1
|
Ihnatsyeu-Kachan A, Saichuk A, Sharko O, Zhogla V, Abashkin V, Le Goff W, Shmanai V, Shcharbin D, Guillas I, Kim S. Biomimetic high-density lipoprotein nanoparticles for the delivery of nucleic acid-based therapeutics. Biotechnol Adv 2025:108606. [PMID: 40398645 DOI: 10.1016/j.biotechadv.2025.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/10/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
The field of delivering nucleic acids (NAs) via high-density lipoprotein-mimicking nanoparticles (HDL NPs) has shown promising advancements over the past two decades. HDL NPs are designed to efficiently bind NAs, safeguard them from degradation, and help navigate through various biological barriers to deliver them into the target cell's cytosol. Some HDL NPs allow direct cytosolic delivery of NAs by a selective mechanism with the involvement of HDL's natural receptor scavenger receptor class B type I (SR-B1). In contrast, others rely on endocytic uptake of the entire NA-loaded HDL NP. Owing to their highly biocompatible nature, ability to target clinically relevant receptors, and fine tunability, NA-loaded HDL NPs are applied to treat cancer, cardiovascular diseases, and brain malignancies. They are also emerging as potent vaccines against cancers and infectious diseases. This review focuses on various architectures of NA-loaded HDL NPs, their mechanisms for NA cellular uptake, and their therapeutic efficacy in vivo. It comprehensively covers the latest nanocarriers for NA delivery that contain HDL's apolipoproteins (ApoA-I, ApoE) or their mimetic peptides, which define the unique functional and targeting capabilities of HDL NPs.
Collapse
Affiliation(s)
- Aliaksei Ihnatsyeu-Kachan
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; INSERM UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne University, 91 boulevard de l'Hôpital, 75013 Paris, France.
| | - Anastasiia Saichuk
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea
| | - Olga Sharko
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Surganova 13, 220072 Minsk, Belarus
| | - Victoriya Zhogla
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Wilfried Le Goff
- INSERM UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne University, 91 boulevard de l'Hôpital, 75013 Paris, France.
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Surganova 13, 220072 Minsk, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Isabelle Guillas
- INSERM UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne University, 91 boulevard de l'Hôpital, 75013 Paris, France.
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Anam-ro 145, Seongbuk-gu, 02841 Seoul, Republic of Korea.
| |
Collapse
|
2
|
Ihnatsyeu-Kachan A, Sharko O, Bekish A, Saichuk A, Zhogla V, Abashkin V, Ulashchik E, Shcharbin D, Le Goff W, Kontush A, Guillas I, Shmanai V, Kim S. High-density lipoprotein-like nanoparticles with cationic cholesterol derivatives for siRNA delivery. BIOMATERIALS ADVANCES 2025; 170:214202. [PMID: 39923604 DOI: 10.1016/j.bioadv.2025.214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
A new approach to siRNA delivery using high-density lipoprotein-like nanoparticles (HDL NPs) was investigated, incorporating oligoamine and cholesterol-derived cationic lipids (CLs) to associate siRNA with the carrier. Newly designed or commercially available compounds, including GL67 and 3-β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Cholesterol), were tested for siRNA binding, cytotoxicity, and siRNA cellular uptake. GL67 emerged as the most promising CL for siRNA delivery via HDL NPs. While it contributed to substantial siRNA uptake and cytosolic delivery in HepG2 cells, gene silencing remained limited, indicating a need for further optimization. Despite this, the study highlights the potential of positively charged cholesterol derivatives for siRNA delivery using HDL NPs. An analysis of the relationship between CL head group structure and HDL NPs' siRNA binding efficiency and cytotoxicity showed that factors such as oligoamine molecule conjugation site, linker type, amine group ethylation, and alkyl chain length between amine groups are crucial for optimizing CL design. Furthermore, the phospholipid environment surrounding CLs significantly influences HDL NPs' performance, particularly in siRNA cellular uptake. The study also revealed that intracellular siRNA trafficking varies by cell type, emphasizing the importance of customizing HDL NP formulations for specific cells. These insights are important for designing more effective HDL NPs for siRNA therapeutic delivery.
Collapse
Affiliation(s)
- Aliaksei Ihnatsyeu-Kachan
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02841, Republic of Korea; Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, 91 Boulevard de l'Hôpital, Paris, 75013, France
| | - Olga Sharko
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Andrei Bekish
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Anastasiia Saichuk
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Victoriya Zhogla
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - Egor Ulashchik
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - Wilfried Le Goff
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, 91 Boulevard de l'Hôpital, Paris, 75013, France
| | - Anatol Kontush
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, 91 Boulevard de l'Hôpital, Paris, 75013, France
| | - Isabelle Guillas
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, 91 Boulevard de l'Hôpital, Paris, 75013, France
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
3
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Sharma R, Narum S, Liu S, Dong Y, Baek KI, Jo H, Salaita K. Nanodiscoidal Nucleic Acids for Gene Regulation. ACS Chem Biol 2023; 18:2349-2367. [PMID: 37910400 PMCID: PMC10660333 DOI: 10.1021/acschembio.3c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Therapeutic nucleic acids represent a powerful class of drug molecules to control gene expression and protein synthesis. A major challenge in this field is that soluble oligonucleotides have limited serum stability, and the majority of nucleic acids that enter the cells are trapped within endosomes. Delivery efficiency can be improved using lipid scaffolds. One such example is the nanodisc (ND), a self-assembled nanostructure composed of phospholipids and peptides and modeled after high density lipoproteins (HDLs). Herein, we describe the development of the nanodiscoidal nucleic acid (NNA) which is a ND covalently modified with nucleic acids on the top and bottom lipid faces as well as the lateral peptide belt. The 13 nm ND was doped with thiolated phospholipids and thiol-containing peptides and coupled in a one-pot reaction with oligonucleotides to achieve ∼30 DNA/NNA nucleic acid density. NNAs showed superior nuclease resistance and enhanced cellular uptake that was mediated through the scavenger receptor B1. Time-dependent Förster resonance energy transfer (FRET) analysis of internalized NNA confirmed that NNAs display increased stability. NNAs modified with clinically validated antisense oligonucleotides (ASOs) that target hypoxia inducible factor 1-α (HIF-1-α) mRNA showed enhanced activity compared with that of the soluble DNA across multiple cell lines as well as a 3D cancer spheroid model. Lastly, in vivo experiments show that ASO-modified NNAs are primarily localized into livers and kidneys, and NNAs were potent in downregulating HIF-1-α using 5-fold lower doses than previously reported. Collectively, our results highlight the therapeutic potential for NNAs.
