1
|
Gavilán-Carrera B, Soriano-Maldonado A, Mediavilla-García JD, Lavie CJ, Vargas-Hitos JA. Prescribing statin therapy in physically (in)active individuals vs prescribing physical activity in statin-treated patients: A four-scenario practical approach. Pharmacol Res 2023; 197:106962. [PMID: 37866703 DOI: 10.1016/j.phrs.2023.106962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Statins are among the most commonly prescribed medications worldwide. Statin-associated muscle symptoms (SAMS) represent a frequent statin-related adverse effect associated with statin discontinuation and increased cardiovascular disease (CVD) events. Emerging evidence indicate that the majority of SAMS might not be actually caused by statins, and the nocebo/drucebo effect (i.e. adverse effects caused by negative expectations) might also explain SAMS. Physical activity (PA) is a cornerstone in the management of CVD risk. However, evidence of increased creatine-kinase levels in statin-treated athletes exposed to a marathon has been generalized, at least to some extent, to the general population and other types of PA. This generalization is likely inappropriate and might induce fear around PA in statin users. In addition, the guidelines for lipid management focus on aerobic PA while the potential of reducing sedentary behavior and undertaking resistance training have been overlooked. The aim of this report is to provide a novel proposal for the concurrent prescription of statin therapy and PA addressing the most common and clinically relevant scenarios by simultaneously considering the different stages of statin therapy and the history of PA. These scenarios include i) statin therapy initiation in physically inactive patients, ii) PA/exercise initiation in statin-treated patients, iii) statin therapy initiation in physically active patients, and iv) statin therapy in athletes and very active individuals performing SAMS-risky activities.
Collapse
Affiliation(s)
- Blanca Gavilán-Carrera
- Department of Internal Medicine, Virgen de las Nieves University Hospital, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; PA-HELP "Physical Activity for HEaLth Promotion" Research Group, University of Granada, Granada, Spain; Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Alberto Soriano-Maldonado
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain; SPORT Research Group (CTS-1024), CIBIS (Centro de Investigación para el Bienestar y la Inclusión Social) Research Center, University of Almería, Almería, Spain.
| | | | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the UQ School of Medicine, New Orleans, LA, USA
| | - José Antonio Vargas-Hitos
- Department of Internal Medicine, Virgen de las Nieves University Hospital, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
2
|
Zihlif M, Otoum S, Al Shhab M, Almadani Z, Momani M, Alhawari H, Esraa Jibrini, Jarrar Y, Al-Ameer H, Imraish A. No association between LDL receptor and CETP genetic variants and atorvastatin response in Jordanian hyperlipidemic patients. Drug Metab Pers Ther 2022; 37:369-374. [PMID: 35447021 DOI: 10.1515/dmpt-2021-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Atorvastatin is commonly used medication to achieve low levels of low-density lipoproteins (LDL). Cholesteryl ester transfer protein (CETP) and LDL receptor (LDLR) genetic variants can affect the cholesterol transport and hence may affect on atorvastatin response. This study aimed to investigate the influence of LDLR AvaII, CETP TaqIb, and Rs1532624 on the efficacy of 20 mg atorvastatin among Jordanian hyperlipidemic patients. METHODS One hundred and 50 blood samples were collected from hyperlipidemic patients in the University of Jordan Hospital. Polymerase chain reaction-restriction fragment length polymorphism was used for genotyping of LDLR AvaII and CETP TaqIb genetic variants. The genotyping of CETP Rs1532624 variant was done by Sanger DNA-Sequencing. RESULTS LDLR AvaII and CETP TaqIb and Rs1532624 variants showed a significant (p value < 0.05) association with the baseline of the LDL at the time of diagnoses. On the other hand, none of the tested genetic variants showed a significant (p value>0.05) association with LDL reduction after atorvastatin therapy. CONCLUSIONS Results demonstrated a significant association between the LDLR AvaII and CETP TaqIb, and Rs1532624 genetic variants with the LDL baseline level. However, the atorvastatin therapy among hyperlipidemic patients of Jordanian origin was not affected by any of the tested variants.
Collapse
Affiliation(s)
- Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Suhad Otoum
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohammad Al Shhab
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Zaid Almadani
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Monther Momani
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Hussam Alhawari
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Esraa Jibrini
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Yazun Jarrar
- Deprtmant of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hamzeh Al-Ameer
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Amer Imraish
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Shatnawi A, Kamran Z, Al-Share Q. Pharmacogenomics of lipid-lowering agents: the impact on efficacy and safety. Per Med 2022; 20:65-86. [DOI: 10.2217/pme-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperlipidemia is a significant risk factor for cardiovascular disease morbidity and mortality. The lipid-lowering drugs are considered the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Unfortunately, the lack of efficacy and associated adverse effects, ranging from mild-to-moderate to potentially life-threatening, lead to therapy discontinuation. Numerous reports support the role of gene polymorphisms in drugs' pharmacokinetic parameters and their associated adverse reactions. Therefore, this study aims to understand the pharmacogenomics of lipid-lowering drugs and the impact of genetic variants of key genes on the drugs' efficacy and toxicity. Indeed, genetically guided lipid-lowering therapy enhances overall safety, improves drug adherence and achieves long-term therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Room 402, Charleston, SC 29425, USA
| | - Zourayz Kamran
- Department of Pharmaceutical & Administrative Sciences, University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE, Charleston, WV 25304, USA
| | - Qusai Al-Share
- Department of Clinical Pharmacy, Assistant Professor of Pharmacology & Therapeutics, Faculty of Pharmacy, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
4
|
Gallego-Fabrega C, Muiño E, Cárcel-Márquez J, Llucià-Carol L, Lledós M, Martín-Campos JM, Cullell N, Fernández-Cadenas I. Genome-Wide Studies in Ischaemic Stroke: Are Genetics Only Useful for Finding Genes? Int J Mol Sci 2022; 23:6840. [PMID: 35743317 PMCID: PMC9224543 DOI: 10.3390/ijms23126840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a complex disease with some degree of heritability. This means that heritability factors, such as genetics, could be risk factors for ischaemic stroke. The era of genome-wide studies has revealed some of these heritable risk factors, although the data generated by these studies may also be useful in other disciplines. Analysis of these data can be used to understand the biological mechanisms associated with stroke risk and stroke outcome, to determine the causality between stroke and other diseases without the need for expensive clinical trials, or to find potential drug targets with higher success rates than other strategies. In this review we will discuss several of the most relevant studies regarding the genetics of ischaemic stroke and the potential use of the data generated.
