1
|
Bracchi I, Morais J, Coelho JA, Ferreira AF, Alves I, Mendes C, Correia B, Gonçalves A, Guimarães JT, Pires IF, Keating E, Negrão R. The Cardiometabolic Impact of Rebaudioside A Exposure during the Reproductive Stage. BIOLOGY 2024; 13:163. [PMID: 38534433 PMCID: PMC10967885 DOI: 10.3390/biology13030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
The consumption of non-sugar sweeteners (NSS) has increased during pregnancy. The European Food Safety Agency suggested that steviol glycosides, such as Rebaudioside A (RebA), the major sweetener component of stevia, are safe for humans up to a dose of 4 mg/kg body weight/day. However, the World Health Organization recommended in 2023 the restraint of using NSS, including stevia, at any life stage, highlighting the need to study NSS safety in early periods of development. We aimed to study the mitochondrial and cardiometabolic effects of long-term RebA consumption during the reproductive stage of the life cycle. Female rats were exposed to RebA (4 mg steviol equivalents/kg body weight/day) in the drinking water from 4 weeks before mating until weaning. Morphometry, food and water consumption, glucose and lipid homeostasis, heart structure, function, and mitochondrial function were assessed. RebA showed an atrophic effect in the heart, decreasing cardiomyocyte cross-sectional area and myocardial fibrosis without repercussions on cardiac function. Mitochondrial and myofilamentary functions were not altered. Glucose tolerance and insulin sensitivity were not affected, but fasting glycemia and total plasma cholesterol decreased. This work suggests that this RebA dose is safe for female consumption during the reproductive stage, from a cardiometabolic perspective. However, studies on the effects of RebA exposure on the offspring are mandatory.
Collapse
Affiliation(s)
- Isabella Bracchi
- Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (I.B.); (E.K.)
- CINTESIS, Center for Health Technology and Services Research, 4200-319 Porto, Portugal;
- Department of Functional Sciences, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Juliana Morais
- CINTESIS, Center for Health Technology and Services Research, 4200-319 Porto, Portugal;
- Department of Functional Sciences, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
- Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (J.A.C.); (C.M.)
| | - João Almeida Coelho
- Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (J.A.C.); (C.M.)
- UniC@RISE, Unidade de Investigação e Desenvolvimento Cardiovascular, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Ana Filipa Ferreira
- Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (J.A.C.); (C.M.)
- UniC@RISE, Unidade de Investigação e Desenvolvimento Cardiovascular, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Inês Alves
- Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (J.A.C.); (C.M.)
- UniC@RISE, Unidade de Investigação e Desenvolvimento Cardiovascular, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Cláudia Mendes
- Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (J.A.C.); (C.M.)
- UniC@RISE, Unidade de Investigação e Desenvolvimento Cardiovascular, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Beatriz Correia
- Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (J.A.C.); (C.M.)
- Nutrition & Metabolism, NOVA Medical School|FCM, NOVA University Lisbon, 1169-056 Lisbon, Portugal
| | - Alexandre Gonçalves
- Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (J.A.C.); (C.M.)
- UniC@RISE, Unidade de Investigação e Desenvolvimento Cardiovascular, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - João Tiago Guimarães
- Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (I.B.); (E.K.)
- Clinical Pathology, São João University Hospital Center, 4200-319 Porto, Portugal
- EPIUnit, Institute of Public Health, University of Porto, 4200-319 Porto, Portugal
| | - Inês Falcão Pires
- Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (J.A.C.); (C.M.)
- UniC@RISE, Unidade de Investigação e Desenvolvimento Cardiovascular, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Elisa Keating
- Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (I.B.); (E.K.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Rita Negrão
- Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (I.B.); (E.K.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Tan H, Yue T, Chen Z, Wu W, Xu S, Weng J. Targeting FGF21 in cardiovascular and metabolic diseases: from mechanism to medicine. Int J Biol Sci 2023; 19:66-88. [PMID: 36594101 PMCID: PMC9760446 DOI: 10.7150/ijbs.73936] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular and metabolic disease (CVMD) is becoming increasingly prevalent in developed and developing countries with high morbidity and mortality. In recent years, fibroblast growth factor 21 (FGF21) has attracted intensive research interest due to its purported role as a potential biomarker and critical player in CVMDs, including atherosclerosis, coronary artery disease, myocardial infarction, hypoxia/reoxygenation injury, heart failure, type 2 diabetes, obesity, and nonalcoholic steatohepatitis. This review summarizes the recent developments in investigating the role of FGF21 in CVMDs and explores the mechanism whereby FGF21 regulates the development of CVMDs. Novel molecular targets and related pathways of FGF21 (adenosine 5'-monophosphate-activated protein kinase, silent information regulator 1, autophagy-related molecules, and gut microbiota-related molecules) are highlighted in this review. Considering the poor pharmacokinetics and biophysical properties of native FGF21, the development of new generations of FGF21-based drugs has tremendous therapeutic potential. Related preclinical and clinical studies are also summarized in this review to foster clinical translation. Thus, our review provides a timely and insightful overview of the physiology, biomarker potential, molecular targets, and therapeutic potential of FGF21 in CVMDs.
Collapse
Affiliation(s)
- Huiling Tan
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tong Yue
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhengfang Chen
- Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, Jiangsu Province, China
| | - Weiming Wu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.,✉ Corresponding authors: E-mail: ;
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.,✉ Corresponding authors: E-mail: ;
| |
Collapse
|
3
|
Hughey CC, Puchalska P, Crawford PA. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159209. [DOI: 10.1016/j.bbalip.2022.159209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
4
|
Mooli RGR, Ramakrishnan SK. Emerging Role of Hepatic Ketogenesis in Fatty Liver Disease. Front Physiol 2022; 13:946474. [PMID: 35860662 PMCID: PMC9289363 DOI: 10.3389/fphys.2022.946474] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver diseases, arise from non-alcoholic fatty liver (NAFL) characterized by excessive fat accumulation as triglycerides. Although NAFL is benign, it could progress to non-alcoholic steatohepatitis (NASH) manifested with inflammation, hepatocyte damage and fibrosis. A subset of NASH patients develops end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is highly complex and strongly associated with perturbations in lipid and glucose metabolism. Lipid disposal pathways, in particular, impairment in condensation of acetyl-CoA derived from β-oxidation into ketogenic pathway strongly influence the hepatic lipid loads and glucose metabolism. Current evidence suggests that ketogenesis dispose up to two-thirds of the lipids entering the liver, and its dysregulation significantly contribute to the NAFLD pathogenesis. Moreover, ketone body administration in mice and humans shows a significant improvement in NAFLD. This review focuses on hepatic ketogenesis and its role in NAFLD pathogenesis. We review the possible mechanisms through which impaired hepatic ketogenesis may promote NAFLD progression. Finally, the review sheds light on the therapeutic implications of a ketogenic diet in NAFLD.
Collapse
|
5
|
Szczepańska E, Gietka-Czernel M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm Metab Res 2022; 54:203-211. [PMID: 35413740 DOI: 10.1055/a-1778-4159] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fibroblast growth factor (FGF) 21 is a recently recognized metabolic regulator that evokes interest due to its beneficial action of maintaining whole-body energy balance and protecting the liver from excessive triglyceride production and storage. Together with FGF19 and FGF23, FGF21 belongs to the FGF family with hormone-like activity. Serum FGF21 is generated primarily in the liver under nutritional stress stimuli like prolonged fasting or the lipotoxic diet, but also during increased mitochondrial and endoplasmic reticulum stress. FGF21 exerts its endocrine action in the central nervous system and adipose tissue. Acting in the ventromedial hypothalamus, FGF21 diminishes simple sugar intake. In adipose tissue, FGF21 promotes glucose utilization and increases energy expenditure by enhancing adipose tissue insulin sensitivity and brown adipose tissue thermogenesis. Therefore, FGF21 favors glucose consumption for heat production instead of energy storage. Furthermore, FGF21 specifically acts in the liver, where it protects hepatocytes from metabolic stress caused by lipid overload. FGF21 stimulates hepatic fatty acid oxidation and reduces lipid flux into the liver by increasing peripheral lipoprotein catabolism and reducing adipocyte lipolysis. Paradoxically, and despite its beneficial action, FGF21 is elevated in insulin resistance states, that is, fatty liver, obesity, and type 2 diabetes.
