1
|
Reidy PT, Monnig JM, Pickering CE, Funai K, Drummond MJ. Preclinical rodent models of physical inactivity-induced muscle insulin resistance: challenges and solutions. J Appl Physiol (1985) 2020; 130:537-544. [PMID: 33356986 DOI: 10.1152/japplphysiol.00954.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Physical inactivity influences the development of muscle insulin resistance yet is far less understood than diet-induced muscle insulin resistance. Progress in understanding the mechanisms of physical inactivity-induced insulin resistance is limited by a lack of an appropriate preclinical model of muscle insulin resistance. Here, we discuss differences between diet and physical inactivity-induced insulin resistance, the advantages and disadvantages of the available rodent inactivity models to study insulin resistance, and our current understanding of the mechanisms of muscle insulin resistance derived from such preclinical inactivity designs. The burgeoning rise of health complications emanating from metabolic disease presents an alarming issue with mounting costs for health care and a reduced quality of life. There exists a pressing need for more complete understanding of mechanisms behind the development and progression of metabolic dysfunction. Since lifestyle modifications such as poor diet and lack of physical activity are primary catalysts of metabolic dysfunction, rodent models have been formed to explore mechanisms behind these issues. Particularly, the use of a high-fat diet has been pervasive and has been an instrumental model to gain insight into mechanisms underlying diet-induced insulin resistance (IR). However, physical inactivity (and to some extent muscle disuse) is an often overlooked and much less frequently studied lifestyle modification, which some have contended is the primary contributor in the initial development of muscle IR. In this mini-review we highlight some of the key differences between diet- and physical inactivity-induced development of muscle IR and propose reasons for the sparse volume of academic research into physical inactivity-induced IR including infrequent use of clearly translatable rodent physical inactivity models.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Kinesiology and Health, Miami University, Oxford, Ohio
| | - Jackie M Monnig
- Department of Kinesiology and Health, Miami University, Oxford, Ohio
| | | | - Katsuhiko Funai
- Departments of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Departments of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| |
Collapse
|
2
|
Knudsen JR, Steenberg DE, Hingst JR, Hodgson LR, Henriquez-Olguin C, Li Z, Kiens B, Richter EA, Wojtaszewski JFP, Verkade P, Jensen TE. Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Mol Metab 2020; 39:100998. [PMID: 32305516 PMCID: PMC7240215 DOI: 10.1016/j.molmet.2020.100998] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Exercise is a cornerstone in the management of skeletal muscle insulin-resistance. A well-established benefit of a single bout of exercise is increased insulin sensitivity for hours post-exercise in the previously exercised musculature. Although rodent studies suggest that the insulin-sensitization phenomenon involves enhanced insulin-stimulated GLUT4 cell surface translocation and might involve intramuscular redistribution of GLUT4, the conservation to humans is unknown. Methods Healthy young males underwent an insulin-sensitizing one-legged kicking exercise bout for 1 h followed by fatigue bouts to exhaustion. Muscle biopsies were obtained 4 h post-exercise before and after a 2-hour hyperinsulinemic-euglycemic clamp. Results A detailed microscopy-based analysis of GLUT4 distribution within seven different myocellular compartments revealed that prior exercise increased GLUT4 localization in insulin-responsive storage vesicles and T-tubuli. Furthermore, insulin-stimulated GLUT4 localization was augmented at the sarcolemma and in the endosomal compartments. Conclusions An intracellular redistribution of GLUT4 post-exercise is proposed as a molecular mechanism contributing to the insulin-sensitizing effect of prior exercise in human skeletal muscle. Intramyocellular GLUT4 is redistributed 4 h after exercise in humans. GLUT4 content is increased in GLUT4 storage vesicles and T-tubuli post-exercise. Prior exercise + insulin increases sarcolemmal and endosomal GLUT4. GLUT4 redistribution may thus contribute to post-exercise muscle insulin-sensitization.
Collapse
Affiliation(s)
- Jonas R Knudsen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark; Laboratory of Microsystems 2, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne, Batiment BM, 1015, Lausanne, Switzerland
| | - Dorte E Steenberg
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Janne R Hingst
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Lorna R Hodgson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, United Kingdom
| | - Carlos Henriquez-Olguin
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Zhencheng Li
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Bente Kiens
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Erik A Richter
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Jørgen F P Wojtaszewski
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, United Kingdom
| | - Thomas E Jensen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark.
| |
Collapse
|
3
|
Graham ZA, Siedlik JA, Harlow L, Sahbani K, Bauman WA, Tawfeek HA, Cardozo CP. Key Glycolytic Metabolites in Paralyzed Skeletal Muscle Are Altered Seven Days after Spinal Cord Injury in Mice. J Neurotrauma 2019; 36:2722-2731. [PMID: 30869558 DOI: 10.1089/neu.2018.6144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Spinal cord injury (SCI) results in rapid muscle atrophy and an oxidative-to-glycolytic fiber-type shift. Those with chronic SCI are more at risk for developing insulin resistance and reductions in glucose clearance than able-bodied individuals, but how glucose metabolism is affected after SCI is not well known. An untargeted metabolomics approach was utilized to investigate changes in whole-muscle metabolites at an acute (7-day) and subacute (28-day) time frame after a complete T9 spinal cord transection in 20-week-old female C57BL/6 mice. Two hundred one metabolites were detected in all samples, and 83 had BinBase IDs. A principal components analysis showed the 7-day group as a unique cluster. Further, 36 metabolites were altered after 7- and/or 28-day post-SCI (p values <0.05), with 12 passing further false discovery rate exclusion criteria; of those 12 metabolites, three important glycolytic molecules-glucose and downstream metabolites pyruvic acid and lactic acid-were reduced at 7 days compared to those values in sham and/or 28-day animals. These changes were associated with altered expression of proteins associated with glycolysis, as well as monocarboxylate transporter 4 gene expression. Taken together, our data suggest an acute disruption of skeletal muscle glucose uptake at 7 days post-SCI, which leads to reduced pyruvate and lactate levels. These levels recover by 28 days post-SCI, but a reduction in pyruvate dehydrogenase protein expression at 28 days post-SCI implies disruption in downstream oxidation of glucose.
