, Via G. Gradenigo 6, 35129 Padua, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Antonie Krystofova
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Hardik Nilesh Majethia
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Eliana Schiavon
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy
| | - Carlo Nicoletto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
20
|
Yan Z, Pan R, Zhang J, Sun J, Ma X, Dong N, Yao X, Wei J, Liu K, Qiu Y, Sealey K, Nichols H, Jarvis MA, Upton M, Li X, Ma Z, Liu J, Li B. Immunogenicity and Protective Capacity of Sugar ABC Transporter Substrate-Binding Protein against Streptococcus suis Serotype 2, 7 and 9 Infection in Mice. Vaccines (Basel) 2024; 12:544. [PMID: 38793795 PMCID: PMC11126002 DOI: 10.3390/vaccines12050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Background:Streptococcus suis (S. suis) is a Gram-positive bacterium that causes substantial disease in pigs. S. suis is also an emerging zoonoses in humans, primarily in Asia, through the consumption of undercooked pork and the handling of infected pig meat as well as carcasses. The complexity of S. suis epidemiology, characterized by the presence of multiple bacterial serotypes and strains with diverse sequence types, identifies a critical need for a universal vaccine with the ability to confer cross-protective immunity. Highly conserved immunogenic proteins are generally considered good candidate antigens for subunit universal vaccines. Methods: In this study, the cross-protection of the sugar ABC transporter substrate-binding protein (S-ABC), a surface-associated immunogenic protein of S. suis, was examined in mice for evaluation as a universal vaccine candidate. Results: S-ABC was shown to be highly conserved, with 97% amino acid sequence identity across 31 S. suis strains deposited in GenBank. Recombinantly expressed S-ABC (rS-ABC) was recognized via rabbit sera specific to S. suis serotype 2. The immunization of mice with rS-ABC induced antigen-specific antibody responses, as well as IFN-γ and IL-4, in multiple organs, including the lungs. rS-ABC immunization conferred high (87.5% and 100%) protection against challenges with S. suis serotypes 2 and 9, demonstrating high cross-protection against these serotypes. Protection, albeit lower (50%), was also observed in mice challenged with S. suis serotype 7. Conclusions: These data identify S-ABC as a promising antigenic target within a universal subunit vaccine against S. suis.
Collapse
Affiliation(s)
- Zujie Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Ruyi Pan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Nihua Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Katie Sealey
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK;
| | | | - Michael A. Jarvis
- The Vaccine Group Ltd., Plymouth PL6 8BU, UK; (H.N.)
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK; (M.U.); (X.L.)
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK; (M.U.); (X.L.)
| | - Xiangdong Li
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK; (M.U.); (X.L.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| |
Collapse
|
21
|
Dong J, Zhang Q, Yang J, Zhao Y, Miao Z, Pei S, Qin H, Jing C, Wen G, Zhang A, Tao P. BacScan: a novel genome-wide strategy for uncovering broadly immunogenic proteins in bacteria. Front Immunol 2024; 15:1392456. [PMID: 38779673 PMCID: PMC11109440 DOI: 10.3389/fimmu.2024.1392456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.
Collapse
Affiliation(s)
- Junhua Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Qian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Jinyue Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Yacan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Zhuangxia Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Siyang Pei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Huan Qin
- College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Changwei Jing
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| |
Collapse
|
22
|
Zuo J, Quan Y, Li J, Li Y, Song D, Li X, Wang Y, Yi L, Wang Y. Tackling Antibiotic Resistance: Exploring 5-Fluorouracil as a Promising Antimicrobial Strategy for the Treatment of Streptococcus suis Infection. Animals (Basel) 2024; 14:1286. [PMID: 38731290 PMCID: PMC11083182 DOI: 10.3390/ani14091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic pathogen with a global distribution, which causes serious diseases in both humans and animals and economic losses in the swine industry. As antibiotic resistance increases, there is an urgent imperative to explore novel antibacterial alternatives. In the present study, we selected the anticancer drug 5-fluorouracil (5-FU) approved by the Food and Drug Administration (FDA) as a candidate drug to treat S. suis infections. The results showed that various pathogens, especially S. suis, are more sensitive to 5-FU. Moreover, the cytotoxicity of 5-FU is relatively low. Extensive in vitro assays demonstrated the pronounced bacteriostatic and bactericidal efficacy of 5-FU against susceptible and multidrug-resistant S. suis strains. Its mechanisms of action include damage to the bacterial cell walls and membranes, resulting in the leakage of intracellular components, and the inhibition of thymidylate synthase (TS), leading to a depletion of deoxythymidine triphosphate (dTTP) pools, ultimately causing thymine-less death and lethal DNA damage in bacteria. Gene-knockout experiments further showed that 5-FU played a role by inhibiting the thyA gene-encoding thymidine synthase. Finally, we determined that S. suis infections can be alleviated by 5-FU in the mouse infection model. This study emphasizes the antibacterial potential of 5-FU against S. suis and provides evidence for its targeting of bacterial membrane damage and DNA damage. In summary, 5-FU can control S. suis infection and is expected to become a new alternative to antibiotics.
Collapse
Affiliation(s)
- Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (J.Z.); (Y.Q.); (Y.L.); (D.S.); (X.L.); (Y.W.)
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China;
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (J.Z.); (Y.Q.); (Y.L.); (D.S.); (X.L.); (Y.W.)
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China;
| | - Jinpeng Li
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China;
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (J.Z.); (Y.Q.); (Y.L.); (D.S.); (X.L.); (Y.W.)
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China;
| | - Dong Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (J.Z.); (Y.Q.); (Y.L.); (D.S.); (X.L.); (Y.W.)
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China;
| | - Xingping Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (J.Z.); (Y.Q.); (Y.L.); (D.S.); (X.L.); (Y.W.)
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China;
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (J.Z.); (Y.Q.); (Y.L.); (D.S.); (X.L.); (Y.W.)
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China;
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China;
- College of Life Science, Luoyang Normal University, Luoyang 471934, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (J.Z.); (Y.Q.); (Y.L.); (D.S.); (X.L.); (Y.W.)
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China;
| |
Collapse
|
23
|
Payen S, Giroux MC, Gisch N, Schombel U, Fittipaldi N, Segura M, Gottschalk M. Lipoteichoic acids influence cell shape and bacterial division of Streptococcus suis serotype 2, but play a limited role in the pathogenesis of the infection. Vet Res 2024; 55:34. [PMID: 38504299 PMCID: PMC10953176 DOI: 10.1186/s13567-024-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Streptococcus suis serotype 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans, responsible for substantial economic losses to the swine industry worldwide. The pathogenesis of infection and the role of bacterial cell wall components in virulence have not been fully elucidated. Lipoproteins, peptidoglycan, as well as lipoteichoic acids (LTA) have all been proposed to contribute to virulence. In the present study, the role of the LTA in the pathogenesis of the infection was evaluated through the characterisation of a mutant of the S. suis serotype 2 strain P1/7 lacking the LtaS enzyme, which mediates the polymerization of the LTA poly-glycerolphosphate chain. The ltaS mutant was confirmed to completely lack LTA and displayed significant morphological defects. Although the bacterial growth of this mutant was not affected, further results showed that LTA is involved in maintaining S. suis bacterial fitness. However, its role in the pathogenesis of the infection appears limited. Indeed, LTA presence reduces self-agglutination, biofilm formation and even dendritic cell activation, which are important aspects of the pathogenesis of the infection caused by S. suis. In addition, it does not seem to play a critical role in virulence using a systemic mouse model of infection.
