1
|
Ambrosius H, Vaidya M, Joshua F, Bajaj A, Zhai L, Sugaya K, Huo Q. Rapid Isolation and Characterization of Exosomes through a Single-Step, Label-Free Protein Biomarker Analysis. ACS APPLIED BIO MATERIALS 2025; 8:3533-3540. [PMID: 40203051 DOI: 10.1021/acsabm.5c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Exosomes, small extracellular vesicles with compositions reflecting their cell of origin, serve as sensitive and specific biomarkers for disease detection. We herein report a protocol for rapid isolation and characterization of exosomes by a single-step and label-free protein biomarker analysis. Using a simple centrifugation-filtration-concentration (CFC) method, exosomes are isolated and enriched 50-fold from conditioned cell culture media. For protein biomarker analysis, unconjugated antibodies are added directly to the isolated exosome solution. The specific interaction between the antibodies and exosomes leads to aggregation of exosomes, and subsequently, an average particle size increase of the assay solution. This average particle size increase can be detected using dynamic light scattering and correlated to the presence or absence of protein biomarkers on the exosomes. In this study, exosomes from three cell types, human embryonic kidney (HEK293) cells, genetically modified HEK-GFP cells, and GBM/NSC CD133+ cells were isolated. The exosomes released from HEK293, HEK-GFP, and GBM/NSC CD133+ cells exhibited monodispersed size distributions with an average particle size centered around 70, 66, and 249 nm, respectively. Positive antibody binding to exosome surface proteins resulted in a peak shift, increasing particle size by 25, 32, and 148 nm, respectively, for the HEK293, HEK-GFP, and GBM/NSC CD133+ exosomes, while the size increase upon addition of a negative antibody remained minimum. This protocol provides a convenient platform for the design and development of rapid diagnostic tests targeting disease specific exosomes.
Collapse
Affiliation(s)
- Hannah Ambrosius
- Department of Chemistry, University of Central Florida, Physical Sciences Bld, 4111 Libra Dr #255, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 328826, United States
| | - Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - Fnu Joshua
- Department of Chemistry, University of Central Florida, Physical Sciences Bld, 4111 Libra Dr #255, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 328826, United States
| | - Arjun Bajaj
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - Lei Zhai
- Department of Chemistry, University of Central Florida, Physical Sciences Bld, 4111 Libra Dr #255, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 328826, United States
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - Qun Huo
- Department of Chemistry, University of Central Florida, Physical Sciences Bld, 4111 Libra Dr #255, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 328826, United States
| |
Collapse
|
2
|
Basyoni AE, Atta A, Salem MM, Mohamed TM. Harnessing exosomes for targeted drug delivery systems to combat brain cancer. Cancer Cell Int 2025; 25:150. [PMID: 40234973 PMCID: PMC12001718 DOI: 10.1186/s12935-025-03731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
Brain cancer remains a significant challenge in the field of oncology, primarily because of its aggressive nature and the limited treatment options available. Conventional therapies often fall short in effectively targeting tumor cells, while sparing healthy brain tissue from collateral damage. However, exosomes are now recognized as promising nanocarriers for targeted drug delivery. These naturally occurring extracellular vesicles can cross the blood-brain barrier and selectively interact with cancer cells. Utilizing exosomes as drug delivery vehicles offers a novel approach with significant potential for targeted therapy. By encapsulating therapeutic agents within exosomes, drugs can be specifically targeted to tumor cells, maximizing their impact whilst minimizing damage to healthy brain tissue. Furthermore, exosomes can be modified to display molecules that specifically recognize and bind to cancer cells, further enhancing their precision and efficacy. While exosome-based therapies show potential, scalability, purification, and clinical application challenges remain. The scalability of exosome production, purification, and modification techniques remains a hurdle that must be overcome for clinical translation. Additionally, the intricate interactions between the tumor microenvironment and exosomes necessitate further research to optimize therapeutic outcomes. The review explores applications and future perspectives of exosome-based therapies in advancing targeted brain cancer treatment.
Collapse
Affiliation(s)
- Abdullah E Basyoni
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Amira Atta
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Zhang Z, Xu X, Chen F, Liu Q, Li Z, Zheng X, Zhao Y. Multi-Omics Sequencing Dissects the Atlas of Seminal Plasma Exosomes from Semen Containing Low or High Rates of Sperm with Cytoplasmic Droplets. Int J Mol Sci 2025; 26:1096. [PMID: 39940864 PMCID: PMC11817786 DOI: 10.3390/ijms26031096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Sperm cytoplasmic droplets (CDs) are remnants of cytoplasm that can cause a number of problems if it not shed from the sperm after ejaculation. Exosomes can rapidly bind to sperm, but it is not clear whether exosomes can affect the migration and shedding of CDs. We first extracted and characterized seminal plasma exosomes from boar semen containing sperm with low or high rates of CDs. Then, the transcriptomic and proteomic detection of these exosomes were performed to analyze the differences between the two groups of seminal plasma exosomes. The results revealed that 486 differentially expressed genes (DEGs), 40 differentially expressed proteins (DEPs), and 503 differentially expressed lncRNAs (DElncRNAs) were identified between the low CD rate group and high CD rate group. Integrative multi-omics analysis showed that exosome components may affect migration and shedding of cytoplasmic droplets by influencing cytoskeletal regulation and insulin signaling, including regulation of the actin cytoskeleton, ECM-receptor interaction, axon guidance, insulin secretion, and the insulin signaling pathway. Overall, our study systematically revealed the DEGs, DEPs, and DElncRNAs in seminal plasma exosomes between low CD rate semen and high CD rate semen, which will help broaden our understanding of the complex molecular mechanisms involved in the shedding of CDs.
Collapse
Affiliation(s)
- Zilu Zhang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Xiaoxian Xu
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Fumei Chen
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Qingyou Liu
- College of Animal Science and Technology, Foshan University, Foshan 528231, China; (Q.L.); (Z.L.)
| | - Zhili Li
- College of Animal Science and Technology, Foshan University, Foshan 528231, China; (Q.L.); (Z.L.)