Collapse
Affiliation(s)
- Ewa Szczepańska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | |
Collapse
|
6
|
In Vivo Estimation of Ketogenesis Using Metabolic Flux Analysis-Technical Aspects and Model Interpretation. Metabolites 2021; 11:metabo11050279. [PMID: 33924948 PMCID: PMC8146959 DOI: 10.3390/metabo11050279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
Ketogenesis occurs in liver mitochondria where acetyl-CoA molecules, derived from lipid oxidation, are condensed into acetoacetate (AcAc) and reduced to β-hydroxybutyrate (BHB). During carbohydrate scarcity, these two ketones are released into circulation at high rates and used as oxidative fuels in peripheral tissues. Despite their physiological relevance and emerging roles in a variety of diseases, endogenous ketone production is rarely measured in vivo using tracer approaches. Accurate determination of this flux requires a two-pool model, simultaneous BHB and AcAc tracers, and special consideration for the stability of the AcAc tracer and analyte. We describe the implementation of a two-pool model using a metabolic flux analysis (MFA) approach that simultaneously regresses liquid chromatography-tandem mass spectrometry (LC-MS/MS) ketone isotopologues and tracer infusion rates. Additionally, 1H NMR real-time reaction monitoring was used to evaluate AcAc tracer and analyte stability during infusion and sample analysis, which were critical for accurate flux calculations. The approach quantifies AcAc and BHB pool sizes and their rates of appearance, disposal, and exchange. Regression analysis provides confidence intervals and detects potential errors in experimental data. Complications for the physiological interpretation of individual ketone fluxes are discussed.
Collapse
|
7
|
Abstract
As a non-canonical fibroblast growth factor, fibroblast growth factor 21 (FGF21) functions as an endocrine hormone that signals to distinct targets throughout the body. Interest in therapeutic applications for FGF21 was initially sparked by its ability to correct metabolic dysfunction and decrease body weight associated with diabetes and obesity. More recently, new functions for FGF21 signalling have emerged, thus indicating that FGF21 is a dynamic molecule capable of regulating macronutrient preference and energy balance. Here, we highlight the major physiological and pharmacological effects of FGF21 related to nutrient and energy homeostasis and summarize current knowledge regarding FGF21’s pharmacodynamic properties. In addition, we provide new perspectives and highlight critical unanswered questions surrounding this unique metabolic messenger.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
8
|
Zarei M, Aguilar-Recarte D, Palomer X, Vázquez-Carrera M. Revealing the role of peroxisome proliferator-activated receptor β/δ in nonalcoholic fatty liver disease. Metabolism 2021; 114:154342. [PMID: 32810487 DOI: 10.1016/j.metabol.2020.154342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a form of chronic liver disease that occurs in individuals with no significant alcohol abuse, has become an increasing concern for global health. NAFLD is defined as the presence of lipid deposits in hepatocytes and it ranges from hepatic steatosis (fatty liver) to steatohepatitis. Emerging data from both preclinical studies and clinical trials suggest that the peroxisome proliferator-activated receptor (PPAR)β/δ plays an important role in the control of carbohydrate and lipid metabolism in liver, and its activation might hinder the progression of NAFLD. Here, we review the latest information on the effects of PPARβ/δ on NAFLD, including its capacity to reduce lipogenesis, to alleviate inflammation and endoplasmic reticulum stress, to ameliorate insulin resistance, and to attenuate liver injury. Because of these effects, activation of hepatic PPARβ/δ through synthetic or natural ligands provides a promising therapeutic option for the management of NAFLD.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
9
|
Zarei M, Pujol E, Quesada-López T, Villarroya F, Barroso E, Vázquez S, Pizarro-Delgado J, Palomer X, Vázquez-Carrera M. Oral administration of a new HRI activator as a new strategy to improve high-fat-diet-induced glucose intolerance, hepatic steatosis, and hypertriglyceridaemia through FGF21. Br J Pharmacol 2019; 176:2292-2305. [PMID: 30927369 DOI: 10.1111/bph.14678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE FGF21 has emerged as a therapeutic strategy for treating type 2 diabetes mellitus due to its antidiabetic effects, and this has led to the development of long-acting analogues of FGF21. However, these compounds have some limitations, including a need to be administered by s.c. injection and their prolonged pharmacodynamic effect compared with native FGF21, which might be responsible for their reported side effects. EXPERIMENTAL APPROACH We have previously demonstrated that i.p. administration of haem-regulated eukaryotic translation initiation factor 2α kinase (HRI) activators increases hepatic and circulating levels of FGF21. In this study, we examined the effects of p.o. administration of a new HRI activator, EPB-53, on high-fat diet (HFD)-induced glucose intolerance, hepatic steatosis, and hypertriglyceridaemia, and compared them with those of metformin. KEY RESULTS EPB-53 administration for the last 2 weeks, to mice fed a HFD for 10 weeks, reduced body weight gain, improved glucose intolerance, and prevented hepatic steatosis and hypertriglyceridaemia, whereas metformin only ameliorated glucose intolerance. Moreover, EPB-53, similar to the reported effects of FGF21, reduced lipogenesis in cultured human hepatocytes and in the liver of mice fed a HFD. Administration of EPB-53 to Fgf21-knockout mice had no effects, demonstrating that its efficacy is dependent on this hormone. CONCLUSIONS AND IMPLICATIONS Overall, the findings of this study demonstrate that p.o. administration of HRI activators, by increasing FGF21, is a promising strategy for the treatment of type 2 diabetes mellitus and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Eugènia Pujol
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Tania Quesada-López
- Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, IBUB, University of Barcelona, Barcelona, Spain.,Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Villarroya
- Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, IBUB, University of Barcelona, Barcelona, Spain.,Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Santiago Vázquez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
10
|
Fletcher JA, Deja S, Satapati S, Fu X, Burgess SC, Browning JD. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight 2019; 5:127737. [PMID: 31012869 DOI: 10.1172/jci.insight.127737] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent, and potentially morbid, disease that affects one-third of the U.S. population. Normal liver safely accommodates lipid excess during fasting or carbohydrate restriction by increasing their oxidation to acetyl-CoA and ketones, yet lipid excess during NAFLD leads to hyperglycemia and, in some, steatohepatitis. To examine potential mechanisms, flux through pathways of hepatic oxidative metabolism and gluconeogenesis were studied using five simultaneous stable isotope tracers in ketotic (24-hour fast) individuals with a wide range of hepatic triglyceride contents (0-52%). Ketogenesis was progressively impaired as hepatic steatosis and glycemia worsened. Conversely, the alternative pathway for acetyl-CoA metabolism, oxidation in the tricarboxylic (TCA) cycle, was upregulated in NAFLD as ketone production diminished and positively correlated with rates of gluconeogenesis and plasma glucose concentrations. Increased respiration and energy generation that occurred in liver when β-oxidation and TCA cycle activity were coupled may explain these findings, inasmuch as oxygen consumption was higher during fatty liver and highly correlated with gluconeogenesis. These findings demonstrate that increased glucose production and hyperglycemia in NAFLD is not a consequence of acetyl-CoA production per se, but how acetyl-CoA is further metabolized in liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey D Browning
- Advanced Imaging Research Center.,Department of Internal Medicine, and.,Department of Clinical Nutrition, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
11
|
Bonomini F, Borsani E, Favero G, Rodella LF, Rezzani R. Dietary Melatonin Supplementation Could Be a Promising Preventing/Therapeutic Approach for a Variety of Liver Diseases. Nutrients 2018; 10:nu10091135. [PMID: 30134592 PMCID: PMC6164189 DOI: 10.3390/nu10091135] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
In the therapeutic strategies, the role of diet is a well-established factor that can also have an important role in liver diseases. Melatonin, identified in animals, has many antioxidant properties and it was after discovered also in plants, named phytomelatonin. These substances have a positive effect during aging and in pathological conditions too. In particular, it is important to underline that the amount of melatonin produced by pineal gland in human decreases during lifetime and its reduction in blood could be related to pathological conditions in which mitochondria and oxidative stress play a pivotal role. Moreover, it has been indicated that melatonin/phytomelatonin containing foods may provide dietary melatonin, so their ingestion through balanced diets could be sufficient to confer health benefits. In this review, the classification of liver diseases and an overview of the most important aspects of melatonin/phytomelatonin, concerning the differences among their synthesis, their presence in foods and their role in health and diseases, are summarized. The findings suggest that melatonin/phytomelatonin supplementation with diet should be considered important in preventing different disease settings, in particular in liver. Currently, more studies are needed to strengthen the potential beneficial effects of melatonin/phytomelatonin in liver diseases and to better clarify the molecular mechanisms of action.
Collapse
Affiliation(s)
- Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Elisa Borsani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
12
|
Ramachandran D, Clara R, Fedele S, Michel L, Burkard J, Kaufman S, Diaz AA, Weissfeld N, De Bock K, Prip-Buus C, Langhans W, Mansouri A. Enhancing enterocyte fatty acid oxidation in mice affects glycemic control depending on dietary fat. Sci Rep 2018; 8:10818. [PMID: 30018405 PMCID: PMC6050244 DOI: 10.1038/s41598-018-29139-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Studies indicate that modulating enterocyte metabolism might affect whole body glucose homeostasis and the development of diet-induced obesity (DIO). We tested whether enhancing enterocyte fatty acid oxidation (FAO) could protect mice from DIO and impaired glycemic control. To this end, we used mice expressing a mutant form of carnitine palmitoyltransferase-1a (CPT1mt), insensitive to inhibition by malonyl-CoA, in their enterocytes (iCPT1mt) and fed them low-fat control diet (CD) or high-fat diet (HFD) chronically. CPT1mt expression led to an upregulation of FAO in the enterocytes. On CD, iCPT1mt mice had impaired glycemic control and showed concomitant activation of lipogenesis, glycolysis and gluconeogenesis in their enterocytes. On HFD, both iCPT1mt and control mice developed DIO, but iCPT1mt mice showed improved glycemic control and reduced visceral fat mass. Together these data indicate that modulating enterocyte metabolism in iCPT1mt mice affects glycemic control in a body weight-independent, but dietary fat-dependent manner.