Collapse
Affiliation(s)
- Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Institute for Biomedical Research of Barcelona (IIBB), National Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jesús M. Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Stroke Pharmacogenomics and Genetics Group, Fundació MútuaTerrassa per la Docència i la Recerca, 08221 Terrassa, Spain
| |
Collapse
|
5
|
Tsilimigras DI, Bibli SI, Siasos G, Oikonomou E, Perrea DN, Filis K, Tousoulis D, Sigala F. Regulation of Long Non-Coding RNAs by Statins in Atherosclerosis. Biomolecules 2021; 11:biom11050623. [PMID: 33922114 PMCID: PMC8143454 DOI: 10.3390/biom11050623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Despite increased public health awareness, atherosclerosis remains a leading cause of mortality worldwide. Significant variations in response to statin treatment have been noted among different populations suggesting that the efficacy of statins may be altered by both genetic and environmental factors. The existing literature suggests that certain long noncoding RNAs (lncRNAs) might be up- or downregulated among patients with atherosclerosis. LncRNA may act on multiple levels (cholesterol homeostasis, vascular inflammation, and plaque destabilization) and exert atheroprotective or atherogenic effects. To date, only a few studies have investigated the interplay between statins and lncRNAs known to be implicated in atherosclerosis. The current review characterizes the role of lncRNAs in atherosclerosis and summarizes the available evidence related to the effect of statins in regulating lncRNAs.
Collapse
Affiliation(s)
- Diamantis I. Tsilimigras
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
- Correspondence: ; Tel.: +30-697-5683-212
| | - Sofia-Iris Bibli
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60323 Frankfurt am Main, Germany;
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Evangelos Oikonomou
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Despina N. Perrea
- Laboratory for Experimental Surgery and Surgical Research “N.S. Christeas”, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Konstantinos Filis
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
| | - Dimitrios Tousoulis
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Fragiska Sigala
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
| |
Collapse
|
6
|
Wu DF, Lin D, Lu F, Liao QC, Wu YJ, Wang Z, Yu K, Li WJ, Deng JL. Sex-Specific Influence of the SCARB1 Rs5888 SNP on the Serum Lipid Response to Atorvastatin in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:553-561. [PMID: 33154658 PMCID: PMC7605962 DOI: 10.2147/pgpm.s273346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022]
Abstract
Background Epidemiological studies have shown that there are sex differences in blood lipid levels and lipid responses to statins. Previous studies have shown that the rs5888 single nucleotide polymorphism (SNP) in the scavenger receptor class B type 1 (SCARB1) gene is associated with serum lipid levels in a sex-specific manner. The present study was undertaken to detect the sex-specific influence of the SCARB1 rs5888 SNP on the serum lipid response to atorvastatin in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). Methods A total of 158 unrelated ACS patients (108 males, 50 females) were enrolled, and all patients received atorvastatin 20 mg/daily after PCI. Genotyping of the rs5888 SNP was performed by polymerase chain reaction and direct sequencing. Serum lipid profiles were determined before treatment and after an average follow-up time of one year. Results The baseline serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and apolipoprotein (Apo)AI levels were higher in females than in males (P<0.05). After treatment with atorvastatin, serum TC, LDL-C, and ApoB were decreased, and ApoAI was increased (P<0.05). The effects of atorvastatin on serum lipid levels were different between males and females, and females had greater decreases in TC, LDL-C and ApoB levels than males (P<0.05). The genotypic frequencies of the rs5888 SNP were not different between males and females. The atorvastatin response was not associated with the rs5888 SNP in males (P > 0.05). Nonetheless, in female individuals carrying the rs5888 T-allele, we observed a greater reduction in TC, LDL-C, and ApoB levels after the use of 20 mg/day atorvastatin (P<0.05). Conclusion This study indicates that the SCARB1 rs5888 T-allele was associated with a greater reduction in serum TC, LDL-C, and ApoB after atorvastatin treatment in female patients with ACS undergoing PCI.
Collapse
Affiliation(s)
- Dong-Feng Wu
- Department of the Geriatric Cardiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People's Republic of China
| | - Dan Lin
- Department of the First Comprehensive Clinic, The Affiliated Stomatology Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Feng Lu
- Department of the Geriatric Cardiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People's Republic of China
| | - Qin-Chen Liao
- Department of the Geriatric Cardiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People's Republic of China
| | - Yu-Juan Wu
- Department of the Geriatric Cardiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People's Republic of China
| | - Zhou Wang
- Department of the Geriatric Cardiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People's Republic of China
| | - Kun Yu
- Department of the Geriatric Cardiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People's Republic of China
| | - Wei-Jun Li
- Department of the Geriatric Cardiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People's Republic of China
| | - Jin-Long Deng
- Department of the Geriatric Cardiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People's Republic of China
| |
Collapse
|
7
|
De Luca M, Iacono O, Lucci R, Guardasole V, Bosso G, Cittadini A, Oliviero U. Atorvastatin-linked rhabdomyolysis caused by the simultaneous intake of amoxicillin clavulanic acid. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2020-0108/jbcpp-2020-0108.xml. [PMID: 32903207 DOI: 10.1515/jbcpp-2020-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 11/15/2022]
Abstract
Objectives Rhabdomyolysis is a rare syndrome in which a serious muscle damage suddenly appears, with the possible occurrence of severe complications such as kidney failure, electrolyte imbalances and death, and represents the most severe form of statin-induced muscle injury. Case presentation Here we present the case of a 55-year-old woman who started therapy with amoxicillin clavulanic acid on a background of atorvastatin therapy, resulting in rhabdomyolysis. Conclusions This case highlights the importance of evaluating potential drug interactions in patients taking statin and the need of monitoring clinical and laboratory findings suggestive of rhabdomyolysis.
Collapse
Affiliation(s)
- Mariarosaria De Luca
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, Naples, Italy
| | - Olimpia Iacono
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, Naples, Italy
| | - Rosa Lucci
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, Naples, Italy
| | - Vincenzo Guardasole
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, Naples, Italy
| | - Giorgio Bosso
- Santa Maria delle Grazie Hospital, Via Domitiana, Pozzuoli, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, Naples, Italy
| | - Ugo Oliviero
- Department of Translational Medical Sciences, University Federico II, Via Sergio Pansini 5, Naples, Italy
| |
Collapse
|
8
|
Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J Clin Med 2019; 9:jcm9010022. [PMID: 31861911 PMCID: PMC7019839 DOI: 10.3390/jcm9010022] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Statins are a cornerstone in the pharmacological prevention of cardiovascular disease. Although generally well tolerated, a small subset of patients experience statin-related myotoxicity (SRM). SRM is heterogeneous in presentation; phenotypes include the relatively more common myalgias, infrequent myopathies, and rare rhabdomyolysis. Very rarely, statins induce an anti-HMGCR positive immune-mediated necrotizing myopathy. Diagnosing SRM in clinical practice can be challenging, particularly for mild SRM that is frequently due to alternative aetiologies and the nocebo effect. Nevertheless, SRM can directly harm patients and lead to statin discontinuation/non-adherence, which increases the risk of cardiovascular events. Several factors increase systemic statin exposure and predispose to SRM, including advanced age, concomitant medications, and the nonsynonymous variant, rs4149056, in SLCO1B1, which encodes the hepatic sinusoidal transporter, OATP1B1. Increased exposure of skeletal muscle to statins increases the risk of mitochondrial dysfunction, calcium signalling disruption, reduced prenylation, atrogin-1 mediated atrophy and pro-apoptotic signalling. Rare variants in several metabolic myopathy genes including CACNA1S, CPT2, LPIN1, PYGM and RYR1 increase myopathy/rhabdomyolysis risk following statin exposure. The immune system is implicated in both conventional statin intolerance/myotoxicity via LILRB5 rs12975366, and a strong association exists between HLA-DRB1*11:01 and anti-HMGCR positive myopathy. Epigenetic factors (miR-499-5p, miR-145) have also been implicated in statin myotoxicity. SRM remains a challenge to the safe and effective use of statins, although consensus strategies to manage SRM have been proposed. Further research is required, including stringent phenotyping of mild SRM through N-of-1 trials coupled to systems pharmacology omics- approaches to identify novel risk factors and provide mechanistic insight.
