1
|
Liu J, Chen Y, Huang H, Chen F. Layer-by-layer coating strategy to functionalize the magnetic nanoparticles for their multi-functionalization. DISCOVER NANO 2025; 20:74. [PMID: 40314917 PMCID: PMC12048377 DOI: 10.1186/s11671-025-04250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Magnetic nanoparticles (MNPs) hold significant potential for a wide range of applications, however, surface modification or bio-conjugation of MNPs often leads to their aggregation and instability. To address this, we proposed a facile method using a layer-by-layer (LbL) coating technique with polyallylamine hydrochloride (PAH) and poly(styrene sulfonic acid) sodium salt (PSS), so as to maintain the dispersion stability and functionality of MNPs. This method enabled us to develop the powerful MNPs towards to their use in the electrochemical biosensor, by combining both the redox probes (ferrocene (Fc), anthraquinone (AQ), or monocarboxymethylene blue (MB)) and bio-probes (IgG). The redox molecules were effectively anchored to the MNPs under the organic solvents, while such functionalized MNPs surface were subsequently protected by the LbL coating process prior to dispersing in high ionic strength solutions (e.g. Phosphate-buffered saline). And the out-layer of polyelectrolyte shell allowed biomolecules to attach to the MNP surface without chemical cross-linking. Our results demonstrated that the TEM size of MNPs@Fc, MNP@AQ and MNP@MB after LbL coating were characterized as 11.0 ± 2.0 nm, 10.5 ± 2.1 nm and 12.4 ± 2.2 nm and these developed redox MNPs of MNPs@Fc, MNPs@AQ and MNPs@MB were characterized by square wave voltammetry (SWV) with their redox intensity of 0.64 ± 0.10 µA, 23.25 ± 0.73 µA and 0.48 ± 0.13 µA, respectively. In addition, the binding efficiency of adsorption between the MNPs and IgG was up to 78%, evidenced by SDS-PAGE gel analysis. This facile method offered a versatile and effective way to functionalize MNPs, combining redox and biological properties for potential applications in disease diagnosis and point-of-care diagnostics.
Collapse
Affiliation(s)
- Jing Liu
- Department of Research, Shanghai University of Medicine and Health Sciences Affliated Zhoupu Hospital, The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Ye Chen
- Huangyan District Center for Disease Control and Prevention, Taizhou, 318020, Zhejiang, China
| | - Hongjie Huang
- Department of Sports Medicine, Peking University Third Hospital; Institute of Sports Medicine of Peking University; Beijing Key Laboratory of Sports Injuries; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Feixiong Chen
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Dublin 4, Ireland.
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland.
| |
Collapse
|
2
|
Aschner M, Skalny AV, Martins AC, Tizabi Y, Zaitseva IP, Santamaria A, Lu R, Gluhcheva YY, Tinkov AA. The role of NLRP3 inflammasome activation in proinflammatory and cytotoxic effects of metal nanoparticles. Arch Toxicol 2025; 99:1287-1314. [PMID: 39960653 DOI: 10.1007/s00204-025-03972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/27/2025] [Indexed: 04/04/2025]
Abstract
Exposure to metal nanoparticles (NPs) is known to induce inflammatory responses in various tissues, thus limiting their therapeutic potential. NOD-like receptor protein 3 (NLRP3) inflammasome activation is an essential component of innate immunity playing a significant role in inflammation and development of inflammatory diseases. Therefore, the objective of the present review was to summarize data on the role of NLRP3 inflammasome in proinflammatory effects induced by metal NPs, and to discuss the underlying molecular mechanisms, including its dependence on the physical and chemical properties of metal NPs. Titanium, zinc, silver, aluminum, iron, cobalt, nickel, vanadium, and tungsten nanoparticles, as well as metal-based quantum dots have all been shown to induce NLRP3 inflammasome activation in vitro in macrophages and monocytes, dendritic cells, keratinocytes, hepatocytes, enterocytes, microglia, astrocytes, lung epithelial cells, endotheliocytes, as well as certain types of cancer cells. In vivo studies confirmed the role of NLRP3 pathway activation in development of colitis, pulmonary inflammation, liver damage, osteolysis, and neuroinflammation induced by various metal nanoparticles. Briefly, particle endocytosis with subsequent lysosomal damage, induction of ROS formation, K+ efflux, increased intracellular Ca2+ levels, and NF-κB pathway activation results in NLRP3 inflammasome complex assembly, caspase-1 activation, and cleavage of pro-IL-1β and pro-IL-18 to mature proinflammatory cytokines, while gasdermin D cleavage induces pyroptotic cell death. Moreover, small-sized and rod-shaped metal NPs exert a more profound stimulatory effect on NLRP3 inflammasome activation, but contrary findings have also been reported. Taken together, it is concluded that NLRP3 inflammasome may mediate both adverse proinflammatory effects of metal nanoparticles, as well as their beneficial effect when used as antitumor agents.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Irina P Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yordanka Y Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology With Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, 150003, Russia
| |
Collapse
|
3
|
Rugiel M, Janik-Olchawa N, Kowalczyk J, Pomorska K, Sitarz M, Bik E, Horak D, Babic M, Setkowicz Z, Chwiej J. Raman microscopy allows to follow internalization, subcellular accumulation and fate of iron oxide nanoparticles in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124888. [PMID: 39116589 DOI: 10.1016/j.saa.2024.124888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
An important issue in the context of both potenial toxicity of iron oxide nanoparticles (IONP) and their medical applications is tracking of the internalization process of these nanomaterials into living cells, as well as their localization and fate within them. The typical methods used for this purpose are transmission electron microscopy, confocal fluorescence microscopy as well as light-scattering techniques including dark-field microscopy and flow cytometry. All the techniques mentioned have their advantages and disadvantages. Among the problems it is necessary to mention complicated sample preparation, difficult interpretation of experimental data requiring qualified and experienced personnel, different behavior of fluorescently labeled IONP comparing to those label-free or finally the lack of possibility of chemical composition characteristics of nanomaterials. The purpose of the present investigation was the assessment of the usefulness of Raman microscopy for the tracking of the internalization of IONP into cells, as well as the optimization of this process. Moreover, the study focused on identification of the potential differences in the cellular fate of superparamagnetic nanoparticles having magnetite and maghemite core. The Raman spectra of U87MG cells which internalized IONP presented additional bands which position depended on the used laser wavelength. They occurred at the wavenumber range 1700-2400 cm-1 for laser 488 nm and below the wavenumber of 800 cm-1 in case of laser 532 nm. The intensity of the mentioned Raman bands was higher for the green laser (532 nm) and their position, was independent and not characteristic on the primary core material of IONP (magnetite, maghemite). The obtained results showed that Raman microscopy is an excellent, non-destructive and objective technique that allows monitoring the process of internalization of IONP into cells and visualizing such nanoparticles and/or their metabolism products within them at low exposure levels. What is more, the process of tracking IONP using the technique may be further improved by using appropriate wavelength and power of the laser source.
Collapse
Affiliation(s)
- Marzena Rugiel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Julia Kowalczyk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Karolina Pomorska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Maciej Sitarz
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland
| | - Ewelina Bik
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Daniel Horak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského 2, 162 00, Prague 6, Czech Republic
| | - Michal Babic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského 2, 162 00, Prague 6, Czech Republic
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
4
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
5
|
Parwana KAK, Kaur Gill P, Njanike R, Yiu HHP, Adams CF, Chari DM, Jenkins SI. Investigating Internalization of Reporter-Protein-Functionalized Polyhedrin Particles by Brain Immune Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2330. [PMID: 38793398 PMCID: PMC11122724 DOI: 10.3390/ma17102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Achieving sustained drug delivery to the central nervous system (CNS) is a major challenge for neurological injury and disease, and various delivery vehicles are being developed to achieve this. Self-assembling polyhedrin crystals (POlyhedrin Delivery System; PODS) are being exploited for the delivery of therapeutic protein cargo, with demonstrated efficacy in vivo. However, to establish the utility of PODS for neural applications, their handling by neural immune cells (microglia) must be documented, as these cells process and degrade many biomaterials, often preventing therapeutic efficacy. Here, primary mouse cortical microglia were cultured with a GFP-functionalized PODS for 24 h. Cell counts, cell morphology and Iba1 expression were all unaltered in treated cultures, indicating a lack of acute toxicity or microglial activation. Microglia exhibited internalisation of the PODS, with both cytosolic and perinuclear localisation. No evidence of adverse effects on cellular morphology was observed. Overall, 20-40% of microglia exhibited uptake of the PODS, but extracellular/non-internalised PODS were routinely present after 24 h, suggesting that extracellular drug delivery may persist for at least 24 h.
