1
|
Chen Y, Shen M, Gu Y, Xu X, Bian L, Yang F, Chen S, Ji L, Liu J, Zhu J, Zhang Z, Fu Q, Cai Y, Chen H, Xu K, Sun M, Zheng X, Shen J, Zhou H, Zhang M, Haskins K, Yu L, Yang T, Shi Y. Pivotal epitopes for islet antigen-specific CD8 + T cell detection improve classification of suspected type 1 diabetes with the HLA-A*0201 allele. Immunol Res 2025; 73:65. [PMID: 40133500 DOI: 10.1007/s12026-025-09616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
A proportion of patients with new-onset diabetes share similar symptoms with type 1 diabetes (T1D) patients but they are negative for islet antigen-specific autoantibodies. This study was to develop an islet antigen-specific CD8+ T-cell assay to provide autoimmune evidence regarding these "suspected" T1D patients. HLA-A*0201 individuals with autoAbs+ T1D, autoAbs- suspected T1D, and type 2 diabetes, along with HLA-A*0201 healthy controls were recruited. Using interferon-γ enzyme-linked immunospot assays, the percentages of participants in each group with various islet antigen-specific CD8+ T cells were determined. Sixteen out of the 28 islet antigen-specific epitopes tested were T1D specific, meaning that there was a significantly (P < 0.05) greater epitope positivity rate in the autoAbs+ T1D cohort than in the healthy controls. Using a cutoff value of two positive epitopes, the 16-epitope panel led to a sensitivity of 75.0% and a specificity of 94.4% regarding the autoAbs+ T1D patients. Even when using an optimized five-epitope panel, the results were highly accurate. Notably, in the application phase of the study, 77.8% of a new cohort of autoAbs- suspected T1D patients exhibited positivity when using the five-epitope optimized panel. This highly accurate method, especially for pediatric patients, will improve clinical diagnosis and etiological classification of autoimmune T1D.
Collapse
Affiliation(s)
- Yang Chen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Min Shen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yong Gu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xinyu Xu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lingling Bian
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Endocrinology, Yancheng City No. 1 People's Hospital, Yancheng, 224005, Jiangsu, China
| | - Fan Yang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Endocrinology, The Affiliated Wuxi No.2 People'S Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Shuang Chen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Li Ji
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Emergency Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jin Liu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Pediatrics, Huai'an First People's Hospital, Huai'an, 223300, Jiangsu, China
| | - Jing Zhu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Zheng Zhang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qi Fu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yun Cai
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Heng Chen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Kuanfeng Xu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Min Sun
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuqin Zheng
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jie Shen
- HLA Laboratory, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hongwen Zhou
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Mei Zhang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver and Health Sciences Center, 1775 North Ursula Street, Aurora, CO, 80045, USA
| | - Tao Yang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yun Shi
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
2
|
Luce S, Guinoiseau S, Gadault A, Letourneur F, Nitschke P, Bras M, Vidaud M, Charneau P, Larger E, Colli ML, Eizirik DL, Lemonnier F, Boitard C. A Humanized Mouse Strain That Develops Spontaneously Immune-Mediated Diabetes. Front Immunol 2021; 12:748679. [PMID: 34721418 PMCID: PMC8551915 DOI: 10.3389/fimmu.2021.748679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
To circumvent the limitations of available preclinical models for the study of type 1 diabetes (T1D), we developed a new humanized model, the YES-RIP-hB7.1 mouse. This mouse is deficient of murine major histocompatibility complex class I and class II, the murine insulin genes, and expresses as transgenes the HLA-A*02:01 allele, the diabetes high-susceptibility HLA-DQ8A and B alleles, the human insulin gene, and the human co-stimulatory molecule B7.1 in insulin-secreting cells. It develops spontaneous T1D along with CD4+ and CD8+ T-cell responses to human preproinsulin epitopes. Most of the responses identified in these mice were validated in T1D patients. This model is amenable to characterization of hPPI-specific epitopes involved in T1D and to the identification of factors that may trigger autoimmune response to insulin-secreting cells in human T1D. It will allow evaluating peptide-based immunotherapy that may directly apply to T1D in human and complete preclinical model availability to address the issue of clinical heterogeneity of human disease.