| | - Xibang Zheng
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Yunxiang Zhao
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| |
Collapse
|
4
|
Rana R, Devi SN, Bhardwaj AK, Yashavarddhan MH, Bohra D, Ganguly NK. Exosomes as nature's nano carriers: Promising drug delivery tools and targeted therapy for glioma. Biomed Pharmacother 2025; 182:117754. [PMID: 39731936 DOI: 10.1016/j.biopha.2024.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Exosomes, minute vesicles originating from diverse cell types, exhibit considerable potential as carriers for drug delivery in glioma therapy. These naturally occurring nanocarriers facilitate the transfer of proteins, RNAs, and lipids between cells, offering advantages such as biocompatibility, efficient cellular absorption, and the capability to traverse the blood-brain barrier (BBB). In the realm of cancer, particularly gliomas, exosomes play pivotal roles in modulating tumor growth, regulating immunity, and combating drug resistance. Moreover, exosomes serve as valuable biomarkers for diagnosing diseases and assessing prognosis. This review aims to elucidate the therapeutic and diagnostic promise of exosomes in glioma treatment, highlighting the innovative advances in exosome engineering that enable precise drug loading and targeting. By circumventing challenges associated with current glioma treatments, exosome-mediated drug delivery strategies can enhance the efficacy of chemotherapy drugs like temozolomide and overcome drug resistance mechanisms. This review underscores the multifaceted roles of exosomes in glioma pathogenesis and therapy, underscoring their potential as natural nanocarriers for targeted therapy and heralding a new era of hope for glioma treatment.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| | | | - Amit Kumar Bhardwaj
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - M H Yashavarddhan
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Deepika Bohra
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
5
|
Barranco I, Almiñana C, Parra A, Martínez-Diaz P, Lucas X, Bauersachs S, Roca J. RNA profiles differ between small and large extracellular vesicle subsets isolated from porcine seminal plasma. BMC Genomics 2024; 25:1250. [PMID: 39731016 DOI: 10.1186/s12864-024-11167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs). The two subsets of sEVs were isolated from 54 seminal plasma samples by a method combining serial centrifugations, size exclusion chromatography, and ultrafiltration. The sEVs were characterized using an orthogonal approach. Analysis of RNA content and quantification were performed using RNA-seq analysis. RESULTS The two subsets of sEVs had different size distributions (P < 0.001). They also showed differences in concentration, morphology, and specific protein markers (P < 0.05). A total of 735 RNAs were identified and quantified, which included: (1) mRNAs, rRNAs, snoRNAs, snRNAs, tRNAs, other ncRNAs (termed as "all RNAs"), (2) miRNAs and (3) piRNAs. The distribution pattern of these RNA classes differed between S-sEVs and L-sEVs (P < 0.05). More than half of "all RNAs", miRNAs and piRNAs were found to be differentially abundant between S- and L-sEVs (FDR < 0.1%). Among the differentially abundant RNAs, "all RNAs" were more abundant in L- than in S-sEVs, whereas the most of the miRNAs were more abundant in S- than in L-sEVs. Differentially abundant piRNAs were equally distributed between S- and L-sEVs. Some of the all RNAs and miRNAs found to be differentially abundant between S- and L-sEVs were associated with sperm quality and functionality and male fertility success. CONCLUSIONS Small and large sEVs isolated from porcine seminal plasma show quantitative differences in RNA content. These differences would suggest that each sEV subtype exerts different functional activities in the targeted cells, namely spermatozoa and functional cells of the female reproductive tract.
Collapse
Grants
- PID2022-137738NA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER UE Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Ana Parra
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Diaz
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain.
| |
Collapse
|
6
|
Shamsi RR, Jozani RJ, Asadpour R, Rahbar M, Taravat M. Seminal Plasma-Derived Exosome Preserves the Quality Parameters of the Post-Thaw Semen of Bulls with Low Freezeability. Biopreserv Biobank 2024. [PMID: 39723439 DOI: 10.1089/bio.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Introduction: Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. Objective: The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm. Methods: Five Holstein bulls were chosen based on their samples having less than 30% progressive motility. After exosome extraction, semen samples from bulls (n = 5) with progressive sperm motility ≤30% were collected, diluted with different exosome concentrations (0, 25, 50, and 100 μg/mL), and aspirated into 0.5 mL straws. After the freeze-thaw process, sperm total and progressive motility, viability, morphology, plasma membrane integrity, mitochondrial activity, and apoptosis status were assessed. Furthermore, the expression levels of annexin (ANX1), dystrophy-associated Fer-1-like protein (DYSF), fibronectin 1 (FN1), and reactive oxygen species modulator 1 (ROMO1) were evaluated via real-time polymerase chain reaction (PCR). Results: Adding different concentrations of exosomes (25, 50, and 150 μg/mL) significantly increased the progressive motility, viability, and membrane integrity of sperm compared with the control group (p < 0.05). For the apoptosis index, treatment with 100 μg/mL exosomes significantly increased the percentage of live cells (p < 0.05), while the percentage of necrotic cells decreased significantly (p < 0.05) compared with 25 μg/mL exosome. The results of quantitative PCR showed that the expression levels of ANX1 were significantly (p < 0.05) upregulated at 50 μg/mL exosome, and the expression of ROMO1, FN1, and DYSF were downregulated upon treatment with different exosome concentrations. Conclusions: In conclusion, supplementing the freezing diluent with exosome-derived seminal plasma could preserve the quality parameters of the post-thaw semen of the bull with low freezeability and could be used as a helpful method for reproductive programs.
Collapse
Affiliation(s)
- Rahele Ranjbar Shamsi
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Razi Jafari Jozani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Morteza Taravat
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Science, Urmia, Iran
| |
Collapse
|
7
|
Fang L, Gu W, Li R, Chen C, Cai S, Luozhong S, Chen M, Hsu A, Tsai YC, Londhe K, Jiang S. Controlling Circular RNA Encapsulation within Extracellular Vesicles for Gene Editing and Protein Replacement. ACS NANO 2024; 18:30378-30387. [PMID: 39445782 DOI: 10.1021/acsnano.4c07530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are a population of vesicular bodies originating from cells, and EVs have been proven to have the potential to deliver different cargos, such as RNAs. However, conventional methods are not able to encapsulate long RNAs into EVs efficiently or may compromise the integrity of EVs. In this study, we have devised a strategy to encapsulate long circRNAs (>1000 nt) into EVs by harnessing the sorting mechanisms of cells. This strategy utilizes the inherent richness of circular RNAs in EVs and a genetic engineering method to increase the cytoplasmic concentration of target circRNAs, facilitating highly efficient RNA back-splicing to drive the circularization of RNAs. This allows target circRNAs to load into EVs with high efficiency. Furthermore, we demonstrate the practical applications of this strategy, showing that these circRNAs can be delivered by EVs to recipient cells for protein expression and to mice for gene editing.