Collapse
Affiliation(s)
- Servane Payen
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marie-Christine Giroux
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nahuel Fittipaldi
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Mariela Segura
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marcelo Gottschalk
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
24
|
Zhu H, Müller U, Baums CG, Öhlmann S. Comparative analysis of the interactions of different Streptococcus suis strains with monocytes, granulocytes and the complement system in porcine blood. Vet Res 2024; 55:14. [PMID: 38317258 PMCID: PMC10845567 DOI: 10.1186/s13567-024-01268-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Streptococcus suis (S. suis) is an important porcine pathogen causing meningitis, arthritis, and septicemia. Serotypes 2 and 14 are the most common zoonotic ones worldwide, whereas serotypes 2, 9, and 7 are very important in pigs in Europe. To cause invasive infections S. suis needs to enter the bloodstream. Consequently, the immune response in blood represents an important line of defense and bacteremia plays a key role in the pathogenesis of invasive S. suis infections. We investigated the working hypothesis that S. suis strains of the same serotype but different clonal complex (CC) might exhibit substantial differences in the interaction with components of the immune system in porcine blood. The experimental design of this study includes comparative analysis of 8 virulent strains belonging to 4 serotypes with strains of the same serotype being genetically not closely related. Significant differences between two strains of the same serotype but different clonal complex were recorded in the flow cytometric analysis of association with different leukocytes for serotype 9 and 14. Our results demonstrate that the serotype 9 strain of CC94 shows significantly increased association with monocytes and survival in porcine blood of conventional piglets as well as a tendency towards decreased composition of C3 in plasma of these piglets in comparison to the serotype 9 strain of CC16. Correlation analysis of C3 deposition on the bacterial surface and survival in respective blood samples of 8-week-old piglets demonstrated a negative correlation indicating that C3 deposition is a crucial step to limit bacterial survival and proliferation of different S. suis pathotypes in the blood of these piglets. In summary, our results indicate that the capsule composition of a S. suis strain is not alone sufficient to determine association with leukocytes, activation of complement, induction of proinflammatory cytokines, oxidative burst, and bacterial survival in porcine blood. In this study, substantial differences in these host-pathogen interactions were observed between strains of the same serotype. Therefore, a more comprehensive characterization of the field isolates, including at least MLST analysis to determine the sequence type/clonal complex, is recommended.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Uwe Müller
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Sophie Öhlmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Wu T, Jiang H, Li F, Jiang X, Wang J, Wei S, Sun Y, Tian Y, Chu H, Shi Y, Zhang N, Li N, Lei L. O-acetyl-homoserine sulfhydrylase deficient Streptococcus suis serotype 2 strain SC19 becomes an avirulent strain and provides immune protection against homotype infection in mice. Vet Microbiol 2024; 288:109943. [PMID: 38113574 DOI: 10.1016/j.vetmic.2023.109943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
O-acetyl-homoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis, which catalyzes the conversion of o-acetyl-homoserine (OAH) to homocysteine. In our previous study, we found that OAHS of Streptococcus suis serotype 2 (SS2) can interact with the porcine blood-brain barrier (BBB) model, but whether OAHS regulates the penetration of BBB during SS2 infection is still unclear. To explore the role of OAHS in SS2 infection, OAHS-deficient SS2 mutant strain (SC19-ΔOAHS) and gene complemental strain (SC19-cΔOAHS) were constructed. Compared to the parent strain, with the loss of oahs, the chain length of SC19-ΔOAHS was shortened, the virulence was significantly reduced, the survival rate of mice infected with SC19-ΔOAHS was obviously increased accompanied by the relieved clinical symptoms. And the survival ability of SC19-ΔOAHS in whole blood was also remarkably decreased. Interestingly, the adhesion of SC19-ΔOAHS to endothelial cells was markedly increased, but the deficiency of OAHS significantly inhibited the strain penetrating BBB both in vivo and in vitro. Most of these phenomena can be reversed by the complemental strain (SC19-cΔOAHS). Further study showed that the deficiency of OAHS severely reduced SC19-induced endothelial cell apoptosis, tight junctions (TJs) protein impairment and the expression of SS2 virulence factor Enolase (Eno), involved in the destruction of BBB. Additionally, SC19-ΔOAHS immunized mice were able to resist SC19 or JZLQ022 infection. In conclusion, we confirmed that OAHS promoted the pathogenicity by enhancing host's BBB permeability and immune escape, and SC19- ΔOAHS is a potential live vaccine.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Hexiang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fengyang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shaopeng Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yi Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanyan Tian
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hong Chu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Shi
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Nan Zhang
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Liancheng Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Veterinary Medicine, College of Animal Science, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
26
|
Del Pozo M, Uruén C. Laboratory Methods for Culture and Identification. Methods Mol Biol 2024; 2815:1-13. [PMID: 38884906 DOI: 10.1007/978-1-0716-3898-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
This chapter addresses the cultivation, identification, and characterization of Streptococcus suis. Here, we describe in detail the most used methodologies and expected results.
Collapse
Affiliation(s)
| | - Cristina Uruén
- Unit of Microbiology and Immunology, Faculty of Veterinary, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Zaragoza, Spain
| |
Collapse
|
27
|
Lee CY, Zakaria Z, Selvarajah GT, Mustaffa-Kamal F, Voon KGL, Fong MWC, Ooi PT. Screening of Streptococcus suis in swine workers of selected states in Peninsular Malaysia. Vet World 2024; 17:1-7. [PMID: 38406356 PMCID: PMC10884579 DOI: 10.14202/vetworld.2024.1-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Streptococcus suis is a zoonotic pathogen that is highly associated with contact between live pigs and raw pig material. In view of the recent reports of human infections in Malaysia, epidemiological data on the status of S. suis in the human population, especially among people working closely with pigs and/or raw pork, should be provided. The aim of this study was to detect S. suis among individuals working in the swine industry in several major pig production areas in Peninsular Malaysia. Materials and Methods Demographic information, exposure determinants, and oral swabs were collected from swine personnel, including farmers, butchers, and veterinarians. Oral swabs were subjected to bacterial isolation and conventional polymerase chain reaction (PCR) assays for S. suis detection. Results The study included 40 participants working in the swine industry, with a predominant representation of males (62.5%) and Malaysian Chinese individuals (60.0%) who consumed pork (92.5%). Notably, none of the participants reported consuming raw or partially cooked pork. In spite of their occupational exposure risk, none of the oral swabs showed positive results for S. suis infection. Conclusion To the best of our knowledge, this is the first report and detection study of S. suis using oral swabs obtained from swine personnel in Peninsular Malaysia.