Collapse
Affiliation(s)
- Sandrine Luce
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Sophie Guinoiseau
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Alexis Gadault
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Franck Letourneur
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France
| | | | - Marc Bras
- Medical Faculty, Paris University, Paris, France
| | - Michel Vidaud
- Biochemistry and Molecular Genetics Department, Cochin Hospital, Paris, France
| | - Pierre Charneau
- Molecular Virology and Vaccinology, Pasteur Institute, Paris, France
| | - Etienne Larger
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Diabetology Department, Cochin Hospital, Paris, France
| | - Maikel L Colli
- Université Libre de Bruxelles (ULB) Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- Université Libre de Bruxelles (ULB) Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.,Diabetes Center, Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, United States
| | - François Lemonnier
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France.,Diabetology Department, Cochin Hospital, Paris, France
| |
Collapse
|
3
|
Wiedeman AE, Speake C, Long SA. The many faces of islet antigen-specific CD8 T cells: clues to clinical outcome in type 1 diabetes. Immunol Cell Biol 2021; 99:475-485. [PMID: 33483981 PMCID: PMC8248166 DOI: 10.1111/imcb.12437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
Abstract
Immune monitoring enables a better understanding of disease processes and response to therapy, but has been challenging in the setting of chronic autoimmunity because of unknown etiology, variable and protracted kinetics of the disease process, heterogeneity across patients and the complexity of immune interactions. To begin to parse this complexity, we focus here on type 1 diabetes (T1D) and CD8 T cells as a cell type that has features that are associated with different stages of disease, rates of progression and response to therapy. Specifically, we discuss the current understanding of the role of autoreactive CD8 T cells in disease outcome, which implicates particular CD8 functional subsets, rather than unique antigens or total number of autoreactive T cells. Next, we discuss how autoreactive CD8 T‐cell features can be reflected in measures of global CD8 T cells, and then pull these concepts together by highlighting immune therapies recently shown to modulate both CD8 T cells and disease progression. We end by discussing outstanding questions about the role of specific subsets of autoreactive CD8 T cells in disease progression and how they may be optimally modulated to treat and prevent T1D.
Collapse
Affiliation(s)
- Alice E Wiedeman
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Cate Speake
- Interventional Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Sarah Alice Long
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| |
Collapse
|
4
|
Paul M, Dayal D, Bhansali A, Sachdeva N. Characterization of proinsulin-specific regulatory T cells in type 1 diabetes at different ages of onset. Pediatr Diabetes 2019; 20:271-281. [PMID: 30635950 DOI: 10.1111/pedi.12813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Regulatory T cells (Tregs) play an important role in maintaining tolerance to self-antigens. Defects in the frequency and function of polyclonal Tregs have been reported in type 1 diabetes (T1D). However, characteristics of proinsulin (PI)-specific Tregs in human T1D have not yet been explored. Therefore, we aimed to characterize PI-specific Tregs in two distinct pathophysiological subtypes of T1D, juvenile-onset T1D (JOT1D) and adult-onset T1D (AOT1D), distinguished by the age of onset. METHODS Peripheral blood mononuclear cells of the recruited subjects were stimulated in vitro with PI-derived peptides. PI-specific Tregs were characterized by flow cytometry using the combination of markers CD25, CD137, FOXP3 and CD45RA. RESULTS Firstly, we observed similar frequencies of polyclonal Tregs in the T1D (n = 25) and healthy control (HC) (n = 20) subjects (P = 0.96), with a positive correlation between age and frequency of polyclonal Tregs (r = +0.35, P = 0.04). While the frequency of polyclonal Tregs was higher in AOT1D group (P = 0.02), both JOT1D (n = 14) and AOT1D groups (n = 11) had a comparable frequency of PI-specific Tregs in their peripheral blood. The frequency of PI-specific memory Tregs was significantly high in both the JOT1D (P = 0.02) and AOT1D (P = 0.009) groups compared to their respective HC groups (n = 10). Finally, we observed no significant difference in the expression of FOXP3 and IL-2 receptor in PI-specific Tregs in all the groups. CONCLUSIONS Unlike polyclonal Tregs, both T1D subtypes harbor comparable frequencies of PI-specific Tregs. Chronic antigen presentation results in a distinct memory-like phenotype of PI-specific Tregs in these subjects irrespective of the age of disease onset.