Collapse
Affiliation(s)
- Liang Fang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ruoxin Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Chaoxin Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Simian Cai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Annie Hsu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yi-Chih Tsai
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ketaki Londhe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Cao H, Li Y, Liu S, Gao H, Zhu C, Li L, Wu Z, Jin T, Wang Y, Gong Y, Qin W, Dong W. The role of S-palmitoylation of C4BPA in regulating murine sperm motility and complement resistance. Int J Biol Macromol 2024; 281:136196. [PMID: 39370067 DOI: 10.1016/j.ijbiomac.2024.136196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The epididymis and epididymosomes are crucial for regulating sperm motility, a key factor in male fertility. Palmitoylation, a lipid modification involving the attachment of palmitic acid to cysteine residues, is essential for protein function and localization. Additionally, this modification plays a vital role in the sorting of proteins into exosomes. This study investigates the role of S-palmitoylation at the Cys15 residue of the C4b binding protein alpha chain (C4BPA) in murine sperm motility. Our findings revealed high expression of C4BPA mRNA in the caput epididymis, with the protein present across all regions of the epididymis. Palmitoylation of C4BPA in epididymal epithelial cells was essential for its enrichment in epididymosomes and on sperm, thereby maintaining sperm motility. Inhibition of palmitoylation significantly reduced sperm motility and the localization of C4BPA on sperm. Additionally, palmitoylated C4BPA in exosomes resisted complement C4 attacks, preserving motility, unlike mutated C4BPA (C15S). These results highlight the critical role of palmitoylated C4BPA in protecting sperm from complement attacks and maintaining motility, suggesting that reversible palmitoylation of epididymal proteins could be explored as a therapeutic strategy for male contraception. Our study underscores the importance of post-translational modifications in sperm function and presents new insights into potential male contraceptive methods.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; The NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510600, China; Department of Central Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weibing Qin
- The NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510600, China; Department of Central Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
9
|
Huang J, Li S, Yang Y, Li C, Zuo Z, Zheng R, Chai J, Jiang S. GPX5-Enriched Exosomes Improve Sperm Quality and Fertilization Ability. Int J Mol Sci 2024; 25:10569. [PMID: 39408895 PMCID: PMC11477019 DOI: 10.3390/ijms251910569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Semen preservation quality affects the artificial insemination success rate, and seminal exosomes are rich in various proteins that are transferable to sperm and conducive to sperm-function preservation during storage. However, the specific effects of these proteins remain unclear. In this study, the specific effects of these proteins on semen preservation quality and fertilization capacity were investigated through a proteomic analysis of seminal exosomes from boars with high conception rates (HCRs) and low conception rates (LCRs). The results revealed significant differences in the expression of 161 proteins between the two groups, with the GPX5 level being significantly higher in the HCR group (p < 0.05). The role of GPX5 was further investigated by constructing engineered exosomes enriched with GPX5 (Exo-GPX5), which could successfully transfer GPX5 to sperm. Compared to the control group, Exo-GPX5 could significantly improve sperm motility on storage days 4 and 5 and enhance the acrosome integrity on day 5 (p < 0.05). Additionally, Exo-GPX5 increased the total antioxidant capacity (T-AOC) of sperm, reduced the malondialdehyde (MDA) level, and decreased the expression of antioxidant proteins SOD1 and CAT (p < 0.05). In simulated fertilization experiments, Exo-GPX5-treated sperm exhibited higher capacitation ability and a significant increase in the acrosome reaction rate (p < 0.05). Overall, Exo-GPX5 can improve boar semen quality under 17 °C storage conditions and enhance sperm fertilization capacity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Siwen Jiang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture, Key Laboratory of Agricultural & Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (S.L.); (Y.Y.); (C.L.); (Z.Z.); (R.Z.); (J.C.)
| |
Collapse
|
10
|
Seo GM, Lee H, Kang YJ, Kim D, Sung JH. Development of in vitro model of exosome transport in microfluidic gut-brain axis-on-a-chip. LAB ON A CHIP 2024; 24:4581-4593. [PMID: 39230477 DOI: 10.1039/d4lc00490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The gut communicates with the brain in a variety of ways known as the gut-brain axis (GBA), which is known to affect neurophysiological functions as well as neuronal disorders. Exosomes capable of passing through the blood-brain-barrier (BBB) have received attention as a mediator of gut-brain signaling and drug delivery vehicles. In conventional well plate-based experiments, it is difficult to observe the exosome movement in real time. Here, we developed a microfluidic-based GBA chip for co-culturing gut epithelial cells and neuronal cells and simultaneously observing exosome transport. The GBA-chip is aimed to mimic the in vivo situation of convective flow in blood vessels and convective and diffusive transport in the tissue interstitium. Here, fluorescence-labeled exosome was produced by transfection of HEK-293T cells with CD63-GFP plasmid. We observed in real time the secretion of CD63-GFP-exosomes by the transfected HEK-293T cells in the chip, and transport of the exosomes to neuronal cells and analyzed the dynamics of GFP-exosome movement. Our model is expected to enhance understanding of the roles of exosome in GBA.
Collapse
Affiliation(s)
- Gwang Myeong Seo
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| | - Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Yeon Jae Kang
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| |
Collapse
|
11
|
Parvin A, Erabi G, Mohammadpour D, Maleki-Kakelar H, Sadeghpour S, Pashaei MR, Taheri-Anganeh M, Ghasemnejad-Berenji H. Infertility: Focus on the therapeutic potential of extracellular vesicles. Reprod Biol 2024; 24:100925. [PMID: 39018753 DOI: 10.1016/j.repbio.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Infertility is a well-known problem that arises from a variety of reproductive diseases. Until now, researchers have tried various methods to restore fertility, including medication specific to the cause, hormone treatments, surgical removals, and assisted reproductive technologies. While these methods do produce results, they do not consistently lead to fertility restoration in every instance. The use of exosome therapy has significant potential in treating infertility in patients. This is because exosomes, microvesicles, and apoptotic bodies, which are different types of vesicles, play a crucial role in transferring bioactive molecules that aid in cell-to-cell communication. Reproductive fluids can transport a variety of molecular cargos, such as miRNAs, mRNAs, proteins, lipids, and DNA molecules. The percentage of these cargos in the fluids can be linked to their physiological and pathological status. EVs are involved in several physiological and pathological processes and offer interesting non-cellular therapeutic possibilities to treat infertility. EVs (extracellular vesicles) transplantation has been shown in many studies to be a key part of regenerating different parts of the reproductive system, including the production of oocytes and the start of sperm production. Nevertheless, the existing evidence necessitates testifying to the effectiveness of injecting EVs in resolving reproductive problems among humans. This review focuses on the current literature about infertility issues in both females and males, specifically examining the potential treatments involving extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Donna Mohammadpour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Mohammadi AH, Bagheri F, Baghaei K. Chondroitin sulfate-tocopherol succinate modified exosomes for targeted drug delivery to CD44-positive cancer cells. Int J Biol Macromol 2024:133625. [PMID: 39084997 DOI: 10.1016/j.ijbiomac.2024.133625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Exosomes (Exos), natural nanovesicles released by various cell types, show potential as an effective drug delivery platform due to their intrinsic role as transporters of biomolecules between different cells. However, Exos functionalization with targeting ligands is a critical step to enhance their targeting capability, which could be challenging. In this study, Exos were modified to specifically bind to CD44-positive cells by anchoring chondroitin sulfate (CS) to their surface. Exo modification was facilitated with CS conjugation with alpha-tocopherol succinate (TOS) as an anchorage. The modified Exos were utilized for delivering curcumin (Cur) to pancreatic cancer (PC) cells. In vitro Cur release studies revealed that Exos play a crucial role in maintaining Cur within themselves, demonstrating their potential as effective carriers for drug delivery to targeted locations. Notably, Cur loaded into the modified Exos exhibited enhanced cytotoxicity compared to unmodified Exo-Cur. Meanwhile, Exo-Cur-TOS-CS induced apoptosis more effectively in AsPC-1 cells than unmodified Exos (70.2 % versus 56.9 %). It is worth mentioning that with CD44-mediated cancer-specific targeting, Exo-CS enabled increased intracellular accumulation in AsPC-1 cells, showing promise as a targeted platform for cancer therapy. These results confirm that Exo modification has a positive impact on enhancing the therapeutic efficacy and cytotoxicity of drugs.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Australia.