Collapse
Affiliation(s)
- Chee Yien Lee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zunita Zakaria
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- UPM - MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Farina Mustaffa-Kamal
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kenny Gah Leong Voon
- Division of Biomedical Science, School of Pharmacy, University of Nottingham, 43500 Semenyih, Selangor, Malaysia
| | - Michelle Wai Cheng Fong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Costa MDO, Fittipaldi N. In Silico Typing and Identification Confirmation of Isolates. Methods Mol Biol 2024; 2815:15-21. [PMID: 38884907 DOI: 10.1007/978-1-0716-3898-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Streptococcus suis is an important zoonotic pathogen causing severe infections in pigs and humans. Serotyping of S. suis strains is crucial for epidemiological surveillance, outbreak investigations, and understanding the pathogenesis of this bacterium. Here, we describe a step-by-step approach that enhances a previously developed pipeline by utilizing a computational script for efficient and accurate typing of S. suis strains. The pipeline is implemented in Perl programming language and leverages the Short Read Sequence Typing for Bacterial Pathogens (SRST2) tool. It integrates various bioinformatics techniques and utilizes multiple databases, including a serotype database, cpsH confirmation database, multi-locus sequence typing (MLST) database, recN species-specific gene database, and virulence gene database. These databases contain comprehensive information on S. suis serotypes, genetic markers, and virulence factors. The script can utilize paired-end or single-end fastq files as input and first confirms the species by sequence read data aligning to the recN gene, ensuring the accurate identification of S. suis strains. The pipeline next performs MLST typing and virulence factor identification using SRST2 while in a parallel processes it performs in silico serotyping of the strains. The pipeline offers a streamlined and semiautomated approach to serotyping S. suis strains, facilitating large-scale studies and reducing the manual effort required for data analysis.
Collapse
Affiliation(s)
- Matheus de O Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Nahuel Fittipaldi
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montreal, Montreal, QC, Canada
| |
Collapse
|
29
|
Dolbec D, Lehoux M, de Beauville AA, Zahn A, Di Noia JM, Segura M. Unmutated but T cell dependent IgM antibodies targeting Streptococcus suis play an essential role in bacterial clearance. PLoS Pathog 2024; 20:e1011957. [PMID: 38241393 PMCID: PMC10829992 DOI: 10.1371/journal.ppat.1011957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Streptococcus suis serotype 2 is an important encapsulated bacterial swine pathogen and zoonotic agent for which no effective vaccine exists. The interaction with B cells and the humoral response against S. suis are poorly understood despite their likely relevance for a potential vaccine. We evaluated germinal center (GC) B cell kinetics, as well as the production and role of S. suis-specific antibodies following infections in a mouse model. We found that mice infected with S. suis developed GC that peaked 13-21 days post-infection. GC further increased and persisted upon periodic reinfection that mimics real life conditions in swine farms. Anti-S. suis IgM and several IgG subclasses were produced, but antibodies against the S. suis capsular polysaccharide (CPS) were largely IgM. Interestingly, depletion of total IgG from the wild-type mice sera had no effect on bacterial killing by opsonophagocytosis in vitro. Somatic hypermutation and isotype switching were dispensable for controlling the infection or anti-CPS IgM production. However, T cell-deficient (Tcrb-/-) mice were unable to control bacteremia, produce optimal anti-CPS IgM titers, or elicit antibodies with opsonophagocytic activity. SAP deficiency, which prevents GC formation but not extrafollicular B cell responses, ablated anti S. suis-IgG production but maintained IgM production and eliminated the infection. In contrast, B cell deficient mice were unable to control bacteremia. Collectively, our results indicate that the antibody response plays a large role in immunity against S. suis, with GC-independent but T cell-dependent germline IgM being the major effective antibody specificities. Our results further highlight the importance IgM, and potentially anti-CPS antibodies, in clearing S. suis infections and provide insight for future development of S. suis vaccines.
Collapse
Affiliation(s)
- Dominic Dolbec
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mélanie Lehoux
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Alexis Asselin de Beauville
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
| | - Javier Marcelo Di Noia
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
- Department of Medicine, Faculty of Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
30
|
Wang Y, Wang Y. Formation and Analysis of Biofilms in Vivo. Methods Mol Biol 2024; 2815:23-35. [PMID: 38884908 DOI: 10.1007/978-1-0716-3898-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Establishing a biofilm infection model in vivo allows a better understanding of the underlying infection mechanisms of bacteria. Here we describe a method for constructing an in vivo biofilm model of Streptococcus suis. The animal modeled is a piglet, which is the natural reservoir of S. suis, and the mode of clinical infection is simulated by intranasal inoculation of S. suis. This model is in line with clinical practice, easy to operate, and has good repeated stability.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
31
|
Xi H, Fu Y, Chen C, Feng X, Han W, Gu J, Ji Y. Aerococcus viridans Phage Lysin AVPL Had Lytic Activity against Streptococcus suis in a Mouse Bacteremia Model. Int J Mol Sci 2023; 24:16670. [PMID: 38068990 PMCID: PMC10706753 DOI: 10.3390/ijms242316670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Streptococcus suis (S. suis) is a swine pathogen that can cause sepsis, meningitis, endocarditis, and other infectious diseases; it is also a zoonotic pathogen that has caused a global surge in fatal human infections. The widespread prevalence of multidrug-resistant S. suis strains and the decline in novel antibiotic candidates have necessitated the development of alternative antimicrobial agents. In this study, AVPL, the Aerococcus viridans (A. viridans) phage lysin, was found to exhibit efficient bactericidal activity and broad lytic activity against multiple serotypes of S. suis. A final concentration of 300 μg/mL AVPL reduced S. suis counts by 4-4.5 log10 within 1 h in vitro. Importantly, AVPL effectively inhibited 48 h S. suis biofilm formation and disrupted preformed biofilms. In a mouse model, 300 μg/mouse AVPL protected 100% of mice from infection following the administration of lethal doses of multidrug-resistant S. suis type 2 (SS2) strain SC19, reduced the bacterial load in different organs, and effectively alleviated inflammation and histopathological damage in infected mice. These data suggest that AVPL is a valuable candidate antimicrobial agent for treating S. suis infections.