Collapse
Affiliation(s)
| | - Rosmarie Clara
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Shahana Fedele
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Ladina Michel
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Johannes Burkard
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Sharon Kaufman
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Nadja Weissfeld
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Katrien De Bock
- Excercise and Health Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Carina Prip-Buus
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR, 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
13
|
Ramachandran D, Clara R, Fedele S, Hu J, Lackzo E, Huang JY, Verdin E, Langhans W, Mansouri A. Intestinal SIRT3 overexpression in mice improves whole body glucose homeostasis independent of body weight. Mol Metab 2017; 6:1264-1273. [PMID: 29031725 PMCID: PMC5641632 DOI: 10.1016/j.molmet.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Intestinal metabolism might play a greater role in regulating whole body metabolism than previously believed. We aimed to enhance enterocyte metabolism in mice and investigate if it plays a role in diet-induced obesity (DIO) and its comorbidities. METHODS Using the cre-loxP system, we overexpressed the mitochondrial NAD+ dependent protein deacetylase SIRT3 in enterocytes of mice (iSIRT3 mice). We chronically fed iSIRT3 mice and floxed-SIRT3 control (S3fl) mice a low-fat, control diet (CD) or a high-fat diet (HFD) and then phenotyped the mice. RESULTS There were no genotype differences in any of the parameters tested when the mice were fed CD. Also, iSIRT3 mice were equally susceptible to the development of DIO as S3fl mice when fed HFD. They were, however, better able than S3fl mice to regulate their blood glucose levels in response to exogenous insulin and glucose, indicating that they were protected from developing insulin resistance. This improved glucose homeostasis was accompanied by an increase in enterocyte metabolic activity and an upregulation of ketogenic gene expression in the small intestine. CONCLUSION Enhancing enterocyte oxidative metabolism can improve whole body glucose homeostasis.
Collapse
Affiliation(s)
| | - Rosmarie Clara
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Shahana Fedele
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Junmin Hu
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Endre Lackzo
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jing-Yi Huang
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
14
|
Markan KR, Naber MC, Small SM, Peltekian L, Kessler RL, Potthoff MJ. FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Mol Metab 2017; 6:602-610. [PMID: 28580290 PMCID: PMC5444074 DOI: 10.1016/j.molmet.2017.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates metabolic homeostasis. Previous work has suggested that impairment of FGF21 signaling in adipose tissue may occur through downregulation of the obligate FGF21 co-receptor, β-klotho, which leads to “FGF21 resistance” during the onset of diet-induced obesity. Here, we sought to determine whether maintenance of β-klotho expression in adipose tissue prevents FGF21 resistance and whether other mechanisms also contribute to FGF21 resistance in vivo. Methods We generated adipose-specific β-klotho transgenic mice to determine whether maintenance of β-klotho expression in adipose tissue prevents FGF21 resistance in vivo. Results β-klotho protein levels are markedly decreased in white adipose tissue, but not liver or brown adipose tissue, during diet-induced obesity. Maintenance of β-klotho protein expression in adipose tissue does not alleviate impaired FGF21 signaling in white adipose or increase FGF21 sensitivity in vivo. Conclusions In white adipose tissue, downregulation of β-klotho expression is not the major mechanism contributing to impaired FGF21 signaling in white adipose tissue.
Collapse
Affiliation(s)
- Kathleen R. Markan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan C. Naber
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sarah M. Small
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lila Peltekian
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Rachel L. Kessler
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J. Potthoff
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Corresponding author. University of Iowa Carver College of Medicine, 169 Newton Road 3322 PBDB, Iowa City, IA 52242, USA. Fax: +1 319 335 8930.University of Iowa Carver College of Medicine169 Newton Road 3322 PBDBIowa CityIA52242USA
| |
Collapse
|
15
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
16
|
Wang SP, Zhou D, Yao Z, Satapati S, Chen Y, Daurio NA, Petrov A, Shen X, Metzger D, Yin W, Nawrocki AR, Eiermann GJ, Hwa J, Fancourt C, Miller C, Herath K, Roddy TP, Slipetz D, Erion MD, Previs SF, Kelley DE. Quantifying rates of glucose production in vivo following an intraperitoneal tracer bolus. Am J Physiol Endocrinol Metab 2016; 311:E911-E921. [PMID: 27651111 DOI: 10.1152/ajpendo.00182.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 02/05/2023]
Abstract
Aberrant regulation of glucose production makes a critical contribution to the impaired glycemic control that is observed in type 2 diabetes. Although isotopic tracer methods have proven to be informative in quantifying the magnitude of such alterations, it is presumed that one must rely on venous access to administer glucose tracers which therein presents obstacles for the routine application of tracer methods in rodent models. Since intraperitoneal injections are readily used to deliver glucose challenges and/or dose potential therapeutics, we hypothesized that this route could also be used to administer a glucose tracer. The ability to then reliably estimate glucose flux would require attention toward setting a schedule for collecting samples and choosing a distribution volume. For example, glucose production can be calculated by multiplying the fractional turnover rate by the pool size. We have taken a step-wise approach to examine the potential of using an intraperitoneal tracer administration in rat and mouse models. First, we compared the kinetics of [U-13C]glucose following either an intravenous or an intraperitoneal injection. Second, we tested whether the intraperitoneal method could detect a pharmacological manipulation of glucose production. Finally, we contrasted a potential application of the intraperitoneal method against the glucose-insulin clamp. We conclude that it is possible to 1) quantify glucose production using an intraperitoneal injection of tracer and 2) derive a "glucose production index" by coupling estimates of basal glucose production with measurements of fasting insulin concentration; this yields a proxy for clamp-derived assessments of insulin sensitivity of endogenous production.
Collapse
Affiliation(s)
| | - Dan Zhou
- Merck Research Laboratories, Kenilworth, New Jersey
| | - Zuliang Yao
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | - Ying Chen
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | | | - Xiaolan Shen
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | - Wu Yin
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | | | - Joyce Hwa
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | - Corin Miller
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | | | | | - Mark D Erion
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | | |
Collapse
|
17
|
Kucejova B, Duarte J, Satapati S, Fu X, Ilkayeva O, Newgard CB, Brugarolas J, Burgess SC. Hepatic mTORC1 Opposes Impaired Insulin Action to Control Mitochondrial Metabolism in Obesity. Cell Rep 2016; 16:508-519. [PMID: 27346353 DOI: 10.1016/j.celrep.2016.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/28/2016] [Accepted: 05/25/2016] [Indexed: 12/29/2022] Open
Abstract
Dysregulated mitochondrial metabolism during hepatic insulin resistance may contribute to pathophysiologies ranging from elevated glucose production to hepatocellular oxidative stress and inflammation. Given that obesity impairs insulin action but paradoxically activates mTORC1, we tested whether insulin action and mammalian target of rapamycin complex 1 (mTORC1) contribute to altered in vivo hepatic mitochondrial metabolism. Loss of hepatic insulin action for 2 weeks caused increased gluconeogenesis, mitochondrial anaplerosis, tricarboxylic acid (TCA) cycle oxidation, and ketogenesis. However, activation of mTORC1, induced by the loss of hepatic Tsc1, suppressed these fluxes. Only glycogen synthesis was impaired by both loss of insulin receptor and mTORC1 activation. Mice with a double knockout of the insulin receptor and Tsc1 had larger livers, hyperglycemia, severely impaired glycogen storage, and suppressed ketogenesis, as compared to those with loss of the liver insulin receptor alone. Thus, activation of hepatic mTORC1 opposes the catabolic effects of impaired insulin action under some nutritional states.
Collapse
Affiliation(s)
- Blanka Kucejova
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao Duarte
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Santhosh Satapati
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaorong Fu
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shawn C Burgess
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Patterson RE, Kalavalapalli S, Williams CM, Nautiyal M, Mathew JT, Martinez J, Reinhard MK, McDougall DJ, Rocca JR, Yost RA, Cusi K, Garrett TJ, Sunny NE. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity. Am J Physiol Endocrinol Metab 2016; 310:E484-94. [PMID: 26814015 PMCID: PMC4824140 DOI: 10.1152/ajpendo.00492.2015] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH.