Collapse
Affiliation(s)
| | | | - Runyararo Njanike
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
| | - Humphrey H. P. Yiu
- School of Engineering & Physical Sciences, University of Edinburgh, Edinburgh EH14 4AS, UK;
| | - Chris F. Adams
- School of Life Sciences, Keele University, Keele ST5 5BG, UK; (K.A.K.P.); (C.F.A.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| | - Divya Maitreyi Chari
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| | - Stuart Iain Jenkins
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| |
Collapse
|
6
|
Kumar M, Seth K, Choudhary S, Kumawat G, Nigam S, Joshi G, Saharan V, Meena M, Gupta AK, Harish. Toxicity evaluation of iron oxide nanoparticles to freshwater cyanobacteria Nostoc ellipsosporum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH 2023; 30:55742-55755. [DOI: 10.1007/s11356-023-26353-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
|
7
|
Baabu PRS, Kumar HK, Gumpu MB, Babu K J, Kulandaisamy AJ, Rayappan JBB. Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010059. [PMID: 36614400 PMCID: PMC9820855 DOI: 10.3390/ma16010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/14/2023]
Abstract
Materials science and technology, with the advent of nanotechnology, has brought about innumerable nanomaterials and multi-functional materials, with intriguing yet profound properties, into the scientific realm. Even a minor functionalization of a nanomaterial brings about vast changes in its properties that could be potentially utilized in various applications, particularly for biological applications, as one of the primary needs at present is for point-of-care devices that can provide swifter, accurate, reliable, and reproducible results for the detection of various physiological conditions, or as elements that could increase the resolution of current bio-imaging procedures. In this regard, iron oxide nanoparticles, a major class of metal oxide nanoparticles, have been sweepingly synthesized, characterized, and studied for their essential properties; there are 14 polymorphs that have been reported so far in the literature. With such a background, this review's primary focus is the discussion of the different synthesis methods along with their structural, optical, magnetic, rheological and phase transformation properties. Subsequently, the review has been extrapolated to summarize the effective use of these nanoparticles as contrast agents in bio-imaging, therapeutic agents making use of its immune-toxicity and subsequent usage in hyperthermia for the treatment of cancer, electron transfer agents in copious electrochemical based enzymatic or non-enzymatic biosensors and bactericidal coatings over biomaterials to reduce the biofilm formation significantly.
Collapse
Affiliation(s)
- Priyannth Ramasami Sundhar Baabu
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hariprasad Krishna Kumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Acrophase, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Manju Bhargavi Gumpu
- Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | - Jayanth Babu K
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | | | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
8
|
Al-Zoubi MS, Al-Zoubi RM. Nanomedicine tactics in cancer treatment: Challenge and hope. Crit Rev Oncol Hematol 2022; 174:103677. [PMID: 35385774 DOI: 10.1016/j.critrevonc.2022.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022] Open
Abstract
Defeating cancer is the ultimate challenge and goal of oncologists, facing various obstacles along with finding effective anti-cancer therapies and understanding drug delivery mechanisms. Additionally, the translation of the experimental findings to the clinical outcomes such as specificity, delivery, toxicity, clearance, and bioavailability is another health concern. Nanomedicine is a branch of nanotechnology that has been drastically developed in the last decades. Due to the fact of various nanomaterial formulas, different nanomedicine drug delivery tactics have been developed as anti-cancer therapies. The most effective and less toxic approaches involved the active targeting drug delivery tactic, which relies on the recognition of the drug nanoparticle carriers and the cell surface marker. Accordingly, FDA approved such a group of nanomedicine drug delivery systems while other formulas are still under the clinical trial phases. Nanomedicine is showing a bright future in the treatment of cancer. Oncologists learned from cancer research the possible drug resistance that could be developed. Consequently, researchers need to be prepared for the possible adverse effect of the nanomedicine approach.
Collapse
Affiliation(s)
- Mazhar Salim Al-Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar; Department of Chemistry, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
9
|
Hatamie S, Balasi ZM, Ahadian MM, Mortezazadeh T, Shams F, Hosseinzadeh S. Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev 2021; 177:113954. [PMID: 34478780 DOI: 10.1016/j.addr.2021.113954] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Photomedicine has long been used for treating cancerous diseases. With advances in chemical and material sciences, various types of light-activated photosensitizers (PSs) have been developed for effective photodynamic therapy (PDT) and photothermal therapy (PTT). However, conventional organic/inorganic materials-based PSs lack disease recognition capability and show limited therapeutic effects in addition to side effects. Recently, intelligent dynamic nanoassemblies that are activated in a tumor environment have been extensively researched to target diseased tissues more effectively, for increasing therapeutic effectiveness while minimizing side effects. This paper presents the latest dynamic nanoassemblies for effective PDT or PTT and combination phototherapies, including immunotherapy and image-guided therapy. Dynamic self-assembly exhibits great potential for clinical translation in diagnosis and treatment through its integrated versatility. Nanoassemblies based on multidisciplinary technology are a promising technique for treating incurable cancerous diseases in the future.
Collapse
Affiliation(s)
- Hayoon Jeong
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL 60208, USA; Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea.
| |
Collapse
|
11
|
Assessing the Biocompatibility of Multi-Anchored Glycoconjugate Functionalized Iron Oxide Nanoparticles in a Normal Human Colon Cell Line CCD-18Co. NANOMATERIALS 2021; 11:nano11102465. [PMID: 34684906 PMCID: PMC8537094 DOI: 10.3390/nano11102465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
We have previously demonstrated that iron oxide nanoparticles with dopamine-anchored heterobifunctional polyethylene oxide (PEO) polymer, namely PEO-IONPs, and bio-functionalized with sialic-acid specific glycoconjugate moiety (Neu5Ac(α2-3)Gal(β1-4)-Glcβ-sp), namely GM3-IONPs, can be effectively used as antibacterial agents against target Escherichia coli. In this study, we evaluated the biocompatibility of PEO-IONPs and GM3-IONPs in a normal human colon cell line CCD-18Co via measuring cell proliferation, membrane integrity, and intracellular adenosine triphosphate (ATP), glutathione GSH, dihydrorhodamine (DHR) 123, and caspase 3/7 levels. PEO-IONPs caused a significant decrease in cell viability at concentrations above 100 μg/mL whereas GM3-IONPs did not cause a significant decrease in cell viability even at the highest dose of 500 μg/mL. The ATP synthase activity of CCD-18Co was significantly diminished in the presence of PEO-IONPs but not GM3-IONPs. PEO-IONPs also compromised the membrane integrity of CCD-18Co. In contrast, cells exposed to GM3-IONPs showed significantly different cell morphology, but with no apparent membrane damage. The interaction of PEO-IONPs or GM3-IONPs with CCD-18Co resulted in a substantial decrease in the intracellular GSH levels in a time- and concentration-dependent manner. Conversely, levels of DHR-123 increased with IONP concentrations. Levels of caspase 3/7 proteins were found to be significantly elevated in cells exposed to PEO-IONPs. Based on the results, we assume GM3-IONPs to be biocompatible with CCD-18Co and could be further evaluated for selective killing of pathogens in vivo.
Collapse
|
12
|
Burns KE, Uhrig RF, Jewett ME, Bourbon MF, Krupa KA. Characterizing the Role of Biologically Relevant Fluid Dynamics on Silver Nanoparticle Dependent Oxidative Stress in Adherent and Suspension In Vitro Models. Antioxidants (Basel) 2021; 10:antiox10060832. [PMID: 34071095 PMCID: PMC8224783 DOI: 10.3390/antiox10060832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) are being employed in numerous consumer goods and applications; however, they are renowned for inducing negative cellular consequences including toxicity, oxidative stress, and an inflammatory response. Nanotoxicological outcomes are dependent on numerous factors, including physicochemical, biological, and environmental influences. Currently, NP safety evaluations are carried out in both cell-based in vitro and animal in vivo models, with poor correlation between these mechanisms. These discrepancies highlight the need for enhanced exposure environments, which retain the advantages of in vitro models but incorporate critical in vivo influences, such as fluid dynamics. This study characterized the effects of dynamic flow on AgNP behavior, cellular interactions, and oxidative stress within both adherent alveolar (A549) and suspension monocyte (U937) models. This study determined that the presence of physiologically relevant flow resulted in substantial modifications to AgNP cellular interactions and subsequent oxidative stress, as assessed via reactive oxygen species (ROS), glutathione levels, p53, NFκB, and secretion of pro-inflammatory cytokines. Within the adherent model, dynamic flow reduced AgNP deposition and oxidative stress markers by roughly 20%. However, due to increased frequency of contact, the suspension U937 cells were associated with higher NP interactions and intracellular stress under fluid flow exposure conditions. For example, the increased AgNP association resulted in a 50% increase in intracellular ROS and p53 levels. This work highlights the potential of modified in vitro systems to improve analysis of AgNP dosimetry and safety evaluations, including oxidative stress assessments.