Collapse
Affiliation(s)
- Radhika Sharma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Steven Narum
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Shuhong Liu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Kyung In Baek
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Hanjoong Jo
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Ferro-Flores G, González-Romero C, Mercado-López A, García-Marín R, Santos-Cuevas C, Estrada JA, Morales-Avila E. Engineered rHDL Nanoparticles as a Suitable Platform for Theranostic Applications. Molecules 2022; 27:7046. [PMID: 36296638 PMCID: PMC9610567 DOI: 10.3390/molecules27207046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/27/2023] Open
Abstract
Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.
Collapse
Affiliation(s)
- Liliana Aranda-Lara
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Carlos González-Romero
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Alfredo Mercado-López
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Rodrigo García-Marín
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - José A. Estrada
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Enrique Morales-Avila
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| |
Collapse
|
6
|
Ávila-Sánchez MA, Isaac-Olivé K, Aranda-Lara L, Morales-Ávila E, Plata-Becerril A, Jiménez-Mancilla NP, Ocampo-García B, Estrada JA, Santos-Cuevas CL, Torres-García E, Camacho-López MA. Targeted photodynamic therapy using reconstituted high-density lipoproteins as rhodamine transporters. Photodiagnosis Photodyn Ther 2021; 37:102630. [PMID: 34798347 DOI: 10.1016/j.pdpdt.2021.102630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/09/2021] [Accepted: 11/12/2021] [Indexed: 01/10/2023]
Abstract
Reconstituted high-density lipoprotein (rHDL) nanoparticles are excellent transporters of molecules and very useful for targeted therapy as they specifically recognize the scavenger receptor, class B1 (SR-B1) that is present on the surface of a wide range of tumor cells. However, they have rarely been employed to transport photosensitizers (PS) for photodynamic therapy (PDT). Rhodamine (R) compounds have been dismissed as useful PSs for PDT due to their low 1O2 production, excitation wavelengths with little tissue penetration, and poor selectivity for tumor cells. It was recently demonstrated that when irradiating at 532 nm or with Cerenkov radiation (CR) from a β-emitting radionuclide, R123, R6G, and RB undergo electron transfer reactions (type I reaction) with folic acid. R6G also produces type I reactions with O2. In this work, the photodynamic effects of the rHDL-R system were evaluated in vitro. rHDL nanoparticles loaded with R123, R6G, and RB were synthesized, and the PS was internalized into T47D tumor cells. When cells were irradiated with a 532-nm laser in the presence of an rHDL-R systems, a cytotoxic photodynamic effect was obtained in the order R6G > R123 > RB. In the presence of CR from a 177Lu source, cytotoxicity showed the order R6G > RB > R123. The higher cytotoxicity induced by R6G in both cases corresponds to higher cellular internalization and larger production of type I and II reactions. Thus, in this work, it is proposed that rHDL-R/177Lu system can be applied in theragnostics as a multimodal radiotherapy-PDT-imaging system (imaging by SPECT or Cerenkov) and in hypoxic solid tumors in which external radiation is not effective and 177Lu-CR acts as light source.
Collapse
Affiliation(s)
- Marcela A Ávila-Sánchez
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico.
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico.
| | - Enrique Morales-Ávila
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, Mexico
| | - Adriana Plata-Becerril
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, Mexico
| | - Nallely P Jiménez-Mancilla
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, Mexico.
| | - Blanca Ocampo-García
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, Mexico
| | - José A Estrada
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| | - Clara L Santos-Cuevas
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| | - Miguel A Camacho-López
- Laboratorio de Fotomedicina, Biofotónica y Espectroscopía Láser de Pulsos Ultracortos, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| |
Collapse
|
7
|
Asrorov AM, Gu Z, Li F, Liu L, Huang Y. Biomimetic camouflage delivery strategies for cancer therapy. NANOSCALE 2021; 13:8693-8706. [PMID: 33949576 DOI: 10.1039/d1nr01127h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer remains a significant challenge despite the progress in developing different therapeutic approaches. Nanomedicine has been explored as a promising novel cancer therapy. Recently, biomimetic camouflage strategies have been investigated to change the bio-fate of therapeutics and target cancer cells while reducing the unwanted exposure on normal tissues. Endogenous components (e.g., proteins, polysaccharides, and cell membranes) have been used to develop anticancer drug delivery systems. These biomimetic systems can overcome biological barriers and enhance tumor cell-specific uptake. The tumor-targeting mechanisms include ligand-receptor interactions and stimuli-responsive (e.g., pH-sensitive and light-sensitive) delivery. Drug delivery carriers composed of endogenous components represent a promising approach for improving cancer treatment efficacy. In this paper, different biomimetic drug delivery strategies for cancer treatment are reviewed with a focus on the discussion of their advantages and potential applications.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China. and Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 83, M. Ulughbek Street, Tashkent 100125, Uzbekistan
| | - Zeyun Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Feng Li
- Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Lingyun Liu
- First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China. and Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528437, China and NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| |
Collapse
|
8
|
He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201910566] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/16/2020] [Indexed: 01/04/2025]
Abstract
AbstractBiopharmaceuticals have emerged to play a vital role in disease treatment and have shown promise in the rapidly expanding pharmaceutical market due to their high specificity and potency. However, the delivery of these biologics is hindered by various physiological barriers, owing primarily to the poor cell membrane permeability, low stability, and increased size of biologic agents. Since many biological drugs are intended to function by interacting with intracellular targets, their delivery to intracellular targets is of high relevance. In this review, the authors summarize and discuss the use of nanocarriers for intracellular delivery of biopharmaceuticals via endosomal escape and, especially, the routes of direct cytosolic delivery by means including the caveolae‐mediated pathway, contact release, intermembrane transfer, membrane fusion, direct translocation, and membrane disruption. Strategies with high potential for translation are highlighted. Finally, the authors conclude with the clinical translation of promising carriers and future perspectives.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xuyang Xing
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xiaoling Wang
- School of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China School of Pharmacy Fudan University Shanghai 201203 China
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
9
|
Gracia G, Cao E, Feeney OM, Johnston APR, Porter CJH, Trevaskis NL. High-Density Lipoprotein Composition Influences Lymphatic Transport after Subcutaneous Administration. Mol Pharm 2020; 17:2938-2951. [DOI: 10.1021/acs.molpharmaceut.0c00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| | - Orlagh M. Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| | - Christopher J. H. Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| | - Natalie L. Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| |
Collapse
|
10
|
He Q, Guo Z, Fu M, Tang H, Zhu H, Shen G, He Y, Lei P. Establishment of a hTfR mAb-functionalized HPPS theranostic nanoplatform. Nanotheranostics 2020; 4:119-128. [PMID: 32328439 PMCID: PMC7171386 DOI: 10.7150/ntno.41741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Rational: Many efforts have been made to develop ligand-directed nanotheranostics in cancer management which could afford both therapeutic and diagnostic functions as well as tumor-tailored targeting. Theranostic nanoplatform targeting transferrin receptor (TfR) is an effective system for favorable delivery of diagnostic and therapeutic agents to malignancy site. Methods: To enable amalgamation of therapy and diagnosis to many TfR+ tumor, hTfR (human TfR) monoclonal antibody (mAb)-functionalized HPPS nanoparticle (HPPS-mAb) was prepared with hTfR mAb on the shell and with fluorophore DiR-BOA in the core. The targeting specificity was investigated in vitro by immunostaining and in vivo using a double-tumor-engrafted mouse model. HPPS-mAb/siRNA effect on HepG2 cells was determined by RT-PCR and western blot. Results: HPPS-mAb could specifically target cancer cells through TfR and achieve tumor accumulation at an early valuable time node, thus efficiently delivering therapeutic survivin siRNA into TfR+ HepG2 cells and mediating cell apoptosis. DiR-BOA can act as an imaging tool to diagnose cancer. Conclusions: Our studies provide a promising TfR mAb-directed theranostic nanoplatform candidate in tumor molecular imaging and in TfR targeted tumor therapy.