Collapse
Affiliation(s)
- Zachary A Graham
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Lauren Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
| | - Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Medical Service, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Medical Service, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Liu L, Jiang G, Peng Z, Li Y, Li J, Zou L, He Z, Wang X, Chu W. The effect of high fat diet on daily rhythm of the core clock genes and muscle functional genes in the skeletal muscle of Chinese soft-shelled turtle ( Trionyx sinensis ). Comp Biochem Physiol B Biochem Mol Biol 2017; 213:17-27. [DOI: 10.1016/j.cbpb.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/07/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
|
5
|
Shen L, Haas M, Wang DQH, May A, Lo CC, Obici S, Tso P, Woods SC, Liu M. Ginsenoside Rb1 increases insulin sensitivity by activating AMP-activated protein kinase in male rats. Physiol Rep 2015; 3:3/9/e12543. [PMID: 26359241 PMCID: PMC4600387 DOI: 10.14814/phy2.12543] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although ginseng has been reported to ameliorate hyperglycemia in animal models and clinical studies, the molecular mechanisms are largely unknown. We previously reported that chronic treatment with ginsenoside Rb1 (Rb1), a major component of ginseng, significantly reduced fasting glucose and improved glucose tolerance in high-fat diet (HFD)-induced obese rats. These effects were greater than those observed in pair-fed rats, suggesting a direct effect of Rb1 on glucose homeostasis, and this possibility was confirmed in the present study. In lean rats fed standard rodent chow, 5-day treatment with Rb1 significantly improved glucose tolerance and enhanced insulin sensitivity. Notably, those effects were not accompanied by reduced food intake or changed body weight. To elucidate the underlying molecular mechanisms, rats fed a HFD for 4 weeks were treated with Rb1 for 5 days. Subsequently, euglycemic-hyperinsulinemic clamp studies found that compared to vehicle, Rb1, while not changing food intake or body weight, significantly increased glucose infusion rate required to maintain euglycemia. Consistent with this, insulin-induced inhibition of hepatic gluconeogenesis was significantly enhanced and hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase gene expression was suppressed. Additionally, glucose uptake was significantly increased in skeletal muscle. While proximal insulin signaling was not changed after Rb1 treatment, increased phosphorylation of TBC1D4, a downstream target of AMPK signaling, appears to be a key part of the mechanism for Rb1-stimulated glucose uptake in skeletal muscle. These findings indicate that Rb1 has multiple effects on glucose homeostasis, and provide strong rationale for further evaluation of its potential therapeutic role.
Collapse
Affiliation(s)
- Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael Haas
- Department of Cancer & Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Q-H Wang
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Aaron May
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Chunmin C Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Silvana Obici
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
6
|
Llanos P, Contreras-Ferrat A, Georgiev T, Osorio-Fuentealba C, Espinosa A, Hidalgo J, Hidalgo C, Jaimovich E. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. Am J Physiol Endocrinol Metab 2015; 308:E294-305. [PMID: 25491723 DOI: 10.1152/ajpendo.00189.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin stimulates glucose uptake in adult skeletal muscle by promoting the translocation of GLUT4 glucose transporters to the transverse tubule (T-tubule) membranes, which have particularly high cholesterol levels. We investigated whether T-tubule cholesterol content affects insulin-induced glucose transport. Feeding mice a high-fat diet (HFD) for 8 wk increased by 30% the T-tubule cholesterol content of triad-enriched vesicular fractions from muscle tissue compared with triads from control mice. Additionally, isolated muscle fibers (flexor digitorum brevis) from HFD-fed mice showed a 40% decrease in insulin-stimulated glucose uptake rates compared with fibers from control mice. In HFD-fed mice, four subcutaneous injections of MβCD, an agent reported to extract membrane cholesterol, improved their defective glucose tolerance test and normalized their high fasting glucose levels. The preincubation of isolated muscle fibers with relatively low concentrations of MβCD increased both basal and insulin-induced glucose uptake in fibers from controls or HFD-fed mice and decreased Akt phosphorylation without altering AMPK-mediated signaling. In fibers from HFD-fed mice, MβCD improved insulin sensitivity even after Akt or CaMK II inhibition and increased membrane GLUT4 content. Indinavir, a GLUT4 antagonist, prevented the stimulatory effects of MβCD on glucose uptake. Addition of MβCD elicited ryanodine receptor-mediated calcium signals in isolated fibers, which were essential for glucose uptake. Our findings suggest that T-tubule cholesterol content exerts a critical regulatory role on insulin-stimulated GLUT4 translocation and glucose transport and that partial cholesterol removal from muscle fibers may represent a useful strategy to counteract insulin resistance.