| |
Collapse
|
13
|
Wang Y, Liu Q, Sun Q, Zheng L, Jin T, Cao H, Zhu C, Li L, Gong Y, Yang F, Dong W. Exosomes from porcine serum as endogenous additive maintain function of boar sperm during liquid preservation at 17 °C in vitro. Theriogenology 2024; 219:147-156. [PMID: 38430799 DOI: 10.1016/j.theriogenology.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
The supplementation of sperm culture media with serum is quite common, and improves both sperm survival and motility. However, the link between serum and sperm remains poorly understood. The present study is the first investigation of the effects on sperm quality and function of endogenous porcine serum exosomes in medium used for culturing boar sperm. Scanning electron microscopy (SEM) confirmed that serum-derived exosomes from both castrated boars (cbsExos) and sows (ssExos) exhibited typical nanostructural morphology and expressed CD63, CD9, and Alix, as shown by Western blotting. At 17 °C, the progressive motility and membrane integrity of sperm were significantly increased after incubation of fresh boar semen for 7 days with cbsExos-4 (8 × 1010 particles/mL) or ssExos-16 (32 × 1010 particles/mL). Moreover, cbsExos-4 and ssExos-16 were found to be effective sperm additives, improving mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) content, total antioxidant activity (T-AOC), superoxide dismutase (SOD) activity, and glutathione peroxidase (GPx) activity while reducing reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content following preservation at 17 °C after a 5-day incubation. Both fluorescence and SEM showed that the serum exosomes bound directly to the sperm membrane, suggesting an interaction that could influence sperm-zona pellucida binding. Overall, this study provides new insights into the potential benefits of adding cbsExos and ssExos to enhance the quality of boar sperm during ambient temperature preservation, which may lead to advancements in sperm preservation strategies.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Dayi Xunlong Biotechnology Co., LTD, Yangling, Shaanxi, 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Zhang X, Liang M, Song D, Huang R, Chen C, Liu X, Chen H, Wang Q, Sun X, Song J, Zhang J, Kang H, Zeng X. Both protein and non-protein components in extracellular vesicles of human seminal plasma improve human sperm function via CatSper-mediated calcium signaling. Hum Reprod 2024; 39:658-673. [PMID: 38335261 DOI: 10.1093/humrep/deae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
STUDY QUESTION What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Dandan Song
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Rongzu Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaojun Liu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Qingxin Wang
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoli Sun
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Song
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiali Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Hang Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
15
|
Bafleh WS, Abdulsamad HMR, Al-Qaraghuli SM, El Khatib RY, Elbahrawi RT, Abdukadir AM, Alsawae SM, Dimassi Z, Hamdan H, Kashir J. Applications of advances in mRNA-based platforms as therapeutics and diagnostics in reproductive technologies. Front Cell Dev Biol 2023; 11:1198848. [PMID: 37305677 PMCID: PMC10250609 DOI: 10.3389/fcell.2023.1198848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
The recent COVID-19 pandemic led to many drastic changes in not only society, law, economics, but also in science and medicine, marking for the first time when drug regulatory authorities cleared for use mRNA-based vaccines in the fight against this outbreak. However, while indeed representing a novel application of such technology in the context of vaccination medicine, introducing RNA into cells to produce resultant molecules (proteins, antibodies, etc.) is not a novel principle. It has been common practice to introduce/inject mRNA into oocytes and embryos to inhibit, induce, and identify several factors in a research context, while such aspects have also been proposed as potential therapeutic and diagnostic applications to combat infertility in humans. Herein, we describe key areas where mRNA-based platforms have thus far represented potential areas of clinical applications, describing the advantages and limitations of such applications. Finally, we also discuss how recent advances in mRNA-based platforms, driven by the recent pandemic, may stand to benefit the treatment of infertility in humans. We also present brief future directions as to how we could utilise recent and current advancements to enhance RNA therapeutics within reproductive biology, specifically with relation to oocyte and embryo delivery.
Collapse
Affiliation(s)
- Wjdan S. Bafleh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Haia M. R. Abdulsamad
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sally M. Al-Qaraghuli
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Riwa Y. El Khatib
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawdah Taha Elbahrawi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Azhar Mohamud Abdukadir
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Zakia Dimassi
- Department of Pediatrics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Junaid Kashir
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Oshchepkova A, Zenkova M, Vlassov V. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges. Int J Mol Sci 2023; 24:ijms24087287. [PMID: 37108446 PMCID: PMC10139028 DOI: 10.3390/ijms24087287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
17
|
Ma Y, Ma QW, Sun Y, Chen XF. The emerging role of extracellular vesicles in the testis. Hum Reprod 2023; 38:334-351. [PMID: 36728671 DOI: 10.1093/humrep/dead015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Indexed: 02/03/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane-bounded particles, released by all cells and capable of transporting bioactive cargoes, proteins, lipids, and nucleic acids, to regulate a variety of biological functions. Seminal plasma is enriched in EVs, and extensive evidence has revealed the role of EVs (e.g. prostasomes and epididymosomes) in the male genital tract. Recently, EVs released from testicular cells have been isolated and identified, and some new insights have been generated on their role in maintaining normal spermatogenesis and steroidogenesis in the testis. In the seminiferous tubules, Sertoli cell-derived EVs can promote the differentiation of spermatogonial stem cells (SSCs), and EVs secreted from undifferentiated A spermatogonia can inhibit the proliferation of SSCs. In the testicular interstitium, EVs have been identified in endothelial cells, macrophages, telocytes, and Leydig cells, although their roles are still elusive. Testicular EVs can also pass through the blood-testis barrier and mediate inter-compartment communication between the seminiferous tubules and the interstitium. Immature Sertoli cell-derived EVs can promote survival and suppress the steroidogenesis of Leydig cells. Exosomes isolated from macrophages can protect spermatogonia from radiation-induced injury. In addition to their role in intercellular communication, testicular EVs may also participate in the removal of aberrant proteins and the delivery of antigens for immune tolerance. EVs released from testicular cells can be detected in seminal plasma, which makes them potential biomarkers reflecting testicular function and disease status. The testicular EVs in seminal plasma may also affect the female reproductive tract to facilitate conception and may even affect early embryogenesis through modulating sperm RNA. EVs represent a new type of intercellular messenger in the testis. A detailed understanding of the role of testicular EV may contribute to the discovery of new mechanisms causing male infertility and enable the development of new diagnostic and therapeutic strategies for the treatment of infertile men.