Collapse
Affiliation(s)
- Qi He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Transfusion Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Zilong Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingpeng Fu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Cruz W, Huang H, Barber B, Pasini E, Ding L, Zheng G, Chen J, Bhat M. Lipoprotein-Like Nanoparticle Carrying Small Interfering RNA Against Spalt-Like Transcription Factor 4 Effectively Targets Hepatocellular Carcinoma Cells and Decreases Tumor Burden. Hepatol Commun 2020; 4:769-782. [PMID: 32363325 PMCID: PMC7193129 DOI: 10.1002/hep4.1493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/29/2020] [Indexed: 01/09/2023] Open
Abstract
Patients with advanced hepatocellular carcinoma (HCC) are often unable to tolerate chemotherapy due to liver dysfunction in the setting of cirrhosis. We investigate high-density lipoprotein (HDL)-mimicking peptide phospholipid scaffold (HPPS), which are nanoparticles that capitalize on normal lipoprotein metabolism and transport, as a solution for directed delivery of small interfering RNA (siRNA) cargo into HCC cells. Spalt-like transcription factor 4 (SALL4), a fetal oncoprotein expressed in aggressive HCCs, is specifically targeted as a case study to evaluate the efficacy of HPPS carrying siRNA cargo. HPPS containing different formulations of siRNA therapy against SALL4 were generated specifically for HCC cells. These were investigated both in vitro and in vivo using fluorescence imaging. HPPS-SALL4 effectively bound to scavenger receptor, class B type 1 (SR-BI) and delivered the siRNA cargo into HCC cells, as seen in vitro. HPPS-SALL4 effectively inhibited HCC tumor growth (P < 0.05) and induced a 3-fold increase in apoptosis of the cancer cells in vivo compared to HPPS-scramble. Additionally, there was no immunogenicity associated with HPPS-SALL4 as measured by cytokine production. Conclusion: We have developed unique HDL-like nanoparticles that directly deliver RNA interference (RNAi) therapy against SALL4 into the cytosol of HCC cells, effectively inhibiting HCC tumor growth without any systemic immunogenicity. This therapeutic modality avoids the need for hepatic metabolism in this cancer, which develops in the setting of cirrhosis and liver dysfunction. These natural lipoprotein-like nanoparticles with RNAi therapy are a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- William Cruz
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,DLVR Therapeutics University of Toronto Toronto ON Canada
| | - Huang Huang
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,DLVR Therapeutics University of Toronto Toronto ON Canada
| | - Brian Barber
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,DLVR Therapeutics University of Toronto Toronto ON Canada
| | - Elisa Pasini
- Multi Organ Transplant Program University Health Network Toronto ON Canada
| | - Lili Ding
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,Department of Medical Biophysics University of Toronto Toronto ON Canada
| | - Juan Chen
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
| | - Mamatha Bhat
- Multi Organ Transplant Program University Health Network Toronto ON Canada.,Division of Gastroenterology Department of Medicine University Health Network and University of Toronto Toronto ON Canada
| |
Collapse
|
12
|
Osborn MF, Coles AH, Biscans A, Haraszti RA, Roux L, Davis S, Ly S, Echeverria D, Hassler MR, Godinho BMDC, Nikan M, Khvorova A. Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways. Nucleic Acids Res 2019; 47:1070-1081. [PMID: 30535404 PMCID: PMC6379714 DOI: 10.1093/nar/gky1232] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Efficient delivery of therapeutic RNA beyond the liver is the fundamental obstacle preventing its clinical utility. Lipid conjugation increases plasma half-life and enhances tissue accumulation and cellular uptake of small interfering RNAs (siRNAs). However, the mechanism relating lipid hydrophobicity, structure, and siRNA pharmacokinetics is unclear. Here, using a diverse panel of biologically occurring lipids, we show that lipid conjugation directly modulates siRNA hydrophobicity. When administered in vivo, highly hydrophobic lipid-siRNAs preferentially and spontaneously associate with circulating low-density lipoprotein (LDL), while less lipophilic lipid-siRNAs bind to high-density lipoprotein (HDL). Lipid-siRNAs are targeted to lipoprotein receptor-enriched tissues, eliciting significant mRNA silencing in liver (65%), adrenal gland (37%), ovary (35%), and kidney (78%). Interestingly, siRNA internalization may not be completely driven by lipoprotein endocytosis, but the extent of siRNA phosphorothioate modifications may also be a factor. Although biomimetic lipoprotein nanoparticles have been explored for the enhancement of siRNA delivery, our findings suggest that hydrophobic modifications can be leveraged to incorporate therapeutic siRNA into endogenous lipid transport pathways without the requirement for synthetic formulation.