Collapse
Affiliation(s)
- Mahinder Paul
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
5
|
Luce S, Guinoiseau S, Gadault A, Letourneur F, Blondeau B, Nitschke P, Pasmant E, Vidaud M, Lemonnier F, Boitard C. Humanized Mouse Model to Study Type 1 Diabetes. Diabetes 2018; 67:1816-1829. [PMID: 29967002 DOI: 10.2337/db18-0202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Key requirements in type 1 diabetes (T1D) are in setting up new assays as diagnostic biomarkers that will apply to prediabetes, likely T-cell assays, and in designing antigen-specific therapies to prevent T1D development. New preclinical models of T1D will be required to help with advancing both aims. By crossing mouse strains that lack either murine MHC class I and class II genes and insulin genes, we developed YES mice that instead express human HLA-A*02:01, HLA-DQ8, and insulin genes as transgenes. The metabolic and immune phenotype of YES mice is basically identical to that of the parental strains. YES mice remain insulitis and diabetes free up to 1 year of follow-up, maintain normoglycemia to an intraperitoneal glucose challenge in the long-term range, have a normal β-cell mass, and show normal immune responses to conventional antigens. This new model has been designed to evaluate adaptive immune responses to human insulin on a genetic background that recapitulates a human high-susceptibility HLA-DQ8 genetic background. Although insulitis free, YES mice develop T1D when challenged with polyinosinic-polycytidylic acid. They allow the characterization of preproinsulin epitopes recognized by CD8+ and CD4+ T cells upon immunization against human preproinsulin or during diabetes development.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Aging
- Animals
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Autoimmune Diseases/physiopathology
- Biomarkers/blood
- Biomarkers/metabolism
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Models, Animal
- Disease Progression
- Female
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/metabolism
- HLA-DQ Antigens/blood
- HLA-DQ Antigens/genetics
- HLA-DQ Antigens/metabolism
- Humans
- Insulin/blood
- Insulin/genetics
- Insulin/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Poly I-C/toxicity
- Prediabetic State/immunology
- Prediabetic State/metabolism
- Prediabetic State/pathology
- Prediabetic State/physiopathology
- Protein Precursors/blood
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Sandrine Luce
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Sophie Guinoiseau
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Alexis Gadault
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | | | | | - Patrick Nitschke
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Eric Pasmant
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
- Service de Biochimie et Génétique Moléculaire, Hôpital COCHIN, Paris, France
| | - Michel Vidaud
- Service de Biochimie et Génétique Moléculaire, Hôpital COCHIN, Paris, France
| | - François Lemonnier
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Christian Boitard
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| |
Collapse
|
6
|
James EA, Abreu JRF, McGinty JW, Odegard JM, Fillié YE, Hocter CN, Culina S, Ladell K, Price DA, Alkanani A, Rihanek M, Fitzgerald-Miller L, Skowera A, Speake C, Gottlieb P, Davidson HW, Wong FS, Roep B, Mallone R. Combinatorial detection of autoreactive CD8 + T cells with HLA-A2 multimers: a multi-centre study by the Immunology of Diabetes Society T Cell Workshop. Diabetologia 2018; 61:658-670. [PMID: 29196783 DOI: 10.1007/s00125-017-4508-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Validated biomarkers are needed to monitor the effects of immune intervention in individuals with type 1 diabetes. Despite their importance, few options exist for monitoring antigen-specific T cells. Previous reports described a combinatorial approach that enables the simultaneous detection and quantification of multiple islet-specific CD8+ T cell populations. Here, we set out to evaluate the performance of a combinatorial HLA-A2 multimer assay in a multi-centre setting. METHODS The combinatorial HLA-A2 multimer assay was applied in five participating centres using centralised reagents and blinded replicate samples. In preliminary experiments, samples from healthy donors were analysed using recall antigen multimers. In subsequent experiments, samples from healthy donors and individuals with type 1 diabetes were analysed using beta cell antigen and recall antigen multimers. RESULTS The combinatorial assay was successfully implemented in each participating centre, with CVs between replicate samples that indicated good reproducibility for viral epitopes (mean %CV = 33.8). For beta cell epitopes, the assay was very effective in a single-centre setting (mean %CV = 18.4), but showed sixfold greater variability across multi-centre replicates (mean %CV = 119). In general, beta cell antigen-specific CD8+ T cells were detected more commonly in individuals with type 1 diabetes than in healthy donors. Furthermore, CD8+ T cells recognising HLA-A2-restricted insulin and glutamate decarboxylase epitopes were found to occur at higher frequencies in individuals with type 1 diabetes than in healthy donors. CONCLUSIONS/INTERPRETATION Our results suggest that, although combinatorial multimer assays are challenging, they can be implemented in multiple laboratories, providing relevant T cell frequency measurements. Assay reproducibility was notably higher in the single-centre setting, suggesting that biomarker analysis of clinical trial samples would be most successful when assays are performed in a single laboratory. Technical improvements, including further standardisation of cytometry platforms, will likely be necessary to reduce assay variability in the multi-centre setting.