Collapse
Affiliation(s)
- Hengyu Xi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Yao Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Chong Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Xin Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Wenyu Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jingmin Gu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yalu Ji
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| |
Collapse
|
32
|
Payen S, Roy D, Okura M, Segura M, Gottschalk M. Study of the Role of Lipoprotein Maturation Enzymes in the Pathogenesis of the Infection Caused by the Streptococcus suis Serotype 2 Sequence Type 25 North American Prototype Strain. Pathogens 2023; 12:1325. [PMID: 38003790 PMCID: PMC10675726 DOI: 10.3390/pathogens12111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Streptococcus suis serotype 2 is an important swine bacterial pathogen causing sudden death, septic shock, and meningitis. However, serotype 2 strains are phenotypically and genotypically heterogeneous and composed of a multitude of sequence types (STs) whose distributions greatly vary worldwide. It has been previously shown that the lipoprotein (LPP) maturation enzymes diacylglyceryl transferase (Lgt) and signal peptidase (Lsp) significantly modulate the inflammatory host response and play a differential role in virulence depending on the genetic background of the strain. Differently from Eurasian ST1/ST7 strains, the capsular polysaccharide of a North American S. suis serotype 2 ST25 representative strain only partially masks sub-capsular domains and bacterial wall components. Thus, our hypothesis is that since LPPs would be more surface exposed in ST25 strains than in their ST1 or ST7 counterparts, the maturation enzymes would play a more important role in the pathogenesis of the infection caused by the North American strain. Using isogenic Δlgt and Δlsp mutants derived from the wild-type ST25 strain, our studies suggest that these enzymes do not seem to play a role in the interaction between S. suis and epithelial and endothelial cells, regardless of the genetics background of the strain used. However, a role in the formation of biofilms (also independently of the STs) has been demonstrated. Moreover, the involvement of LPP dendritic cell activation in vitro seems to be somehow more pronounced with the ST25 strain. Finally, the Lgt enzyme seems to play a more important role in the virulence of the ST25 strain. Although some differences between STs could be observed, our original hypothesis that LPPs would be significantly more important in ST25 strains due to a better bacterial surface exposition could not be confirmed.
Collapse
Affiliation(s)
- Servane Payen
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (M.S.)
| | - David Roy
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Masatoshi Okura
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima 891-0105, Japan;
| | - Mariela Segura
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (M.S.)
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (M.S.)
| |
Collapse
|
33
|
Ji Y, Sun K, Yang Y, Wu Z. Dihydroartemisinin ameliorates innate inflammatory response induced by Streptococcussuis-derived muramidase-released protein via inactivation of TLR4-dependent NF-κB signaling. J Pharm Anal 2023; 13:1183-1194. [PMID: 38024861 PMCID: PMC10657969 DOI: 10.1016/j.jpha.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 12/01/2023] Open
Abstract
Muramidase-released protein (MRP) is now being recognized as a critical indicator of the virulence and pathogenicity of Streptococcus suis (S. suis). However, the identification of viable therapeutics for S. suis infection was hindered by the absence of an explicit mechanism for MRP-actuated inflammation. Dihydroartemisinin (DhA) is an artemisinin derivative with potential anti-inflammatory activity. The modulatory effect of DhA on the inflammatory response mediated by the virulence factor MRP remains obscure. This research aimed to identify the signaling mechanism by which MRP triggers the innate immune response in mouse spleen and cultured macrophages. With the candidate mechanism in mind, we investigated DhA for its ability to dampen the pro-inflammatory response induced by MRP. The innate immune response in mice was drastically triggered by MRP, manifesting as splenic and systemic inflammation with splenomegaly, immune cell infiltration, and an elevation in pro-inflammatory cytokines. A crucial role for Toll-like receptor 4 (TLR4) in coordinating the MRP-mediated inflammatory response via nuclear factor-kappa B (NF-κB) activation was revealed by TLR4 blockade. In addition, NF-κB-dependent transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinases (MAPKs) activation was required for the inflammatory signal transduction engendered by MRP. Intriguingly, we observed an alleviation effect of DhA on the MRP-induced immune response, which referred to the suppression of TLR4-mediated actuation of NF-κB-STAT3/MAPK cascades. The inflammatory response elicited by MRP is relevant to TLR4-dependent NF-κB activation, followed by an increase in the activity of STAT3 or MAPKs. DhA mitigates the inflammation process induced by MRP via blocking the TLR4 cascade, highlighting the therapeutic potential of DhA in targeting S. suis infection diseases.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
34
|
Hess J, Kreitlow A, Rohn K, Hennig-Pauka I, Abdulmawjood A. Rapid Diagnostic of Streptococcus suis in Necropsy Samples of Pigs by thrA-Based Loop-Mediated Isothermal Amplification Assay. Microorganisms 2023; 11:2447. [PMID: 37894105 PMCID: PMC10608932 DOI: 10.3390/microorganisms11102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Streptococcus (S.) suis presents a serious threat to the pig industry as well as food safety and public health. Although several LAMP assays have been developed for the identification of S. suis, no universal assay is so far available for the field-suitable examination of clinical pig specimens. Based on the thrA housekeeping gene, a new loop-mediated isothermal amplification (LAMP) assay was developed and validated for the detection of S. suis in the brain and joints of pigs. For this LAMP assay, two different methods for the extraction of DNA from brain and joint swabs were compared. Using the LPTV boiling method, the detection limit of LAMP was 1.08 CFU/reaction, while the detection limit was 53.8 CFU/reaction using a commercial DNA extraction kit. The detection limits of thrA-LAMP in combination with the LPTV boiling method were 104-105 CFU/swab in the presence of brain tissue and 103-104 CFU/swab in the presence of joint tissue. The diagnostic quality criteria of LAMP were determined by the examination of 49 brain swabs and 34 joint swabs obtained during routine diagnostic necropsies. Applying the LPTV boiling method to brain swabs, the sensitivity, specificity, and positive and negative predictive values of thrA-LAMP were 88.0, 95.8, 95.7, and 88.5% using cultural investigation as a reference method, and 76.7, 100, 100, and 73.1% using real-time PCR as a reference method. Based on these results, the thrA-LAMP assay combined with the LPTV boiling method is suitable for rapid detection of S. suis from brain swabs.