Collapse
Affiliation(s)
- Paola Llanos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile;
| | - Ariel Contreras-Ferrat
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Tihomir Georgiev
- Medical Biophysics, Institute of Physiology und Pathophysiology, Ruprecht Karls Universität, Heidelberg, Germany
| | | | - Alejandra Espinosa
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cell and Molecular Biology Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Paxillin and focal adhesion kinase colocalise in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 2014; 142:245-56. [PMID: 24671495 DOI: 10.1007/s00418-014-1212-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/15/2023]
Abstract
Focal adhesion kinase (FAK) and paxillin are functionally linked hormonal- and mechano-sensitive proteins. We aimed to describe paxillin's subcellular distribution using widefield and confocal immunofluorescence microscopy and test the hypothesis that FAK and paxillin colocalise in human skeletal muscle and its associated microvasculature. Percutaneous muscle biopsies were collected from the m. vastus lateralis of seven healthy males, and 5-μm cryosections were stained with anti-paxillin co-incubated with anti-dystrophin to identify the sarcolemma, anti-myosin heavy chain type I for fibre-type differentiation, anti-dihydropyridine receptor to identify T-tubules, lectin UEA-I to identify the endothelium of microvessels and anti-α-smooth muscle actin to identify vascular smooth muscle cells (VSMC). Colocalisation of anti-paxillin with anti-dystrophin or anti-FAK was quantified using Pearson's correlation coefficient on confocal microscopy images. Paxillin was primarily present in (sub)sarcolemmal regions of skeletal muscle fibres where it colocalised with dystrophin (r = 0.414 ± 0.026). The (sub)sarcolemmal paxillin immunofluorescence intensity was ~2.4-fold higher than in sarcoplasmic regions (P < 0.001) with sarcoplasmic paxillin immunofluorescence intensity ~10 % higher in type I than in type II fibres (P < 0.01). In some longitudinally orientated fibres, paxillin formed striations that corresponded to the I-band region. Paxillin immunostaining was highest in endothelial and VSMC and distributed heterogeneously in both cell types. FAK and paxillin colocalised at (sub)sarcolemmal regions and within the microvasculature (r = 0.367 ± 0.036). The first images of paxillin in human skeletal muscle suggest paxillin is present in (sub)sarcolemmal and I-band regions of muscle fibres and within the microvascular endothelium and VSMC. Colocalisation of FAK and paxillin supports their suggested role in hormonal and mechano-sensitive signalling.
Collapse
|
8
|
Insulin- and contraction-induced glucose transporter 4 traffic in muscle: insights from a novel imaging approach. Exerc Sport Sci Rev 2014; 41:77-86. [PMID: 23072821 DOI: 10.1097/jes.0b013e318275574c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin- and contraction-mediated glucose transporter 4 (GLUT4) trafficking have different kinetics in mature skeletal muscle. Intravital imaging indicates that insulin-stimulated GLUT4 trafficking differs between t-tubules and sarcolemma. In contrast, contraction-induced GLUT4 trafficking does not differ between membrane surfaces. This distinction likely is caused by differences in the underlying signaling pathways regulating GLUT4 vesicle depletion, GLUT4 membrane fusion, and GLUT4 reinternalization.
Collapse
|
9
|
Koh HJ, Toyoda T, Didesch MM, Lee MY, Sleeman MW, Kulkarni RN, Musi N, Hirshman MF, Goodyear LJ. Tribbles 3 mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Nat Commun 2013; 4:1871. [PMID: 23695665 PMCID: PMC3707125 DOI: 10.1038/ncomms2851] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 04/09/2013] [Indexed: 12/23/2022] Open
Abstract
Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Ho-Jin Koh
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
11
|
Smittkamp SE, Morris JK, Bomhoff GL, Chertoff ME, Geiger PC, Stanford JA. SOD1-G93A mice exhibit muscle-fiber-type-specific decreases in glucose uptake in the absence of whole-body changes in metabolism. NEURODEGENER DIS 2013; 13:29-37. [PMID: 24021858 DOI: 10.1159/000351606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 04/25/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Skeletal muscles play an important role in systemic glucose homeostasis and are purported to be the origin of the altered metabolic state observed in amyotrophic lateral sclerosis (ALS). OBJECTIVE The purpose of this study was to evaluate whole-body and muscle-specific glucose metabolism in the SOD1-G93A mouse model of ALS. METHODS We assessed glucose tolerance in early-, middle-, and late-stage SOD1-G93A and control mice using an intraperitoneal glucose tolerance test. We then measured the respiratory exchange ratio (CO2 production/O2 consumption) as a function of fasting and feeding using indirect calorimetry in a subset of male mice at these time points. Finally, muscles from all mice were harvested to evaluate basal and insulin-stimulated glucose transport in fast- and slow-twitch muscles. RESULTS No changes in systemic glucose clearance were observed in SOD1-G93A mice at any stage, nor were there changes in fasting insulin levels. Indirect calorimetry revealed an increase in the respiratory exchange ratio during the fed state at middle, but not at early or late stages of disease. Middle-stage SOD1-G93A mice exhibited decreased insulin-stimulated glucose uptake in fast-twitch, but not slow-twitch, skeletal muscle. Late-stage SOD1-G93A mice exhibited decreased insulin-stimulated glucose uptake in both fast- and slow-twitch muscle, as well as increased basal (non-insulin-stimulated) glucose uptake. CONCLUSIONS These results suggest that alterations in muscle metabolism occur in a fiber-type-specific manner in ALS, but do not necessarily lead to whole-body metabolic changes in SOD1-G93A mice.