Collapse
Affiliation(s)
- Eddie A James
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA.
| | - Joana R F Abreu
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands
| | - John W McGinty
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Jared M Odegard
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Yvonne E Fillié
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands
| | - Claire N Hocter
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Aimon Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lisa Fitzgerald-Miller
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Cate Speake
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Peter Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Bart Roep
- Department of Diabetes Immunology, City of Hope, Duarte, CA, USA
| | | | | |
Collapse
|
7
|
Paul M, Badal D, Jacob N, Dayal D, Kumar R, Bhansali A, Bhadada SK, Sachdeva N. Pathophysiological characteristics of preproinsulin-specific CD8+ T cells in subjects with juvenile-onset and adult-onset type 1 diabetes: A 1-year follow-up study. Pediatr Diabetes 2018; 19:68-79. [PMID: 28488272 DOI: 10.1111/pedi.12536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022] Open
Abstract
AIMS/HYPOTHESIS Among the beta-cell associated antigens, preproinsulin (PPI) has been shown to play a key role in the pathogenesis of type 1 diabetes (T1D). PPI-specific autoreactive CD8+ T cells emerge early during beta-cell destruction and persist in peripheral circulation during diabetes progression. However, the influence of insulin therapy on phenotype of autoreactive CD8+ T cells in T1D including, juvenile-onset T1D (JOT1D), and adult-onset T1D (AOT1D) is not yet known. METHODS We followed the time course of PPI-specific CD8+ T cells in JOT1D and AOT1D subjects that achieved glycemic control after 1 year of insulin therapy, using major histocompatibility complex-I (MHC-I) dextramers by flow cytometry. RESULTS AND DISCUSSION At follow-up, PPI-specific CD8+ T cells could be detected consistently in peripheral blood of all T1D subjects. Proportion of PPI-specific effector memory (TEM ) subsets decreased, while central memory T (TCM ) cells remained unchanged in both groups. Expression of granzyme-B and perforin in PPI-specific CD8+ T cells also remained unchanged. Further, on analysis of B-chain and signal peptide (SP) specific CD8+ T cell responses separately, we again observed decrease in TEM subset in both the groups, while increase in naive (TN ) subset was observed in B-chain specific CD8+ T cells only. CONCLUSION Our study shows that PPI-specific CD8+ T cells can be detected in both JOT1D and AOT1D subjects over a period of time with reliable consistency in frequency but variable pathophysiological characteristics. Insulin therapy seems to reduce the PPI-specific TEM subsets; however, the PPI-specific TCM cells continue to persist as attractive targets for immunotherapy.
Collapse
Affiliation(s)
- Mahinder Paul
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Darshan Badal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Neenu Jacob
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rakesh Kumar
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
8
|
Rodriguez-Calvo T, Zapardiel-Gonzalo J, Amirian N, Castillo E, Lajevardi Y, Krogvold L, Dahl-Jørgensen K, von Herrath MG. Increase in Pancreatic Proinsulin and Preservation of β-Cell Mass in Autoantibody-Positive Donors Prior to Type 1 Diabetes Onset. Diabetes 2017; 66:1334-1345. [PMID: 28137793 PMCID: PMC5399615 DOI: 10.2337/db16-1343] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes is characterized by the loss of insulin production caused by β-cell dysfunction and/or destruction. The hypothesis that β-cell loss occurs early during the prediabetic phase has recently been challenged. Here we show, for the first time in situ, that in pancreas sections from autoantibody-positive (Ab+) donors, insulin area and β-cell mass are maintained before disease onset and that production of proinsulin increases. This suggests that β-cell destruction occurs more precipitously than previously assumed. Indeed, the pancreatic proinsulin-to-insulin area ratio was also increased in these donors with prediabetes. Using high-resolution confocal microscopy, we found a high accumulation of vesicles containing proinsulin in β-cells from Ab+ donors, suggesting a defect in proinsulin conversion or an accumulation of immature vesicles caused by an increase in insulin demand and/or a dysfunction in vesicular trafficking. In addition, islets from Ab+ donors were larger and contained a higher number of β-cells per islet. Our data indicate that β-cell mass (and function) is maintained until shortly before diagnosis and declines rapidly at the time of clinical onset of disease. This suggests that secondary prevention before onset, when β-cell mass is still intact, could be a successful therapeutic strategy.