Collapse
Affiliation(s)
- Julian Hess
- Field Station for Epidemiology (Bakum), University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany;
| | - Antonia Kreitlow
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology (Bakum), University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany;
| | - Amir Abdulmawjood
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| |
Collapse
|
35
|
Li J, Han N, Li Y, Zhao F, Xiong W, Zeng Z. Evaluating the Antibacterial and Antivirulence Activities of Floxuridine against Streptococcus suis. Int J Mol Sci 2023; 24:14211. [PMID: 37762514 PMCID: PMC10532271 DOI: 10.3390/ijms241814211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen that can cause fatal diseases such as meningitis and sepsis in pigs and human beings. The overuse of antibiotics is leading to an increased level of resistance in S. suis, and novel antimicrobial agents or anti-virulence agents for the treatment of infections caused by S. suis are urgently needed. In the present study, we investigated the antibacterial activity, mode of action and anti-virulence effects of floxuridine against S. suis. Floxuridine showed excessive antibacterial activity against S. suis both in vivo and in vitro; 4 × MIC of floxuridine could kill S. suis within 8 h in a time-kill assay. Meanwhile, floxuridine disrupted the membrane structure and permeability of the cytoplasmic membrane. Molecular docking revealed that floxuridine and SLY can be directly bind to each other. Moreover, floxuridine effectively inhibited the hemolytic capacity and expression levels of the virulence-related genes of S. suis. Collectively, these results indicate that the FDA-approved anticancer drug floxuridine is a promising agent and a potential virulence inhibitor against S. suis.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Feifei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (W.X.)
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
36
|
Gussak A, Ferrando ML, Schrama M, van Baarlen P, Wells JM. Precision Genome Engineering in Streptococcus suis Based on a Broad-Host-Range Vector and CRISPR-Cas9 Technology. ACS Synth Biol 2023; 12:2546-2560. [PMID: 37602730 PMCID: PMC10510748 DOI: 10.1021/acssynbio.3c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 08/22/2023]
Abstract
Streptococcussuis is an important zoonotic pathogen that causes severe invasive disease in pigs and humans. Current methods for genome engineering of S. suis rely on the insertion of antibiotic resistance markers, which is time-consuming and labor-intensive and does not allow the precise introduction of small genomic mutations. Here we developed a system for CRISPR-based genome editing in S. suis, utilizing linear DNA fragments for homologous recombination (HR) and a plasmid-based negative selection system for bacteria not edited by HR. To enable the use of this system in other bacteria, we engineered a broad-host-range replicon in the CRISPR plasmid. We demonstrated the utility of this system to rapidly introduce multiple gene deletions in successive rounds of genome editing and to make precise nucleotide changes in essential genes. Furthermore, we characterized a mechanism by which S. suis can escape killing by a targeted Cas9-sgRNA complex in the absence of HR. A characteristic of this new mechanism is the presence of very slow-growing colonies in a persister-like state that may allow for DNA repair or the introduction of mutations, alleviating Cas9 pressure. This does not impact the utility of CRISPR-based genome editing because the escape colonies are easily distinguished from genetically edited clones due to their small colony size. Our CRISPR-based editing system is a valuable addition to the genetic toolbox for engineering of S. suis, as it accelerates the process of mutant construction and simplifies the removal of antibiotic markers between successive rounds of genome editing.
Collapse
Affiliation(s)
- Alex Gussak
- Host-Microbe Interactomics, Animal
Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| | | | | | - Peter van Baarlen
- Host-Microbe Interactomics, Animal
Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Jerry Mark Wells
- Host-Microbe Interactomics, Animal
Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
37
|
Neila-Ibáñez C, Napp S, Pailler-García L, Franco-Martínez L, Cerón JJ, Aragon V, Casal J. Risk factors associated with Streptococcus suis cases on pig farms in Spain. Vet Rec 2023; 193:e3056. [PMID: 37269537 DOI: 10.1002/vetr.3056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Streptococcus suis can cause meningitis, polyarthritis and acute death in piglets. However, the risk factors associated with S. suis infection remain incompletely understood. Therefore, a longitudinal study was carried out, in which six batches from two Spanish pig farms with S. suis problems were repeatedly examined to determine possible risk factors. METHODS A prospective case-control study was conducted, and potential risk factors were evaluated using mixed-effects logistic regression models. The explanatory variables included: (a) concomitant pathogens; (b) biomarkers associated with stress, inflammation and oxidative status; (c) farm environmental factors; and (d) parity and S. suis presence in sows. Three models were built to study the effect of these variables, including two to assess the risk factors involved in the subsequent development of disease. RESULTS Risk factors for S. suis-associated disease included porcine reproductive and respiratory syndrome virus co-infection at weaning (odds ratio [OR] = 6.69), sow parity (OR = 0.71), haptoglobin level before weaning (OR = 1.01), relative humidity (OR = 1.11) and temperature (OR = 0.13). LIMITATIONS Laboratory diagnosis was done at the batch level, with individual diagnosis based on clinical signs only. CONCLUSIONS This study confirms the multifactorial nature of S. suis-associated disease, with both environmental factors and factors related to the host involved in disease development. Controlling these factors may, therefore, help prevent the appearance of disease.
Collapse
Affiliation(s)
- Carlos Neila-Ibáñez
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Sebastián Napp
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Lola Pailler-García
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Espinardo, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Espinardo, Spain
| | - Virginia Aragon
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Jordi Casal
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
38
|
Zhang J, Yang Y, Sun H, Luo X, Cui X, Miao Q, He D, Zhao J, Yan F, Pan Y, Zhai Y, Hu G. Prevalence of the optrA gene among Streptococcus suis isolates from diseased pigs and identification of a novel integrative conjugative element ICESsu988S. Res Microbiol 2023; 174:104078. [PMID: 37149078 DOI: 10.1016/j.resmic.2023.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Aim of this study was to investigate the prevalence and genetic environment of the oxazolidinone resistance gene optrA in Streptococcus suis (S. suis) isolates from diseased pigs in China. A total of 178 S. suis isolates were screened for the optrA gene by PCR. The phenotypes and genotypes of optrA-positive isolates were investigated by antimicrobial susceptibility testing, core genome Multilocus Sequence Typing (cgMLST), capsular serotypes determination and whole-genome sequencing (WGS). Fifty-one (28.7%) S. suis isolates were positive for optrA. Phylogenetic analysis indicated that the spread of the optrA among S. suis isolates was primarily due to horizontal transfer. Analysis of S. suis serotypes from diseased pigs revealed substantial diversity. The genetic environment of optrA was complex and diverse and could be divided into 12 different types. Interestingly, we identified a novel integrative and conjugative element ICESsu988S, carrying optrA and erm(T) genes. This is to the best of our knowledge the first report of the optrA and erm(T) co-located on an ICE in S. suis. Our results showed a high prevalence of optrA gene in S. suis isolates in China. Further research is needed to evaluate the importance of ICEs, as they horizontally propagate important clinical resistance genes.