Collapse
|
9
|
Statin use and time to progression in men on active surveillance for prostate cancer. Prostate Cancer Prostatic Dis 2018; 21:509-515. [DOI: 10.1038/s41391-018-0053-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/15/2018] [Accepted: 03/24/2018] [Indexed: 11/08/2022]
|
10
|
Ahangari N, Ghayour Mobarhan M, Sahebkar A, Pasdar A. Molecular aspects of hypercholesterolemia treatment: current perspectives and hopes. Ann Med 2018; 50:303-311. [PMID: 29578362 DOI: 10.1080/07853890.2018.1457795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypercholesterolemia is a pathological condition which has been reported in 39% of the worlds' adult population. We aimed to review molecular aspects of current and novel therapeutic approaches based on low-density lipoprotein cholesterol lowering strategies. Pathogenic mutations in the LDLR, ApoB, PCSK9 and LDLRAP genes cause deficient clearance of circulating low-density lipoprotein cholesterol particles via hepatic LDL receptor. This leads to increased plasma LDL cholesterol levels from birth, which can cause LDL depositions in the arterial walls. Ultimately, it progresses to atherosclerosis and an increased risk of premature cardiovascular diseases. Currently, statins, Ezetimibe, Bile acid sequestrants and PCSK9 inhibitors are the main therapeutic agents for the treatment of hypercholesterolemia. Moreover, novel RNA-based therapy had a strong impact on therapeutic strategies in recent decades. Additional development in understanding of the molecular basis of hypercholesterolemia will provide opportunities for the development of targeted therapy in the near future. Key Messages The most common genes involved in hypercholesterolemia are LDLR, PCSK9 and ApoB. Pharmacogenetic effects are typically constrained to pathways closely related to the pharmacodynamics and pharmacokinetics. Change in lifestyle and diet along with treatment of the underlying disease and drug therapy are the current therapeutic strategies.
Collapse
Affiliation(s)
- Najmeh Ahangari
- a Departement of Modern Sciences and Technologies, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Majid Ghayour Mobarhan
- b Metabolic Syndrome Research Centre, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amirhossein Sahebkar
- c Biotechnology Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran.,d Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Alireza Pasdar
- e Medical Genetics Research Centre, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,f Division of Applied Medicine, Medical School , University of Aberdeen , Foresterhill , Aberdeen , UK
| |
Collapse
|
11
|
Rafeeq MM, Habib HS, Murad HAS, Gari MA, Gazzaz ZJ. Effect of genetic polymorphisms in SREBF-SCAP pathway on therapeutic response to rosuvastatin in Saudi metabolic syndrome patients. Pharmacogenomics 2018; 19:185-196. [PMID: 29318930 DOI: 10.2217/pgs-2017-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Genetic variants contribute to statins' therapeutic variability. SREBF-SCAP pathway is a key player in lipid homeostasis. Hence, effect of SREBF-SCAP polymorphisms on therapeutic response was studied. PATIENTS & METHODS Metabolic syndrome patients of either sex were prescribed rosuvastatin 10 mg for 24 weeks. Clinical, anthropometric and lipid measurements were done before and after treatment. Genotyping was done by pyrosequencing. RESULTS & CONCLUSION No associations of SCAP and SREBF-1a genotypes with baseline lipids but significant associations with lipid reductions were observed. Significant effect of SCAP (GG; B = -8.16, p = 0.001); SREBF-1a (GG; B = -7.47, p = 0.001) and SREBF-1a (-delG; B = -7.42, p = 0.001) was observed on total cholesterol reduction. Additive trend was found between SCAP genotypes and lipid reductions. A total of 88% responders have SCAP 'G' allele (p = 0.001). Patients carrying SCAP (GG) and SREBF-1a (GG and -delG) have 9.5-, 8.6- and 14.6-times more likelihood of being responders (p < 0.05). 'G' allele in SCAP and SREBF-1a is significant predictor of rosuvastatin response.