Collapse
Affiliation(s)
- Maire F Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loic Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah Davis
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mehran Nikan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Pottash AE, Kuffner C, Noonan-Shueh M, Jay SM. Protein-based vehicles for biomimetic RNAi delivery. J Biol Eng 2019; 13:19. [PMID: 30891095 PMCID: PMC6390323 DOI: 10.1186/s13036-018-0130-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022] Open
Abstract
Broad translational success of RNA interference (RNAi) technology depends on the development of effective delivery approaches. To that end, researchers have developed a variety of strategies, including chemical modification of RNA, viral and non-viral transfection approaches, and incorporation with delivery vehicles such as polymer- and lipid-based nanoparticles, engineered and native proteins, extracellular vesicles (EVs), and others. Among these, EVs and protein-based vehicles stand out as biomimetically-inspired approaches, as both proteins (e.g. Apolipoprotein A-1, Argonaute 2, and Arc) and EVs mediate intercellular RNA transfer physiologically. Proteins specifically offer significant therapeutic potential due to their biophysical and biochemical properties as well as their ability to facilitate and tolerate manipulation; these characteristics have made proteins highly successful translational therapeutic molecules in the last two decades. This review covers engineered protein vehicles for RNAi delivery along with what is currently known about naturally-occurring extracellular RNA carriers towards uncovering design rules that will inform future engineering of protein-based vehicles.
Collapse
Affiliation(s)
- Alex Eli Pottash
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Christopher Kuffner
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Madeleine Noonan-Shueh
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Steven M Jay
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA.,2Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA.,3Program in Molecular and Cellular Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
14
|
Biomimetic nano-surfactant stabilizes sub-50 nanometer phospholipid particles enabling high paclitaxel payload and deep tumor penetration. Biomaterials 2018; 181:240-251. [PMID: 30096559 DOI: 10.1016/j.biomaterials.2018.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/05/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
Sub-50 nm nanoparticles feature long circulation and deep tumor penetration. However, at high volume fractions needed for intravenous injection, safe, highly biocompatible phospholipids cannot form such nanoparticles due to the fluidity of phospholipid shells. Here we overcome this challenge using a nano-surfactant, a sterilized 18-amino-acid biomimetic of the amphipathic helical motif abundant in HDL-apolipoproteins. As it induces a nanoscale phase (glass) transition in the phospholipid monolayer, the peptide stabilizes 5-7 nm phospholipid micelles that do not fuse at high concentrations but aggregate into stable micellesomes exhibiting size-dependent penetration into tumors. In mice bearing human Her-2-positive breast cancer xenografts, high-payload paclitaxel encapsulated in 25 nm (diameter) micellesomes kills more cancer cells than paclitaxel in standard clinical formulation, as evidenced by the enhanced apparent diffusion coefficient of water determined by in vivo MR imaging. Importantly, the bio-inertness of this biomimetic nano-surfactant spares the nanoparticles from being absorbed by liver hepatocytes, making them more generally available for drug delivery.
Collapse
|
15
|
Lipoproteins for therapeutic delivery: recent advances and future opportunities. Ther Deliv 2018; 9:257-268. [DOI: 10.4155/tde-2017-0122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The physiological role(s) of mammalian plasma lipoproteins is to transport hydrophobic molecules (primarily cholesterol and triacylglycerols) to their respective destinations. Lipoproteins have also been studied as drug-delivery agents due to their advantageous payload capacity, long residence time in the circulation and biocompatibility. The purpose of this review is to briefly discuss current findings with the focus on each type of formulation's potential for clinical applications. Regarding utilizing lipoprotein type formulation for cancer therapeutics, their potential for tumor-selective delivery is also discussed.
Collapse
|
16
|
Ma X, Song Q, Gao X. Reconstituted high-density lipoproteins: novel biomimetic nanocarriers for drug delivery. Acta Pharm Sin B 2018; 8:51-63. [PMID: 29872622 PMCID: PMC5985628 DOI: 10.1016/j.apsb.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/23/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Abstract
High-density lipoproteins (HDL) are naturally-occurring nanoparticles that are biocompatible, non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and transport lipids, proteins and microRNA from donor cells to recipient cells. Based on their intrinsic targeting properties, HDL are regarded as promising drug delivery systems. In order to produce on a large scale and to avoid blood borne pollution, reconstituted high-density lipoproteins (rHDL) possessing the biological properties of HDL have been developed. This review summarizes the biological properties and biomedical applications of rHDL as drug delivery platforms. It focuses on the emerging approaches that have been developed for the generation of biomimetic nanoparticles rHDL to overcome the biological barriers to drug delivery, aiming to provide an alternative, promising avenue for efficient targeting transport of nanomedicine.
Collapse
Affiliation(s)
| | | | - Xiaoling Gao
- Corresponding author. Tel.: +86 21 63846590 776945.
| |
Collapse
|
17
|
Abstract
High-density lipoprotein (HDL) and low-density lipoprotein (LDL), as human endogenous lipoprotein particles, have low toxicity, high selectivity, and good safety. They can avoid the recognition and clearance of human reticuloendothelial system. These synthetic lipoproteins (sLPs) have been attracted extensive attention as the nanovectors for tumor-targeted drug and gene delivery. Herein, recent advances in the field of anticancer based on these two lipid proteins and recombinant lipoproteins (rLPs) as target delivery vectors were analyzed and discussed.
Collapse
Affiliation(s)
- Xueqin Zhang
- Active Carbohydrate Research Center, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| | - Gangliang Huang
- Active Carbohydrate Research Center, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| |
Collapse
|
18
|
Kato T, Lee D, Huang H, Cruz W, Ujiie H, Fujino K, Wada H, Patel P, Hu HP, Hirohashi K, Nakajima T, Sato M, Kaji M, Kaga K, Matsui Y, Chen J, Zheng G, Yasufuku K. Personalized siRNA-Nanoparticle Systemic Therapy using Metastatic Lymph Node Specimens Obtained with EBUS-TBNA in Lung Cancer. Mol Cancer Res 2017; 16:47-57. [PMID: 28993508 DOI: 10.1158/1541-7786.mcr-16-0341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/25/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Inhibiting specific gene expression with siRNA provides a new therapeutic strategy to tackle many diseases at the molecular level. Recent strategies called high-density lipoprotein (HDL)-mimicking peptide-phospholipid nanoscaffold (HPPS) nanoparticles have been used to induce siRNAs-targeted delivery to scavenger receptor class B type I receptor (SCARB1)-expressing cancer cells with high efficiency. Here, eight ideal therapeutic target genes were identified for advanced lung cancer throughout the screenings using endobronchial ultrasonography-guided transbronchial needle aspiration (EBUS-TBNA) and the establishment of a personalized siRNA-nanoparticle therapy. The relevance of these genes was evaluated by means of siRNA experiments in cancer cell growth. To establish a therapeutic model, kinesin family member-11 (KIF11) was selected as a target gene. A total of 356 lung cancers were analyzed immunohistochemically for its clinicopathologic significance. The antitumor effect of HPPS-conjugated siRNA was evaluated in vivo using xenograft tumor models. Inhibition of gene expression for these targets effectively suppressed lung cancer cell growth. SCARB1 was highly expressed in a subset of tumors from the lung large-cell carcinoma (LCC) and small-cell lung cancer (SCLC) patients. High-level KIF11 expression was identified as an independent prognostic factor in LCC and squamous cell carcinoma (SqCC) patients. Finally, a conjugate of siRNA against KIF11 and HPPS nanoparticles induced downregulation of KIF11 expression and mediated dramatic inhibition of tumor growth in vivoImplications: This approach showed delivering personalized cancer-specific siRNAs via the appropriate nanocarrier may be a novel therapeutic option for patients with advanced lung cancer. Mol Cancer Res; 16(1); 47-57. ©2017 AACR.