Collapse
Affiliation(s)
- Susan E Smittkamp
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kans., USA
| | | | | | | | | | | |
Collapse
|
12
|
Lauritzen HP, Brandauer J, Schjerling P, Koh HJ, Treebak JT, Hirshman MF, Galbo H, Goodyear LJ. Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo. Diabetes 2013; 62:3081-92. [PMID: 23761105 PMCID: PMC3749330 DOI: 10.2337/db12-1261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP-containing vesicles and protein by 62% (P < 0.05), occurring rapidly and progressively over 25 min of contraction. However, contraction-mediated IL-6-EGFP reduction was normal in muscle-specific AMP-activated protein kinase (AMPK) α2-inactive transgenic mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP vesicles, an effect that was inhibited in the transgenic mice. In conclusion, resting skeletal muscles contain IL-6-positive vesicles that are expressed throughout myofibers. Contractions stimulate the rapid reduction of IL-6 in myofibers, occurring through an AMPKα2-independent mechanism. This novel imaging methodology clearly establishes IL-6 as a contraction-stimulated myokine and can be used to characterize the secretion kinetics of other putative myokines.
Collapse
Affiliation(s)
- Hans P.M.M. Lauritzen
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Josef Brandauer
- Department of Health Sciences, Gettysburg College, Gettysburg, Pennsylvania
| | - Peter Schjerling
- Department of Orthopedic Surgery M, Institute of Sports Medicine, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ho-Jin Koh
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Jonas T. Treebak
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael F. Hirshman
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Henrik Galbo
- Department of Rheumatology and Institute of Inflammation Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laurie J. Goodyear
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
- Corresponding author: Laurie J. Goodyear,
| |
Collapse
|
13
|
Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 2013; 62:1865-75. [PMID: 23423567 PMCID: PMC3661612 DOI: 10.2337/db12-1148] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The actin cytoskeleton-regulating GTPase Rac1 is required for insulin-stimulated GLUT4 translocation in cultured muscle cells. However, involvement of Rac1 and its downstream signaling in glucose transport in insulin-sensitive and insulin-resistant mature skeletal muscle has not previously been investigated. We hypothesized that Rac1 and its downstream target, p21-activated kinase (PAK), are regulators of insulin-stimulated glucose uptake in mouse and human skeletal muscle and are dysregulated in insulin-resistant states. Muscle-specific inducible Rac1 knockout (KO) mice and pharmacological inhibition of Rac1 were used to determine whether Rac1 regulates insulin-stimulated glucose transport in mature skeletal muscle. Furthermore, Rac1 and PAK1 expression and signaling were investigated in muscle of insulin-resistant mice and humans. Inhibition and KO of Rac1 decreased insulin-stimulated glucose transport in mouse soleus and extensor digitorum longus muscles ex vivo. Rac1 KO mice showed decreased insulin and glucose tolerance and trended toward higher plasma insulin concentrations after intraperitoneal glucose injection. Rac1 protein expression and insulin-stimulated PAK(Thr423) phosphorylation were decreased in muscles of high fat-fed mice. In humans, insulin-stimulated PAK activation was decreased in both acute insulin-resistant (intralipid infusion) and chronic insulin-resistant states (obesity and diabetes). These findings show that Rac1 is a regulator of insulin-stimulated glucose uptake and a novel candidate involved in skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E. Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Diabetes Research Center, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Bente Kiens
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Wojtaszewski
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Department of Biomedical Sciences, Center of Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik A. Richter
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
- Corresponding author: Erik A. Richter,
| |
Collapse
|
14
|
Frøsig C, Jensen TE, Jeppesen J, Pehmøller C, Treebak JT, Maarbjerg SJ, Kristensen JM, Sylow L, Alsted TJ, Schjerling P, Kiens B, Wojtaszewski JFP, Richter EA. AMPK and insulin action--responses to ageing and high fat diet. PLoS One 2013; 8:e62338. [PMID: 23671593 PMCID: PMC3645997 DOI: 10.1371/journal.pone.0062338] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/20/2013] [Indexed: 12/21/2022] Open
Abstract
The 5′-AMP-activated protein kinase (AMPK) is considered “a metabolic master-switch” in skeletal muscle reducing ATP- consuming processes whilst stimulating ATP regeneration. Within recent years, AMPK has also been proposed as a potential target to attenuate insulin resistance, although the exact role of AMPK is not well understood. Here we hypothesized that mice lacking α2AMPK activity in muscle would be more susceptible to develop insulin resistance associated with ageing alone or in combination with high fat diet. Young (∼4 month) or old (∼18 month) wild type and muscle specific α2AMPK kinase-dead mice on chow diet as well as old mice on 17 weeks of high fat diet were studied for whole body glucose homeostasis (OGTT, ITT and HOMA-IR), insulin signaling and insulin-stimulated glucose uptake in muscle. We demonstrate that high fat diet in old mice results in impaired glucose homeostasis and insulin stimulated glucose uptake in both the soleus and extensor digitorum longus muscle, coinciding with reduced insulin signaling at the level of Akt (pSer473 and pThr308), TBC1D1 (pThr590) and TBC1D4 (pThr642). In contrast to our hypothesis, the impact of ageing and high fat diet on insulin action was not worsened in mice lacking functional α2AMPK in muscle. It is concluded that α2AMPK deficiency in mouse skeletal muscle does not cause muscle insulin resistance in young and old mice and does not exacerbate obesity-induced insulin resistance in old mice suggesting that decreased α2AMPK activity does not increase susceptibility for insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Christian Frøsig