Collapse
Affiliation(s)
- Misbahuddin Mohd Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamed Said Habib
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia & Faculty of Medicine, Ainshams University, Cairo, Egypt
| | - Mamdouh Abdullah Gari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zohair Jamil Gazzaz
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Messas N, Dubé MP, Tardif JC. Pharmacogenetics of Lipid-Lowering Agents: an Update Review on Genotype-Dependent Effects of HDL-Targetingand Statin Therapies. Curr Atheroscler Rep 2017; 19:43. [PMID: 28944433 DOI: 10.1007/s11883-017-0679-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW High-density lipoproteins (HDL) are involved in reverse cholesterol transport. Results from randomized trials of HDL-targeting therapies, including cholesteryl ester transfer protein (CETP) inhibitors, have shown a lack of benefit in unsegmented populations. These observations could be explained by inter-individual variability of clinical responses to such agents depending on the patients' genotypes. In parallel, although lowering of LDL cholesterol (LDL-c) with statin therapy reduces the risk of vascular events in a wide range of individuals, inter-individual variability exists with regard to LDL-c-lowering response as well as efficacy in reducing major cardiovascular events. RECENT FINDINGS Pharmacogenomic analyses were performed in the dal-OUTCOMES and dal-PLAQUE-2 studies. Beneficial and concordant results were observed in patients with the favorable genotype when treated with the CETP inhibitor dalcetrapib. Similarly, previous studies revealed genetic variants associated with differential LDL-c response to statin therapy. In this review, we discuss the pharmacogenetic determinants of HDL-targeting and statin therapy responses in light of the latest available published data, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Nathan Messas
- Department of Medicine, Montreal Heart Institute, 5000 Belanger St, Montreal, Quebec, H1T 1C8, Canada.,Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Strasbourg, France
| | - Marie-Pierre Dubé
- Department of Medicine, Montreal Heart Institute, 5000 Belanger St, Montreal, Quebec, H1T 1C8, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Montreal Heart Institute, 5000 Belanger St, Montreal, Quebec, H1T 1C8, Canada. .,Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
13
|
Thongtang N, Sitthananun C, Sriussadaporn S, Nitiyanant W. Efficacy of low- and moderate-intensity statins for achieving low- density lipoprotein cholesterol targets in Thai type 2 diabetic patients. J Diabetes Metab Disord 2017; 16:6. [PMID: 28289653 PMCID: PMC5307884 DOI: 10.1186/s40200-017-0290-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 02/08/2023]
Abstract
Background Low dose statins are commonly used among Asians, because plasma low-density lipoprotein cholesterol (LDL-C) reductions similar to those observed in Westerners are achieved at lower doses. We aimed to assess the efficacy of low- and moderate-intensity statins for achieving plasma lipid targets in Thai type2 diabetes (T2D) and to evaluate factors associated with greater LDL-C reduction by statins. Methods T2D patients who were treated with low- and moderate-intensity statins at the Siriraj Diabetes Clinic during the January 2013 to December 2014 study period were eligible for inclusion(n = 978), 400 patients were randomly recruited. Patients were classified into 1 of the following 2 groups according to their plasma LDL-C reductions by statins (N = 393); very favorable response (LDL-C reduction ≥50%) or less favorable response (LDL-C reduction <50%). Results Of the 400 patients, 41.3% were low-intensity statin users. Mean age was 64.4 ± 12.7 years, 64% were female. Median duration of diabetes was 13.3 years and mean HbA1C was 8.1 ± 1.9%. Plasma LDL-C goal of <100 mg/dl and <70 mg/dl was achieved in 84.3% and 38.0% respectively, with no significant difference between the low- and moderate-intensity statin users. LDL-C reductions ≥50% can be achieved in 38.4%. Factors associated with very favorable responses from statins were age, hypertension, patients with stable or reduced weight, and better glycemic control. Conclusion Low- and moderate-intensity statins achieved plasma LDL-C goal of <100 mg/dl and <70 mg/dl in 84.3%, and 38.4% of the patients respectively. Due to the improved response to lower doses observed in Asians, a titration dosage strategy should be considered. Electronic supplementary material The online version of this article (doi:10.1186/s40200-017-0290-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nuntakorn Thongtang
- Division of Endocrinology and Metabolism, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700 Thailand
| | - Chaiyut Sitthananun
- Division of Endocrinology and Metabolism, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700 Thailand
| | - Sutin Sriussadaporn
- Division of Endocrinology and Metabolism, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700 Thailand
| | - Wannee Nitiyanant
- Division of Endocrinology and Metabolism, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700 Thailand
| |
Collapse
|
14
|
Arrigoni E, Del Re M, Fidilio L, Fogli S, Danesi R, Di Paolo A. Pharmacogenetic Foundations of Therapeutic Efficacy and Adverse Events of Statins. Int J Mol Sci 2017; 18:ijms18010104. [PMID: 28067828 PMCID: PMC5297738 DOI: 10.3390/ijms18010104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022] Open
Abstract
Background: In the era of precision medicine, more attention is paid to the search for predictive markers of treatment efficacy and tolerability. Statins are one of the classes of drugs that could benefit from this approach because of their wide use and their incidence of adverse events. Methods: Literature from PubMed databases and bibliography from retrieved publications have been analyzed according to terms such as statins, pharmacogenetics, epigenetics, toxicity and drug–drug interaction, among others. The search was performed until 1 October 2016 for articles published in English language. Results: Several technical and methodological approaches have been adopted, including candidate gene and next generation sequencing (NGS) analyses, the latter being more robust and reliable. Among genes identified as possible predictive factors associated with statins toxicity, cytochrome P450 isoforms, transmembrane transporters and mitochondrial enzymes are the best characterized. Finally, the solute carrier organic anion transporter family member 1B1 (SLCO1B1) transporter seems to be the best target for future studies. Moreover, drug–drug interactions need to be considered for the best approach to personalized treatment. Conclusions: Pharmacogenetics of statins includes several possible genes and their polymorphisms, but muscular toxicities seem better related to SLCO1B1 variant alleles. Their analysis in the general population of patients taking statins could improve treatment adherence and efficacy; however, the cost–efficacy ratio should be carefully evaluated.
Collapse
Affiliation(s)
- Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Leonardo Fidilio
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Stefano Fogli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Antonello Di Paolo
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Randomized clinical outcome trials are costly, long, and often yield neutral or modestly positive results, and these issues have impeded cardiovascular drug development in the past decade. Despite the significant reduction of cardiovascular morbidity and mortality with statins, substantial residual risk of major cardiovascular events remains. This could be because of the difficulty of demonstrating benefits of new drugs in addition to the current standard of care in unselected populations as well as the interindividual variability in drug response. Pharmacogenomics is a promising avenue for the development of novel or failed drugs and for the repurposing of other medications. RECENT FINDINGS Several variants were identified in genes that were associated with the effects of statins on plasma lipids. Genomic studies of mutations in genes that encode drug targets have the potential to inform on the link between drug therapy acting on those targets and clinical outcomes. Recently, ADCY9 gene variants were shown to be significantly associated with responses to dalcetrapib in terms of clinical outcomes, atherosclerosis imaging, cholesterol efflux, and inflammation, which provided support for the conduct of a new prospective clinical trial in a genetically determined population. SUMMARY Pharmacogenomics hold great potential in future lipid trials to decrease failure rates in drug development and to identify patients who will respond with greater benefits and smaller risk.
Collapse
Affiliation(s)
- Marie-Jeanne Bertrand
- aMontreal Heart Institute bFaculty of Medicine, Université de Montréal cBeaulieu-Saucier Pharmacogenomics Centre, Université de Montréal, Montreal, Québec, Canada
| | | | | |
Collapse
|
16
|
Kadam P, Ashavaid TF, Ponde CK, Rajani RM. Genetic determinants of lipid-lowering response to atorvastatin therapy in an Indian population. J Clin Pharm Ther 2016; 41:329-33. [PMID: 26932749 DOI: 10.1111/jcpt.12369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Statins form the backbone of lipid-lowering therapy for the prevention of cardiovascular disease. However, there is large interindividual variability in clinical response to statin treatment. Several gene variants that can be aligned to either the pharmacokinetics or pharmacodynamics of statin have been proposed as potentially important determinants of statin response. We aimed to study the association of known variations in SLCO1B1, CYP3A4, ABCB1, CYP3A5, ABCG5 and CYP7A1 genes with lipid levels in response to atorvastatin therapy. METHODS Genotypes were determined using multiplex allele-specific polymerase chain reaction in 177 Indian patients, treated with 10 mg of atorvastatin for 8 weeks. Low-density lipoprotein-cholesterol (LDL-C) levels were recorded at baseline and after 8 weeks of atorvastatin treatment. RESULTS AND DISCUSSION A total of 177 hypercholesterolaemic patients were genotyped to study genetic determinants of atorvastatin response. The genotype distribution for all polymorphisms investigated was in Hardy-Weinberg equilibrium. In our study, patients with wild-type genotypes of CYP7A1 (rs3808607), CYP3A4 (rs2740574), SLCO1B1 (rs2306283) and variant allele-carrying genotype of ABCB1 (rs2032582, rs1045642) showed significantly greater LDL-cholesterol reductions in response to atorvastatin therapy. WHAT IS NEW AND CONCLUSION The variable response to atorvastatin therapy in terms of LDL-cholesterol lowering due to genetic variations in CYP7A1, CYP3A4, SLCO1B1 and ABCB1 is a promising finding. Further validation in large Indian cohorts is required before it can be assessed for clinical utility.