Collapse
Affiliation(s)
- Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qin-Wen Ma
- Shanghai Xinzhu Middle School, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Shanghai Human Sperm Bank, Shanghai, China
| |
Collapse
|
18
|
Kang JY, Yoon BK, Baek H, Ko Y, Bhang SH, Jackman JA, Kim JW. Facile and scalable fabrication of exosome-mimicking nanovesicles through PEGylated lipid detergent-aided cell extrusion. NANOSCALE 2022; 14:16581-16589. [PMID: 36314744 DOI: 10.1039/d2nr04272j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report a scalable fabrication method to generate exosome-mimicking nanovesicles (ENVs) by using a biocompatible, cell-binding lipid detergent during cell extrusion. A PEGylated mannosylerythritol lipid (MELPEG) detergent was rationally engineered to strongly associate with phospholipid membranes to increase cell membrane deformability and the corresponding friction force during extrusion and to enhance the dispersibility of ENVs. Compared to cell extrusion without detergent, cell extrusion in the presence of MELPEG increased the ENV production yield by approximately 20 times and cellular protein content per MELPEG-functionalized ENV by approximately 2-fold relative to that of unmodified ENVs. We verified that MELPEG strongly binds to ENV membranes and increases membrane deformability via expansion/swelling while preserving the integrity of the phospholipid bilayer structure. The results highlight that the MELPEG-aided cell extrusion process broadly applies to various cell lines; hence, it could be helpful in the production of ENVs for tissue regeneration, drug delivery, and cancer nanomedicine.
Collapse
Affiliation(s)
- Jeong Yi Kang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hwira Baek
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Yuri Ko
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| |
Collapse
|
19
|
Roca J, Rodriguez-Martinez H, Padilla L, Lucas X, Barranco I. Extracellular vesicles in seminal fluid and effects on male reproduction. An overview in farm animals and pets. Anim Reprod Sci 2022; 246:106853. [PMID: 34556398 DOI: 10.1016/j.anireprosci.2021.106853] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles released by most functional cells to body fluids, containing bioactive molecules, mainly proteins, lipids, and nucleic acids having actions at target cells. The EVs have essential functions in cell-to-cell communication by regulating different biological processes in target cells. Fluids from the male reproductive tract, including seminal plasma, contain many extracellular vesicles (sEVs), which have been evaluated to a lesser extent than those of other body fluids, particularly in farm animals and pets. Results from the few studies that have been conducted indicated epithelial cells of the testis, epididymis, ampulla of ductus deferens and many accessory sex glands release sEVs mainly via apocrine mechanisms. The sEVs are morphologically heterogeneous and bind to functional cells of the male reproductive tract, spermatozoa, and cells of the functional tissues of the female reproductive tract after mating or insemination. The sEVs encapsulate proteins and miRNAs that modulate sperm functions and male fertility. The sEVs, therefore, could be important as reproductive biomarkers in breeding sires. Many of the current findings regarding sEV functions, however, need experimental confirmation. Further studies are particularly needed to characterize both membranes and contents of sEVs, as well as the interaction between sEVs and target cells (spermatozoa and functional cells of the internal female reproductive tract). A priority for conducting these studies is development of methods that can be standardized and that are scalable, cost-effective and time-saving for isolation of different subtypes of EVs present in the entire population of sEVs.
Collapse
Affiliation(s)
- Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, IT-40064 Bologna, Italy
| |
Collapse
|
20
|
AS1411 aptamer-functionalized exosomes in the targeted delivery of doxorubicin in fighting colorectal cancer. Biomed Pharmacother 2022; 155:113690. [PMID: 36099793 DOI: 10.1016/j.biopha.2022.113690] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Severe side effects of chemotherapy agents on vital organs are the major causes of cancer-related mortality, not merely cancer disease. Encapsulating chemotherapeutic molecules in nanocarriers is a justifiable solution in decreasing the risk of their side effects and boosting the efficiency of treatment. The present study has developed the doxorubicin (DOX)-loaded AS1411 (anti-nucleolin) aptamer surface-functionalized exosome (DOX-Apt-Exo) to treat colorectal cancer in both in-vitro and in-vivo experimental models. HEK293-derived exosomes were loaded with DOX through the incubation method with a nearly 13% encapsulation efficiency. Afterwards, the 5-terminal carboxyl group of AS1411-aptamer was converted into amine-reactive NHS esters with EDC/NHS amide coupling chemistry before being conjugated to the amine groups on the exosome surface. DLS and TEM estimated the designed formulation (DOX-Apt-Exo) size of about 200 nm. Aptamer-binding affinity and cellular uptake of DOX-Apt-Exo by nucleolin-overexpressing cancer cells were depicted through fluorescence microscopy. Comparing the in-vitro cytotoxicity impact of DOX-loaded exosomes, either targeted or non-targeted by MTT assay, clearly verified a high effectiveness of ligand-receptor mediated target therapy. Subsequently, in-vivo experiments which were conducted on four groups of ectopic mouse models of colon cancer (5 in each group) demonstrated the tumor growth suppression through professional long-term accumulation and retention of DOX-Apt-Exo at the tumor site by ligand-receptor interaction. The results suggested that AS1411 aptamer-functionalized exosomes can be recommended as a safe and effective system to site-specific drug delivery in possible clinical applications of colon cancer.