Collapse
|
13
|
Tarkistani MAM, Komalla V, Kayser V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1227. [PMID: 34066549 PMCID: PMC8148580 DOI: 10.3390/nano11051227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Recently, there has been an increased interest in iron-gold-based hybrid nanostructures, due to their combined outstanding optical and magnetic properties resulting from the usage of two separate metals. The synthesis of these nanoparticles involves thermal decomposition and modification of their surfaces using a variety of different methods, which are discussed in this review. In addition, different forms such as core-shell, dumbbell, flower, octahedral, star, rod, and Janus-shaped hybrids are discussed, and their unique properties are highlighted. Studies on combining optical response in the near-infrared window and magnetic properties of iron-gold-based hybrid nanoparticles as multifunctional nanoprobes for drug delivery, magnetic-photothermal heating as well as contrast agents during magnetic and optical imaging and magnetically-assisted optical biosensing to detect traces of targeted analytes inside the body has been reviewed.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (M.A.M.T.); (V.K.)
| |
Collapse
|
14
|
Rubia-Rodríguez I, Santana-Otero A, Spassov S, Tombácz E, Johansson C, De La Presa P, Teran FJ, Morales MDP, Veintemillas-Verdaguer S, Thanh NTK, Besenhard MO, Wilhelm C, Gazeau F, Harmer Q, Mayes E, Manshian BB, Soenen SJ, Gu Y, Millán Á, Efthimiadou EK, Gaudet J, Goodwill P, Mansfield J, Steinhoff U, Wells J, Wiekhorst F, Ortega D. Whither Magnetic Hyperthermia? A Tentative Roadmap. MATERIALS (BASEL, SWITZERLAND) 2021; 14:706. [PMID: 33546176 PMCID: PMC7913249 DOI: 10.3390/ma14040706] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.
Collapse
Affiliation(s)
| | | | - Simo Spassov
- Geophysical Centre of the Royal Meteorological Institute, 1 rue du Centre Physique, 5670 Dourbes, Belgium;
| | - Etelka Tombácz
- Soós Water Technology Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Christer Johansson
- RISE Research Institutes of Sweden, Sensors and Materials, Arvid Hedvalls Backe 4, 411 33 Göteborg, Sweden;
| | - Patricia De La Presa
- Instituto de Magnetismo Aplicado UCM-ADIF-CSIC, A6 22,500 km, 29260 Las Rozas, Spain;
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Avda. Complutense s/n, 28048 Madrid, Spain
| | - Francisco J. Teran
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Nanotech Solutions, Ctra Madrid, 23, 40150 Villacastín, Spain
| | - María del Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Sabino Veintemillas-Verdaguer
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Nguyen T. K. Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK;
- Biophysics Group, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
| | - Maximilian O. Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Quentin Harmer
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Eric Mayes
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Bella B. Manshian
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Stefaan J. Soenen
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Yuanyu Gu
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Ángel Millán
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Eleni K. Efthimiadou
- Chemistry Department, Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Jeff Gaudet
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Patrick Goodwill
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - James Mansfield
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Uwe Steinhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - James Wells
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Daniel Ortega
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), 11002 Cádiz, Spain
- Condensed Matter Physics Department, Faculty of Sciences, Campus Universitario de Puerto Real s/n, 11510 Puerto Real, Spain
| |
Collapse
|
15
|
Radeloff K, Ramos Tirado M, Haddad D, Breuer K, Müller J, Hochmuth S, Hackenberg S, Scherzad A, Kleinsasser N, Radeloff A. Superparamagnetic Iron Oxide Particles (VSOPs) Show Genotoxic Effects but No Functional Impact on Human Adipose Tissue-Derived Stromal Cells (ASCs). MATERIALS 2021; 14:ma14020263. [PMID: 33430323 PMCID: PMC7825809 DOI: 10.3390/ma14020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Adipose tissue-derived stromal cells (ASCs) represent a capable source for cell-based therapeutic approaches. For monitoring a cell-based application in vivo, magnetic resonance imaging (MRI) of cells labeled with iron oxide particles is a common method. It is the aim of the present study to analyze potential DNA damage, cytotoxicity and impairment of functional properties of human (h)ASCs after labeling with citrate-coated very small superparamagnetic iron oxide particles (VSOPs). Cytotoxic as well as genotoxic effects of the labeling procedure were measured in labeled and unlabeled hASCs using the MTT assay, comet assay and chromosomal aberration test. Trilineage differentiation was performed to evaluate an impairment of the differentiation potential due to the particles. Proliferation as well as migration capability were analyzed after the labeling procedure. Furthermore, the labeling of the hASCs was confirmed by Prussian blue staining, transmission electron microscopy (TEM) and high-resolution MRI. Below the concentration of 0.6 mM, which was used for the procedure, no evidence of genotoxic effects was found. At 0.6 mM, 1 mM as well as 1.5 mM, an increase in the number of chromosomal aberrations was determined. Cytotoxic effects were not observed at any concentration. Proliferation, migration capability and differentiation potential were also not affected by the procedure. Labeling with VSOPs is a useful labeling method for hASCs that does not affect their proliferation, migration and differentiation potential. Despite the absence of cytotoxicity, however, indications of genotoxic effects have been demonstrated.
Collapse
Affiliation(s)
- Katrin Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
- Correspondence:
| | - Mario Ramos Tirado
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Daniel Haddad
- Fraunhofer Development Center X-ray Technology EZRT, Department Magnetic Resonance and X-ray Imaging, A Division of Fraunhofer Institute for Integrated Circuits IIS, 97074 Wuerzburg, Germany;
| | - Kathrin Breuer
- Department of Radiation Oncology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Jana Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| | - Sabine Hochmuth
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Andreas Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| |
Collapse
|
16
|
Bettini S, Bonfrate V, Valli L, Giancane G. Paramagnetic Functionalization of Biocompatible Scaffolds for Biomedical Applications: A Perspective. Bioengineering (Basel) 2020; 7:E153. [PMID: 33260520 PMCID: PMC7711469 DOI: 10.3390/bioengineering7040153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023] Open
Abstract
The burst of research papers focused on the tissue engineering and regeneration recorded in the last years is justified by the increased skills in the synthesis of nanostructures able to confer peculiar biological and mechanical features to the matrix where they are dispersed. Inorganic, organic and hybrid nanostructures are proposed in the literature depending on the characteristic that has to be tuned and on the effect that has to be induced. In the field of the inorganic nanoparticles used for decorating the bio-scaffolds, the most recent contributions about the paramagnetic and superparamagnetic nanoparticles use was evaluated in the present contribution. The intrinsic properties of the paramagnetic nanoparticles, the possibility to be triggered by the simple application of an external magnetic field, their biocompatibility and the easiness of the synthetic procedures for obtaining them proposed these nanostructures as ideal candidates for positively enhancing the tissue regeneration. Herein, we divided the discussion into two macro-topics: the use of magnetic nanoparticles in scaffolds used for hard tissue engineering for soft tissue regeneration.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Valentina Bonfrate
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Biological and Environmental Sciences and Technology (DiSTeBA), University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Gabriele Giancane
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| |
Collapse
|
17
|
Janik-Olchawa N, Drozdz A, Ryszawy D, Pudełek M, Planeta K, Setkowicz Z, Śniegocki M, Żądło A, Ostachowicz B, Chwiej J. Comparison of ultrasmall IONPs and Fe salts biocompatibility and activity in multi-cellular in vitro models. Sci Rep 2020; 10:15447. [PMID: 32963318 PMCID: PMC7508949 DOI: 10.1038/s41598-020-72414-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
In the paper, the results of the first regular studies of ultra-small iron oxide nanoparticles (IONPs) toxicity in vitro were presented. The influence of PEG-coated NPs with 5 nm magnetite core on six different cell lines was examined. These were: human bronchial fibroblasts, human embryonic kidney cells (HEK293T), two glioblastoma multiforme (GBM) cell lines as well as GBM cells isolated from a brain tumor of patient. Additionally, mouse macrophages were included in the study. The influence of IONPs in three different doses (1, 5 and 25 µg Fe/ml) on the viability, proliferation and migration activity of cells was assessed. Moreover, quantifying the intracellular ROS production, we determined the level of oxidative stress in cells exposed to IONPs. In the paper, for the first time, the effect of Fe in the form of IONPs was compared with the analogical data obtained for iron salts solutions containing the same amount of Fe, on the similar oxidation state. Our results clearly showed that the influence of iron on the living cells strongly depends not only on the used cell line, dose and exposure time but also on the form in which this element was administered to the culture. Notably, nanoparticles can stimulate the proliferation of some cell lines, including glioblastoma multiforme. Compared to Fe salts, they have a stronger negative impact on the viability of the cells tested. Ultra-small NPs, also, more often positively affect cell motility which seem to differ them from the NPs with larger core diameters.
Collapse
Affiliation(s)
- Natalia Janik-Olchawa
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Agnieszka Drozdz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Damian Ryszawy
- Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maciej Pudełek
- Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Planeta
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | | | - Andrzej Żądło
- Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland.
| |
Collapse
|
18
|
Ferjaoui Z, Nahle S, Chang CS, Ghanbaja J, Joubert O, Schneider R, Ferrari L, Gaffet E, Alem H. Layer-by-Layer Self-Assembly of Polyelectrolytes on Superparamagnetic Nanoparticle Surfaces. ACS OMEGA 2020; 5:4770-4777. [PMID: 32201762 PMCID: PMC7081293 DOI: 10.1021/acsomega.9b02963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Designing and manufacturing multifunctional nanoparticles (NPs) are of considerable interest for both academic and industrial research. Among NPs used in this field, iron oxide NPs show low toxicity compared to metallic ones and are thus of high interest for biomedical applications. In this work, superparamagnetic Fe3-δO4-based core/shell NPs were successfully prepared and characterized by the combination of different techniques, and their physical properties were investigated. We demonstrate the efficiency of the layer-by-layer process to graft polyelectrolytes on the surface of iron oxide NPs. The influence of the polyelectrolyte chain configuration on the magnetic properties of the Fe3-δO4/polymer core/shell NPs was enlightened. The simple and fast process described in this work is efficient for the grafting of polyelectrolytes from surfaces, and thus, derived Fe3-δO4 NPs display both the physical properties of the core and of the macromolecular shell. Finally, the cytotoxicity toward the human THP-1 monocytic cell line of the core/shell NPs was assessed. The results showed that the polymer-capped Fe3-δO4 NPs exhibited almost no toxicity after 24 h of exposure at concentrations up to 25 μg mL-1. Our results show that these smart superparamagnetic nanocarriers with stealth properties are promising for applications in multimodal cancer therapy, including drug delivery.