Collapse
Affiliation(s)
- P Kadam
- Research Laboratories, P.D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - T F Ashavaid
- Department of Laboratory Medicine and Laboratory Research, P.D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - C K Ponde
- Cardiology, P.D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - R M Rajani
- Cardiology, P.D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| |
Collapse
|
17
|
Leusink M, Onland-Moret NC, de Bakker PIW, de Boer A, Maitland-van der Zee AH. Seventeen years of statin pharmacogenetics: a systematic review. Pharmacogenomics 2015; 17:163-80. [PMID: 26670324 DOI: 10.2217/pgs.15.158] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM We evaluated the evidence of pharmacogenetic associations with statins in a systematic review. METHODS Two separate outcomes were considered of interest: modification of low-density lipoprotein cholesterol (LDL-C) response and modification of risk for cardiovascular events. RESULTS In candidate gene studies, 141 loci were claimed to be associated with LDL-C response. Only 5% of these associations were positively replicated. In addition, six genome-wide association studies of LDL-C response identified common SNPs in APOE, LPA, SLCO1B1, SORT1 and ABCG2 at genome-wide significance. None of the investigated SNPs consistently affected the risk reduction for cardiovascular events. CONCLUSION Only five genetic loci were consistently associated with LDL-C response. However, as effect sizes are modest, there is no evidence for the value of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Maarten Leusink
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anthonius de Boer
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Zambrano T, Hirata RDC, Hirata MH, Cerda Á, Salazar LA. Altered microRNome Profiling in Statin-Induced HepG2 Cells: A Pilot Study Identifying Potential new Biomarkers Involved in Lipid-Lowering Treatment. Cardiovasc Drugs Ther 2015; 29:509-518. [PMID: 26602562 DOI: 10.1007/s10557-015-6627-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Statins are widely prescribed drugs to manage hypercholesterolemia. Despite they are considered effective lipid-lowering agents, significant inter-individual variability has been reported in relation to drug response. Among the reasons explaining this variation, genetic factors are known to partially contribute. Nonetheless, poor evidence exists regarding epigenetic factors involved. METHODS We investigated if atorvastatin can modulate the cholesterol related miR-33 family. Furthermore, we analyzed the microRNA expression profiles in HepG2 cells treated for 24 hours with atorvastatin or simvastatin using a microarray platform. RESULTS Our results indicate that atorvastatin does not influence the expression of the miR-33 family. In addition, microarray examination revealed that atorvastatin modulated thirteen miRs, whilst simvastatin only affected two miRs. All significantly modulated miRs after simvastastin therapy were also modulated by atorvastatin. In addition, four novel miRs with previously unreported functions were identified as statin-modulated. CONCLUSION We identified several novel miRs affected by statin treatment. Additional research is needed to determine the biological significance of differentially expressed miRs identified in statins-induced HepG2 cells.
Collapse
Affiliation(s)
- Tomás Zambrano
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rosario D C Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mario H Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Álvaro Cerda
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile. .,Centro de Biología Molecular & Farmacogenética, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
19
|
Leusink M, de Keyser CE, Onland-Moret NC, Hofman A, Visser LE, Stricker BH, de Bakker PIW, de Boer A, van Schaik RHN, Maitland-van der Zee AH. No association between CYP3A4*22 and statin effectiveness in reducing the risk for myocardial infarction. Pharmacogenomics 2015; 15:1471-7. [PMID: 25303298 DOI: 10.2217/pgs.14.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Genetic variation has been shown to influence statin response in terms of lowering LDL cholesterol. The recently discovered CYP3A4*22 allele (defined as rs35599367) has been shown to affect statin-induced LDL cholesterol lowering. Our objective was to investigate whether this polymorphism modifies the risk reduction for myocardial infarction (MI) by statins. PATIENTS & METHODS We analyzed the interaction between the *22 minor allele and statin use in the independent Utrecht Cardiovascular Pharmacogenetics study and Rotterdam Study, using logistic and Cox regression models. RESULTS In total, 771 MI cases and 6131 controls were included in the analyses. There was no effect of the CYP3A4*22 allelic status in the studies separately, nor when the estimates from both studies were combined (interaction odds ratio: 1.27; 95% CI: 0.73-2.21; p = 0.40 for carriers of the minor T-allele). CONCLUSION We found no association of the CYP3A4*22 minor allele (rs35599367) with the effectiveness of statins in reducing MI risk.
Collapse
Affiliation(s)
- Maarten Leusink
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smiderle L, Fiegenbaum M, Hutz MH, Van Der Sand CR, Van Der Sand LC, Ferreira MEW, Pires RC, Almeida S. ESR1 polymorphisms and statin therapy: a sex-specific approach. THE PHARMACOGENOMICS JOURNAL 2015; 16:507-513. [PMID: 26302681 DOI: 10.1038/tpj.2015.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022]
Abstract
Lipid-lowering therapy has shown a high degree of variability in clinical response and there is evidence that the variability in drug response between individuals is due to genetic factors. Thirteen single nucleotide polymorphisms (SNPs) within the ESR1 gene were evaluated with basal lipid and lipoprotein levels, as well as response to lipid-lowering therapy, in 495 hypercholesterolemic individuals of European descent receiving simvastatin or atorvastatin. Significant associations were detected between rs4870061 (P=0.040, corrected P-value (PC)=0.440), rs1801132 (P=0.002, PC=0.022) and the SNP rs3020314 (P=0.013, PC=0.143) with triglyceride (TG) baseline levels. The rs4870061 was also associated with high-density lipoprotein cholesterol (HDL-C) baseline levels (P=0.045, PC=0.495). Regarding statin efficacy, rs2234693 C/C was associated with greater HDL-C increase (P=0.037; PC=0.407) and rs3798577 T allele was associated with greater total cholesterol (TC) reduction (P=0.019; PC=0.209) and greater TG reduction (P=0.026; PC=0.286). These associations suggest that ESR1 polymorphisms are in part responsible for the TC, HDL-C and TG variation levels and this effect may be sex-specific.