Collapse
Affiliation(s)
| | - Srilaxmi Kalavalapalli
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida, Gainesville, Florida
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, California
| | - Manisha Nautiyal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida, Gainesville, Florida
| | - Justin T Mathew
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida, Gainesville, Florida
| | - Janie Martinez
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida, Gainesville, Florida
| | - Mary K Reinhard
- Animal Care Services, University of Florida, Gainesville, Florida
| | | | - James R Rocca
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, Florida; Department of Pathology, University of Florida, Gainesville, Florida
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida, Gainesville, Florida; Division of Endocrinology, Diabetes, and Metabolism, Malcom Randall Veterans Administration Medical Center, Gainesville, Florida; Division of Diabetes, the University of Texas Health Science Center at San Antonio, San Antonio, Texas; Division of Diabetes, Audie L. Murphy Veterans Administration Medical Center, San Antonio, Texas; and
| | - Timothy J Garrett
- Department of Pathology, University of Florida, Gainesville, Florida
| | - Nishanth E Sunny
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida, Gainesville, Florida;
| |
Collapse
|
19
|
Satapati S, Kucejova B, Duarte JAG, Fletcher JA, Reynolds L, Sunny NE, He T, Nair LA, Livingston KA, Fu X, Merritt ME, Sherry AD, Malloy CR, Shelton JM, Lambert J, Parks EJ, Corbin I, Magnuson MA, Browning JD, Burgess SC. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 2015; 125:4447-62. [PMID: 26571396 DOI: 10.1172/jci82204] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid-induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways.
Collapse
|
20
|
Sunny NE, Kalavalapalli S, Bril F, Garrett TJ, Nautiyal M, Mathew JT, Williams CM, Cusi K. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2015; 309:E311-9. [PMID: 26058864 PMCID: PMC4537921 DOI: 10.1152/ajpendo.00161.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.
Collapse
Affiliation(s)
- Nishanth E Sunny
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | | | - Fernando Bril
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | - Timothy J Garrett
- Department of Pathology, University of Florida, Gainesville, Florida
| | - Manisha Nautiyal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | - Justin T Mathew
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, California
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and Division of Endocrinology, Diabetes, and Metabolism, Malcom Randall Veterans Administration Medical Center (VAMC), Gainesville, Florida; Division of Diabetes, University of Texas Health Science Center at San Antonio, and Division of Diabetes, Audie L. Murphy VAMC, San Antonio, Texas; and
| |
Collapse
|
21
|
Agil A, El-Hammadi M, Jiménez-Aranda A, Tassi M, Abdo W, Fernández-Vázquez G, Reiter RJ. Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats. J Pineal Res 2015; 59:70-9. [PMID: 25904243 DOI: 10.1111/jpi.12241] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
Abstract
Hepatic mitochondrial dysfunction is thought to play a role in the development of liver steatosis and insulin resistance, which are both common characteristics of obesity and type 2 diabetes mellitus (T2DM). It was hypothesized that the antioxidant properties of melatonin could potentially improve the impaired functions of hepatic mitochondria in diabetic obese animals. Male Zucker diabetic fatty (ZDF) rats and lean littermates (ZL) were given either melatonin (10 mg/kg BW/day) orally for 6 wk (M-ZDF and M-ZL) or vehicle as control groups (C-ZDF and C-ZL). Hepatic function was evaluated by measurement of serum alanine transaminase and aspartate transaminase levels, liver histopathology and electron microscopy, and hepatic mitochondrial functions. Several impaired functions of hepatic mitochondria were observed in C-ZDF in comparison with C-ZL rats. Melatonin treatment to ZDF rats decreases serum levels of ALT (P < 0.001), alleviates liver steatosis and vacuolation, and also mitigates diabetic-induced mitochondrial abnormalities, glycogen, and lipid accumulation. Melatonin improves mitochondrial dysfunction in M-ZDF rats by increasing activities of mitochondrial citrate synthase (P < 0.001) and complex IV of electron transfer chain (P < 0.05) and enhances state 3 respiration (P < 0.001), respiratory control index (RCR) (P < 0.01), and phosphorylation coefficient (ADP/O ratio) (P < 0.05). Also melatonin augments ATP production (P < 0.05) and diminishes uncoupling protein 2 levels (P < 0.001). These results demonstrate that chronic oral melatonin reduces liver steatosis and mitochondria dysfunction in ZDF rats. Therefore, it may be beneficial in the treatment of diabesity.
Collapse
Affiliation(s)
- Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, Granada, Spain
| | - Mazen El-Hammadi
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, Granada, Spain
- Department of Pharmaceutics, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Aroa Jiménez-Aranda
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, Granada, Spain
| | - Mohamed Tassi
- Service of Microscopy, CIBM, University of Granada, Granada, Spain
| | - Walied Abdo
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, Granada, Spain
- Department of pathology, Faculty of Veterinary medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Russel J Reiter
- Department of cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| |
Collapse
|
22
|
Kwak HC, Kim YM, Oh SJ, Kim SK. Sulfur amino acid metabolism in Zucker diabetic fatty rats. Biochem Pharmacol 2015; 96:256-66. [PMID: 26047850 DOI: 10.1016/j.bcp.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
The present study was aimed to investigate the metabolomics of sulfur amino acids in Zucker diabetic fatty (ZDF) rats, an obese type 2 diabetic animal model. Plasma levels of total cysteine, homocysteine and methionine, but not glutathione (GSH) were markedly decreased in ZDF rats. Hepatic methionine, homocysteine, cysteine, betaine, taurine, spermidine and spermine were also decreased. There are no significant difference in hepatic S-adenosylmethionine, S-adenosylhomocysteine, GSH, GSH disulfide, hypotaurine and putrescine between control and ZDF rats. Hepatic SAH hydrolase, betaine-homocysteine methyltransferase and methylene tetrahydrofolate reductase were up-regulated while activities of gamma-glutamylcysteine ligase and methionine synthase were decreased. The area under the curve (AUC) of methionine and methionine-d4 was not significantly different in control and ZDF rats treated with a mixture of methionine (60mg/kg) and methionine-d4 (20mg/kg). Moreover, the AUC of the increase in plasma total homocysteine was comparable between two groups, although the homocysteine concentration curve was shifted leftward in ZDF rats, suggesting that the plasma total homocysteine after the methionine loading was rapidly increased and normalized in ZDF rats. These results show that the AUC of plasma homocysteine is not responsive to the up-regulation of hepatic BHMT in ZDF rats. The present study suggests that the decrease in hepatic methionine may be responsible for the decreases in its metabolites, such as homocysteine, cysteine, and taurine in liver and consequently decreased plasma homocysteine levels.
Collapse
Affiliation(s)
- Hui Chan Kwak
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy, Hanyang University, Ansan, Gyeonggido 426-791, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, KRIBB, Ochang, Chungbuk, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
23
|
Lebeck J, Cheema MU, Skowronski MT, Nielsen S, Praetorius J. Hepatic AQP9 expression in male rats is reduced in response to PPARα agonist treatment. Am J Physiol Gastrointest Liver Physiol 2015; 308:G198-205. [PMID: 25477377 DOI: 10.1152/ajpgi.00407.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The peroxisome proliferator receptor α (PPARα) is a key regulator of the hepatic response to fasting with effects on both lipid and carbohydrate metabolism. A role in hepatic glycerol metabolism has also been found; however, the results are somewhat contradictive. Aquaporin 9 (AQP9) is a pore-forming transmembrane protein that facilitates hepatic uptake of glycerol. Its expression is inversely regulated by insulin in male rodents, with increased expression during fasting. Previous results indicate that PPARα plays a crucial role in the induction of AQP9 mRNA during fasting. In the present study, we use PPARα agonists to explore the effect of PPARα activation on hepatic AQP9 expression and on the abundance of enzymes involved in glycerol metabolism using both in vivo and in vitro systems. In male rats with free access to food, treatment with the PPARα agonist WY 14643 (3 mg·kg(-1)·day(-1)) caused a 50% reduction in hepatic AQP9 abundance with the effect being restricted to AQP9 expressed in periportal hepatocytes. The pharmacological activation of PPARα had no effect on the abundance of GlyK, whereas it caused an increased expression of hepatic GPD1, GPAT1, and L-FABP protein. In WIF-B9 and HepG2 hepatocytes, both WY 14643 and another PPARα agonist GW 7647 reduced the abundance of AQP9 protein. In conclusion, pharmacological PPARα activation results in a marked reduction in the abundance of AQP9 in periportal hepatocytes. Together with the effect on the enzymatic apparatus for glycerol metabolism, our results suggest that PPARα activation in the fed state directs glycerol into glycerolipid synthesis rather than into de novo synthesis of glucose.