- Section of Molecular Physiology, The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nielsen J, Ørtenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab 2013; 38:91-9. [DOI: 10.1139/apnm-2012-0184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glucose is stored in skeletal muscle fibers as glycogen, a branched-chain polymer observed in electron microscopy images as roughly spherical particles (known as β-particles of 10–45 nm in diameter), which are distributed in distinct localizations within the myofibers and are physically associated with metabolic and scaffolding proteins. Although the subcellular localization of glycogen has been recognized for more than 40 years, the physiological role of the distinct localizations has received sparse attention. Recently, however, studies involving stereological, unbiased, quantitative methods have investigated the role and regulation of these distinct deposits of glycogen. In this report, we review the available literature regarding the subcellular localization of glycogen in skeletal muscle as investigated by electron microscopy studies and put this into perspective in terms of the architectural, topological, and dynamic organization of skeletal muscle fibers. In summary, the distribution of glycogen within skeletal muscle fibers has been shown to depend on the fiber phenotype, individual training status, short-term immobilization, and exercise and to influence both muscle contractility and fatigability. Based on all these data, the available literature strongly indicates that the subcellular localization of glycogen has to be taken into consideration to fully understand and appreciate the role and regulation of glycogen metabolism and signaling in skeletal muscle. A full understanding of these phenomena may prove vital in elucidating the mechanisms that integrate basic cellular events with changing glycogen content.
Collapse
Affiliation(s)
- Joachim Nielsen
- SDU Muscle Research Cluster (SMRC), Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 83125 Östersund, Sweden
| | - Niels Ørtenblad
- SDU Muscle Research Cluster (SMRC), Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 83125 Östersund, Sweden
| |
Collapse
|
16
|
Hernández-Ochoa EO, Robison P, Contreras M, Shen T, Zhao Z, Schneider MF. Elevated extracellular glucose and uncontrolled type 1 diabetes enhance NFAT5 signaling and disrupt the transverse tubular network in mouse skeletal muscle. Exp Biol Med (Maywood) 2012; 237:1068-83. [PMID: 22966145 DOI: 10.1258/ebm.2012.012052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor nuclear factor of activated T-cells 5 (NFAT5) is a key protector from hypertonic stress in the kidney, but its role in skeletal muscle is unexamined. Here, we evaluate the effects of glucose hypertonicity and hyperglycemia on endogenous NFAT5 activity, transverse tubular system morphology and Ca(2+) signaling in adult murine skeletal muscle fibers. We found that exposure to elevated glucose (25-50 mmol/L) increased NFAT5 expression and nuclear translocation, and NFAT-driven transcriptional activity. These effects were insensitive to the inhibition of calcineurin A, but sensitive to both p38α mitogen-activated protein kinases and phosphoinositide 3-kinase-related kinase inhibition. Fibers exposed to elevated glucose exhibited disrupted transverse tubular morphology, characterized by swollen transverse tubules and an increase in longitudinal connections between adjacent transverse tubules. Ca(2+) transients elicited by a single, brief electric field stimuli were increased in amplitude in fibers challenged by elevated glucose. Muscle fibers from type 1 diabetic mice exhibited increased NFAT5 expression and transverse tubule disruptions, but no differences in electrically evoked Ca(2+) transients. Our results suggest the hypothesis that these changes in skeletal muscle could play a role in the pathophysiology of acute and severe hyperglycemic episodes commonly observed in uncontrolled diabetes.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Saito T, Okada S, Nohara A, Tagaya Y, Osaki A, Oh-I S, Takahashi H, Tsuchiya T, Hashimoto K, Satoh T, Yamada M, Pessin JE, Mori M. Syntaxin4 interacting protein (Synip) binds phosphatidylinositol (3,4,5) triphosphate. PLoS One 2012; 7:e42782. [PMID: 22880106 PMCID: PMC3411842 DOI: 10.1371/journal.pone.0042782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022] Open
Abstract
The insulin responsive Glut4 transport vesicles contain the v-SNARE protein Vamp2 that associate with the plasma membrane t-SNARE protein Syntaxin 4 to drive insulin-stimulated Glut4 translocation in skeletal muscle and adipocytes. The syntaxin 4 interacting protein (Synip) binds to syntaxin 4 in the basal state and dissociates in the insulin-stimulated state allowing for the subsequent binding of Vamp2 containing Glut4 vesicles and fusion with the plasma membrane. In this study, we have found that Synip binds phosphatidylinositol 3,4,5-triphosphate (PIP3), but not phosphatidylinositol 3 phosphate (PIP) or phosphatidylinositol 3,4-biphosphate (PIP2) through the Synip WW domain as deletion of this domain (Synip ΔWW) failed to bind PIP3. Over-expressed Synip ΔWW in 3T3L1 adipocytes reduced the basal levels of Glut4 at the plasma membrane with no effect on the binding to syntaxin 4 in vitro. Subcellular fractionation demonstrated that the amount of Synip ΔWW at the PM was decreased in response to insulin in 3T3L1 adipocytes whereas the amount of Synip WT increased. These data suggest that in the presence of insulin, the dissociated Synip remains anchored to the plasma membrane by binding to PIP3.