Collapse
|
21
|
Dai X, Ye Y, He F. Emerging innovations on exosome-based onco-therapeutics. Front Immunol 2022; 13:865245. [PMID: 36119094 PMCID: PMC9473149 DOI: 10.3389/fimmu.2022.865245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/29/2022] [Indexed: 01/30/2023] Open
Abstract
Exosomes, nano-sized extracellular vesicles for intercellular communications, are gaining rapid momentum as a novel strategy for the diagnosis and therapeutics of a spectrum of diseases including cancers. Secreted by various cell sources, exosomes pertain numerous functionalities from their parental cells and have enhanced stability that enable them with many features favorable for clinical use and commercialization. This paper focuses on the possible roles of exosomes in cancer therapeutics and reviews current exosome-based innovations toward enhanced cancer management and challenges that limit their clinical translation. Importantly, this paper casts insights on how cold atmospheric plasma, an emerging anticancer strategy, may aid in innovations on exosome-based onco-therapeutics toward improved control over cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- CAPsoul Medical Biotechnology Company, Ltd., Beijing, China
- *Correspondence: Fule He, ; Yongju Ye,
| | - Yongju Ye
- Department of Gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Fule He, ; Yongju Ye,
| | - Fule He
- Department of Gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Fule He, ; Yongju Ye,
| |
Collapse
|
22
|
Liperis G, Sharma K, Ammar OF, Fraire-Zamora JJ, Martins da Silva S, Thomson A, Pini T, Mincheva M. #ESHREjc report: are sperm selection techniques a panacea? Indications for the use of physiological intracytoplasmic sperm injection (PICSI) in medically assisted reproduction. Hum Reprod 2022; 37:2492-2496. [PMID: 35962973 DOI: 10.1093/humrep/deac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- George Liperis
- Westmead Fertility Centre, Institute of Reproductive Medicine, University of Sydney, Westmead, NSW, Australia
| | - Kashish Sharma
- ART Fertility Clinics LLC, Abu Dhabi, United Arab Emirates
| | - Omar Farhan Ammar
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | | | - Sarah Martins da Silva
- Reproductive Medicine Research Group, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Andrew Thomson
- Centre for Reproduction and Gynaecology Wales, Llantrisant, UK
| | - Taylor Pini
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Mina Mincheva
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Wang T, Fu Y, Sun S, Huang C, Yi Y, Wang J, Deng Y, Wu M. Exosome-based drug delivery systems in cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Soudy R, Kimura R, Fu W, Patel A, Jhamandas J. Extracellular vesicles enriched with amylin receptor are cytoprotective against the Aß toxicity in vitro. PLoS One 2022; 17:e0267164. [PMID: 35421203 PMCID: PMC9009604 DOI: 10.1371/journal.pone.0267164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022] Open
Abstract
Extracellular vesicles (EVs) are double membrane structures released by all cell types with identified roles in the generation, transportation, and degradation of amyloid-β protein (Aβ) oligomers in Alzheimer’s disease (AD). EVs are thus increasingly recognized to play a neuroprotective role in AD, through their ability to counteract the neurotoxic effects of Aβ, possibly through interactions with specific receptors on cell membranes. Our previous studies have identified the amylin receptor (AMY), particularly AMY3 subtype, as a mediator of the deleterious actions of Aβ in vitro and in vivo experimental paradigms. In the present study, we demonstrate that AMY3 enriched EVs can bind soluble oligomers of Aß and protect N2a cells against toxic effects of this peptide. The effect was specific to amylin receptor as it was blocked in the presence of amylin receptor antagonist AC253. This notion was supported by reduced Aβ binding to EVs from AMY depleted mice compared to those from wild type (Wt) mice. Finally, application of AMY3, but not Wt derived, EVs to hippocampal brain slices improved Aβ-induced reduction of long-term potentiation, a cellular surrogate of memory. Collectively, our observations support the role of AMY receptors, particularly AMY3, in EVs as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Rania Soudy
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ryoichi Kimura
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Center for Liberal Arts and Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Wen Fu
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aarti Patel
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jack Jhamandas
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
25
|
Barrachina F, Battistone MA, Castillo J, Mallofré C, Jodar M, Breton S, Oliva R. Sperm acquire epididymis-derived proteins through epididymosomes. Hum Reprod 2022; 37:651-668. [PMID: 35137089 PMCID: PMC8971652 DOI: 10.1093/humrep/deac015] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION Are epididymosomes implicated in protein transfer from the epididymis to spermatozoa? SUMMARY ANSWER We characterized the contribution of epididymal secretions to the sperm proteome and demonstrated that sperm acquire epididymal proteins through epididymosomes. WHAT IS KNOWN ALREADY Testicular sperm are immature cells unable to fertilize an oocyte. After leaving the testis, sperm transit along the epididymis to acquire motility and fertilizing abilities. It is well known that marked changes in the sperm proteome profile occur during epididymal maturation. Since the sperm is a transcriptional and translational inert cell, previous studies have shown that sperm incorporate proteins, RNA and lipids from extracellular vesicles (EVs), released by epithelial cells lining the male reproductive tract. STUDY DESIGN, SIZE, DURATION We examined the contribution of the epididymis to the post-testicular maturation of spermatozoa, via the production of EVs named epididymosomes, released by epididymal epithelial cells. An integrative analysis using both human and mouse data was performed to identify sperm proteins with a potential epididymis-derived origin. Testes and epididymides from adult humans (n = 9) and adult mice (n = 3) were used to experimentally validate the tissue localization of four selected proteins using high-resolution confocal microscopy. Mouse epididymal sperm were co-incubated with carboxyfluorescein succinimidyl ester (CFSE)-labeled epididymosomes (n = 4 mice), and visualized using high-resolution confocal microscopy. PARTICIPANTS/MATERIALS, SETTING, METHODS Adult (12-week-old) C57BL/CBAF1 wild-type male mice and adult humans were used for validation purposes. Testes and epididymides from both mice and humans were obtained and processed for immunofluorescence. Mouse epididymal sperm and mouse epididymosomes were obtained from the epididymal cauda segment. Fluorescent epididymosomes were obtained after labeling the epididymal vesicles with CFSE dye followed by epididymosome isolation using a density cushion. Immunofluorescence was performed following co-incubation of sperm with epididymosomes in vitro. High-resolution confocal microscopy and 3D image reconstruction were used to visualize protein localization and sperm-epididymosomes interactions. MAIN RESULTS AND THE ROLE OF CHANCE Through in silico analysis, we first identified 25 sperm proteins with a putative epididymal origin that were conserved in both human and mouse spermatozoa. From those, the epididymal origin of four sperm proteins (SLC27A2, EDDM3B, KRT19 and WFDC8) was validated by high-resolution confocal microscopy. SLC27A2, EDDM3B, KRT19 and WFDC8 were all detected in epithelial cells lining the human and mouse epididymis, and absent from human and mouse seminiferous tubules. We found region-specific expression patterns of these proteins throughout the mouse epididymides. In addition, while EDDM3B, KRT19 and WFDC8 were detected in both epididymal principal and clear cells (CCs), SLC27A2 was exclusively expressed in CCs. Finally, we showed that CFSE-fluorescently labeled epididymosomes interact with sperm in vitro and about 12-36% of the epididymosomes contain the targeted sperm proteins with an epididymal origin. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The human and mouse sample size was limited and our results were descriptive. The analyses of epididymal sperm and epididymosomes were solely performed in the mouse model due to the difficulties in obtaining epididymal luminal fluid human samples. Alternatively, human ejaculated sperm and seminal EVs could not be used because ejaculated sperm have already contacted with the fluids secreted by the male accessory sex glands, and seminal EVs contain other EVs in addition to epididymosomes, such as the abundant prostate-derived EVs. WIDER IMPLICATIONS OF THE FINDINGS Our findings indicate that epididymosomes are capable of providing spermatozoa with a new set of epididymis-derived proteins that could modulate the sperm proteome and, subsequently, participate in the post-testicular maturation of sperm cells. Additionally, our data provide further evidence of the novel role of epididymal CCs in epididymosome production. Identifying mechanisms by which sperm mature to acquire their fertilization potential would, ultimately, lead to a better understanding of male reproductive health and may help to identify potential therapeutic strategies to improve male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Spanish Ministry of Economy and Competitiveness (Ministerio de Economía y Competividad; fondos FEDER 'una manera de hacer Europa' PI13/00699 and PI16/00346 to R.O.; and Sara Borrell Postdoctoral Fellowship, Acción Estratégica en Salud, CD17/00109 to J.C.), by National Institutes of Health (grants HD040793 and HD069623 to S.B., grant HD104672-01 to M.A.B.), by the Spanish Ministry of Education, Culture and Sports (Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario, FPU15/02306 to F.B.), by a Lalor Foundation Fellowship (to F.B. and M.A.B.), by the Government of Catalonia (Generalitat de Catalunya, pla estratègic de recerca i innovació en salut, PERIS 2016-2020, SLT002/16/00337 to M.J.), by Fundació Universitària Agustí Pedro i Pons (to F.B.), and by the American Society for Biochemistry and Molecular Biology (PROLAB Award from ASBMB/IUBMB/PABMB to F.B.). Confocal microscopy and transmission electron microscopy was performed in the Microscopy Core facility of the Massachusetts General Hospital (MGH) Center for Systems Biology/Program in Membrane Biology which receives support from Boston Area Diabetes and Endocrinology Research Center (BADERC) award DK57521 and Center for the Study of Inflammatory Bowel Disease grant DK43351. The Zeiss LSM800 microscope was acquired using an NIH Shared Instrumentation Grant S10-OD-021577-01. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- F Barrachina
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - M A Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - J Castillo
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - C Mallofré
- Department of Pathology, Universitat de Barcelona, Hospital Clínic, Barcelona, Spain
| | - M Jodar
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| | - S Breton
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - R Oliva
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
26
|
Mahdavinezhad F, Gilani MAS, Gharaei R, Ashrafnezhad Z, Valipour J, Nashtai MS, Amidi F. Protective roles of seminal plasma exosomes and microvesicles during human sperm cryopreservation. Reprod Biomed Online 2022; 45:341-353. [DOI: 10.1016/j.rbmo.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
27
|
Izadi M, Dehghan Marvast L, Rezvani ME, Zohrabi M, Aliabadi A, Mousavi SA, Aflatoonian B. Mesenchymal Stem-Cell Derived Exosome Therapy as a Potential Future Approach for Treatment of Male Infertility Caused by Chlamydia Infection. Front Microbiol 2022; 12:785622. [PMID: 35095800 PMCID: PMC8792933 DOI: 10.3389/fmicb.2021.785622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Some microbial sexually transmitted infections (STIs) have adverse effects on the reproductive tract, sperm function, and male fertility. Given that STIs are often asymptomatic and cause major complications such as urogenital inflammation, fibrosis, and scarring, optimal treatments should be performed to prevent the noxious effect of STIs on male fertility. Among STIs, Chlamydia trachomatis is the most common asymptomatic preventable bacterial STI. C. trachomatis can affect both sperm and the male reproductive tract. Recently, mesenchymal stem cells (MSCs) derived exosomes have been considered as a new therapeutic medicine due to their immunomodulatory, anti-inflammatory, anti-oxidant, and regenerative effects without consequences through the stem cell transplantation based therapies. Inflammation of the genital tract and sperm dysfunction are the consequences of the microbial infections, especially Chlamydia trachomatis. Exosome therapy as a noninvasive approach has shown promising results on the ability to regenerate the damaged sperm and treating asthenozoospermia. Recent experimental methods may be helpful in the novel treatments of male infertility. Thus, it is demonstrated that exosomes play an important role in preventing the consequences of infection, and thereby preventing inflammation, reducing cell damage, inhibiting fibrogenesis, and reducing scar formation. This review aimed to overview the studies about the potential therapeutic roles of MSCs-derived exosomes on sperm abnormalities and male infertility caused by STIs.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Disease Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
28
|
Khodamoradi K, Golan R, Dullea A, Ramasamy R. Exosomes as Potential Biomarkers for Erectile Dysfunction, Varicocele, and Testicular Injury. Sex Med Rev 2021; 10:311-322. [PMID: 34838504 DOI: 10.1016/j.sxmr.2021.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Optimal male reproductive health is dependent upon critical mediators of cell-cell communication: exosomes or extracellular vesicles. These vesicles are nano-sized particles released into a variety of bodily fluids, such as blood and semen. Exosomes are highly stable and can carry genetic and other molecules, including DNA, RNA, and proteins, which provide information about their origin cells. OBJECTIVE To identify exosomes as potential biomarkers or therapeutic mediators in male sexual and reproductive disorders like erectile dysfunction (ED), varicocele, and testicular injury. METHODS A PubMed search was performed to highlight all articles available relating to exosomes and extracellular vesicles in the pathogenesis of different male sexual and reproductive disorders, and their importance in clinical use as both diagnostic markers and potential therapeutic mediators. RESULTS Various male reproductive system disorders, such as ED, varicocele, and testicular injury, are linked to increased or decreased levels of exosomes. Exosomes have a higher number of molecules such as DNA, RNA, and proteins, which can give a more precise and comprehensive result when compared to other biomarkers. Exosomes can be considered as plausible diagnostic biomarkers for male sexual and reproductive diseases, with considerable advantages over other diagnostic procedures such as invasive tissue biopsy. Exosomes can carry cargo such certain drugs and therapeutic molecules making them a promising therapeutic approach. Several studies have begun to test treating various male sexual reproductive disorders with exosomes. CONCLUSION Exosomes deliver many components that can regulate gene expression and target signaling pathways. Understanding how extracellular vesicles can be utilized as biomarkers in diagnosing men, particularly those with idiopathic erectile dysfunction, will not only aid in diagnosis but also help with making therapeutic targets. Khodamoradi K, Golan R, Dullea A, et al. Exosomes as Potential Biomarkers for Erectile Dysfunction, Varicocele, and Testicular Injury. Sex Med Rev 2021;XX:XXX-XXX.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roei Golan