Collapse
Affiliation(s)
- L Smiderle
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - M Fiegenbaum
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil.,Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - M H Hutz
- Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | | | | | - M E W Ferreira
- Centro de Diagnóstico Cardiológico, Porto Alegre, Brazil
| | - R C Pires
- Centro de Diagnóstico Cardiológico, Porto Alegre, Brazil
| | - S Almeida
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil.,Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| |
Collapse
|
21
|
Kaufman AL, Spitz J, Jacobs M, Sorrentino M, Yuen S, Danahey K, Saner D, Klein TE, Altman RB, Ratain MJ, O'Donnell PH. Evidence for Clinical Implementation of Pharmacogenomics in Cardiac Drugs. Mayo Clin Proc 2015; 90:716-29. [PMID: 26046407 PMCID: PMC4475352 DOI: 10.1016/j.mayocp.2015.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To comprehensively assess the pharmacogenomic evidence of routinely used drugs for clinical utility. METHODS Between January 2, 2011, and May 31, 2013, we assessed 71 drugs by identifying all drug/genetic variant combinations with published clinical pharmacogenomic evidence. Literature supporting each drug/variant pair was assessed for study design and methods, outcomes, statistical significance, and clinical relevance. Proposed clinical summaries were formally scored using a modified AGREE (Appraisal of Guidelines for Research and Evaluation) II instrument, including recommendation for or against guideline implementation. RESULTS Positive pharmacogenomic findings were identified for 51 of 71 cardiovascular drugs (71.8%), representing 884 unique drug/variant pairs from 597 publications. After analysis for quality and clinical relevance, 92 drug/variant pairs were proposed for translation into clinical summaries, encompassing 23 drugs (32.4% of drugs reviewed). All were recommended for clinical implementation using AGREE II, with mean ± SD overall quality scores of 5.18±0.91 (of 7.0; range, 3.67-7.0). Drug guidelines had highest mean ± SD scores in AGREE II domain 1 (Scope) (91.9±6.1 of 100) and moderate but still robust mean ± SD scores in domain 3 (Rigor) (73.1±11.1), domain 4 (Clarity) (67.8±12.5), and domain 5 (Applicability) (65.8±10.0). Clopidogrel (CYP2C19), metoprolol (CYP2D6), simvastatin (rs4149056), dabigatran (rs2244613), hydralazine (rs1799983, rs1799998), and warfarin (CYP2C9/VKORC1) were distinguished by the highest scores. Seven of the 9 most commonly prescribed drugs warranted translation guidelines summarizing clinical pharmacogenomic information. CONCLUSION Considerable clinically actionable pharmacogenomic information for cardiovascular drugs exists, supporting the idea that consideration of such information when prescribing is warranted.
Collapse
Affiliation(s)
- Amy L Kaufman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL
| | - Jared Spitz
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL
| | - Michael Jacobs
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL
| | | | - Shennin Yuen
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL
| | - Keith Danahey
- Center for Research Informatics, The University of Chicago, Chicago, IL
| | - Donald Saner
- Center for Research Informatics, The University of Chicago, Chicago, IL
| | - Teri E Klein
- Department of Genetics, Stanford University, Palo Alto, CA
| | - Russ B Altman
- Department of Genetics, Stanford University, Palo Alto, CA; Department of Bioengineering, Stanford University, Palo Alto, CA; Department of Medicine, Stanford University, Palo Alto, CA
| | - Mark J Ratain
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL; Department of Medicine, The University of Chicago, Chicago, IL; Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL
| | - Peter H O'Donnell
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL; Department of Medicine, The University of Chicago, Chicago, IL; Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL.
| |
Collapse
|
22
|
Postmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, Chasman DI, Zhou K, Arsenault BJ, Donnelly LA, Wiggins KL, Avery CL, Griffin P, Feng Q, Taylor KD, Li G, Evans DS, Smith AV, de Keyser CE, Johnson AD, de Craen AJM, Stott DJ, Buckley BM, Ford I, Westendorp RGJ, Eline Slagboom P, Sattar N, Munroe PB, Sever P, Poulter N, Stanton A, Shields DC, O’Brien E, Shaw-Hawkins S, Ida Chen YD, Nickerson DA, Smith JD, Pierre Dubé M, Matthijs Boekholdt S, Kees Hovingh G, Kastelein JJP, McKeigue PM, Betteridge J, Neil A, Durrington PN, Doney A, Carr F, Morris A, McCarthy MI, Groop L, Ahlqvist E, Bis JC, Rice K, Smith NL, Lumley T, Whitsel EA, Stürmer T, Boerwinkle E, Ngwa JS, O’Donnell CJ, Vasan RS, Wei WQ, Wilke RA, Liu CT, Sun F, Guo X, Heckbert SR, Post W, Sotoodehnia N, Arnold AM, Stafford JM, Ding J, Herrington DM, Kritchevsky SB, Eiriksdottir G, Launer LJ, Harris TB, Chu AY, Giulianini F, MacFadyen JG, Barratt BJ, Nyberg F, Stricker BH, Uitterlinden AG, Hofman A, Rivadeneira F, Emilsson V, Franco OH, Ridker PM, Gudnason V, Liu Y, Denny JC, Ballantyne CM, Rotter JI, Adrienne Cupples L, Psaty BM, Palmer CNA, Tardif JC, Colhoun HM, Hitman G, et alPostmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, Chasman DI, Zhou K, Arsenault BJ, Donnelly LA, Wiggins KL, Avery CL, Griffin P, Feng Q, Taylor KD, Li G, Evans DS, Smith AV, de Keyser CE, Johnson AD, de Craen AJM, Stott DJ, Buckley BM, Ford I, Westendorp RGJ, Eline Slagboom P, Sattar N, Munroe PB, Sever P, Poulter N, Stanton A, Shields DC, O’Brien E, Shaw-Hawkins S, Ida Chen YD, Nickerson DA, Smith JD, Pierre Dubé M, Matthijs Boekholdt S, Kees Hovingh G, Kastelein JJP, McKeigue PM, Betteridge J, Neil A, Durrington PN, Doney A, Carr F, Morris A, McCarthy MI, Groop L, Ahlqvist E, Bis JC, Rice K, Smith NL, Lumley T, Whitsel EA, Stürmer T, Boerwinkle E, Ngwa JS, O’Donnell CJ, Vasan RS, Wei WQ, Wilke RA, Liu CT, Sun F, Guo X, Heckbert SR, Post W, Sotoodehnia N, Arnold AM, Stafford JM, Ding J, Herrington DM, Kritchevsky SB, Eiriksdottir G, Launer LJ, Harris TB, Chu AY, Giulianini F, MacFadyen JG, Barratt BJ, Nyberg F, Stricker BH, Uitterlinden AG, Hofman A, Rivadeneira F, Emilsson V, Franco OH, Ridker PM, Gudnason V, Liu Y, Denny JC, Ballantyne CM, Rotter JI, Adrienne Cupples L, Psaty BM, Palmer CNA, Tardif JC, Colhoun HM, Hitman G, Krauss RM, Wouter Jukema J, Caulfield MJ. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun 2014; 5:5068. [PMID: 25350695 PMCID: PMC4220464 DOI: 10.1038/ncomms6068] [Show More Authors] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022] Open
Abstract
Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.