Collapse
Affiliation(s)
- Zied Ferjaoui
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Sara Nahle
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Crosby Soon Chang
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Jaafar Ghanbaja
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Olivier Joubert
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire
Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Luc Ferrari
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Eric Gaffet
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Halima Alem
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
- Institut
Universitaire de France, 75005 Paris, France
| |
Collapse
|
19
|
Chemello G, Randazzo B, Zarantoniello M, Fifi AP, Aversa S, Ballarin C, Radaelli G, Magro M, Olivotto I. Safety assessment of antibiotic administration by magnetic nanoparticles in in vitro zebrafish liver and intestine cultures. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108559. [PMID: 31254662 DOI: 10.1016/j.cbpc.2019.108559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Different in vitro models have been suggested to replace in vivo studies. In vitro studies are of great interest and give the opportunity to analyze cellular responses in a closed system with stable experimental conditions and to avoid direct animal exposure and distress during the experiments. These methods are useful to test drugs and chemicals toxicity in order to better understand their environmental impact. In the present study, fish organ cultures have been used to test different oxytetracycline exposure methods, including oxide nanoparticles (IONPs), using zebrafish as experimental model. Results showed that oxytetracycline accumulation at the end of the experiment (24 h) in the exposed organs did not show any significant difference in the analyzed samples and was not dependent on the exposure way (free or IONPs-bound oxytetracycline). However, as regards molecular analysis, the different exposure ways tested in this study showed some differences in the expression of genes involved in stress response. The present data did not completely agree with a previous in vivo study performed in zebrafish using IONPs, underlying that replacement of in vivo models with in vitro studies cannot always represent the complexity of interactions typical of a biological system.
Collapse
Affiliation(s)
- Giulia Chemello
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Basilio Randazzo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | | | | | - Cristina Ballarin
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Giuseppe Radaelli
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Massimiliano Magro
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
20
|
Xia Y, Guo Y, Yang Z, Chen H, Ren K, Weir MD, Chow LC, Reynolds MA, Zhang F, Gu N, Xu HHK. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109955. [PMID: 31500064 DOI: 10.1016/j.msec.2019.109955] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Calcium phosphate cement (CPC), functionalized with iron oxide nanoparticles (IONP), is of great promise to promote osteoinduction and new bone formation. In this work, the IONP powder was added into the CPC powder to fabricate CPC + IONP scaffolds and the effects of the novel composite on bone matrix formation and osteogenesis of human dental pulp stem cells (hDPSCs) were explored. A series of CPC + IONP magnetic scaffolds with different IONP contents (1%, 3% and 6%) were fabricated using 5% chitosan solution as the cement liquid. Western blotting and RT-PCR were used to analyze the signaling pathway. The IONP incorporation substantially enhanced the performance of CPC + IONP, with increases in both mechanical strength and cellular activities. The IONP addition greatly promoted the osteogenesis of hDPSCs, elevating the ALP activity, the expression of osteogenic marker genes and bone matrix formation with 1.5-2-fold increases. The 3% IONP incorporation showed the most enhancement among all groups. Activation of the extracellular signal-related kinases WNT/β-catenin in DPSCs was observed, and this activation was attenuated by the WNT inhibitor DKK1. The results indicated that the osteogenic behavior of hDPSCs was likely driven by CPC + IONP via the WNT signaling pathway. In conclusion, incorporate IONP into CPC scaffold remarkably enhanced the spreading, osteogenic differentiation and bone mineral synthesis of stem cell. Therefore, this method had great potential for bone tissue engineering. The novel CPC + IONP composite scaffolds with stem cells are promising to provide an innovative strategy to enhance bone regenerative therapies.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, USA
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zukun Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ke Ren
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, USA
| | - Laurence C Chow
- Volpe Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, USA
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greene Baum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
21
|
Soares SF, Fernandes T, Trindade T, Daniel-da-Silva AL. Trimethyl Chitosan/Siloxane-Hybrid Coated Fe 3O 4 Nanoparticles for the Uptake of Sulfamethoxazole from Water. Molecules 2019; 24:E1958. [PMID: 31117303 PMCID: PMC6572444 DOI: 10.3390/molecules24101958] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
The presence of several organic contaminants in the environment and aquatic compartments has been a matter of great concern in the recent years. To tackle this problem, new sustainable and cost-effective technologies are needed. Herein we describe magnetic biosorbents prepared from trimethyl chitosan (TMC), which is a quaternary chitosan scarcely studied for environmental applications. Core@shell particles comprising a core of magnetite (Fe3O4) coated with TMC/siloxane hybrid shells (Fe3O4@SiO2/SiTMC) were successfully prepared using a simple one-step coating procedure. Adsorption tests were conducted to investigate the potential of the coated particles for the magnetically assisted removal of the antibiotic sulfamethoxazole (SMX) from aqueous solutions. It was found that TMC-based particles provide higher SMX adsorption capacity than the counterparts prepared using pristine chitosan. Therefore, the type of chemical modification introduced in the chitosan type precursors used in the surface coatings has a dominant effect on the sorption efficiency of the respective final magnetic nanosorbents.
Collapse
Affiliation(s)
- Sofia F Soares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tiago Fernandes
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
22
|
Slabu I, Roeth AA, Engelmann UM, Wiekhorst F, Buhl EM, Neumann UP, Schmitz-Rode T. Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro. NANOTECHNOLOGY 2019; 30:184004. [PMID: 30699387 DOI: 10.1088/1361-6528/ab033e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The internalization kinetics resulting from magnetic nanoparticle interactions with tumor cells play an important role in nanoparticle-based cancer treatment efficiency. Here, the uptake kinetics of magnetoliposomes (ML) into human pancreatic tumor cells (MiaPaCa-2 and BxPC-3) are quantified using magnetic particle spectrometry. A comparison to the uptake kinetics for healthy L929 cells is given. The experimental results are used for the development of an uptake kinetics model describing the three relevant internalization processes: ML adsorption to the cell membrane, endo- and exocytosis. By fitting of experimental data, the rate constant of each internalization process is determined enabling the prediction of internalized ML at any incubation time. After seven hours incubation time, MiaPaCa-2 internalized three times more ML than BxPC-3 and L929 cells even though their ML adsorption rate constants were nearly the same. As the interaction of the ML with the cell membrane is non-specific, the uptake kinetics mirror the individual cell response to ML internalization. With a new mathematical term to cover the exocytosis contribution to the overall internalization process, the extended uptake kinetics model offers new possibilities to analyze the specific internalization mechanism for other nanoparticle and cell types.
Collapse
Affiliation(s)
- Ioana Slabu
- Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital, Aachen, Germany. Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC. Magnetic Force-Based Microfluidic Techniques for Cellular and Tissue Bioengineering. Front Bioeng Biotechnol 2018; 6:192. [PMID: 30619842 PMCID: PMC6305723 DOI: 10.3389/fbioe.2018.00192] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.
Collapse
|
24
|
Nguyen VTA, De Pauw-Gillet MC, Gauthier M, Sandre O. Magnetic Polyion Complex Micelles for Cell Toxicity Induced by Radiofrequency Magnetic Field Hyperthermia. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1014. [PMID: 30563227 PMCID: PMC6316531 DOI: 10.3390/nano8121014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
Magnetic nanoparticles (MNPs) of magnetite (Fe₃O₄) were prepared using a polystyrene-graft-poly(2-vinylpyridine) copolymer (denoted G0PS-g-P2VP or G1) as template. These MNPs were subjected to self-assembly with a poly(acrylic acid)-block-poly(2-hydroxyethyl acrylate) double-hydrophilic block copolymer (DHBC), PAA-b-PHEA, to form water-dispersible magnetic polyion complex (MPIC) micelles. Large Fe₃O₄ crystallites were visualized by transmission electron microscopy (TEM) and magnetic suspensions of MPIC micelles exhibited improved colloidal stability in aqueous environments over a wide pH and ionic strength range. Biological cells incubated for 48 h with MPIC micelles at the highest concentration (1250 µg of Fe₃O₄ per mL) had a cell viability of 91%, as compared with 51% when incubated with bare (unprotected) MNPs. Cell internalization, visualized by confocal laser scanning microscopy (CLSM) and TEM, exhibited strong dependence on the MPIC micelle concentration and incubation time, as also evidenced by fluorescence-activated cell sorting (FACS). The usefulness of MPIC micelles for cellular radiofrequency magnetic field hyperthermia (MFH) was also confirmed, as the MPIC micelles showed a dual dose-dependent effect (concentration and duration of magnetic field exposure) on the viability of L929 mouse fibroblasts and U87 human glioblastoma epithelial cells.