Collapse
Affiliation(s)
- Janne Lebeck
- The Danish Diabetes Academy, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| | | | - Mariusz T Skowronski
- Department of Animal Physiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Søren Nielsen
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| |
Collapse
|
24
|
Cotter DG, Ercal B, d'Avignon DA, Dietzen DJ, Crawford PA. Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice. Am J Physiol Endocrinol Metab 2014; 307:E176-85. [PMID: 24865983 PMCID: PMC4101633 DOI: 10.1152/ajpendo.00087.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator activated receptor-α (PPARα) is a master transcriptional regulator of hepatic metabolism and mediates the adaptive response to fasting. Here, we demonstrate the roles for PPARα in hepatic metabolic adaptations to birth. Like fasting, nutrient supply is abruptly altered at birth when a transplacental source of carbohydrates is replaced by a high-fat, low-carbohydrate milk diet. PPARα-knockout (KO) neonatal mice exhibit relative hypoglycemia due to impaired conversion of glycerol to glucose. Although hepatic expression of fatty acyl-CoA dehydrogenases is imparied in PPARα neonates, these animals exhibit normal blood acylcarnitine profiles. Furthermore, quantitative metabolic fate mapping of the medium-chain fatty acid [(13)C]octanoate in neonatal mouse livers revealed normal contribution of this fatty acid to the hepatic TCA cycle. Interestingly, octanoate-derived carbon labeled glucose uniquely in livers of PPARα-KO neonates. Relative hypoketonemia in newborn PPARα-KO animals could be mechanistically linked to a 50% decrease in de novo hepatic ketogenesis from labeled octanoate. Decreased ketogenesis was associated with diminished mRNA and protein abundance of the fate-committing ketogenic enzyme mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2) and decreased protein abundance of the ketogenic enzyme β-hydroxybutyrate dehydrogenase 1 (BDH1). Finally, hepatic triglyceride and free fatty acid concentrations were increased 6.9- and 2.7-fold, respectively, in suckling PPARα-KO neonates. Together, these findings indicate a primary defect of gluconeogenesis from glycerol and an important role for PPARα-dependent ketogenesis in the disposal of hepatic fatty acids during the neonatal period.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Center for Cardiovascular Research, and Departments of Pediatrics
| | - Baris Ercal
- Department of Medicine, Center for Cardiovascular Research, and
| | | | | | - Peter A Crawford
- Department of Medicine, Center for Cardiovascular Research, and Genetics, Washington University, St. Louis, Missouri
| |
Collapse
|
25
|
Jung GY, Won SB, Kim J, Jeon S, Han A, Kwon YH. Betaine Alleviates Hypertriglycemia and Tau Hyperphosphorylation in db/db Mice. Toxicol Res 2013; 29:7-14. [PMID: 24278623 PMCID: PMC3834435 DOI: 10.5487/tr.2013.29.1.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 01/17/2023] Open
Abstract
Betaine supplementation has been shown to alleviate altered glucose and lipid metabolism in mice fed a high-fat diet or a high-sucrose diet. We investigated the beneficial effects of betaine in diabetic db/db mice. Alleviation of endoplasmic reticulum (ER) and oxidative stress was also examined in the livers and brains of db/db mice fed a betaine-supplemented diet. Male C57BL/KsJ-db/db mice were fed with or without 1% betaine for 5 wk (referred to as the db/db-betaine group and the db/db group, respectively). Lean non-diabetic db/db+ mice were used as the control group. Betaine supplementation significantly alleviated hyperinsulinemia in db/db mice. Betaine reduced hepatic expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha, a major transcription factor involved in gluconeogenesis. Lower serum triglyceride concentrations were also observed in the db/db-betaine group compared to the db/db group. Betaine supplementation induced hepatic peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase 1a mRNA levels, and reduced acetyl-CoA carboxylase activity. Mice fed a betaine-supplemented diet had increased total glutathione concentrations and catalase activity, and reduced lipid peroxidation levels in the liver. Furthermore, betaine also reduced ER stress in liver and brain. c-Jun N-terminal kinase activity and tau hyperphosphorylation levels were lower in db/db mice fed a betaine-supplemented diet, compared to db/db mice. Our findings suggest that betaine improves hyperlipidemia and tau hyperphosphorylation in db/db mice with insulin resistance by alleviating ER and oxidative stress.
Collapse
Affiliation(s)
- Ga-Young Jung
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Salley TN, Mishra M, Tiwari S, Jadhav A, Ndisang JF. The heme oxygenase system rescues hepatic deterioration in the condition of obesity co-morbid with type-2 diabetes. PLoS One 2013; 8:e79270. [PMID: 24260182 PMCID: PMC3829851 DOI: 10.1371/journal.pone.0079270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty-liver disease (NAFLD) is increasing globally. NAFLD is a spectrum of related liver diseases that progressive from simple steatosis to serious complications like cirrhosis. The major pathophysiological driving of NAFLD includes elevated hepatic adiposity, increased hepatic triglycerides/cholesterol, excessive hepatic inflammation, and hepatocyte ballooning injury is a common histo-pathological denominator. Although heme-oxygenase (HO) is cytoprotective, its effects on hepatocyte ballooning injury have not been reported. We investigated the effects of upregulating HO with hemin or inhibiting it with stannous-mesoporphyrin (SnMP) on hepatocyte ballooning injury, hepatic adiposity and inflammation in Zucker-diabetic-fatty rats (ZDFs), an obese type-2-diabetic model. Hemin administration to ZDFs abated hepatic/plasma triglycerides and cholesterol, and suppressed several pro-inflammatory cytokines and chemokines including, TNF-α, IL-6, IL-1β, macrophage-inflammatory-protein-1α (MIP-1α) and macrophage-chemoattractant-protein-1 (MCP-1), with corresponding reduction of the pro-inflammatory M1-phenotype marker, ED1 and hepatic macrophage infiltration. Correspondingly, hemin concomitantly potentiated the protein expression of several markers of the anti-inflammatory macrophage-M2-phenotype including ED2, IL-10 and CD-206, alongside components of the HO-system including HO-1, HO-activity and cGMP, whereas the HO-inhibitor, SnMP abolished the effects. Furthermore, hemin attenuated liver histo-pathological lesions like hepatocyte ballooning injury and fibrosis, and reduced extracellular-matrix/profibrotic proteins implicated in liver injury such as osteopontin, TGF-β1, fibronectin and collagen-IV. We conclude that hemin restore hepatic morphology by abating hepatic adiposity, suppressing macrophage infiltration, inflammation and fibrosis. The selective enhancement of anti-inflammatory macrophage-M2-phenotype with parallel reduction of pro-inflammatory macrophage-M1-phenotype and related chemokines/cytokines like TNF-α, IL-6, IL-1β, MIP-1α and MCP-1 are among the multifaceted mechanisms by which hemin restore hepatic morphology.
Collapse
Affiliation(s)
- Tatiana Ntube Salley
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Manish Mishra
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Shuchita Tiwari
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Ashok Jadhav
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Joseph Fomusi Ndisang
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
27
|
de Castro NM, Yaqoob P, de la Fuente M, Baeza I, Claus SP. Premature Impairment of Methylation Pathway and Cardiac Metabolic Dysfunction in fa/fa Obese Zucker Rats. J Proteome Res 2013; 12:1935-45. [DOI: 10.1021/pr400025y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nuria M. de Castro
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Parveen Yaqoob
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| | - Mónica de la Fuente
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Baeza
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sandrine P. Claus
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| |
Collapse
|
28
|
Chen X, Wei S, Yang F. Mitochondria in the pathogenesis of diabetes: a proteomic view. Protein Cell 2012; 3:648-60. [PMID: 22729395 DOI: 10.1007/s13238-012-2043-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is a complex metabolic disorder characterized by chronic hyperglycemia due to absolute or relative lack of insulin. Though great efforts have been made to investigate the pathogenesis of diabetes, the underlying mechanism behind the development of diabetes and its complications remains unexplored. Cumulative evidence has linked mitochondrial modification to the pathogenesis of diabetes and its complications and they are also observed in various tissues affected by diabetes. Proteomics is an attractive tool for the study of diabetes since it allows researchers to compare normal and diabetic samples by identifying and quantifying the differentially expressed proteins in tissues, cells or organelles. Great progress has already been made in mitochondrial proteomics to elucidate the role of mitochondria in the pathogenesis of diabetes and its complications. Further studies on the changes of mitochondrial protein specifically post-translational modifications during the diabetic state using proteomic tools, would provide more information to better understand diabetes.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | |
Collapse
|
29
|
Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD, Burgess SC. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 2012; 53:1080-92. [PMID: 22493093 PMCID: PMC3351815 DOI: 10.1194/jlr.m023382] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/29/2012] [Indexed: 12/26/2022] Open
Abstract
The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.