Collapse
Affiliation(s)
- Tatsuya Kato
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.,Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Daiyoon Lee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Huang Huang
- DLVR Therapeutics Inc. and University Health Network, Toronto, Canada
| | - William Cruz
- DLVR Therapeutics Inc. and University Health Network, Toronto, Canada
| | - Hideki Ujiie
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kosuke Fujino
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Hironobu Wada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.,Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Priya Patel
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Hsin-Pei Hu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kentaro Hirohashi
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Takahiro Nakajima
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Masaaki Sato
- Department of Pathology, NTT East Japan Sapporo Hospital, Sapporo, Hokkaido Japan
| | - Mitsuhito Kaji
- Department of Thoracic Surgery, Sapporo Minami-Sanjo Hospital, Sapporo, Hokkaido, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshiro Matsui
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Juan Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Gang Zheng
- DLVR Therapeutics Inc. and University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, Yu X, Luo Q, Zhang Z. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages. ACS NANO 2017; 11:9536-9549. [PMID: 28858473 DOI: 10.1021/acsnano.7b05465] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8+ T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8+ T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.
Collapse
Affiliation(s)
- Yuan Qian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Sha Qiao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yanfeng Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Guoqiang Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Bolei Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Lisen Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Xiang Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| |
Collapse
|
20
|
Lu J, Zhao Y, Zhou X, He JH, Yang Y, Jiang C, Qi Z, Zhang W, Liu J. Biofunctional Polymer–Lipid Hybrid High-Density Lipoprotein-Mimicking Nanoparticles Loading Anti-miR155 for Combined Antiatherogenic Effects on Macrophages. Biomacromolecules 2017; 18:2286-2295. [DOI: 10.1021/acs.biomac.7b00436] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Lu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yi Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Xiaoju Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jian Hua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yun Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Cuiping Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zitong Qi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
21
|
Mo ZC, Ren K, Liu X, Tang ZL, Yi GH. A high-density lipoprotein-mediated drug delivery system. Adv Drug Deliv Rev 2016; 106:132-147. [PMID: 27208399 DOI: 10.1016/j.addr.2016.04.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 01/08/2023]
Abstract
High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier.
Collapse
Affiliation(s)
- Zhong-Cheng Mo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China; Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, China
| | - Kun Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Xing Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 100005 Beijing, China
| | - Zhen-Li Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China.
| |
Collapse
|
22
|
Rajora MA, Zheng G. Targeting SR-BI for Cancer Diagnostics, Imaging and Therapy. Front Pharmacol 2016; 7:326. [PMID: 27729859 PMCID: PMC5037127 DOI: 10.3389/fphar.2016.00326] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023] Open
Abstract
Scavenger receptor class B type I (SR-BI) plays an important role in trafficking cholesteryl esters between the core of high density lipoprotein and the liver. Interestingly, this integral membrane protein receptor is also implicated in the metabolism of cholesterol by cancer cells, whereby overexpression of SR-BI has been observed in a number of tumors and cancer cell lines, including breast and prostate cancers. Consequently, SR-BI has recently gained attention as a cancer biomarker and exciting target for the direct cytosolic delivery of therapeutic agents. This brief review highlights these key developments in SR-BI-targeted cancer therapies and imaging probes. Special attention is given to the exploration of high density lipoprotein nanomimetic platforms that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery and cancer diagnostics, and promising future directions in the development of these agents.
Collapse
Affiliation(s)
- Maneesha A Rajora
- Princess Margaret Cancer Centre and Techna Institute, University Health NetworkToronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna Institute, University Health NetworkToronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada; Department of Medical Biophysics, University of TorontoToronto, ON, Canada
| |
Collapse
|
23
|
Almer G, Mangge H, Zimmer A, Prassl R. Lipoprotein-Related and Apolipoprotein-Mediated Delivery Systems for Drug Targeting and Imaging. Curr Med Chem 2016; 22:3631-51. [PMID: 26180001 PMCID: PMC5403973 DOI: 10.2174/0929867322666150716114625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 06/19/2015] [Accepted: 07/13/2015] [Indexed: 01/27/2023]
Abstract
The integration of lipoprotein-related or apolipoprotein-targeted nanoparticles as pharmaceutical carriers opens new therapeutic and diagnostic avenues in nanomedicine. The concept is to exploit the intrinsic characteristics of lipoprotein particles as being the natural transporter of apolar lipids and fat in human circulation. Discrete lipoprotein assemblies and lipoprotein-based biomimetics offer a versatile nanoparticle platform that can be manipulated and tuned for specific medical applications. This article reviews the possibilities for constructing drug loaded, reconstituted or artificial lipoprotein particles. The advantages and limitations of lipoproteinbased delivery systems are critically evaluated and potential future challenges, especially concerning targeting specificity, concepts for lipoprotein rerouting and design of innovative lipoprotein mimetic particles using apolipoprotein sequences as targeting moieties are discussed. Finally, the review highlights potential medical applications for lipoprotein-based nanoparticle systems in the fields of cardiovascular research, cancer therapy, gene delivery and brain targeting focusing on representative examples from literature.