Collapse
Affiliation(s)
- Vo Thu An Nguyen
- University Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France.
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600 Pessac, France.
| | | | - Mario Gauthier
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Olivier Sandre
- University Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France.
- CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600 Pessac, France.
| |
Collapse
|
25
|
Fernández-Bertólez N, Costa C, Brandão F, Kiliç G, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V. Neurotoxicity assessment of oleic acid-coated iron oxide nanoparticles in SH-SY5Y cells. Toxicology 2018; 406-407:81-91. [DOI: 10.1016/j.tox.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/24/2022]
|
26
|
Awaad A, Adly MA, Hosny D. Spleen immunotoxicities induced by intra-testicular injection of magnetic nanoparticles and the role of Echinacea purpurea extract: a histological and immunohistochemical study. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1472857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Aziz Awaad
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed A. Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Doaa Hosny
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
27
|
Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem Toxicol 2018; 118:13-23. [PMID: 29709612 DOI: 10.1016/j.fct.2018.04.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022]
Abstract
Iron oxide nanoparticles (ION) have great potential for an increasing number of medical and biological applications, particularly those focused on nervous system. Although ION seem to be biocompatible and present low toxicity, it is imperative to unveil the potential risk for the nervous system associated to their exposure, especially because current data on ION effects on human nervous cells are scarce. Thus, in the present study potential toxicity associated with silica-coated ION (S-ION) exposure was evaluated on human A172 glioblastoma cells. To this aim, a complete toxicological screening testing several exposure times (3 and 24 h), nanoparticle concentrations (5-100 μg/ml), and culture media (complete and serum-free) was performed to firstly assess S-ION effects at different levels, including cytotoxicity - lactate dehydrogenase assay, analysis of cell cycle and cell death production - and genotoxicity - H2AX phosphorylation assessment, comet assay, micronucleus test and DNA repair competence assay. Results obtained showed that S-ION exhibit certain cytotoxicity, especially in serum-free medium, related to cell cycle disruption and cell death induction. However, scarce genotoxic effects and no alteration of the DNA repair process were observed. Results obtained in this work contribute to increase the knowledge on the impact of ION on the human nervous system cells.
Collapse
|
28
|
Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:977-990. [PMID: 29409836 PMCID: PMC5899012 DOI: 10.1016/j.nano.2018.01.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations.
Collapse
Affiliation(s)
- Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.
| |
Collapse
|
29
|
Xiong F, Huang S, Gu N. Magnetic nanoparticles: recent developments in drug delivery system. Drug Dev Ind Pharm 2018; 44:697-706. [PMID: 29370711 DOI: 10.1080/03639045.2017.1421961] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanostructured functional materials have demonstrated their great potentials in medical applications, attracting increasing attention because of the opportunities in cancer therapy and the treatment of other ailments. This article reviews the problems and recent advances in the development of magnetic NPs for drug delivery.
Collapse
Affiliation(s)
- Fei Xiong
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| | - Shengxin Huang
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| | - Ning Gu
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| |
Collapse
|
30
|
Xia Y, Chen H, Zhang F, Wang L, Chen B, Reynolds MA, Ma J, Schneider A, Gu N, Xu HHK. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:423-433. [PMID: 29355052 DOI: 10.1080/21691401.2018.1428813] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Literature search revealed no systematic report on iron oxide nanoparticle-incorporating calcium phosphate cement scaffolds (IONP-CPC). The objectives of this study were to: (1) use γFe2O3 nanoparticles (γIONPs) and αFe2O3 nanoparticles (αIONPs) to develop novel IONP-CPC scaffolds, and (2) investigate human dental pulp stem cells (hDPSCs) seeding on IONP-CPC for bone tissue engineering for the first time. IONP-CPC scaffolds were fabricated. Physiochemical properties of IONP-CPC scaffolds were characterized. hDPSC seeding on scaffolds, cell proliferation, osteogenic differentiation and bone matrix mineral synthesis by cells were measured. Our data demonstrated that the osteogenic differentiation of hDPSCs was markedly enhanced via IONP incorporation into CPC. Substantial increases (about three folds) in ALP activity and osteogenic gene expressions were achieved over those without IONPs. Bone matrix mineral synthesis by the cells was increased by two- to three folds over that without IONPs. The enhanced cellular osteogenesis was attributed to: (1) the surface nanotopography of IONP-CPC scaffold, and (2) the cell internalization of IONPs released from IONP-CPC scaffold. Our results demonstrate that the novel CPC functionalized with IONPs is promising to promote osteoinduction and bone regeneration. In conclusion, it is highly promising to incorporate γIONPs and αIONPs into CPC scaffold for bone tissue engineering, yielding substantially better stem cell attachment, spreading and osteogenic differentiation, and much greater bone mineral synthesis by the seeded cells. Therefore, novel CPC scaffolds containing γIONPs and αIONPs are promising for dental, craniofacial and orthopaedic applications to substantially enhance bone regeneration.
Collapse
Affiliation(s)
- Yang Xia
- a Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , China.,b Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , China.,c Department of Advanced Oral Sciences and Therapeutics , University of Maryland School of Dentistry , Baltimore , MD , USA
| | - Huimin Chen
- a Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , China
| | - Feimin Zhang
- a Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , China.,d Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China
| | - Lin Wang
- c Department of Advanced Oral Sciences and Therapeutics , University of Maryland School of Dentistry , Baltimore , MD , USA.,e VIP Integrated Department, School and Hospital of Stomatology , Jilin University , Changchun , China
| | - Bo Chen
- b Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , China
| | - Mark A Reynolds
- c Department of Advanced Oral Sciences and Therapeutics , University of Maryland School of Dentistry , Baltimore , MD , USA
| | - Junqing Ma
- a Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , China
| | - Abraham Schneider
- f Department of Oncology and Diagnostic Sciences , University of Maryland School of Dentistry , Baltimore , MD , USA
| | - Ning Gu
- b Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , China.,d Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China
| | - Hockin H K Xu
- c Department of Advanced Oral Sciences and Therapeutics , University of Maryland School of Dentistry , Baltimore , MD , USA.,g Center for Stem Cell Biology and Regenerative Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,h University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore , MD , USA
| |
Collapse
|
31
|
Shen F, Park JK. Toxicity Assessment of Iron Oxide Nanoparticles Based on Cellular Magnetic Loading Using Magnetophoretic Sorting in a Trapezoidal Microchannel. Anal Chem 2017; 90:920-927. [DOI: 10.1021/acs.analchem.7b03875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fengshan Shen
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
32
|
Dias CSB, Hanchuk TDM, Wender H, Shigeyosi WT, Kobarg J, Rossi AL, Tanaka MN, Cardoso MB, Garcia F. Shape Tailored Magnetic Nanorings for Intracellular Hyperthermia Cancer Therapy. Sci Rep 2017; 7:14843. [PMID: 29093500 PMCID: PMC5665982 DOI: 10.1038/s41598-017-14633-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/12/2017] [Indexed: 01/17/2023] Open
Abstract
ABSTARCT This work explores a new class of vortex/magnetite/iron oxide nanoparticles designed for magnetic hyperthermia applications. These nanoparticles, named Vortex Iron oxide Particles (VIPs), are an alternative to the traditional Superparamagnetic Iron Oxide Nanoparticles (SPIONs), since VIPs present superior heating power while fulfilling the main requirements for biomedical applications (low cytotoxicity and nonremanent state). In addition, the present work demonstrates that the synthesized VIPs also promote an internalization and aggregation of the particles inside the cell, resulting in a highly localized hyperthermia in the presence of an alternating magnetic field. Thereby, we demonstrate a new and efficient magnetic hyperthermia strategy in which a small, but well localized, concentration of VIPs can promote an intracellular hyperthermia process.
Collapse
Affiliation(s)
- Carlos S B Dias
- UNICAMP - State University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, CEP 13083-970, Brazil
- LNLS - Brazilian Synchrotron Light Source, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, CEP 13083-970, Caixa Postal, 6192, Brazil
| | - Talita D M Hanchuk
- UNICAMP - State University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, CEP 13083-970, Brazil
- LNBio - Brazilian Bioscience National Laboratory, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, CEP 13083-970, Caixa Postal, 6192, Brazil
| | - Heberton Wender
- UFMS - Federal University of Mato Grosso do Sul, Cidade Universitaria, Campo Grande, CEP 79070-900, Brazil
| | - Willian T Shigeyosi
- LNLS - Brazilian Synchrotron Light Source, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, CEP 13083-970, Caixa Postal, 6192, Brazil
- UFSCar - Federal University of São Carlos, Rodovia Washington Luís, Km 235, s/n, São Carlos, CEP 13565-905, Brazil
| | - Jörg Kobarg
- UNICAMP - State University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, CEP 13083-970, Brazil
| | - André L Rossi
- CBPF - Brazilian Center for Research in Physics, Rua Doutor Xavier Sigaud, 150, Rio de Janeiro, CEP-22290-180, Brazil
| | - Marcelo N Tanaka
- CBPF - Brazilian Center for Research in Physics, Rua Doutor Xavier Sigaud, 150, Rio de Janeiro, CEP-22290-180, Brazil
| | - Mateus B Cardoso
- LNLS - Brazilian Synchrotron Light Source, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, CEP 13083-970, Caixa Postal, 6192, Brazil.