Collapse
Affiliation(s)
- Tsugumichi Saito
- Department of Medicine and Molecular science, Gunma University School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Immunofluorescent visualisation of focal adhesion kinase in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 2012; 138:617-26. [PMID: 22752263 DOI: 10.1007/s00418-012-0980-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Within animal skeletal muscle, focal adhesion kinase (FAK) has been associated with load-dependent molecular and metabolic adaptation including the regulation of insulin sensitivity. This study aimed to generate the first visual images of the localisation of FAK within human skeletal muscle fibres and its associated microvasculature using widefield and confocal immunofluorescence microscopy. Percutaneous muscle biopsies, taken from five lean, active males, were frozen and 5-μm cryosections were incubated with FAK antibodies for visualisation in muscle fibres and the microvasculature. Anti-myosin heavy chain type I was used for fibre-type differentiation. Muscle sections were also incubated with anti-dihydropyridine receptor (DHPR) to investigate co-localisation of FAK with the t-tubules. FITC-conjugated Ulex europaeus Agglutinin I stained the endothelium of the capillaries, whilst anti-smooth muscle actin stained the vascular smooth muscle of arterioles. Fibre-type differences in the intensity of FAK immunofluorescence were determined with image analysis software. In transversely and longitudinally orientated fibres, FAK was localised at the sarcolemmal regions. In longitudinally orientated fibres, FAK staining also showed uniform striations across the fibre and co-staining with DHPR suggests FAK associates with the t-tubules. There was no fibre-type difference in sarcoplasmic FAK content. Within the capillary endothelium and arteriolar smooth muscle, FAK was distributed heterogeneously as clusters. This is the first study to visualise FAK in human skeletal muscle microvasculature and within the (sub)sarcolemmal and t-tubule regions using immunofluorescence microscopy. This technique will be an important tool for investigating the role of FAK in the intracellular signalling of human skeletal muscle and the endothelium of its associated microvasculature.
Collapse
|
19
|
Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol 2011; 2:112. [PMID: 22232606 PMCID: PMC3248697 DOI: 10.3389/fphys.2011.00112] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/09/2011] [Indexed: 12/12/2022] Open
Abstract
Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (∼500 g) and the liver (∼100 g). Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic clamp, 70-90% of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen's main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70% of maximal oxygen uptake ([Formula: see text]) and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favor glycogen repletion and preparation for new "fight or flight" events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channeled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type 2 diabetes.
Collapse
Affiliation(s)
- Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences Oslo, Norway
| | | | | | | |
Collapse
|
20
|
Ho K. A critically swift response: insulin-stimulated potassium and glucose transport in skeletal muscle. Clin J Am Soc Nephrol 2011; 6:1513-6. [PMID: 21700825 DOI: 10.2215/cjn.04540511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Nielsen J, Holmberg HC, Schrøder HD, Saltin B, Ortenblad N. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol 2011; 589:2871-85. [PMID: 21486810 DOI: 10.1113/jphysiol.2010.204487] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. .
Collapse
Affiliation(s)
- Joachim Nielsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark, DK-5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
22
|
Prats C, Gómez-Cabello A, Hansen AV. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling. Exp Physiol 2011; 96:385-90. [DOI: 10.1113/expphysiol.2010.052860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Lauritzen HP, Galbo H, Toyoda T, Goodyear LJ. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice. Diabetes 2010; 59:2134-44. [PMID: 20622170 PMCID: PMC2927934 DOI: 10.2337/db10-0233] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Exercise is an important strategy for the treatment of type 2 diabetes. This is due in part to an increase in glucose transport that occurs in the working skeletal muscles. Glucose transport is regulated by GLUT4 translocation in muscle, but the molecular machinery mediating this process is poorly understood. The purpose of this study was to 1) use a novel imaging system to elucidate the kinetics of contraction-induced GLUT4 translocation in skeletal muscle and 2) determine the function of AMP-activated protein kinase alpha2 (AMPKalpha2) in this process. RESEARCH DESIGN AND METHODS Confocal imaging was used to visualize GLUT4-enhanced green fluorescent protein (EGFP) in transfected quadriceps muscle fibers in living mice subjected to contractions or the AMPK-activator AICAR. RESULTS Contraction increased GLUT4-EGFP translocation from intracellular vesicle depots to both the sarcolemma and t-tubules with similar kinetics, although translocation was greater with contractions elicited by higher voltage. Re-internalization of GLUT4 did not begin until 10 min after contractions ceased and was not complete until 130 min after contractions. AICAR increased GLUT4-EGFP translocation to both sarcolemma and t-tubules with similar kinetics. Ablation of AMPKalpha2 activity in AMPKalpha2 inactive transgenic mice did not change GLUT4-EGFP's basal localization, contraction-stimulated intracellular GLUT4-EGFP vesicle depletion, translocation, or re-internalization, but diminished AICAR-induced translocation. CONCLUSIONS We have developed a novel imaging system to study contraction-stimulated GLUT4 translocation in living mice. Contractions increase GLUT4 translocation to the sarcolemma and t-tubules with similar kinetics and do not require AMPKalpha2 activity.