Collapse
Affiliation(s)
- Iris Postmus
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Harshal A. Deshmukh
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Michael R. Barnes
- Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Helen R. Warren
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
- Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kaixin Zhou
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Benoit J. Arsenault
- Montreal Heart Institute, Universite de Montreal, Montreal H1T 1C8, Quebec, Canada
| | - Louise A. Donnelly
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
| | - Christy L. Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Paula Griffin
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
| | - QiPing Feng
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Guo Li
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | - Albert V. Smith
- Icelandic Heart Association, IS-201 Kopavogur, Iceland
- University of Iceland, IS-101 Reykjavik, Iceland
| | - Catherine E. de Keyser
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Health Care Inspectorate, 2595 AN The Hague, The Netherlands
| | - Andrew D. Johnson
- Framingham Heart Study (FHS) of the National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics, Framingham, Massachusetts 01702, USA
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
| | - David J. Stott
- Faculty of Medicine, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G31 2ER, UK
| | - Brendan M. Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork 30, Ireland
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rudi G. J. Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
- Leyden Academy of Vitality and Ageing, 2333 AA Leiden, The Netherlands
| | - P. Eline Slagboom
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Naveed Sattar
- Faculty of Medicine, BHF Glasgow Cardiovascular Research Centre, Glasgow G12 8QQ, UK
| | - Patricia B. Munroe
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College, London SW7 2AZ, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College, London SW7 2AZ, UK
| | - Alice Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Beaumont Hospital, Dublin 9, Ireland
| | - Denis C. Shields
- The Conway Institute, University College Dublin, Dublin 4, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Eoin O’Brien
- The Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sue Shaw-Hawkins
- Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
| | - Y.-D. Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98101, USA
| | - Joshua D. Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington 98101, USA
| | - Marie Pierre Dubé
- Montreal Heart Institute, Universite de Montreal, Montreal H1T 1C8, Quebec, Canada
| | - S. Matthijs Boekholdt
- Department of Cardiology, Academic Medical Center, 1100 DD Amsterdam, The Netherlands
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, 1100 DD Amsterdam, The Netherlands
| | - John J. P. Kastelein
- Department of Vascular Medicine, Academic Medical Center, 1100 DD Amsterdam, The Netherlands
| | | | | | | | - Paul N. Durrington
- Cardiovascular Research Group, School of Biosciences, University of Manchester, Manchester M13 9NT, UK
| | - Alex Doney
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Fiona Carr
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andrew Morris
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Leif Groop
- Department of Clinical Sciences/Diabetes & Endocrinology, Lund University, Malmo 205 02, Sweden
| | - Emma Ahlqvist
- Department of Clinical Sciences/Diabetes & Endocrinology, Lund University, Malmo 205 02, Sweden
| | | | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, 98115 Seattle, Washington, USA
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington 98101, USA
| | - Thomas Lumley
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
- Department of Statistic, University of Auckland, Auckland 1142, New Zealand
| | - Eric A. Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Til Stürmer
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Julius S. Ngwa
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
| | - Christopher J. O’Donnell
- NHLBI Framingham Heart Study, Framingham, Massachusetts 01701, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | - Ramachandran S. Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, and the Framingham Heart Study, Framingham, Massachusetts 01701, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Russell A. Wilke
- Department of Internal Medicine, Center for IMAGENETICS, Sanford Healthcare, Fargo, North Dakota, 58104 USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
| | - Fangui Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
| | - Wendy Post
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
- Division of Cardiology, Harborview Medical Center, University of Washington, Seattle 98101, Washington, USA
| | - Alice M. Arnold
- Department of Biostatistics, University of Washington, 98115 Seattle, Washington, USA
| | - Jeanette M. Stafford
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Jingzhong Ding
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - David M. Herrington
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Leonore J. Launer
- Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Avenue, Bethesda, Maryland 20892, USA
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Avenue, Bethesda, Maryland 20892, USA
| | - Audrey Y. Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
| | - Jean G. MacFadyen
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
| | - Bryan J. Barratt
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park SK10 4TG, UK
| | - Fredrik Nyberg
- AstraZeneca Research and Development, 481 83 Mölndal, Sweden
- Unit of Occupational and Environmental Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Bruno H. Stricker
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Health Care Inspectorate, 2595 AN The Hague, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - André G. Uitterlinden
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Albert Hofman
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | - Oscar H. Franco
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, IS-201 Kopavogur, Iceland
- University of Iceland, IS-101 Reykjavik, Iceland
| | - Yongmei Liu
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37240, USA
- Department of Medicine, Vanderbilt University, Vanderbilt, Tennessee 37240, USA
| | | | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
- NHLBI Framingham Heart Study, Framingham, Massachusetts 01701, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA
- Department of Health Services, University of Washington, Seattle, Washington 98101, USA
| | - Colin N. A. Palmer
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Jean-Claude Tardif
- Montreal Heart Institute, Universite de Montreal, Montreal H1T 1C8, Quebec, Canada
| | - Helen M. Colhoun
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Public Health, University of Dundee, Dundee DD1 9SY, UK
| | - Graham Hitman
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Ronald M. Krauss
- Children’s Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Durrer Center for Cardiogenetic Research, 1105 AZ Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, 3511 GC Utrecht, The Netherlands
| | - Mark J. Caulfield
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
| |
Collapse
|
23
|
Shimabukuro-Vornhagen A, Zoghi S, Liebig TM, Wennhold K, Chemitz J, Draube A, Kochanek M, Blaschke F, Pallasch C, Holtick U, Scheid C, Theurich S, Hallek M, von Bergwelt-Baildon MS. Inhibition of protein geranylgeranylation specifically interferes with CD40-dependent B cell activation, resulting in a reduced capacity to induce T cell immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:5294-305. [PMID: 25311809 DOI: 10.4049/jimmunol.1203436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ab-independent effector functions of B cells, such as Ag presentation and cytokine production, have been shown to play an important role in a variety of immune-mediated conditions such as autoimmune diseases, transplant rejection, and graft-versus-host disease. Most current immunosuppressive treatments target T cells, are relatively unspecific, and result in profound immunosuppression that places patients at an increased risk of developing severe infections and cancer. Therapeutic strategies, which interfere with B cell activation, could therefore be a useful addition to the current immunosuppressive armamentarium. Using a transcriptomic approach, we identified upregulation of genes that belong to the mevalonate pathway as a key molecular event following CD40-mediated activation of B cells. Inhibition of 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme of the mevalonate pathway, by lipophilic statins such as simvastatin and atorvastatin resulted in a specific inhibition of B cell activation via CD40 and impaired their ability to act as stimulatory APCs for allospecific T cells. Mechanistically, the inhibitory effect resulted from the inhibition of protein geranylgeranylation subsequent to the depletion of mevalonate, the metabolic precursor for geranylgeranyl. Thus, inhibition of geranylgeranylation either directly through geranylgeranyl transferase inhibitors or indirectly through statins represents a promising therapeutic approach for the treatment of diseases in which Ag presentation by B cells plays a role.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany;