- LNNano - Brazilian Nanotechnology National Laboratory, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, CEP 13083-970, Caixa Postal, 6192, Brazil.
| | - Flávio Garcia
- CBPF - Brazilian Center for Research in Physics, Rua Doutor Xavier Sigaud, 150, Rio de Janeiro, CEP-22290-180, Brazil.
| |
Collapse
|
33
|
Wu K, Schliep K, Zhang X, Liu J, Ma B, Wang JP. Characterizing Physical Properties of Superparamagnetic Nanoparticles in Liquid Phase Using Brownian Relaxation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604135. [PMID: 28374941 DOI: 10.1002/smll.201604135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/24/2017] [Indexed: 05/21/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used as bioimaging contrast agents, heating sources for tumor therapy, and carriers for controlled drug delivery and release to target organs and tissues. These applications require elaborate tuning of the physical and magnetic properties of the SPIONs. The authors present here a search-coil-based method to characterize these properties. The nonlinear magnetic response of SPIONs to alternating current magnetic fields induces harmonic signals that contain information of these nanoparticles. By analyzing the phase lag and harmonic ratios in the SPIONs, the authors can predict the saturation magnetization, the average hydrodynamic size, the dominating relaxation processes of SPIONs, and the distinction between single- and multicore particles. The numerical simulations reveal that the harmonic ratios are inversely proportional to saturation magnetizations and core diameters of SPIONs, and that the phase lag is dependent on the hydrodynamic volumes of SPIONs, which corroborate the experimental results. Herein, the authors stress the feasibility of using search coils as a method to characterize physical and magnetic properties of SPIONs, which may be applied as building blocks in nanoparticle characterization devices.
Collapse
Affiliation(s)
- Kai Wu
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karl Schliep
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiaowei Zhang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jinming Liu
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bin Ma
- Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Jian-Ping Wang
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
34
|
Stueckle TA, Davidson DC, Derk R, Kornberg TG, Schwegler-Berry D, Pirela SV, Deloid G, Demokritou P, Luanpitpong S, Rojanasakul Y, Wang L. Evaluation of tumorigenic potential of CeO 2 and Fe 2O 3 engineered nanoparticles by a human cell in vitro screening model. NANOIMPACT 2017; 6:39-54. [PMID: 28367517 PMCID: PMC5372702 DOI: 10.1016/j.impact.2016.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
With rapid development of novel nanotechnologies that incorporate engineered nanomaterials (ENMs) into manufactured products, long-term, low dose ENM exposures in occupational settings is forecasted to occur with potential adverse outcomes to human health. Few ENM human health risk assessment efforts have evaluated tumorigenic potential of ENMs. Two widely used nano-scaled metal oxides (NMOs), cerium oxide (nCeO2) and ferric oxide (nFe2O3) were screened in the current study using a sub-chronic exposure to human primary small airway epithelial cells (pSAECs). Multi-walled carbon nanotubes (MWCNT), a known ENM tumor promoter, was used as a positive control. Advanced dosimetry modeling was employed to ascertain delivered vs. administered dose in all experimental conditions. Cells were continuously exposed in vitro to deposited doses of 0.18 μg/cm2 or 0.06 μg/cm2 of each NMO or MWCNT, respectively, over 6 and 10 weeks, while saline- and dispersant-only exposed cells served as passage controls. Cells were evaluated for changes in several cancer hallmarks, as evidence for neoplastic transformation. At 10 weeks, nFe2O3- and MWCNT-exposed cells displayed a neoplastic-like transformation phenotype with significant increased proliferation, invasion and soft agar colony formation ability compared to controls. nCeO2-exposed cells showed increased proliferative capacity only. Isolated nFe2O3 and MWCNT clones from soft agar colonies retained their respective neoplastic-like phenotypes. Interestingly, nFe2O3-exposed cells, but not MWCNT cells, exhibited immortalization and retention of the neoplastic phenotype after repeated passaging (12 - 30 passages) and after cryofreeze and thawing. High content screening and protein expression analyses in acute exposure ENM studies vs. immortalized nFe2O3 cells, and isolated ENM clones, suggested that long-term exposure to the tested ENMs resulted in iron homeostasis disruption, an increased labile ferrous iron pool, and subsequent reactive oxygen species generation, a well-established tumorigenesis promotor. In conclusion, sub-chronic exposure to human pSAECs with a cancer hallmark screening battery identified nFe2O3 as possessing neoplastic-like transformation ability, thus suggesting that further tumorigenic assessment is needed.
Collapse
Affiliation(s)
- Todd A. Stueckle
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506
- Corresponding Author: Todd A. Stueckle, , Phone: 304 285-6098
| | - Donna C. Davidson
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
| | - Raymond Derk
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
| | - Tiffany G. Kornberg
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506
| | | | - Sandra V. Pirela
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston MA
| | - Glen Deloid
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston MA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston MA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506
| | - Liying Wang
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
| |
Collapse
|
35
|
Ludwig R, Teran FJ, Teichgraeber U, Hilger I. Nanoparticle-based hyperthermia distinctly impacts production of ROS, expression of Ki-67, TOP2A, and TPX2, and induction of apoptosis in pancreatic cancer. Int J Nanomedicine 2017; 12:1009-1018. [PMID: 28223795 PMCID: PMC5304998 DOI: 10.2147/ijn.s108577] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
So far, the therapeutic outcome of hyperthermia has shown heterogeneous responses depending on how thermal stress is applied. We studied whether extrinsic heating (EH, hot air) and intrinsic heating (magnetic heating [MH] mediated by nanoparticles) induce distinct effects on pancreatic cancer cells (PANC-1 and BxPC-3 cells). The impact of MH (100 µg magnetic nanoparticles [MNP]/mL; H=23.9 kA/m; f=410 kHz) was always superior to that of EH. The thermal effects were confirmed by the following observations: 1) decreased number of vital cells, 2) altered expression of pro-caspases, and 3) production of reactive oxygen species, and 4) altered mRNA expression of Ki-67, TOP2A, and TPX2. The MH treatment of tumor xenografts significantly (P≤0.05) reduced tumor volumes. This means that different therapeutic outcomes of hyperthermia are related to the different responses cells exert to thermal stress. In particular, intratumoral MH is a valuable tool for the treatment of pancreatic cancers.
Collapse
Affiliation(s)
- Robert Ludwig
- Department of Experimental Radiology, Institute for Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Francisco J Teran
- iMdea-Nanociencia, Campus Universitario de Cantoblanco; Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ulf Teichgraeber
- Department of Experimental Radiology, Institute for Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute for Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
36
|
Manshian BB, Himmelreich U, Soenen SJ. Standard Cellular Testing Conditions Generate an Exaggerated Nanoparticle Cytotoxicity Profile. Chem Res Toxicol 2016; 30:595-603. [PMID: 27982583 DOI: 10.1021/acs.chemrestox.6b00340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cellular internalization of nanoparticles (NPs) is key to many biomedical applications and serves as a model to investigate the potential toxicity of NPs on entire organisms. Large discrepancies between in vitro and in vivo nanotoxicity data however exist, suggesting that cellular systems may not be optimal for predictive in vivo toxicology. Here, we use validated multiparametric high-content imaging protocols to evaluate the impact of common cell culture conditions on NP cytotoxicity studies. The data show that high NP to cell ratios, typical for cellular studies, stress the cells by high endocytosis levels that overstimulate mitochondria, resulting in oxidative stress-mediated mitochondrial damage, which induces autophagy. Using proliferation-restricted models, we show that lowering endocytosis levels overcomes most toxicity while resulting in higher final cellular NP numbers. The data suggest that many common NP cytotoxicity mechanisms may partially be an artifact caused by overstimulated endocytosis.