Collapse
Affiliation(s)
| | | | - Natalie Amirian
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Ericka Castillo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Yasaman Lajevardi
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
- Novo Nordisk Diabetes Research & Development Center, Seattle, WA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW By necessity, the vast majority of information we have on autoreactive T cells in human type 1 diabetes (T1D) has come from the study of peripheral blood of donors with T1D. It is not clear how representative the peripheral autoreactive T-cell repertoire is of the autoreactive T cells infiltrating the islets in T1D. We will summarize and discuss what is known of the immunohistopathology of insulitis, the T-cell receptor repertoire expressed by islet-infiltrating T cells, and the autoreactivity and function of islet-infiltrating T cells in T1D. RECENT FINDINGS Recovery and analysis of live, islet-infiltrating T cells from the islets of cadaveric donors with T1D revealed a broad repertoire and proinflammatory phenotype of CD4 T-cell autoreactivity to peptide targets from islet proteins, including proinsulin, as well as CD4 T-cell reactivity to a number of post-translationally modified peptides, including peptides with citrullinations and hybrid insulin peptide fusions. Islet-infiltrating CD8 T cells were also derived and required further isolation and characterization. SUMMARY The recovery of live, islet-infiltrating T cells from donors with T1D, reactive with a broad range of known targets and post-translationally modified peptides, allows for the specific functional analysis of islet-infiltrating T cells for the development of antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Sally C Kent
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
10
|
Gómez-Touriño I, Simón-Vázquez R, Alonso-Lorenzo J, Arif S, Calviño-Sampedro C, González-Fernández Á, Pena-González E, Rodríguez J, Viñuela-Roldán J, Verdaguer J, Cordero OJ, Peakman M, Varela-Calvino R. Characterization of the autoimmune response against the nerve tissue S100β in patients with type 1 diabetes. Clin Exp Immunol 2015; 180:207-17. [PMID: 25516468 DOI: 10.1111/cei.12572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes results from destruction of insulin-producing beta cells in pancreatic islets and is characterized by islet cell autoimmunity. Autoreactivity against non-beta cell-specific antigens has also been reported, including targeting of the calcium-binding protein S100β. In preclinical models, reactivity of this type is a key component of the early development of insulitis. To examine the nature of this response in type 1 diabetes, we identified naturally processed and presented peptide epitopes derived from S100β, determined their affinity for the human leucocyte antigen (HLA)-DRB1*04:01 molecule and studied T cell responses in patients, together with healthy donors. We found that S100β reactivity, characterized by interferon (IFN)-γ secretion, is a characteristic of type 1 diabetes of varying duration. Our results confirm S100β as a target of the cellular autoimmune response in type 1 diabetes with the identification of new peptide epitopes targeted during the development of the disease, and support the preclinical findings that autoreactivity against non-beta cell-specific autoantigens may have a role in type 1 diabetes pathogenesis.
Collapse
Affiliation(s)
- I Gómez-Touriño
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sachdeva N, Paul M, Badal D, Kumar R, Jacob N, Dayal D, Bhansali A, Arora SK, Bhadada SK. Preproinsulin specific CD8+ T cells in subjects with latent autoimmune diabetes show lower frequency and different pathophysiological characteristics than those with type 1 diabetes. Clin Immunol 2015; 157:78-90. [DOI: 10.1016/j.clim.2015.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/02/2014] [Accepted: 01/10/2015] [Indexed: 01/08/2023]
|
12
|
T-lymphocyte recognition of beta cells in type 1 diabetes: clinical perspectives. DIABETES & METABOLISM 2013; 39:459-66. [PMID: 24139825 DOI: 10.1016/j.diabet.2013.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/14/2013] [Indexed: 11/23/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the activation of lymphocytes against pancreatic β cells. Landmarks in the history of T1D were the description of insulitis and of islet cell autoantibodies, and report an association between T1D and a limited number of HLA alleles. Another step was the study of T-lymphocytes, now known to be central to the disease process of T1D whether in mice or men. In humans, T-lymphocytes, and especially CD8⁺ T-cells, are predominant in insulitis. The characterization of antigenic fragments--peptides--recognized by T-cells paves the way towards new assays for predicting T1D and its prevention using antigen- or peptide-specific immunotherapy, while avoiding side effects that may counteract the limited efficacy of immunosuppression and immunomodulation in preserving β-cells from autoimmune destruction in recent-onset T1D patients. The current need for new preclinical models for testing strategies of antigen-specific immune tolerance is also highlighted.