Collapse
Affiliation(s)
| | | | | | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/6, A-8010 Graz, Austria.
| |
Collapse
|
24
|
Qian Y, Jin H, Qiao S, Dai Y, Huang C, Lu L, Luo Q, Zhang Z. Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials 2016; 98:171-83. [PMID: 27192420 DOI: 10.1016/j.biomaterials.2016.05.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/16/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
Abstract
The design of peptide-based subunit vaccine formulations for the direct delivery of tumor antigen peptides (Aps) to dendritic cells (DCs) localized within draining lymph nodes (DLNs) is challenging. Mature DCs (mDCs) are abundantly distributed within DLNs but have dramatically reduced endocytic uptake and antigen-processing abilities, so their role as potential vaccine targets has been largely overlooked. Here we report an ultra-small biocompatible nanovaccine (α-Ap-FNP) functionalized by avidly targeting delivery of Ap via the scavenger receptor class B1 (SR-B1) pathway to mDCs. The self-assembly, small size (∼30 nm), SR-B1-targeting and optical properties of α-Ap-FNP resulted in its efficient Ap loading, substantial LN accumulation, targeting of mDCs and enhanced Ap presentation, and fluorescence trafficking, respectively. We also demonstrate that the α-Ap-FNP can be either used alone or encapsulated with CpG oligodeoxynucleotide as a prophylactic and therapeutic vaccine. Thus, the excellent properties of α-Ap-FNP provide it potential for clinical applications as a potent nanovaccine for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuan Qian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Honglin Jin
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Sha Qiao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanfeng Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuan Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lisen Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
25
|
Kuai R, Li D, Chen YE, Moon JJ, Schwendeman A. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles. ACS NANO 2016; 10:3015-41. [PMID: 26889958 PMCID: PMC4918468 DOI: 10.1021/acsnano.5b07522] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well-known as the "good" cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and antioxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, and inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultrasmall size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 h), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to those of endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize (a) clinical pharmacokinetics and safety of reconstituted HDL products, (b) comparison of HDL with inorganic and other organic nanoparticles,
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| |
Collapse
|
26
|
Huang H, Cruz W, Chen J, Zheng G. Learning from biology: synthetic lipoproteins for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:298-314. [PMID: 25346461 PMCID: PMC4397116 DOI: 10.1002/wnan.1308] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022]
Abstract
Synthetic lipoproteins represent a relevant tool for targeted delivery of biological/chemical agents (chemotherapeutics, siRNAs, photosensitizers, and imaging contrast agents) into various cell types. These nanoparticles offer a number of advantages for drugs delivery over their native counterparts while retaining their natural characteristics and biological functions. Their ultra-small size (<30 nm), high biocompatibility, favorable circulation half-life, and natural ability to bind specific lipoprotein receptors, i.e., low-density lipoprotein receptor (LDLR) and Scavenger receptor class B member 1 (SRB1) that are found in a number of pathological conditions (e.g., cancer, atherosclerosis), make them superior delivery strategies when compared with other nanoparticle systems. We review the various approaches that have been developed for the generation of synthetic lipoproteins and their respective applications in vitro and in vivo. More specifically, we summarize the approaches employed to address the limitation on use of reconstituted lipoproteins by means of natural or recombinant apolipoproteins, as well as apolipoprotein mimetic molecules. Finally, we provide an overview of the advantages and disadvantages of these approaches and discuss future perspectives for clinical translation of these nanoparticles.
Collapse
Affiliation(s)
- Huang Huang
- DLVR Therapeutics Inc., Toronto, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 1L7
| | - William Cruz
- DLVR Therapeutics Inc., Toronto, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 1L7
| | - Juan Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 1L7
| | - Gang Zheng
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 1L7
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada M5G 1L7
| |
Collapse
|
27
|
McMahon KM, Foit L, Angeloni NL, Giles FJ, Gordon LI, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles as cancer therapy. Cancer Treat Res 2015; 166:129-50. [PMID: 25895867 PMCID: PMC4418545 DOI: 10.1007/978-3-319-16555-4_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
High-density lipoproteins (HDL) are diverse natural nanoparticles that carry cholesterol and are best known for the role that they play in cardiovascular disease. However, due to their unique targeting capabilities, diverse molecular cargo, and natural functions beyond cholesterol transport, it is becoming increasingly appreciated that HDLs are critical to cancer development and progression. Accordingly, this chapter highlights ongoing research focused on the connections between HDL and cancer in order to design new drugs and targeted drug delivery vehicles. Research is focused on synthesizing biomimetic HDL-like nanoparticles (NP) that can be loaded with diverse therapeutic cargo (e.g., chemotherapies, nucleic acids, proteins) and specifically targeted to cancer cells. Beyond drug delivery, new data is emerging that HDL-like NPs may be therapeutically active in certain tumor types, for example, B cell lymphoma. Overall, HDL-like NPs are becoming increasingly appreciated as targeted, biocompatible, and efficient therapies for cancer, and may soon become indispensable agents in the cancer therapeutic armamentarium.
Collapse
Affiliation(s)
- Kaylin M. McMahon
- Northwestern University, Feinberg School of Medicine, Department of Urology, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611 United States
- Simpson Querrey Institute (SQI), 303 E. Superior St, Chicago, IL 60611 United States
| | - Linda Foit
- Northwestern University, Feinberg School of Medicine, Department of Urology, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611 United States
- Simpson Querrey Institute (SQI), 303 E. Superior St, Chicago, IL 60611 United States
| | - Nicholas L. Angeloni
- Northwestern University, Feinberg School of Medicine, Department of Urology, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611 United States
- Simpson Querrey Institute (SQI), 303 E. Superior St, Chicago, IL 60611 United States
| | - Francis J. Giles
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Leo I. Gordon
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - C. Shad Thaxton
- Northwestern University, Feinberg School of Medicine, Department of Urology, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611 United States
- Simpson Querrey Institute (SQI), 303 E. Superior St, Chicago, IL 60611 United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Rd. Evanston IL. 60208, United States
- Corresponding Author:
| |
Collapse
|
28
|
Cui L, Lin Q, Jin CS, Jiang W, Huang H, Ding L, Muhanna N, Irish JC, Wang F, Chen J, Zheng G. A PEGylation-Free Biomimetic Porphyrin Nanoplatform for Personalized Cancer Theranostics. ACS NANO 2015; 9:4484-95. [PMID: 25830219 DOI: 10.1021/acsnano.5b01077] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
PEGylation (PEG) is the most commonly adopted strategy to prolong nanoparticles' vascular circulation by mitigating the reticuloendothelial system uptake. However, there remain many concerns in regards to its immunogenicity, targeting efficiency, etc., which inspires pursuit of alternate, non-PEGylated systems. We introduced here a PEG-free, porphyrin-based ultrasmall nanostructure mimicking nature lipoproteins, termed PLP, that integrates multiple imaging and therapeutic functionalities, including positron emission tomography (PET) imaging, near-infrared (NIR) fluorescence imaging and photodynamic therapy (PDT). With an engineered lipoprotein-mimicking structure, PLP is highly stable in the blood circulation, resulting in favorable pharmacokinetics and biodistribution without the need of PEG. The prompt tumor intracellular trafficking of PLP allows for rapid nanostructure dissociation upon tumor accumulation to release monomeric porphyrins to efficiently generate fluorescence and photodynamic reactivity, which are highly silenced in intact PLP, thus providing an activatable mechanism for low-background NIR fluorescence imaging and tumor-selective PDT. Its intrinsic copper-64 labeling feature allows for noninvasive PET imaging of PLP delivery and quantitative assessment of drug distribution. Using a clinically relevant glioblastoma multiforme model, we demonstrated that PLP enabled accurate delineation of tumor from surrounding healthy brain at size less than 1 mm, exhibiting the potential for intraoperative fluorescence-guided surgery and tumor-selective PDT. Furthermore, we demonstrated the general applicability of PLP for sensitive and accurate detection of primary and metastatic tumors in other clinically relevant animal models. Therefore, PLP offers a biomimetic theranostic nanoplatform for pretreatment stratification using PET and NIR fluorescence imaging and for further customized cancer management via imaging-guided surgery, PDT, or/and potential chemotherapy.