Collapse
Affiliation(s)
- Santhosh Satapati
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ren LP, Chan SMH, Zeng XY, Laybutt DR, Iseli TJ, Sun RQ, Kraegen EW, Cooney GJ, Turner N, Ye JM. Differing endoplasmic reticulum stress response to excess lipogenesis versus lipid oversupply in relation to hepatic steatosis and insulin resistance. PLoS One 2012; 7:e30816. [PMID: 22355328 PMCID: PMC3280252 DOI: 10.1371/journal.pone.0030816] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/21/2011] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress have been implicated in hepatic steatosis and insulin resistance. The present study investigated their roles in the development of hepatic steatosis and insulin resistance during de novo lipogenesis (DNL) compared to extrahepatic lipid oversupply. Male C57BL/6J mice were fed either a high fructose (HFru) or high fat (HFat) diet to induce DNL or lipid oversupply in/to the liver. Both HFru and HFat feeding increased hepatic triglyceride within 3 days (by 3.5 and 2.4 fold) and the steatosis remained persistent from 1 week onwards (p<0.01 vs Con). Glucose intolerance (iAUC increased by ∼60%) and blunted insulin-stimulated hepatic Akt and GSK3β phosphorylation (∼40–60%) were found in both feeding conditions (p<0.01 vs Con, assessed after 1 week). No impairment of mitochondrial function was found (oxidation capacity, expression of PGC1α, CPT1, respiratory complexes, enzymatic activity of citrate synthase & β-HAD). As expected, DNL was increased (∼60%) in HFru-fed mice and decreased (32%) in HFat-fed mice (all p<0.05). Interestingly, associated with the upregulated lipogenic enzymes (ACC, FAS and SCD1), two (PERK/eIF2α and IRE1/XBP1) of three ER stress pathways were significantly activated in HFru-fed mice. However, no significant ER stress was observed in HFat-fed mice during the development of hepatic steatosis. Our findings indicate that HFru and HFat diets can result in hepatic steatosis and insulin resistance without obvious mitochondrial defects via different lipid metabolic pathways. The fact that ER stress is apparent only with HFru feeding suggests that ER stress is involved in DNL per se rather than resulting from hepatic steatosis or insulin resistance.
Collapse
Affiliation(s)
- Lu-Ping Ren
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Stanley M. H. Chan
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Xiao-Yi Zeng
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - D. Ross Laybutt
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Tristan J. Iseli
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ruo-Qiong Sun
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Edward W. Kraegen
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Gregory J. Cooney
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nigel Turner
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ji-Ming Ye
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
31
|
Aroor AR, Mandavia C, Ren J, Sowers JR, Pulakat L. Mitochondria and Oxidative Stress in the Cardiorenal Metabolic Syndrome. Cardiorenal Med 2012; 2:87-109. [PMID: 22619657 DOI: 10.1159/000335675] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a fundamental role in the maintenance of normal structure, function, and survival of tissues. There is considerable evidence for mitochondrial dysfunction in association with metabolic diseases including insulin resistance, obesity, diabetes, and the cardiorenal metabolic syndrome. The phenomenon of reactive oxygen species (ROS)-induced ROS release through interactions between cytosolic and mitochondrial oxidative stress contributes to a vicious cycle of enhanced oxidative stress and mitochondrial dysfunction. Activation of the cytosolic and mitochondrial NADPH oxidase system, impairment of the mitochondrial electron transport, activation of p66shc pathway-targeting mitochondria, endoplasmic reticular stress, and activation of the mammalian target of the rapamycin-S6 kinase pathway underlie dysregulation of mitochondrial dynamics and promote mitochondrial oxidative stress. These processes are further modulated by acetyltransferases including sirtuin 1 and sirtuin 3, the former regulating nuclear acetylation and the latter regulating mitochondrial acetylation. The regulation of mitochondrial functions by microRNAs forms an additional layer of molecular control of mitochondrial oxidative stress. Alcohol further exacerbates mitochondrial oxidative stress induced by overnutrition and promotes the development of metabolic diseases.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Mo., USA
| | | | | | | | | |
Collapse
|
32
|
Sunny NE, Parks EJ, Browning JD, Burgess SC. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 2011; 14:804-10. [PMID: 22152305 PMCID: PMC3658280 DOI: 10.1016/j.cmet.2011.11.004] [Citation(s) in RCA: 495] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/18/2011] [Accepted: 11/11/2011] [Indexed: 12/14/2022]
Abstract
Approximately one-third of the U.S. population has nonalcoholic fatty liver disease (NAFLD), a condition closely associated with insulin resistance and increased risk of liver injury. Dysregulated mitochondrial metabolism is central in these disorders, but the manner and degree of dysregulation are disputed. This study tested whether humans with NAFLD have abnormal in vivo hepatic mitochondrial metabolism. Subjects with low (3.0%) and high (17%) intrahepatic triglyceride (IHTG) were studied using (2)H and (13)C tracers to evaluate systemic lipolysis, hepatic glucose production, and mitochondrial pathways (TCA cycle, anaplerosis, and ketogenesis). Individuals with NAFLD had 50% higher rates of lipolysis and 30% higher rates of gluconeogenesis. There was a positive correlation between IHTG content and both mitochondrial oxidative and anaplerotic fluxes. These data indicate that mitochondrial oxidative metabolism is ~2-fold greater in those with NAFLD, providing a potential link between IHTG content, oxidative stress, and liver damage.
Collapse
Affiliation(s)
- Nishanth E Sunny
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
33
|
Lu Y, Boekschoten MV, Wopereis S, Müller M, Kersten S. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice. Physiol Genomics 2011; 43:1307-18. [DOI: 10.1152/physiolgenomics.00100.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevated circulating triglycerides, which are considered a risk factor for cardiovascular disease, can be targeted by treatment with fenofibrate or fish oil. To gain insight into underlying mechanisms, we carried out a comparative transcriptomics and metabolomics analysis of the effect of 2 wk treatment with fenofibrate and fish oil in mice. Plasma triglycerides were significantly decreased by fenofibrate (−49.1%) and fish oil (−21.8%), whereas plasma cholesterol was increased by fenofibrate (+29.9%) and decreased by fish oil (−32.8%). Levels of various phospholipid species were specifically decreased by fish oil, while levels of Krebs cycle intermediates were increased specifically by fenofibrate. Plasma levels of many amino acids were altered by fenofibrate and to a lesser extent by fish oil. Both fenofibrate and fish oil upregulated genes involved in fatty acid metabolism and downregulated genes involved in blood coagulation and fibrinolysis. Significant overlap in gene regulation by fenofibrate and fish oil was observed, reflecting their property as high or low affinity agonist for peroxisome proliferator-activated receptor-α, respectively. Fenofibrate specifically downregulated genes involved in complement cascade and inflammatory response. Fish oil specifically downregulated genes involved in cholesterol and fatty acid biosynthesis and upregulated genes involved in amino acid and arachidonic acid metabolism. Taken together, the data indicate that despite being similarly potent toward modulating plasma free fatty acids, cholesterol, and triglyceride levels, fish oil causes modest changes in gene expression likely via activation of multiple mechanistic pathways, whereas fenofibrate causes pronounced gene expression changes via a single pathway, reflecting the key difference between nutritional and pharmacological intervention.
Collapse
Affiliation(s)
- Yingchang Lu
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen
- National Institute for Public Health and the Environment, Bilthoven
| | - Mark V. Boekschoten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen
- The Netherlands Nutrigenomics Centre, TI Food and Nutrition, Wageningen; and
| | - Suzan Wopereis
- The Netherlands Nutrigenomics Centre, TI Food and Nutrition, Wageningen; and
- TNO Innovation for life, Earth, Environmental and Life Sciences, Zeist, the Netherlands
| | - Michael Müller
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen
- The Netherlands Nutrigenomics Centre, TI Food and Nutrition, Wageningen; and
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen
- The Netherlands Nutrigenomics Centre, TI Food and Nutrition, Wageningen; and
| |
Collapse
|
34
|
Wang S, Kamat A, Pergola P, Swamy A, Tio F, Cusi K. Metabolic factors in the development of hepatic steatosis and altered mitochondrial gene expression in vivo. Metabolism 2011; 60:1090-9. [PMID: 21310443 DOI: 10.1016/j.metabol.2010.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 12/19/2022]
Abstract
The objective of the study was to understand the role in vivo of elevated plasma free fatty acids (FFA), insulin, and glucose levels in the development of steatosis and altered mitochondrial gene/protein expression. We studied 4 groups of Sprague-Dawley rats: (1) high-fat diet (HFD), (2) high-dose streptozotocin-induced diabetes (T1DM), (3) low-dose streptozotocin-induced diabetic rats on an HFD (T2DM), and (4) controls. Liver histology and expression of genes/proteins related to mitochondrial fatty acid oxidation and biogenesis were analyzed. Despite an attempt to compensate by increasing expression of genes of fatty acid oxidation (carnitine palmitoyl transferase-1/medium chain acyl-CoA dehydrogenase), the HFD and diabetic groups developed marked steatosis and suffered a significant reduction in mitochondrial biogenesis gene expression (nuclear respiratory factor 1/transcriptional factor A, mitochondrial). In T2DM rats, the combination of high glucose and FFA unexpectedly did not lead to greater fat accumulation than HFD alone. Greater steatosis in HFD vs T2DM (P < .001) correlated with impairment in the gene expression of PPAR-α (ie, fatty acid oxidation) and PGC1α, a major coactivator for mitochondrial biogenesis. Steatosis was not severe in insulin-deficient T1DM rats despite very elevated FFA and glucose levels. Increased carnitine palmitoyl transferase-1/medium chain acyl-CoA dehydrogenase/PPAR-α gene expression suggested inadequate adaptation to high FFA in both T1DM/T2DM rats. Hyperinsulinemia combined with elevated FFA is the key metabolic factor driving hepatic lipogenesis in vivo (HFD rats). Mitochondrial biogenesis (nuclear respiratory factor 1; transcriptional factor A, mitochondrial) is highly susceptible to FFA-induced steatosis. In contrast, hyperglycemia does not have an additive effect (T2DM) and leads to only a modest degree of steatosis in the absence of hyperinsulinemia, even when FFA are extremely elevated as in T1DM rats.