Collapse
Affiliation(s)
- Bella B Manshian
- MoSAIC/Biomedical MRI Unit, Faculty of Medicine, KU Leuven , Herestraat 49, B3000 Leuven, Belgium
| | - Uwe Himmelreich
- MoSAIC/Biomedical MRI Unit, Faculty of Medicine, KU Leuven , Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J Soenen
- MoSAIC/Biomedical MRI Unit, Faculty of Medicine, KU Leuven , Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
37
|
Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol 2016; 38:53-63. [PMID: 27056797 DOI: 10.1016/j.jtemb.2016.03.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - Natalia Fernández-Bertólez
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain; Department of Cell and Molecular Biology, Universidade da Coruña, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain
| | - Gözde Kiliç
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Carla Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Solange Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Sonia Fraga
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Maria Joao Bessa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Eduardo Pásaro
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - João Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain.
| |
Collapse
|
38
|
Mou Y, Lv S, Xiong F, Han Y, Zhao Y, Li J, Gu N, Zhou J. Effects of different doses of 2,3-dimercaptosuccinic acid-modified Fe 2 O 3 nanoparticles on intercalated discs in engineered cardiac tissues. J Biomed Mater Res B Appl Biomater 2016; 106:121-130. [PMID: 27889952 DOI: 10.1002/jbm.b.33757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Although iron oxide nanoparticles (IRONs) were applied in clinical magnetic resonance imaging in vivo and magnetic tissue engineering in vitro widely, the underlying effects of IRONs on the development of cardiomyocytes especially the intercellular junctions, intercalated discs (IDs), remain an unknown issue. Given the critical role of three-dimensional (3D) engineered cardiac tissues (ECTs) in evaluation of nanoparticles toxicology, it remained necessary to understand the effects of IRONs on IDs assembly of cardiomyocytes in 3D environment. In this study, we first reconstituted collagen/Matrigel based ECTs in vitro and prepared IRONs with 2,3-dimercaptosuccinic acid (DMSA-IRONs). We found that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner was not associated with the cell distribution in 3D environment by determination of Prussian blue staining and transmission electronic microscopy. Significantly, through determination of western blotting and immunofluorescence of connexin 43, N-cadherin, desmoplakin, and plakoglobin, DMSA-IRONs enhanced the assembly of gap junctions, decreased mechanical junctions (adherens junctions and desmosomes) of cardiac cells but not in dose-dependent manner in ECTs at seventh day. In addition, DMSA-IRONs increased the vesicles secretion of cardiac cells in ECTs apparently compared to control groups. Overall, we conclude that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner enhanced the assembly of electrochemical junctions and decreased the mechanical related microstructures. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 121-130, 2018.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Shuanghong Lv
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People's Republic of China
| | - Yao Han
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Yuwei Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ning Gu
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
39
|
Abstract
Matters when converted into nanosize provide some unique surface properties, which are different from those of the bulk materials. Nanomaterials show some extraordinary behavioral patterns because of those properties, such as supermagnetism, quantum confinement, etc. A great deal of implication of nanomaterials in nanomedicine has already been realized. Utility of nanomaterials as drug nanocarrier projects many potential advantages of them in drug delivery. Despite many such advantages, the potential risk of health and environmental hazards related to them cannot be ignored. Here various physicochemical factors, such as chemical nature, degradability, surface properties, surface charge, particle size, and shape, have been shown to play a crucial role in toxicity related to drug nanocarriers. Evidence-based findings of some drug nanocarriers have been incorporated to provide distinct knowledge to the readers in the field. A glimpse of current regulatory controls and measures required to combat the challenges of toxicological aspects of drug nanocarriers have been described.
Collapse
|
40
|
Grosse S, Stenvik J, Nilsen AM. Iron oxide nanoparticles modulate lipopolysaccharide-induced inflammatory responses in primary human monocytes. Int J Nanomedicine 2016; 11:4625-4642. [PMID: 27695322 PMCID: PMC5028097 DOI: 10.2147/ijn.s113425] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Co-stimulation of the immune system to more than one agent concomitantly is very common in real life, and considering the increasing use of engineered nanoparticles and nanomaterials, it is highly relevant to assess the ability of these materials to modulate key innate immune responses, which has not yet been studied in detail. We investigated the immunomodulatory effects of 10 nm and 30 nm iron oxide nanoparticles (IONPs) on primary human monocytes in the presence and absence of Toll-like receptor 4 agonist lipopolysaccharide (LPS). Prior to the cell studies, we characterized the physicochemical properties of the nanoparticles in cell culture medium and ensured that the nanoparticles were free from biological contamination. Cellular uptake of the IONPs in monocytes was assessed using transmission electron microscopy. Using enzyme-linked immunosorbent assay, we found that the IONPs per se did not induce the production of proinflammatory cytokines tumor necrosis factor-α, interleukin-6, and interleukin-1β. However, the IONPs had the ability to suppress LPS-induced nuclear factor kappa B activation and production of proinflammatory cytokines in primary human monocytes in an LPS and a particle dose-dependent manner. Using confocal microscopy and fluorescently labeled LPS, we showed that the effects correlated with impaired LPS internalization by monocytes in the presence of IONPs, which could be partly explained by LPS adsorption onto the nanoparticle surface. Additionally, the results from particle pretreatment experiments indicate that other cellular mechanisms might also play a role in the observed effects, which warrants further studies to elucidate the additional mechanisms underlying the capacity of IONPs to alter the reactivity of monocytes to LPS and to mount an appropriate cellular response.
Collapse
Affiliation(s)
- Susann Grosse
- Department of Cancer Research and Molecular Medicine
| | - Jørgen Stenvik
- Department of Cancer Research and Molecular Medicine; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
41
|
Sabareeswaran A, Ansar EB, Harikrishna Varma PRV, Mohanan PV, Kumary TV. Effect of surface-modified superparamagnetic iron oxide nanoparticles (SPIONS) on mast cell infiltration: An acute in vivo study. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1523-33. [DOI: 10.1016/j.nano.2016.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/19/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
|
42
|
Ates M, Demir V, Arslan Z, Kaya H, Yılmaz S, Camas M. Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: Effects of particle morphology on accumulation, elimination, hematology and immune responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:22-32. [PMID: 27232508 PMCID: PMC4967404 DOI: 10.1016/j.aquatox.2016.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 05/06/2023]
Abstract
Effects of chronic exposure to alpha and gamma iron oxide nanoparticles (α-Fe2O3 and γ-Fe2O3 NPs) were investigated through exposure of tilapia (Oreochromis niloticus) to 0.1, 0.5 and 1.0mg/L (9.2×10(-4), 4.6×10(-3) and 9.2×10(-3)mM) aqueous suspensions for 60days. Fish were then transferred to NP-free freshwater and allowed to eliminate ingested NPs for 30days. The organs, including gills, liver, kidney, intestine, brain, spleen, and muscle tissue of the fish were analyzed to determine the accumulation, physiological distribution and elimination of the Fe2O3 NPs. Largest accumulation occurred in spleen followed by intestine, kidney, liver, gills, brain and muscle tissue. Fish exposed to γ-Fe2O3 NPs possessed significantly higher Fe in all organs. Accumulation in spleen was fast and independent of NP concentration reaching to maximum levels by the end of the first sampling period (30th day). Dissolved Fe levels in water were very negligible ranging at 4-6μg/L for α-Fe2O3 and 17-21μg/L for γ-Fe2O3 NPs (for 1mg/L suspensions). Despite that, Fe levels in gills and brain reflect more dissolved Fe accumulation from metastable γ-Fe2O3 polymorph. Ingested NPs cleared from the organs completely within 30-day elimination period, except the liver and spleen. Liver contained about 31% of α- and 46% of γ-Fe2O3, while spleen retained about 62% of α- and 35% of the γ-polymorph. No significant disturbances were observed in hematological parameters, including hemoglobin, hematocrit, red blood cell and white blood cell counts (p>0.05). Serum glucose (GLU) levels decreased in treatments exposed to 1.0mg/L of γ-Fe2O3 NPs at day 30 (p<0.05). In contrast, GLU levels increased during the elimination period for 1.0mg/L α-Fe2O3 NPs treatments (p<0.05). Transient increases occurred in glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and lactate dehydrogenase (LDH). Serum Fe levels did not change during exposure (p>0.05), but increased significantly within elimination period due to mobilization of ingested NPs from liver and spleen to blood. Though respiratory burst activity was not affected (p>0.05), lysozyme activity (LA) was suppressed suggesting an immunosuppressive effects from both Fe2O3 NPs (p<0.05). In contrast, myeloperoxidase (MPO) levels increased significantly in treatments exposed to α-Fe2O3 NPs (p<0.05), and the effect from γ-polymorph was marginal (p≥0.05). The results indicate that morphological differences of Fe2O3 NPs could induce differential uptake, assimilation and immunotoxic effects on O. niloticus under chronic exposure.