Collapse
Affiliation(s)
- Liyang Cui
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ‡Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- §Medical Isotopes Research Center, Peking University, Beijing 100871, China
| | - Qiaoya Lin
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Cheng S Jin
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ∥Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- #Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Wenlei Jiang
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Huang Huang
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Lili Ding
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Nidal Muhanna
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ∇Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Jonathan C Irish
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ∇Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Fan Wang
- §Medical Isotopes Research Center, Peking University, Beijing 100871, China
| | - Juan Chen
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Gang Zheng
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ‡Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- ∥Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- #Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| |
Collapse
|
29
|
Foit L, Giles FJ, Gordon LI, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev Anticancer Ther 2014; 15:27-34. [PMID: 25487833 DOI: 10.1586/14737140.2015.990889] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-density lipoproteins (HDLs) are a diverse group of natural nanoparticles that are most well known for their role in cholesterol transport. However, HDLs have diverse functions that provide significant opportunities for cancer therapy. Presented is a focused review of the ways that synthetic versions of HDL have been used as targeted therapies for cancer, and as vehicles for the delivery of diverse therapeutic cargo to cancer cells. As such, synthetic HDLs are likely to play a central role in the development of next-generation cancer therapies.
Collapse
Affiliation(s)
- Linda Foit
- Department of Urology, Feinberg School of Medicine, Northwestern University, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
30
|
Tripathy S, Vinokour E, McMahon KM, Volpert OV, Thaxton CS. High Density Lipoprotein Nanoparticles Deliver RNAi to Endothelial Cells to Inhibit Angiogenesis. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2014; 31:1141-1150. [PMID: 25400330 PMCID: PMC4228967 DOI: 10.1002/ppsc.201400036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Indexed: 05/24/2023]
Abstract
Systemic delivery of therapeutic nucleic acids to target cells and tissues outside of the liver remains a major challenge. We synthesized a biomimetic high density lipoprotein nanoparticle (HDL NP) for delivery of a cholesteryl modified therapeutic nucleic acid (RNAi) to vascular endothelial cells, a cell type naturally targeted by HDL. HDL NPs adsorb cholesteryl modified oligonucleotides and protect them from nuclease degradation. As proof of principle, we delivered RNAi targeting vascular endothelial growth factor receptor 2 (VEGFR2) to endothelial cells to effectively silence target mRNA and protein expression in vitro. In addition, data show that treatment strongly attenuated in vivo neovascularization measured using a standard angiogenesis assay and in hypervascular tumor allografts where a striking reduction in tumor growth was observed. For effective delivery, HDL NPs required the expression of the cell surface protein scavenger receptor type-B1 (SR-B1). No toxicity of HDL NPs was measured in vitro or after in vivo administration. Thus, by using a biomimetic approach to nucleic acid delivery, data demonstrate that systemically administered RNAi-HDL NPs target SR-B1 expressing endothelial cells to deliver functional anti-angiogenic RNAi as a potential treatment of cancer and other neo-vascular diseases.
Collapse
Affiliation(s)
- Sushant Tripathy
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Tarry 16-703, Chicago, Illinois 60611, United States
- Driskill Graduate Program, Northwestern University, Chicago, Illinois 60611, United States
- Northwestern University, Institute for BioNanotechnology and Medicine (IBNAM), 303 East Superior Avenue, 11th Floor, Chicago, Illinois 60611, United States
| | - Elena Vinokour
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Tarry 16-703, Chicago, Illinois 60611, United States
| | - Kaylin M. McMahon
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Tarry 16-703, Chicago, Illinois 60611, United States
- Driskill Graduate Program, Northwestern University, Chicago, Illinois 60611, United States
- Northwestern University, Institute for BioNanotechnology and Medicine (IBNAM), 303 East Superior Avenue, 11th Floor, Chicago, Illinois 60611, United States
| | - Olga V. Volpert
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Tarry 16-703, Chicago, Illinois 60611, United States
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, 303 East Superior Avenue, Chicago, Illinois 60611, United States
| | - C. Shad Thaxton
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Tarry 16-703, Chicago, Illinois 60611, United States
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, 303 East Superior Avenue, Chicago, Illinois 60611, United States
- Northwestern University, Institute for BioNanotechnology and Medicine (IBNAM), 303 East Superior Avenue, 11th Floor, Chicago, Illinois 60611, United States
- Northwestern University, International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Luo H, Lu L, Yang F, Wang L, Yang X, Luo Q, Zhang Z. Nasopharyngeal cancer-specific therapy based on fusion peptide-functionalized lipid nanoparticles. ACS NANO 2014; 8:4334-4347. [PMID: 24766601 DOI: 10.1021/nn405989n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Current treatment of advanced-stage nasopharyngeal carcinoma (NPC) is not satisfactory. Targeted therapies offer hope for extending survival. Here, we developed simple, robust, and NPC-specific therapeutic lipid nanoparticles based on a fusion peptide, α-NTP, made up of an amphipathic α-helical peptide (α-peptide) linked to an NPC-specific therapeutic peptide (NTP). We found that α-NTP not only retained the sub-30 nm nanostructure-controlling ability of the α-peptide but also displayed the enhanced NPC-targeting ability of the NTP, in which the α-peptide accelerated the uptake of the NTP by NPC cells, with a 4.8-fold increase. Following uptake, α-NTP-based lipid nanoparticles (α-NTP-LNs) exerted coordinated cytotoxicity by inducing cell death via apoptosis and autophagy. In vivo and ex vivo optical imaging data showed that systemically administered α-NTP-LNs efficiently accumulated in the NPC xenograft tumor and displayed high contrast between tumor and normal tissues, which was further confirmed by flow cytometry that there had been a 13-fold uptake difference between tumor cells and hepatocytes. More importantly, the therapeutic efficacy of α-NTP-LNs was specific to NPC xenograft formed with 5-8F cells but not to fibrosarcoma xenograft formed with HT1080 cells in vivo. The growth of 5-8F tumors was significantly inhibited by α-NTP-LNs, with more than 85% inhibition relative to control groups (e.g., α-NTP and PBS treatment). In a lung metastasis model of NPC, survival was significantly improved by α-NTP-LN treatment. In a word, these excellent properties of α-NTP-LNs worked in sync and synergistically, maximizing the therapeutic efficacy of α-NTP-LNs against NPC and its metastasis.