- Departement of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Alexandra Dullea
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
29
|
Abbasifarid E, Bolhassani A, Irani S, Sotoodehnejadnematalahi F. Synergistic effects of exosomal crocin or curcumin compounds and HPV L1-E7 polypeptide vaccine construct on tumor eradication in C57BL/6 mouse model. PLoS One 2021; 16:e0258599. [PMID: 34648579 PMCID: PMC8516259 DOI: 10.1371/journal.pone.0258599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the most common malignant tumor in females worldwide. Human papillomavirus (HPV) infection is associated with the occurrence of cervical cancer. Thus, developing an effective and low-cost vaccine against HPV infection, especially in developing countries is an important issue. In this study, a novel HPV L1-E7 fusion multiepitope construct designed by immunoinformatics tools was expressed in bacterial system. HEK-293T cells-derived exosomes were generated and characterized to use as a carrier for crocin and curcumin compounds. The exosomes loaded with crocin and curcumin compounds as a chemotherapeutic agent (ExoCrocin and ExoCurcumin) were used along with the L1-E7 polypeptide for evaluation of immunological and anti-tumor effects in C57BL/6 mouse model. In vitro studies showed that ExoCrocin and ExoCurcumin were not cytotoxic at a certain dose, and they could enter tumor cells. In vivo studies indicated that combination of the L1-E7 polypeptide with ExoCrocin or ExoCurcumin could produce a significant level of immunity directed toward Th1 response and CTL activity. These regimens showed the protective and therapeutic effects against tumor cells (the percentage of tumor-free mice: ~100%). In addition, both ExoCrocin and ExoCurcumin represented similar immunological and anti-tumor effects. Generally, the use of exosomal crocin or curcumin forms along with the L1-E7 polypeptide could significantly induce T-cell immune responses and eradicate tumor cells.
Collapse
Affiliation(s)
- Elnaz Abbasifarid
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
30
|
Kim H, Jang H, Cho H, Choi J, Hwang KY, Choi Y, Kim SH, Yang Y. Recent Advances in Exosome-Based Drug Delivery for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13174435. [PMID: 34503245 PMCID: PMC8430743 DOI: 10.3390/cancers13174435] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Exosomes derived from various sources can deliver therapeutic agents such as small molecule drugs, nucleic acids, and proteins to cancer cells by passive or active targeting. These exosomes can encapsulate drugs inside the exosomes, extending drug half-life and increasing drug release stability. In addition, exosomes are highly biocompatible due to their endogenous origin and can be used as nanocarriers for tissue-specific targeted delivery. This review discusses recent advances in exosome-based drug delivery for cancer therapy. Abstract Exosomes are a class of extracellular vesicles, with a size of about 100 nm, secreted by most cells and carrying various bioactive molecules such as nucleic acids, proteins, and lipids, and reflect the biological status of parent cells. Exosomes have natural advantages such as high biocompatibility and low immunogenicity for efficient delivery of therapeutic agents such as chemotherapeutic drugs, nucleic acids, and proteins. In this review, we introduce the latest explorations of exosome-based drug delivery systems for cancer therapy, with particular focus on the targeted delivery of various types of cargoes.
Collapse
Affiliation(s)
- Hyosuk Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (H.J.); (H.C.); (J.C.)
| | - Hochung Jang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (H.J.); (H.C.); (J.C.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Haeun Cho
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (H.J.); (H.C.); (J.C.)
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea;
| | - Jiwon Choi
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (H.J.); (H.C.); (J.C.)
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea;
| | - Yeonho Choi
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (H.J.); (H.C.); (J.C.)
- Correspondence: (S.H.K.); (Y.Y.); Tel.: +82-02-958-6639 (S.H.K.); +82-02-958-6655 (Y.Y.)
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (H.J.); (H.C.); (J.C.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (S.H.K.); (Y.Y.); Tel.: +82-02-958-6639 (S.H.K.); +82-02-958-6655 (Y.Y.)
| |
Collapse
|
31
|
Trigg NA, Stanger SJ, Zhou W, Skerrett-Byrne DA, Sipilä P, Dun MD, Eamens AL, De Iuliis GN, Bromfield EG, Roman SD, Nixon B. A novel role for milk fat globule-EGF factor 8 protein (MFGE8) in the mediation of mouse sperm-extracellular vesicle interactions. Proteomics 2021; 21:e2000079. [PMID: 33792189 DOI: 10.1002/pmic.202000079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Spermatozoa transition to functional maturity as they are conveyed through the epididymis, a highly specialized region of the male excurrent duct system. Owing to their transcriptionally and translationally inert state, this transformation into fertilization competent cells is driven by complex mechanisms of intercellular communication with the secretory epithelium that delineates the epididymal tubule. Chief among these mechanisms are the release of extracellular vesicles (EV), which have been implicated in the exchange of varied macromolecular cargo with spermatozoa. Here, we describe the optimization of a tractable cell culture model to study the mechanistic basis of sperm-extracellular vesicle interactions. In tandem with receptor inhibition strategies, our data demonstrate the importance of milk fat globule-EGF factor 8 (MFGE8) protein in mediating the efficient exchange of macromolecular EV cargo with mouse spermatozoa; with the MFGE8 integrin-binding Arg-Gly-Asp (RGD) tripeptide motif identified as being of particular importance. Specifically, complementary strategies involving MFGE8 RGD domain ablation, competitive RGD-peptide inhibition and antibody-masking of alpha V integrin receptors, all significantly inhibited the uptake and redistribution of EV-delivered proteins into immature mouse spermatozoa. These collective data implicate the MFGE8 ligand and its cognate integrin receptor in the mediation of the EV interactions that underpin sperm maturation.
Collapse
Affiliation(s)
- Natalie A Trigg
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Wei Zhou
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia.,Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Andrew L Eamens
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Drug Development, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
32
|
Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J. Seminal Plasma: Relevant for Fertility? Int J Mol Sci 2021; 22:ijms22094368. [PMID: 33922047 PMCID: PMC8122421 DOI: 10.3390/ijms22094368] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA-the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-132-869-25
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, C.S.I.C., 46010 Valencia, Spain;
| | - Fernando J. Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, 10003 Caceres, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| |
Collapse
|