Collapse
Affiliation(s)
- Hans P.M.M. Lauritzen
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Henrik Galbo
- Department of Rheumatology and Institute of Inflammation Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Taro Toyoda
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Laurie J. Goodyear
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
- Corresponding author: Laurie J. Goodyear,
| |
Collapse
|
24
|
Abstract
Skeletal muscle is the major tissue for postprandial glucose disposal. Facilitated glucose uptake into muscle fibers is mediated by increases in surface membrane levels of the glucose transporter GLUT4 via insulin- and/or muscle contraction-mediated GLUT4 translocation. However, the regulatory mechanisms controlling GLUT4 translocation in skeletal muscle have been difficult to characterize at the cell biology level due to muscle tissue complexity. Muscle cell culture models have improved our understanding of GLUT4 translocation and glucose transport regulation, but in vitro muscle models lack many of the characteristics of mature muscle fibers. Thus, the molecular and cellular details of GLUT4 translocation in mature skeletal muscle are deficient. The objective of this review is to highlight how advances in recent experimental approaches translate into an enhanced understanding of the regulation of GLUT4 translocation and glucose transport in mature skeletal muscle.
Collapse
Affiliation(s)
- Hans P M M Lauritzen
- Integrative Physiology and Metabolism, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| | | |
Collapse
|
25
|
Abstract
Skeletal muscle plays a key role in regulating whole body glucose homeostasis and severe dysfunction in insulin-mediated glucose uptake is the hallmark of insulin-resistant states and type II diabetes. Therefore it is highly pathophysiologically relevant to perform detailed studies of insulin signaling inside skeletal muscle cells in order to elucidate the specific molecular events during both normal and insulin-resistant conditions. So far, cell biology imaging techniques have been limited to in vitro cultured muscle originating from primary or cell line-based myoblasts. However, these types of cultured muscle lack many characteristics of fully differentiated muscle cells. By performing intravital protein translocation analysis directly in situ in living animals, we have been able to give a high-resolution account of the spatial and temporal details during insulin signaling in vivo in muscle that does not have the limitations of in vitro cultures. We have shown that after i.v. insulin injection, PI3-kinase activation and, in turn, GLUT4 translocation are initiated at the plasma membrane proper, the sarcolemma. Then insulin signaling progresses into the t-tubules with a velocity corresponding to the diffusion of sulforhodamine B-conjugated insulin molecules. By using intravital confocal time-lapse analysis we have revealed that the t-tubules are the membrane surface where the majority of the insulin signaling is located.
Collapse
|
26
|
Different magnitude of resistance to nondepolarizing muscle relaxants in the denervated mouse skeletal muscle. Acta Pharmacol Sin 2010; 31:399-404. [PMID: 20305678 DOI: 10.1038/aps.2010.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM To test the hypothesis that different magnitude of resistance of denervated skeletal muscle to nondepolarizing muscle relaxants (NDMRs) is related to their varying potencies at epsilon-AChR and gamma-AChR. METHODS Both innervated and denervated mouse muscle cells, and human embryonic kidney 293 (HEK293) cells expressing epsilon-AChR or gamma-AChR were used. The effects of NDMRs on nAChR were explored using whole-cell patch clamp technique. RESULTS NDMRs vecuronium (VEC), atracurium (ATR) and rocuronium (ROC) produced reversible, dose-dependent inhibition on the currents induced by 30 micromol/L acetylcholine both in innervated and denervated skeletal muscle cells. Compared to those obtained in innervated skeletal muscle cells, denervation shifted the concentration-response curves rightward and significantly increased the 50% inhibitory concentration (IC(50)) values (VEC: from 11.2 to 39.2 nmol/L, P<0.01; ATR: from 24.4 to 129.0 nmol/L, P<0.01; ROC: from 37.9 to 101.4 nmol/L, P<0.01). In HEK293 cell expression system, ATR was less potent at gamma-AChR than epsilon-AChR (IC(50) values: 35.9 vs 22.3 nmol/L, P<0.01), VEC was equipotent at both receptor subtypes (IC(50) values: 9.9 vs 10.2 nmol/L, P>0.05), while ROC was more potent at gamma-AChR than epsilon-AChR (IC(50) values: 22.3 vs 33.5 nmol/L, P<0.05). CONCLUSION Magnitude differences of resistance to different NDMRs caused by denervation are associated with distinct potencies of NDMRs at nAChR subtypes.
Collapse
|
27
|
Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, Aoki T, Nozaki S, Takeda T, Tamori Y, Aiba A, Kahn CR, Kataoka T, Satoh T. Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J 2010; 24:2254-61. [PMID: 20203090 DOI: 10.1096/fj.09-137380] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Rho family GTPase Rac1 has been implicated in the regulation of glucose uptake in myoblast cell lines. However, no evidence for the role of Rac1 has been provided by a mouse model. The purpose of this study is to test the involvement of Rac1 in insulin action in mouse skeletal muscle. Intravenous administration of insulin indeed elicited Rac1 activation in gastrocnemius muscle, suggesting the involvement of Rac1 in this signaling pathway. We then examined whether insulin-stimulated translocation of the facilitative glucose transporter GLUT4 from its storage sites to the skeletal muscle sarcolemma depends on Rac1. We show that ectopic expression of constitutively activated Rac1, as well as intravenous administration of insulin, caused translocation of GLUT4 to the gastrocnemius muscle sarcolemma, as revealed by immunofluorescent staining of a transiently expressed exofacial epitope-tagged GLUT4 reporter. Of particular note, insulin-dependent, but not constitutively activated Rac1-induced, GLUT4 translocation was markedly suppressed in skeletal muscle-specific rac1-knockout mice compared to control mice. Immunogold electron microscopic analysis of endogenous GLUT4 gave similar results. Collectively, we propose a critical role of Rac1 in insulin-dependent GLUT4 translocation to the skeletal muscle sarcolemma, which has heretofore been predicted solely by cell culture studies.