Collapse
Affiliation(s)
- Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, and ‡MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang W, Sun J, Liu Y, Tao M, Ai X, Su X, Cai C, Tang Y, Feng Z, Yan X, Chen G, He Z. PEG-stabilized bilayer nanodisks as carriers for doxorubicin delivery. Mol Pharm 2014; 11:3279-90. [PMID: 24754897 DOI: 10.1021/mp400566a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spherical nanoparticles as a classic delivery vehicle for anticancer drugs have been extensively investigated, but study on the shape of nanoparticles has received little attention until now. Here, a nonspherical poly(ethylene glycol) (PEG)-stabilized bilayer nanodisk consisting of 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC) and PEG5000-glyceryl distearate (PEG5K-GCDS) was prepared for doxorubicin delivery, called DOX-Disks. The prepared disks were open bilayer structures, with a hydrophobic discoid center built by DSPC and a hydrophilic PEG edge. Mean particle diameter of the disk was 80.14 nm, and the disk height was about 6 nm with aspect ratio about 12. Encapsulation efficiency of DOX-Disks was as high as 96.1%, and DOX release from DOX-Disks was pH-dependent (25.6% of total DOX released at 24 h in pH 7.4). The pharmacokinetic performances showed that DOX-Disks demonstrated long circulation time in blood and larger AUC (11.7-fold of t1/2 and 31.7-fold of AUC) in rats compared with DOX solutions (DOX-Sol). Tissue distribution in H22 tumor bearing mice demonstrated higher tumor accumulation (9.7-fold) and lower heart toxicities (25.7-fold) at 48 h after iv administration, in comparison with DOX-Sol. In addition, DOX-Disks exhibited much effectiveness in inhibiting tumor cell growth, and the IC50 values were 2.03, 0.85, and 0.86 μg/mL for DOX-Sol and 0.23, 0.24, and 0.20 μg/mL for DOX-Disks after treatment for 48, 72, and 96 h against MCF-7/Adr cells, respectively. DOX-Disks were taken up into MCF-7/Adr cells via energy-dependent endocytosis processes, involved in clathrin-mediated, macropinocytosis-mediated, and non-clathrin- and non-caveolae-mediated endocytosis pathways. In summary, such PEG-stabilized bilayer nanodisks could be one of the promising carriers for antitumor drugs via extended blood circulation and improved tumor distribution.
Collapse
Affiliation(s)
- Wenping Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , No. 103 Wenhua Road, Shenyang 110016, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lin Q, Chen J, Zhang Z, Zheng G. Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine (Lond) 2014; 9:105-20. [DOI: 10.2217/nnm.13.192] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAi therapeutics are believed to be the future of personalized medicine and have shown promise in early clinical trials. However, many physiological barriers exist in the systemic delivery of siRNAs to the cytoplasm of targeted cells to perform their function. To overcome these barriers, many siRNA delivery systems have been developed. Among these, lipid-based nanoparticles have great potential owing to their biocompatibility and low toxicity in comparison with inorganic nanoparticles and viral systems. This review discusses the hurdles of systemic siRNA delivery and highlights the recent progress made in lipid-based nanoparticles, which are categorized based on their key lipid components, including cationic lipid, lipoprotein, lipidoid, neutral lipid and anionic lipid-based nanoparticles. It is expected that these lipid nanoparticle-based siRNA delivery systems will have an enabling role for personalized cancer medicine, where siRNA delivery will join forces with genetic profiling of individual patients to achieve the best treatment outcome.
Collapse
Affiliation(s)
- Qiaoya Lin
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower 5-363, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, China
| | - Juan Chen
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, China
| | - Gang Zheng
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
34
|
Imaging the cytosolic drug delivery mechanism of HDL-like nanoparticles. Pharm Res 2013; 31:1438-49. [PMID: 23625096 DOI: 10.1007/s11095-013-1046-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/01/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE Molecular therapeutics often require an effective nanoparticle-based delivery strategy to transport them to cytosolic organelles to be functional. Recently, a cytosolic delivery strategy based on the scavenger receptor class B type I (SR-BI) mediated pathway has shown great potential for the effective delivery of theranostics agents into the cytoplasm of cells without detrimental endosomal entrapment. This study elucidates this unique delivery mechanism for improving cytosolic drug delivery. METHODS Multifluorophore-labeled HDL-mimicking peptide phospholipid scaffold (HPPS) nanoparticles were developed. Fluorescence imaging was utilized to examine HPPS transporting payloads into cells step by step through sequential inhibition studies. RESULTS HPPS specifically recognizes and binds to SR-BI, then interacts with SR-BI, which results in direct transport of payload molecules into the cell cytoplasm without entire particles internalization. The cytosolic transport of payloads occurred through a temperature- and energy-independent pathway, and was also different from actin- and clathrin-mediated endocytosis. Furthermore, this transport was significantly inhibited by disruption of lipid rafts using filipin or methyl-β-cyclodextrin. CONCLUSIONS The cytosolic delivery of payloads by HPPS via SR-BI targeting is predominately mediated through a lipid rafts/caveolae-like pathway. This cytosolic delivery strategy can be utilized for transporting molecular therapeutics that require their action sites to be within cytosolic organelles to enhance therapeutic effect.
Collapse
|