Collapse
Affiliation(s)
- Shaoyun Wang
- The University of Texas Health Science Center at San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
35
|
Leavens KF, Birnbaum MJ. Insulin signaling to hepatic lipid metabolism in health and disease. Crit Rev Biochem Mol Biol 2011; 46:200-15. [PMID: 21599535 DOI: 10.3109/10409238.2011.562481] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The increasing prevalence of overnutrition and reduced activity has led to a worldwide epidemic of obesity. In many cases, this is associated with insulin resistance, an inability of the hormone to direct its physiological actions appropriately. A number of disease states accompany insulin resistance such as type 2 diabetes mellitus, the metabolic syndrome, and non-alcoholic fatty liver disease. Though the pathways by which insulin controls hepatic glucose output have been of intense study in recent years, considerably less attention has been devoted to how lipid metabolism is regulated. Thus, both the proximal signaling pathways as well as the more distal targets of insulin remain uncertain. In this review, we consider the signaling pathways by which insulin controls the synthesis and accumulation of lipids in the mammalian liver and, in particular, how this might lead to abnormal triglyceride deposition in liver during insulin-resistant states.
Collapse
Affiliation(s)
- Karla F Leavens
- Department of Medicine, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
36
|
Liepinsh E, Skapare E, Svalbe B, Makrecka M, Cirule H, Dambrova M. Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. Eur J Pharmacol 2011; 658:277-83. [PMID: 21371472 DOI: 10.1016/j.ejphar.2011.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/28/2011] [Accepted: 02/17/2011] [Indexed: 01/25/2023]
Abstract
Mildronate is a cardioprotective drug, the mechanism of action of which is based on the regulation of l-carnitine concentration. We studied the metabolic effects of treatment with mildronate, metformin and a combination of the two in the Zucker rat model of obesity and impaired glucose tolerance. Zucker rats were p.o. treated daily with mildronate (200mg/kg), metformin (300 mg/kg), and a combination of both drugs for 4 weeks. Weight gain and plasma metabolites reflecting glucose metabolism were measured. The expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ and target genes was measured in rat heart and liver tissues. Each treatment decreased the blood glucose concentration during the fed and fasted states by 1 to 2 mmol/l. Treatment with mildronate and metformin decreased the plasma insulin concentration by 31 and 29%, respectively, while the combination of both drugs significantly reduced fed insulin concentration by about 47%. Mildronate treatment increased the expression of PPAR-α in the heart tissue and PPAR-γ in the heart and liver tissues. In addition, treatment increased the expression of PPAR target genes in the heart, but not in the liver tissue. In contrast to monotherapy, treatment with the combination of mildronate and metformin significantly decreased weight gain by 19% and did not affect food intake. In conclusion, our results demonstrate that mildronate, an inhibitor of l-carnitine biosynthesis, improves adaptation to hyperglycemia- and hyperlipidemia-induced metabolic disturbances and increases PPAR-α activity.
Collapse
|
37
|
Abstract
A growing body of evidence suggests that mitochondrial abnormalities are involved in diabetes and associated complications. This chapter gives an overview about the effects of diabetes in mitochondrial function of several tissues including the pancreas, skeletal and cardiac muscle, liver, and brain. The realization that mitochondria are at the intersection of cells' life and death has made them a promising target for drug discovery and therapeutic interventions. Here, we also discuss literature that examined the potential protective effect of insulin, insulin-sensitizing drugs, and mitochondrial-targeted antioxidants.
Collapse
Affiliation(s)
- Paula I Moreira
- Faculty of Medicine and Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.
| | | |
Collapse
|
38
|
Benedict KF, Mac Gabhann F, Amanfu RK, Chavali AK, Gianchandani EP, Glaw LS, Oberhardt MA, Thorne BC, Yang JH, Papin JA, Peirce SM, Saucerman JJ, Skalak TC. Systems analysis of small signaling modules relevant to eight human diseases. Ann Biomed Eng 2010; 39:621-35. [PMID: 21132372 PMCID: PMC3033523 DOI: 10.1007/s10439-010-0208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 11/11/2010] [Indexed: 12/26/2022]
Abstract
Using eight newly generated models relevant to addiction, Alzheimer’s disease, cancer, diabetes, HIV, heart disease, malaria, and tuberculosis, we show that systems analysis of small (4–25 species), bounded protein signaling modules rapidly generates new quantitative knowledge from published experimental research. For example, our models show that tumor sclerosis complex (TSC) inhibitors may be more effective than the rapamycin (mTOR) inhibitors currently used to treat cancer, that HIV infection could be more effectively blocked by increasing production of the human innate immune response protein APOBEC3G, rather than targeting HIV’s viral infectivity factor (Vif), and how peroxisome proliferator-activated receptor alpha (PPARα) agonists used to treat dyslipidemia would most effectively stimulate PPARα signaling if drug design were to increase agonist nucleoplasmic concentration, as opposed to increasing agonist binding affinity for PPARα. Comparative analysis of system-level properties for all eight modules showed that a significantly higher proportion of concentration parameters fall in the top 15th percentile sensitivity ranking than binding affinity parameters. In infectious disease modules, host networks were significantly more sensitive to virulence factor concentration parameters compared to all other concentration parameters. This work supports the future use of this approach for informing the next generation of experimental roadmaps for known diseases.
Collapse
Affiliation(s)
- Kelly F. Benedict
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Robert K. Amanfu
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Arvind K. Chavali
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Erwin P. Gianchandani
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Lydia S. Glaw
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Matthew A. Oberhardt
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Bryan C. Thorne
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Jason H. Yang
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Thomas C. Skalak
- Department of Biomedical Engineering, University of Virginia, P.O. Box 400896, One Boar’s Head Pointe, Charlottesville, VA 22904 USA
| |
Collapse
|
39
|
Hyperglycemia-induced mitochondrial alterations in liver. Life Sci 2010; 87:197-214. [DOI: 10.1016/j.lfs.2010.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/21/2010] [Accepted: 06/05/2010] [Indexed: 01/07/2023]
|
40
|
Sunny NE, Satapati S, Fu X, He T, Mehdibeigi R, Spring-Robinson C, Duarte J, Potthoff MJ, Browning JD, Burgess SC. Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2010; 298:E1226-35. [PMID: 20233938 PMCID: PMC2886525 DOI: 10.1152/ajpendo.00033.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic ketogenesis provides a vital systemic fuel during fasting because ketone bodies are oxidized by most peripheral tissues and, unlike glucose, can be synthesized from fatty acids via mitochondrial beta-oxidation. Since dysfunctional mitochondrial fat oxidation may be a cofactor in insulin-resistant tissue, the objective of this study was to determine whether diet-induced insulin resistance in mice results in impaired in vivo hepatic fat oxidation secondary to defects in ketogenesis. Ketone turnover (micromol/min) in the conscious and unrestrained mouse was responsive to induction and diminution of hepatic fat oxidation, as indicated by an eightfold rise during the fed (0.50+/-0.1)-to-fasted (3.8+/-0.2) transition and a dramatic blunting of fasting ketone turnover in PPARalpha(-/-) mice (1.0+/-0.1). C57BL/6 mice made obese and insulin resistant by high-fat feeding for 8 wk had normal expression of genes that regulate hepatic fat oxidation, whereas 16 wk on the diet induced expression of these genes and stimulated the function of hepatic mitochondrial fat oxidation, as indicated by a 40% induction of fasting ketogenesis and a twofold rise in short-chain acylcarnitines. Together, these findings indicate a progressive adaptation of hepatic ketogenesis during high-fat feeding, resulting in increased hepatic fat oxidation after 16 wk of a high-fat diet. We conclude that mitochondrial fat oxidation is stimulated rather than impaired during the initiation of hepatic insulin resistance in mice.