Collapse
Affiliation(s)
- Mehmet Ates
- Department of Bioengineering, Tunceli University, Faculty of Engineering, Tunceli, 62000, Turkey
| | - Veysel Demir
- Tunceli University, Faculty of Engineering, Department of Environmental Engineering, Tunceli, 62000, Turkey
| | - Zikri Arslan
- Department of Biochemistry and Chemistry, Jackson State University, Jackson, MS 39217 USA.
| | - Hasan Kaya
- Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Sevdan Yılmaz
- Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Mustafa Camas
- Department of Bioengineering, Tunceli University, Faculty of Engineering, Tunceli, 62000, Turkey
| |
Collapse
|
43
|
Matougui N, Boge L, Groo AC, Umerska A, Ringstad L, Bysell H, Saulnier P. Lipid-based nanoformulations for peptide delivery. Int J Pharm 2016; 502:80-97. [DOI: 10.1016/j.ijpharm.2016.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/28/2016] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
|
44
|
Miotto G, Magro M, Terzo M, Zaccarin M, Da Dalt L, Bonaiuto E, Baratella D, Gabai G, Vianello F. Protein corona as a proteome fingerprint: The example of hidden biomarkers for cow mastitis. Colloids Surf B Biointerfaces 2016; 140:40-49. [DOI: 10.1016/j.colsurfb.2015.11.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022]
|
45
|
Matuszak J, Baumgartner J, Zaloga J, Juenet M, da Silva AE, Franke D, Almer G, Texier I, Faivre D, Metselaar JM, Navarro FP, Chauvierre C, Prassl R, Dézsi L, Urbanics R, Alexiou C, Mangge H, Szebeni J, Letourneur D, Cicha I. Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing. Nanomedicine (Lond) 2016; 11:597-616. [DOI: 10.2217/nnm.15.216] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: We report the physicochemical analysis of nanosystems intended for cardiovascular applications and their toxicological characterization in static and dynamic cell culture conditions. Methods: Size, polydispersity and ζ-potential were determined in 10 nanoparticle systems including liposomes, lipid nanoparticles, polymeric and iron oxide nanoparticles. Nanoparticle effects on primary human endothelial cell viability were monitored using real-time cell analysis and live-cell microscopy in static conditions, and in a flow model of arterial bifurcations. Results & conclusions: The majority of tested nanosystems were well tolerated by endothelial cells up to the concentration of 100 μg/ml in static, and up to 400 μg/ml in dynamic conditions. Pilot experiments in a pig model showed that intravenous administration of liposomal nanoparticles did not evoke the hypersensitivity reaction. These findings are of importance for future clinical use of nanosystems intended for intravascular applications.
Collapse
Affiliation(s)
- Jasmin Matuszak
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| | - Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Science Park Golm, Potsdam, Germany
| | - Jan Zaloga
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| | - Maya Juenet
- Inserm U1148, LVTS, Paris Diderot University, Paris 13 University, Sorbonne Paris Cité, X. Bichat Hospital, Paris, France
| | - Acarília Eduardo da Silva
- Department of Targeted Therapeutics, MIRA Institute, University of Twente, Enschede, The Netherlands
| | | | - Gunter Almer
- Clinical Institute of Medical & Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Isabelle Texier
- CEA-LETI MINATEC/DTBS, Université Grenoble Alpes, Grenoble, France
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Science Park Golm, Potsdam, Germany
| | - Josbert M Metselaar
- Department of Targeted Therapeutics, MIRA Institute, University of Twente, Enschede, The Netherlands
- Department of Experimental Molecular Imaging, University Clinic & Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | | | - Cédric Chauvierre
- Inserm U1148, LVTS, Paris Diderot University, Paris 13 University, Sorbonne Paris Cité, X. Bichat Hospital, Paris, France
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - László Dézsi
- Nanomedicine Research & Education Center, Semmelweis University, Budapest, Hungary
| | | | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| | - Harald Mangge
- Clinical Institute of Medical & Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - János Szebeni
- Nanomedicine Research & Education Center, Semmelweis University, Budapest, Hungary
- SeroScience Ltd., Budapest, Hungary
| | - Didier Letourneur
- Inserm U1148, LVTS, Paris Diderot University, Paris 13 University, Sorbonne Paris Cité, X. Bichat Hospital, Paris, France
| | - Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| |
Collapse
|
46
|
Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 2015; 44:8576-607. [PMID: 26390044 PMCID: PMC4648695 DOI: 10.1039/c5cs00541h] [Citation(s) in RCA: 531] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron oxide nanoparticles (IONPs) have been extensively used during the last two decades, either as effective bio-imaging contrast agents or as carriers of biomolecules such as drugs, nucleic acids and peptides for controlled delivery to specific organs and tissues. Most of these novel applications require elaborate tuning of the physiochemical and surface properties of the IONPs. As new IONPs designs are envisioned, synergistic consideration of the body's innate biological barriers against the administered nanoparticles and the short and long-term side effects of the IONPs become even more essential. There are several important criteria (e.g. size and size-distribution, charge, coating molecules, and plasma protein adsorption) that can be effectively tuned to control the in vivo pharmacokinetics and biodistribution of the IONPs. This paper reviews these crucial parameters, in light of biological barriers in the body, and the latest IONPs design strategies used to overcome them. A careful review of the long-term biodistribution and side effects of the IONPs in relation to nanoparticle design is also given. While the discussions presented in this review are specific to IONPs, some of the information can be readily applied to other nanoparticle systems, such as gold, silver, silica, calcium phosphates and various polymers.
Collapse
Affiliation(s)
- Hamed Arami
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| | - Amit Khandhar
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington, 98195
| | - Kannan M. Krishnan
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
47
|
Kim SJ, Lewis B, Steiner MS, Bissa UV, Dose C, Frank JA. Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:55-64. [PMID: 26234504 DOI: 10.1002/cmmi.1658] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/05/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
To develop effective stem cell therapies, it is important to track therapeutic cells non-invasively and monitor homing to areas of pathology. The purpose of this study was to design and evaluate the labeling efficiency of commercially available dextran-coated superparamagnetic iron oxide nanoparticles, FeraTrack Direct (FTD), in various stem and immune cells; assess the cytotoxicity and tolerability of the FTD in stem cells; and monitor stem cell homing using FTD-labeled bone-marrow-derived mesenchymal stromal cells (BMSCs) and neural stem cells (NSCs) in a tumor model by in vivo MRI. BMSCs, NSCs, hematopoietic stem cells (HSCs), T-lymphocytes, and monocytes were labeled effectively with FTD without the need for transfection agents, and Prussian blue (PB) staining and transmission electron microscopy (TEM) confirmed intracellular uptake of the agent. The viability, proliferation, and functionality of the labeled cells were minimally or not affected after labeling. When 10(6) FTD-labeled BMSCs or NSCs were injected into C6 glioma bearing nude mice, the cells homing to the tumors were detected as hypointense regions within the tumor using 3 T clinical MRI up to 10 days post injection. Histological analysis confirmed the homing of injected cells to the tumor by the presence of PB positive cells that are not macrophages. Labeling of stem cells or immune cells with FTD was non-toxic, and should facilitate the translation of this agent to clinical trials for evaluation of trafficking of cells by MRI.
Collapse
Affiliation(s)
- Saejeong J Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bobbi Lewis
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Cell compatibility of a maghemite/polymer biomedical nanoplatform. Toxicol In Vitro 2015; 29:962-75. [DOI: 10.1016/j.tiv.2015.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/19/2022]
|
49
|
Zhang Y, Zhu L, Zhou Y, Chen J. Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. J Environ Sci (China) 2015; 30:223-230. [PMID: 25872731 DOI: 10.1016/j.jes.2014.08.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/21/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
A 52-day continuous semi-static waterborne exposure (test media renewed daily) regimen was employed to investigate the accumulation and elimination profiles of two iron oxide nanomaterials (nano-Fe2O3 and nano-Fe3O4) in zebrafish (Danio rerio). Adult zebrafish were exposed to nanomaterial suspensions with initial concentrations of 4.0 and 10.0 mg/L for 28 days and then were moved to clean water for 24 days to perform the elimination experiment. Fe content was measured in fish body and feces to provide data on accumulation and elimination of the two iron oxide nanomaterials in zebrafish. The experiment revealed that: (1) high accumulation of nano-Fe2O3 and nano-Fe3O4 were found in zebrafish, with maximum Fe contents, respectively, of 1.32 and 1.25 mg/g for 4.0 mg/L treatment groups and 1.15 and 0.90 mg/g for 10.0 mg/L treatment groups; (2) accumulated nanoparticles in zebrafish can be eliminated efficiently (the decrease of body burden of Fe conforms to a first-order decay equation) when fish were moved to nanoparticle-free water, and the elimination rates ranged from 86% to 100% by 24 days post-exposure; and (3) according to analysis of Fe content in fish excrement in the elimination phase, iron oxide nanomaterials may be adsorbed via the gastrointestinal tract, and stored for more than 12days.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Lin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Ya Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jimiao Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Zhang Y, Wei G, Yu J, Birch DJS, Chen Y. Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: application to endocytosis study and RNA detection. Faraday Discuss 2015; 178:383-94. [PMID: 25778775 DOI: 10.1039/c4fd00199k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previously we have demonstrated surface plasmon enhanced energy transfer between fluorophores and gold nanorods under two-photon excitation using fluorescence lifetime imaging microscopy (FLIM) in both solution and intracellular phases. These studies demonstrated that gold nanoparticle-dye energy transfer combinations are appealing, not only in Förster resonance energy transfer (FRET) imaging, but also energy transfer-based fluorescence lifetime sensing of bio-analytes. Here, we apply this approach to study the internalization of gold nanorods (GNRs) in HeLa cells using the early endosome labeling marker GFP. The observed energy transfer between GFP and the GNRs indicates the involvement of endocytosis in GNR uptake. Moreover, a novel nanoprobe based on oligonucleotide functionalized gold nanorods for nucleic acid sensing via dye-GNRs energy transfer is demonstrated, potentially opening up new possibilities in cancer diagnosis and prognosis. The influence of oligonucleotide design on such nanoprobe performance was studied for the first time using time-resolved fluorescence spectroscopy, bringing new insights to the optimization of the nanoprobe.
Collapse
Affiliation(s)
- Yinan Zhang
- Department of Physics, Strathclyde University, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, UK.
| | | | | | | | | |
Collapse
|