| | - Shahram Zoghi
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Tanja M Liebig
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Jens Chemitz
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Andreas Draube
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Matthias Kochanek
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany
| | - Florian Blaschke
- Department of Cardiology, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany; and Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Christian Pallasch
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Udo Holtick
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Christof Scheid
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Michael Hallek
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany
| |
Collapse
|
24
|
Influence of PCSK9 polymorphisms on plasma lipids and response to atorvastatin treatment in Brazilian subjects. J Clin Lipidol 2014; 8:256-64. [DOI: 10.1016/j.jacl.2014.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 11/19/2022]
|
25
|
Postmus I, Johnson PCD, Trompet S, de Craen AJM, Slagboom PE, Devlin JJ, Shiffman D, Sacks FM, Kearney PM, Stott DJ, Buckley BM, Sattar N, Ford I, Westendorp RGJ, Jukema JW. In search for genetic determinants of clinically meaningful differential cardiovascular event reduction by pravastatin in the PHArmacogenetic study of Statins in the Elderly at risk (PHASE)/PROSPER study. Atherosclerosis 2014; 235:58-64. [PMID: 24816038 DOI: 10.1016/j.atherosclerosis.2014.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/12/2014] [Accepted: 04/07/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Statin therapy is widely used in the prevention and treatment of cardiovascular events and is associated with significant risk reductions. However, there is considerable variation in response to statin therapy both in terms of LDL cholesterol reduction and clinical outcomes. It has been hypothesized that genetic variation contributes importantly to this individual drug response. METHODS AND RESULTS We investigated the interaction between genetic variants and pravastatin or placebo therapy on the incidence of cardiovascular events by performing a genome-wide association study in the participants of the PROspective Study of Pravastatin in the Elderly at Risk for vascular disease--PHArmacogenetic study of Statins in the Elderly at risk (PROSPER/PHASE) study (n = 5244). We did not observe genome-wide significant associations with a clinically meaningful differential cardiovascular event reduction by pravastatin therapy. In addition, SNPs with p-values lower than 1 × 10(-4) were assessed for replication in a case-only analysis within two randomized placebo controlled pravastatin trials, CARE (n = 711) and WOSCOPS (n = 522). rs7102569, on chromosome 11 near the ODZ4 gene, was replicated in the CARE study (p = 0.008), however the direction of effect was opposite. This SNP was not associated in WOSCOPS. In addition, none of the SNPs replicated significantly after correcting for multiple testing. CONCLUSIONS We could not identify genetic variation that was significantly associated at genome-wide level with a clinically meaningful differential event reduction by pravastatin treatment in a large prospective study. We therefore assume that in daily practice the use of genetic characteristics to personalize pravastatin treatment to improve prevention of cardiovascular disease will be limited.
Collapse
Affiliation(s)
- Iris Postmus
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Paul C D Johnson
- Robertson Center for Biostatistics, University of Glasgow, United Kingdom.
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - P Eline Slagboom
- Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Molecular Epidemiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | - Frank M Sacks
- Department of Nutrition, Harvard School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham & Women's Hospital, Boston, MA, United States.
| | - Patricia M Kearney
- Department of Epidemiology and Public Health, University College Cork, Ireland.
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, United Kingdom.
| | - Brendan M Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Ireland.
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom.
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, United Kingdom.
| | - Rudi G J Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands; Leyden Academy of Vitality and Ageing, Leiden, The Netherlands.
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.
| |
Collapse
|
26
|
|
27
|
Patel J, Abd T, Blumenthal RS, Nasir K, Superko HR. Genetics and Personalized Medicine—a Role in Statin Therapy? Curr Atheroscler Rep 2013; 16:384. [DOI: 10.1007/s11883-013-0384-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Clinical and Biological Relevance of Statin-Mediated Changes in HDL Metabolism. Curr Atheroscler Rep 2013; 16:379. [DOI: 10.1007/s11883-013-0379-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Aslibekyan S, Straka RJ, Irvin MR, Claas SA, Arnett DK. Pharmacogenomics of high-density lipoprotein-cholesterol-raising therapies. Expert Rev Cardiovasc Ther 2013; 11:355-64. [PMID: 23469915 DOI: 10.1586/erc.12.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High levels of HDL cholesterol (HDL-C) have traditionally been linked to lower incidence of cardiovascular disease, prompting the search for effective and safe HDL-C raising pharmaceutical agents. Although drugs such as niacin and fibrates represent established therapeutic approaches, HDL-C response to such therapies is variable and heritable, suggesting a role for pharmacogenomic determinants. Multiple genetic polymorphisms, located primarily in genes encoding lipoproteins, cholesteryl ester transfer protein, transporters and CYP450 proteins have been shown to associate with HDL-C drug response in vitro and in epidemiologic studies. However, few of the pharmacogenomic findings have been independently validated, precluding the development of clinical tools that can be used to predict HDL-C response and leaving the goal of personalized medicine to future efforts.
Collapse
Affiliation(s)
- Stella Aslibekyan
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | |
Collapse
|
30
|
Postmus I, Trompet S, Wouter Jukema J. Statins work around the world. Curr Med Res Opin 2013; 29:747-9. [PMID: 23614629 DOI: 10.1185/03007995.2013.799392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Abstract
Statins are the most widely used group of lipid-lowering drugs and they have been shown to be effective in the prevention of cardiovascular disease, primarily by reducing plasma low-density lipoprotein cholesterol concentrations and possibly through other pleiotropic effects. However, there are large variations in lipid responses to statins and some patients have intolerable muscle adverse drug reactions, which may in part be related to genetic factors. In the last decade, pharmacogenetic studies on statins ranging from the candidate gene approach to the more recent genome-wide association studies have provided evidence that genetic variations play an important role in determining statin responses. This review summarizes the current understanding on the pharmacogenomics of statins and other lipid-lowering drugs in current use.
Collapse
Affiliation(s)
- Miao Hu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Brian Tomlinson
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR.
| |
Collapse
|