Collapse
Affiliation(s)
- Junkai Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China.
| | - Huarun Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Xingwei Luo
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Xiaodie Cui
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Qingqing Miao
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Dandan He
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Jinfeng Zhao
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Fengbin Yan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yushan Pan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Gongzheng Hu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
39
|
Li X, Li Q, Zhang Z, Wang C, Huo X, Lai H, Lu H, Lu W, Qian Y, Dong W, Tan C, Liu M. Canagliflozin Inhibited the Activity of Hemolysin and Reduced the Inflammatory Response Caused by Streptococcus suis. Int J Mol Sci 2023; 24:13074. [PMID: 37685881 PMCID: PMC10487456 DOI: 10.3390/ijms241713074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Highly virulent Streptococcus suis (S. suis) infections can cause Streptococcal toxic shock-like syndrome (STSLS) in pigs and humans, in which an excessive inflammatory response causes severe damage. Hemolysin (SLY) is a major virulence factor of S. suis serotype 2 that produces pores in the target cell membrane, leading to cytoplasmic K+ efflux and activation of the NLRP3 inflammasome, ultimately causing STSLS. The critical aspect of hemolysin in the pathogenesis of S. suis type 2 makes it an attractive target for the development of innovative anti-virulence drugs. Here, we use the S. suis toxin protein (SLY) as a target for virtual screening. A compound called canagliflozin, a hypoglycemic agent, was identified through screening. Canagliflozin significantly inhibits the hemolytic activity of hemolysin. The results combined with molecular dynamics simulation, surface plasmon resonance, and nano differential scanning fluorimetry show that canagliflozin inhibits the hemolytic activity of SLY by binding to SLY. In addition, canagliflozin markedly reduced the release of SC19-induced inflammatory factors at the cellular level and in mice. Importantly, the combination of canagliflozin and ampicillin had a 90% success rate in mice, significantly greater than the therapeutic effect of ampicillin. The findings suggest that canagliflozin may be a promising new drug candidate for S. suis infections.
Collapse
Affiliation(s)
- Xiaodan Li
- Hubei Biopesticide Engineering Research Centre, Wuhan 430000, China;
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Qingyuan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Zhaoran Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Chenchen Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Xinyu Huo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Hongjiang Lai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Hao Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Wenjia Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Yulin Qian
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Wenqi Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Chen Tan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Q.L.); (Z.Z.); (C.W.); (X.H.); (H.L.); (H.L.); (W.L.); (Y.Q.); (W.D.); (C.T.)
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Wuhan 430000, China;
| |
Collapse
|
40
|
Dolbec D, Lehoux M, Okura M, Takamatsu D, Gottschalk M, Segura M. Streptococcus suis surface-antigen recognition by antibodies and bacterial elimination is influenced by capsular polysaccharide structure. Front Cell Infect Microbiol 2023; 13:1228496. [PMID: 37545852 PMCID: PMC10401424 DOI: 10.3389/fcimb.2023.1228496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Streptococcus suis is an encapsulated bacterium causing severe diseases in swine. Here, we compared the protective properties of the capsular polysaccharide (CPS) of different S. suis serotypes by using serotype-switched mutants in a mouse model of infection. CPS structure influenced bacterial survival in mice, antibody binding, and antibody-mediated bacterial killing. The CPS of serotypes 3, 4 and 14 allowed more antibody binding and bacterial elimination than the CPS of serotypes 2, 7 and 9. Results suggest that the different CPS structures of S. suis provide varying levels of protection by influencing antigen availability and elimination by the host immune system.
Collapse
Affiliation(s)
- Dominic Dolbec
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Mélanie Lehoux
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Masatoshi Okura
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Daisuke Takamatsu
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
41
|
Pageaut H, Lacouture S, Lehoux M, Marois-Créhan C, Segura M, Gottschalk M. Interactions of Mycoplasma hyopneumoniae and/or Mycoplasma hyorhinis with Streptococcus suis Serotype 2 Using In Vitro Co-Infection Models with Swine Cells. Pathogens 2023; 12:866. [PMID: 37513713 PMCID: PMC10383509 DOI: 10.3390/pathogens12070866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial and/or viral co-infections are very common in swine production and cause severe economic losses. Mycoplasma hyopneumoniae, Mycoplasma hyorhinis and Streptococcus suis are pathogenic bacteria that may be found simultaneously in the respiratory tracts of pigs. In the present study, the interactions of S. suis with epithelial and phagocytic cells in the presence or absence of a pre-infection with M. hyopneumoniae and/or M. hyorhinis were studied. Results showed relatively limited interactions between these pathogens. A previous infection with one or both mycoplasmas did not influence the adhesion or invasion properties of S. suis in epithelial cells or its resistance to phagocytosis (including intracellular survival) by macrophages and dendritic cells. The most important effect observed during the co-infection was a clear increment in toxicity for the cells. An increase in the relative expression of the pro-inflammatory cytokines IL-6 and CXCL8 was also observed; however, this was the consequence of an additive effect due to the presence of different pathogens rather than a synergic effect. It may be hypothesized that if one or both mycoplasmas are present along with S. suis in the lower respiratory tract at the same time, then increased damage to epithelial cells and phagocytes, as well as an increased release of pro-inflammatory cytokines, may eventually enhance the invasive properties of S. suis. However, more studies should be carried out to confirm this hypothesis.
Collapse
Affiliation(s)
- Héloïse Pageaut
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sonia Lacouture
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Lehoux
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Corinne Marois-Créhan
- Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology Bacteriology and Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22 440 Ploufragan, France
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
42
|
Zhang Y, Zhao G, Xiong Y, Li F, Chen Y, Cheng Y, Ma J, Wang H, Yan Y, Wang Z, Sun J. Development of a Universal Multi-Epitope Vaccine Candidate against Streptococcus suis Infections Using Immunoinformatics Approaches. Vet Sci 2023; 10:383. [PMID: 37368769 DOI: 10.3390/vetsci10060383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Streptococcus suis is a significant zoonotic pathogen that is a great threat not only to the swine industry but also to human health, causing arthritis, meningitis, and even streptococcal toxic shock-like syndrome. Owing to its many serotypes and high geographic variability, an efficacious cross-protective S. suis vaccine is not readily available. Therefore, this study aimed to design a universal multi-epitope vaccine (MVHP6) that involved three highly immunogenic proteins of S. suis, namely, the surface antigen containing a glycosaminoglycan binding domain (HP0197), endopeptidase (PepO), and 6-phosphogluconate dehydrogenase (6PGD). Forecasted T-cell and B-cell epitopes with high antigenic properties and a suitable adjuvant were linked to construct a multi-epitope vaccine. In silico analysis showed that the selected epitopes were conserved in highly susceptible serotypes for humans. Thereafter, we evaluated the different parameters of MVHP6 and showed that MVHP6 was highly antigenic, non-toxic, and non-allergenic. To verify whether the vaccine could display appropriate epitopes and maintain high stability, the MVHP6 tertiary structure was modeled, refined, and validated. Molecular docking studies revealed a strong binding interaction between the vaccine and the toll-like receptor (TLR4), whereas molecular dynamics simulations demonstrated the vaccine's compatibility, binding stability, and structural compactness. Moreover, the in silico analysis showed that MVHP6 could evoke strong immune responses and enable worldwide population coverage. Moreover, MVHP6 was cloned into the pET28a (+) vector in silico to ensure the credibility, validation, and proper expression of the vaccine construct. The findings suggested that the proposed multi-epitope vaccine can provide cross-protection against S. suis infections.