Collapse
Affiliation(s)
- Shuji Ueda
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nielsen J, Mogensen M, Vind BF, Sahlin K, Højlund K, Schrøder HD, Ortenblad N. Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 2010; 298:E706-13. [PMID: 20028967 DOI: 10.1152/ajpendo.00692.2009] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of the study was to investigate the effect of aerobic training and type 2 diabetes on intramyocellular localization of lipids, mitochondria, and glycogen. Obese type 2 diabetic patients (n = 12) and matched obese controls (n = 12) participated in aerobic cycling training for 10 wk. Endurance-trained athletes (n = 15) were included for comparison. Insulin action was determined by euglycemic-hyperinsulinemic clamp. Intramyocellular contents of lipids, mitochondria, and glycogen at different subcellular compartments were assessed by transmission electron microscopy in biopsies obtained from vastus lateralis muscle. Type 2 diabetic patients were more insulin resistant than obese controls and had threefold higher volume of subsarcolemmal (SS) lipids compared with obese controls and endurance-trained subjects. No difference was found in intermyofibrillar lipids. Importantly, following aerobic training, this excess SS lipid volume was lowered by approximately 50%, approaching the levels observed in the nondiabetic subjects. A strong inverse association between insulin sensitivity and SS lipid volume was found (r(2)=0.62, P = 0.002). The volume density and localization of mitochondria and glycogen were the same in type 2 diabetic patients and control subjects, and showed in parallel with improved insulin sensitivity a similar increase in response to training, however, with a more pronounced increase in SS mitochondria and SS glycogen than in other localizations. In conclusion, this study, estimating intramyocellular localization of lipids, mitochondria, and glycogen, indicates that type 2 diabetic patients may be exposed to increased levels of SS lipids. Thus consideration of cell compartmentation may advance the understanding of the role of lipids in muscle function and type 2 diabetes.
Collapse
Affiliation(s)
- Joachim Nielsen
- Institute of Sports Science and Clinical Biomechanics, Univ. of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | |
Collapse
|
29
|
Fazakerley DJ, Lawrence SP, Lizunov VA, Cushman SW, Holman GD. A common trafficking route for GLUT4 in cardiomyocytes in response to insulin, contraction and energy-status signalling. J Cell Sci 2009; 122:727-34. [PMID: 19208760 DOI: 10.1242/jcs.041178] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A new mouse model has been developed to study the localisation and trafficking of the glucose transporter GLUT4 in muscle. The mouse line has specific expression of a GFP and HA-epitope-tagged version of GLUT4 under the control of a muscle-specific promoter. The exofacial HA-tag has enabled fluorescent labelling of only the GLUT4 exposed at the external surface. A distinction between sarcolemma labelling and transverse-tubule labelling has also been possible because the former compartment is much more accessible to intact anti-HA antibody. By contrast, the Fab fragment of the anti-HA antibody could readily detect GLUT4 at the surface of both the sarcolemma and transverse tubules. Here, we have used this mouse model to examine the route taken by cardiomyocyte GLUT4 as it moves to the limiting external membrane surface of sarcolemma and transverse-tubules in response to insulin, contraction or activators of energy-status signalling, including hypoxia. HA-GLUT4-GFP is largely excluded from the sarcolemma and transverse-tubule membrane of cardiomyocytes under basal conditions, but is similarly trafficked to these membrane surfaces after stimulation with insulin, contraction or hypoxia. Internalisation of sarcolemma GLUT4 has been investigated by pulse-labelling surface GLUT4 with intact anti-HA antibody. At early stages of internalisation, HA-tagged GLUT4 colocalises with clathrin at puncta at the sarcolemma, indicating that in cells returning to a basal state, GLUT4 is removed from external membranes by a clathrin-mediated route. We also observed colocalisation of GLUT4 with clathrin under basal conditions. At later stages of internalisation and at steady state, anti-HA antibody labeled-GLUT4 originating from the sarcolemma was predominantly detected in a peri-nuclear compartment, indistinguishable among the specific initial stimuli. These results taken together imply a common pathway for internalisation of GLUT4, independent of the initial stimulus.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | |
Collapse
|
30
|
Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 2008; 413:201-15. [DOI: 10.1042/bj20080723] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific research, there are outstanding questions that continue to challenge us today. The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160 (Akt substrate of 160 kDa), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) and their target Rab proteins; in vesicle trafficking at the level of vesicle mobilization, tethering, docking and fusion with the membrane; and in the participation of the cytoskeleton to achieve optimal temporal and spatial location of insulin-derived signals and GLUT4 vesicles.
Collapse
|