Collapse
Affiliation(s)
- Nishanth E Sunny
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8568, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Frigerio F, Brun T, Bartley C, Usardi A, Bosco D, Ravnskjaer K, Mandrup S, Maechler P. Peroxisome proliferator-activated receptor alpha (PPARalpha) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism. Diabetologia 2010; 53:331-40. [PMID: 19908022 DOI: 10.1007/s00125-009-1590-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/18/2009] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells chronically exposed to fatty acids may lose specific functions and even undergo apoptosis. Generally, lipotoxicity is triggered by saturated fatty acids, whereas unsaturated fatty acids induce lipodysfunction, the latter being characterised by elevated basal insulin release and impaired glucose responses. The peroxisome proliferator-activated receptor alpha (PPARalpha) has been proposed to play a protective role in this process, although the cellular mechanisms involved are unclear. METHODS We modulated PPARalpha production in INS-1E beta cells and investigated key metabolic pathways and genes responsible for metabolism-secretion coupling during a culture period of 3 days in the presence of 0.4 mmol/l oleate. RESULTS In INS-1E cells, the secretory dysfunction primarily induced by oleate was aggravated by silencing of PPARalpha. Conversely, PPARalpha upregulation preserved glucose-stimulated insulin secretion, essentially by increasing the response at a stimulatory concentration of glucose (15 mmol/l), a protection we also observed in human islets. The protective effect was associated with restored glucose oxidation rate and upregulation of the anaplerotic enzyme pyruvate carboxylase. PPARalpha overproduction increased both beta-oxidation and fatty acid storage in the form of neutral triacylglycerol, revealing overall induction of lipid metabolism. These observations were substantiated by expression levels of associated genes. CONCLUSIONS/INTERPRETATION PPARalpha protected INS-1E beta cells from oleate-induced dysfunction, promoting both preservation of glucose metabolic pathways and fatty acid turnover.
Collapse
Affiliation(s)
- F Frigerio
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, Kharitonenkov A, Wasserman DH. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 2009; 150:4084-93. [PMID: 19470704 PMCID: PMC2736088 DOI: 10.1210/en.2009-0221] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator shown to improve glycemic control. However, the molecular and functional mechanisms underlying FGF21-mediated improvements in glycemic control are not completely understood. We examined FGF21 effects on insulin sensitivity and glucose fluxes upon chronic (daily injection for 8 d) and acute (6 h infusion) administration in ob/+ and ob/ob mice. Results show that chronic FGF21 ameliorated fasting hyperglycemia in ob/ob mice via increased glucose disposal and improved hepatic insulin sensitivity. Acute FGF21 suppressed hepatic glucose production, increased liver glycogen, lowered glucagon, and improved glucose clearance in ob/+ mice. These effects were blunted in ob/ob mice. Neither chronic nor acute FGF21 altered skeletal muscle or adipose tissue glucose uptake in either genotype. In conclusion, FGF21 has potent glycemic effects caused by hepatic changes in glucose flux and improved insulin sensitivity. Thus, these studies define mechanisms underlying anti-hyperglycemic actions of FGF21 and support its therapeutic potential.
Collapse
Affiliation(s)
- Eric D Berglund
- Department of Molecular Physiology and Biophysics, National Institutes of Health-Vanderbilt University Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 2009; 106:10853-8. [PMID: 19541642 DOI: 10.1073/pnas.0904187106] [Citation(s) in RCA: 589] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The liver plays a crucial role in mobilizing energy during nutritional deprivation. During the early stages of fasting, hepatic glycogenolysis is a primary energy source. As fasting progresses and glycogen stores are depleted, hepatic gluconeogenesis and ketogenesis become major energy sources. Here, we show that fibroblast growth factor 21 (FGF21), a hormone that is induced in liver by fasting, induces hepatic expression of peroxisome proliferator-activated receptor gamma coactivator protein-1alpha (PGC-1alpha), a key transcriptional regulator of energy homeostasis, and causes corresponding increases in fatty acid oxidation, tricarboxylic acid cycle flux, and gluconeogenesis without increasing glycogenolysis. Mice lacking FGF21 fail to fully induce PGC-1alpha expression in response to a prolonged fast and have impaired gluconeogenesis and ketogenesis. These results reveal an unexpected relationship between FGF21 and PGC-1alpha and demonstrate an important role for FGF21 in coordinately regulating carbohydrate and fatty acid metabolism during the progression from fasting to starvation.
Collapse
|
44
|
|
45
|
Kley S, Hoenig M, Glushka J, Jin ES, Burgess SC, Waldron M, Jordan ET, Prestegard JH, Ferguson DC, Wu S, Olson DE. The impact of obesity, sex, and diet on hepatic glucose production in cats. Am J Physiol Regul Integr Comp Physiol 2009; 296:R936-43. [PMID: 19193946 DOI: 10.1152/ajpregu.90771.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is a risk factor for type 2 diabetes in cats. The risk of developing diabetes is severalfold greater for male cats than for females, even after having been neutered early in life. The purpose of this study was to investigate the role of different metabolic pathways in the regulation of endogenous glucose production (EGP) during the fasted state considering these risk factors. A triple tracer protocol using (2)H(2)O, [U-(13)C(3)]propionate, and [3,4-(13)C(2)]glucose was applied in overnight-fasted cats (12 lean and 12 obese; equal sex distribution) fed three different diets. Compared with lean cats, obese cats had higher insulin (P < 0.001) but similar blood glucose concentrations. EGP was lower in obese cats (P < 0.001) due to lower glycogenolysis and gluconeogenesis (GNG; P < 0.03). Insulin, body mass index, and girth correlated negatively with EGP (P < 0.003). Female obese cats had approximately 1.5 times higher fluxes through phosphoenolpyruvate carboxykinase (P < 0.02) and citrate synthase (P < 0.05) than male obese cats. However, GNG was not higher because pyruvate cycling was increased 1.5-fold (P < 0.03). These results support the notion that fasted obese cats have lower hepatic EGP compared with lean cats and are still capable of maintaining fasting euglycemia, despite the well-documented existence of peripheral insulin resistance in obese cats. Our data further suggest that sex-related differences exist in the regulation of hepatic glucose metabolism in obese cats, suggesting that pyruvate cycling acts as a controlling mechanism to modulate EGP. Increased pyruvate cycling could therefore be an important factor in modulating the diabetes risk in female cats.
Collapse
Affiliation(s)
- Saskia Kley
- College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-x. [PMID: 19219862 DOI: 10.1002/dmrr.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Browning JD, Weis B, Davis J, Satapati S, Merritt M, Malloy CR, Burgess SC. Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction. Hepatology 2008; 48:1487-96. [PMID: 18925642 PMCID: PMC2701295 DOI: 10.1002/hep.22504] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Carbohydrate restriction is a common weight-loss approach that modifies hepatic metabolism by increasing gluconeogenesis (GNG) and ketosis. Because little is known about the effect of carbohydrate restriction on the origin of gluconeogenic precursors (GNG from glycerol [GNG(glycerol)] and GNG from lactate/amino acids [GNG(phosphoenolpyruvate (PEP))]) or its consequence to hepatic energy homeostasis, we studied these parameters in a group of overweight/obese subjects undergoing weight-loss via dietary restriction. We used (2)H and (13)C tracers and nuclear magnetic resonance spectroscopy to measure the sources of hepatic glucose and tricarboxylic acid (TCA) cycle flux in weight-stable subjects (n = 7) and subjects following carbohydrate restriction (n = 7) or calorie restriction (n = 7). The majority of hepatic glucose production in carbohydrate restricted subjects came from GNG(PEP). The contribution of glycerol to GNG was similar in all groups despite evidence of increased fat oxidation in carbohydrate restricted subjects. A strong correlation between TCA cycle flux and GNG(PEP) was found, though the reliance on TCA cycle energy production for GNG was attenuated in subjects undergoing carbohydrate restriction. Together, these data imply that the TCA cycle is the energetic patron of GNG. However, the relationship between these two pathways is modified by carbohydrate restriction, suggesting an increased reliance of the hepatocyte on energy generated outside of the TCA cycle when GNG(PEP) is maximal. CONCLUSION Carbohydrate restriction modifies hepatic GNG by increasing reliance on substrates like lactate or amino acids but not glycerol. This modification is associated with a reorganization of hepatic energy metabolism suggestive of enhanced hepatic beta-oxidation.
Collapse
Affiliation(s)
- Jeffrey D Browning
- Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Makowski L, Noland RC, Koves TR, Xing W, Ilkayeva OR, Muehlbauer MJ, Stevens RD, Muoio DM. Metabolic profiling of PPARalpha-/- mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation. FASEB J 2008; 23:586-604. [PMID: 18945875 DOI: 10.1096/fj.08-119420] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a master transcriptional regulator of beta-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARalpha(+/+) and PPARalpha(-/-) mice. Compared to PPARalpha(+/+) animals, acylcarnitine profiles of PPARalpha(-/-) mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in beta-oxidation. Organic and amino acid profiles of starved PPARalpha(-/-) mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARalpha(-/-) mice had 40-50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARalpha(-/-) mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.
Collapse
Affiliation(s)
- Liza Makowski
- Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|