Collapse
Affiliation(s)
- Yumin Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Guoqing Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Yangjing Xiong
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Feiyu Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Yifan Chen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Henan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| |
Collapse
|
43
|
Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, Rahman N, Islam R, Uddin MR, Mizan MFR. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:47. [PMID: 37216013 PMCID: PMC10183303 DOI: 10.1186/s43088-023-00387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Flavonols are phytoconstituents of biological and medicinal importance. In addition to functioning as antioxidants, flavonols may play a role in antagonizing diabetes, cancer, cardiovascular disease, and viral and bacterial diseases. Quercetin, myricetin, kaempferol, and fisetin are the major dietary flavonols. Quercetin is a potent scavenger of free radicals, providing protection from free radical damage and oxidation-associated diseases. Main body of the abstract An extensive literature review of specific databases (e.g., Pubmed, google scholar, science direct) were conducted using the keywords "flavonol," "quercetin," "antidiabetic," "antiviral," "anticancer," and "myricetin." Some studies concluded that quercetin is a promising antioxidant agent while kaempferol could be effective against human gastric cancer. In addition, kaempferol prevents apoptosis of pancreatic beta-cells via boosting the function and survival rate of the beta-cells, leading to increased insulin secretion. Flavonols also show potential as alternatives to conventional antibiotics, restricting viral infection by antagonizing the envelope proteins to block viral entry. Short conclusion There is substantial scientific evidence that high consumption of flavonols is associated with reduced risk of cancer and coronary diseases, free radical damage alleviation, tumor growth prevention, and insulin secretion improvement, among other diverse health benefits. Nevertheless, more studies are required to determine the appropriate dietary concentration, dose, and type of flavonol for a particular condition to prevent any adverse side effects.
Collapse
Affiliation(s)
- Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | | | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh
| | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, 1208 Bangladesh
| | - Md. Mosfeq-Ul-Hasan
- Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | |
Collapse
|
44
|
Dresen M, Valentin-Weigand P, Berhanu Weldearegay Y. Role of Metabolic Adaptation of Streptococcus suis to Host Niches in Bacterial Fitness and Virulence. Pathogens 2023; 12:pathogens12040541. [PMID: 37111427 PMCID: PMC10144218 DOI: 10.3390/pathogens12040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Streptococcus suis, both a common colonizer of the porcine upper respiratory tract and an invasive pig pathogen, successfully adapts to different host environments encountered during infection. Whereas the initial infection mainly occurs via the respiratory tract, in a second step, the pathogen can breach the epithelial barrier and disseminate within the whole body. Thereby, the pathogen reaches other organs such as the heart, the joints, or the brain. In this review, we focus on the role of S. suis metabolism for adaptation to these different in vivo host niches to encounter changes in nutrient availability, host defense mechanisms and competing microbiota. Furthermore, we highlight the close link between S. suis metabolism and virulence. Mutants deficient in metabolic regulators often show an attenuation in infection experiments possibly due to downregulation of virulence factors, reduced resistance to nutritive or oxidative stress and to phagocytic activity. Finally, metabolic pathways as potential targets for new therapeutic strategies are discussed. As antimicrobial resistance in S. suis isolates has increased over the last years, the development of new antibiotics is of utmost importance to successfully fight infections in the future.
Collapse
Affiliation(s)
- Muriel Dresen
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | | |
Collapse
|
45
|
Ji L, Chen Z, Li F, Hu Q, Xu L, Duan X, Wu H, Xu S, Chen Q, Wu S, Qiu S, Lu H, Jiang M, Cai R, Qiu Y, Li Y, Shi X. Epidemiological and genomic analyses of human isolates of Streptococcus suis between 2005 and 2021 in Shenzhen, China. Front Microbiol 2023; 14:1118056. [PMID: 37113229 PMCID: PMC10126776 DOI: 10.3389/fmicb.2023.1118056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus suis (S. suis) is an important food-borne zoonotic pathogen that causes swine streptococcosis, which threatens human health and brings economic loss to the swine industry. Three-quarters of human S. suis infections are caused by serotype 2. A retrospective analysis of human S. suis cases in Shenzhen, a megacity in China, with high pork consumption, between 2005 and 2021 was conducted to understand its genomic epidemiology, pathogen virulence, and drug resistance characteristics. The epidemiological investigation showed that human cases of S. suis in Shenzhen were mainly associated with people who had been in close contact with raw pork or other swine products. Whole-genome sequence analysis showed that 33 human isolates in Shenzhen were dominated by serotype 2 (75.76%), followed by serotype 14 (24.24%), and the most prevalent sequence types (STs) were ST7 (48.48%) and ST1 (39.40%). ST242 (9.09%) and ST25 (3.03%), which were rarely reported, were also found. Phylogenetic analysis showed that the Shenzhen human isolates had close genetic relatedness to isolates from Guangxi (China), Sichuan (China), and Vietnam. We found a new 82 KB pathogenicity island (PAI) in the serotype 2 isolate that may play a role in sepsis. Similarly, a serotype 14 isolate, containing 78 KB PAI, was isolated from a patient presenting with streptococcal toxic shock syndrome (STSLS) who subsequently died. Multi-drug resistance (MDR) was high in human isolates of S. suis from Shenzhen. Most human isolates were resistant to tetracycline, streptomycin, erythromycin, and clindamycin, and 13 isolates had intermediate resistance to penicillin. In conclusion, swine importation from Guangxi, Sichuan, and Vietnam should be more closely monitored, and the use of antibiotics limited to reduce the potential for antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Liyin Ji
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhigao Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fan Li
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liangcai Xu
- Futian District Center for Disease Control and Prevention, Shenzhen, China
| | - Xiangke Duan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hanguang Wu
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Shiqin Xu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuxiang Qiu
- School of Public Health, University of South China, Hengyang, China
| | - Huiqun Lu
- School of Public Health, University of South China, Hengyang, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- *Correspondence: Xiaolu Shi,
| |
Collapse
|
46
|
Yang P, Yang L, Cao K, Hu Q, Hu Y, Shi J, Zhao D, Yu X. Novel virulence factor Cba induces antibody-dependent enhancement (ADE) of Streptococcus suis Serotype 9 infection in a mouse model. Front Cell Infect Microbiol 2023; 13:1027419. [PMID: 36896190 PMCID: PMC9989217 DOI: 10.3389/fcimb.2023.1027419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that affects the health of humans and the development of the pig industry. The SS Cba protein is a collagen adhesin, and a few of its homologs are related to the enhancement of bacterial adhesion. We compared the phenotypes of SS9-P10, SS9-P10 cba knockout strains and its complementary strains in vitro and in vivo and found that knocking out the cba gene did not affect the growth characteristics of the strain, but it significantly reduced the ability of SS to form biofilms, adhesion to host cells, phagocytic resistance to macrophages and attenuated virulence in a mouse infection model. These results indicated that Cba was a virulence related factor of SS9. In addition, Mice immunized with the Cba protein had higher mortality and more serious organ lesions after challenge, and the same was observed in passive immunization experiments. This phenomenon is similar to the antibody-dependent enhancement of infection by bacteria such as Acinetobacter baumannii and Streptococcus pneumoniae. To our knowledge, this is the first demonstration of antibody-dependent enhancement of SS, and these observations highlight the complexity of antibody-based therapy for SS infection.
Collapse
|
47
|
Li Y, Ma B, Hua K, Gong H, He R, Luo R, Bi D, Zhou R, Langford PR, Jin H. PPNet: Identifying Functional Association Networks by Phylogenetic Profiling of Prokaryotic Genomes. Microbiol Spectr 2023; 11:e0387122. [PMID: 36602356 PMCID: PMC9927313 DOI: 10.1128/spectrum.03871-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Identification of microbial functional association networks allows interpretation of biological phenomena and a greater understanding of the molecular basis of pathogenicity and also underpins the formulation of control measures. Here, we describe PPNet, a tool that uses genome information and analysis of phylogenetic profiles with binary similarity and distance measures to derive large-scale bacterial gene association networks of a single species. As an exemplar, we have derived a functional association network in the pig pathogen Streptococcus suis using 81 binary similarity and dissimilarity measures which demonstrates excellent performance based on the area under the receiver operating characteristic (AUROC), the area under the precision-recall (AUPR), and a derived overall scoring method. Selected network associations were validated experimentally by using bacterial two-hybrid experiments. We conclude that PPNet, a publicly available (https://github.com/liyangjie/PPNet), can be used to construct microbial association networks from easily acquired genome-scale data. IMPORTANCE This study developed PPNet, the first tool that can be used to infer large-scale bacterial functional association networks of a single species. PPNet includes a method for assigning the uniqueness of a bacterial strain using the average nucleotide identity and the average nucleotide coverage. PPNet collected 81 binary similarity and distance measures for phylogenetic profiling and then evaluated and divided them into four groups. PPNet can effectively capture gene networks that are functionally related to phenotype from publicly prokaryotic genomes, as well as provide valuable results for downstream analysis and experiment testing.
Collapse
Affiliation(s)
- Yangjie Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kexin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huimin Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rongrong He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Paul R. Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Liu P, Zhang Y, Tang H, Wang Y, Sun X. Prevalence of Streptococcus suis in pigs in China during 2000–2021: A systematic review and meta-analysis. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
49
|
Li S, Wang C, Tang YD, Qin L, Chen T, Wang S, Bai Y, Cai X, Wang S. Interaction between Porcine Alveolar Macrophage-Tang Cells and Streptococcus suis Strains of Different Virulence: Phagocytosis and Apoptosis. Microorganisms 2023; 11:microorganisms11010160. [PMID: 36677452 PMCID: PMC9863715 DOI: 10.3390/microorganisms11010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Streptococcus suis is an important swine bacterial pathogen that activates macrophages to secrete inflammatory cytokines. Primary porcine alveolar macrophages (PAMs) are inconvenient to obtain, but it is unknown whether immortalized PAM-Tang cells can replace them as a better cell model for the study of the interaction between S. suis and macrophages. In this study, the phagocytic integrity, polarization, and pro-inflammatory cytokine secretion of PAM-Tang cells were confirmed by live-cell imaging, electron microscopy, confocal microscopy, and ELISA. Interestingly, the S. suis serotype 9 avirulent strain W7119 induced higher levels of adhesion and pro-inflammatory cytokines in PAM-Tang cells than the S. suis serotype 2 virulent strain 700794. Prolonged incubation with S. suis caused more cytotoxic cell damage, and the virulent strain induced higher levels of cytotoxicity to PAM-Tang cells. The virulent strain also induced higher levels of apoptosis in PAM-Tang cells, as shown by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assay. In addition, it is the first report of virulent and avirulent S. suis inducing PAM-Tang polarization towards pro-inflammatory M1 macrophages and p53- and caspase-dependent apoptosis in PAMs. Taken together, this study contributes to a better understand of interactions between macrophages and S. suis isolates of different virulence, and confirms that PAM-Tang cells provide a long-term, renewable resource for investigating macrophage infections with bacteria.
Collapse
Affiliation(s)
- Siqi Li
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yan-Dong Tang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Qin
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tianfeng Chen
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shanghui Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuanzhe Bai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Correspondence: (X.C.); (S.W.)
| | - Shujie Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence: (X.C.); (S.W.)
| |
Collapse
|
50
|
Payen S, Rrodriguez JA, Segura M, Gottschalk M. Laminin-binding protein of Streptococcus suis serotype 2 influences zinc acquisition and cytokine responses. Vet Res 2023; 54:1. [PMID: 36604750 PMCID: PMC9817373 DOI: 10.1186/s13567-022-01128-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 01/07/2023] Open
Abstract
Streptococcus suis serotype 2 is an important bacterial pathogen of swine, responsible for substantial economic losses to the swine industry worldwide. The knowledge on the pathogenesis of the infection caused by S. suis is still poorly known. It has been previously described that S. suis possesses at least one lipoprotein with double laminin and zinc (Zn)-binding properties, which was described in the literature as either laminin-binding protein (Lmb, as in the current study), lipoprotein 103, CDS 0330 or AdcAII. In the present study, the role of the Lmb in the pathogenesis of the infection caused by S. suis serotype 2 was dissected. Using isogenic mutants, results showed that Lmb does not play an important role in the laminin-binding activity of S. suis, even when clearly exposed at the bacterial surface. In addition, the presence of this lipoprotein does not influence bacterial adhesion to and invasion of porcine respiratory epithelial and brain endothelial cells and it does not increase the susceptibility of S. suis to phagocytosis. On the other hand, the Lmb was shown to play an important role as cytokine activator when tested in vitro with dendritic cells. Finally, this lipoprotein plays a critical role in Zn acquisition from the host environment allowing bacteria to grow in vivo. The significant lower virulence of the Lmb defective mutant may be related to a combination of a lower bacterial survival due to the incapacity to acquire Zn from their surrounding milieu and a reduced cytokine activation.
Collapse
Affiliation(s)
- Servane Payen
- grid.14848.310000 0001 2292 3357Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2 Canada
| | - Jesús Aranda Rrodriguez
- grid.7080.f0000 0001 2296 0625Department de Genètica I Microbiologia, Universitat Autónoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Mariela Segura
- grid.14848.310000 0001 2292 3357Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2 Canada
| | - Marcelo Gottschalk
- grid.14848.310000 0001 2292 3357Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2 Canada
| |
Collapse
|