Collapse
|
13
|
Nascimento EJM, Mailliard RB, Khan AM, Sidney J, Sette A, Guzman N, Paulaitis M, de Melo AB, Cordeiro MT, Gil LVG, Lemonnier F, Rinaldo C, August JT, Marques ETA. Identification of conserved and HLA promiscuous DENV3 T-cell epitopes. PLoS Negl Trop Dis 2013; 7:e2497. [PMID: 24130917 PMCID: PMC3794980 DOI: 10.1371/journal.pntd.0002497] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design. Although there is an increased recognition of the role of T-cells in both dengue pathogenesis and protection, comprehensive analysis of T-cell activation during dengue infection is hampered by the small repertoire of known human dengue T-cell epitopes. Although dengue serotype 3 (DENV3) is responsible for numerous outbreaks worldwide, most of the known epitopes are from studies of dengue 2 serotype (DENV2). In this study, we identified novel DENV3 T-cell epitopes in HLA transgenic mice that were confirmed by HLA binding assays. A subset of these epitopes activated memory T-cells from subjects who were dengue IgG positive and primed naïve T-cells from dengue IgG negative individuals. Notably, some of HLA class II epitopes bearing highly conserved regions common to all four dengue serotypes could bind to multiple HLAs. We postulate that these highly conserved and HLA promiscuous T-helper epitopes can be important components of a dengue tetravalent vaccine.
Collapse
Affiliation(s)
- Eduardo J. M. Nascimento
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (EJMN); , (ETAM)
| | - Robbie B. Mailliard
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Asif M. Khan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Perdana University Graduate School of Medicine, Serdang, Selangor Darul Ehsan, Malaysia
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Nicole Guzman
- Department of Chemical & Biomolecular Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Michael Paulaitis
- Department of Chemical & Biomolecular Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Andréa Barbosa de Melo
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | - Marli T. Cordeiro
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | - Laura V. G. Gil
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | - Charles Rinaldo
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ernesto T. A. Marques
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
- * E-mail: (EJMN); , (ETAM)
| |
Collapse
|
14
|
Luce S, Briet C, Bécourt C, Lemonnier F, Boitard C. The targeting of β-cells by T lymphocytes in human type 1 diabetes: clinical perspectives. Diabetes Obes Metab 2013; 15 Suppl 3:89-97. [PMID: 24003925 DOI: 10.1111/dom.12159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/08/2013] [Indexed: 12/31/2022]
Abstract
This review focuses on genes that control β-cell targeting in autoimmune, type 1-dependent, diabetes (T1D) and on insulin as the major autoantigen recognized by T lymphocytes throughout the disease process. T1D associates with multiple gene variants. Beyond genes that predispose to general failure of immune tolerance to self, loci identified by the analysis of crosses between non-obese diabetic (NOD) and conventional mouse strains harbour genes that control β-cell targeting or the deviation of autoimmunity towards other tissues. We report here the role of genes encoding co-activation molecules involved in the activation of T lymphocytes, ICOS and ICOS ligand (B7RP1). NOD mice which are deficient in either of these two molecules are protected from diabetes, but instead develop a neuromuscular autoimmune disease. We also report the characterization in humans of T lymphocytes that are specific for major β-cell autoantigens, especially insulin. This opens the way towards new bioassays in the diagnosis of autoimmunity and towards autoantigen-specific immunotherapy in T1D. In order to develop a new preclinical model of T1D that would allow testing insulin epitopes to induce immune tolerance in vivo, we developed a mouse that is deficient in endogenous major histocompatibility complex class I and class II genes and deficient for the two murine insulin genes and that express human class I, class II and insulin genes.
Collapse
Affiliation(s)
- S Luce
- INSERM, UMR1016, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Boucherma R, Kridane-Miledi H, Bouziat R, Rasmussen M, Gatard T, Langa-Vives F, Lemercier B, Lim A, Bérard M, Benmohamed L, Buus S, Rooke R, Lemonnier FA. HLA-A*01:03, HLA-A*24:02, HLA-B*08:01, HLA-B*27:05, HLA-B*35:01, HLA-B*44:02, and HLA-C*07:01 monochain transgenic/H-2 class I null mice: novel versatile preclinical models of human T cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:583-93. [PMID: 23776170 DOI: 10.4049/jimmunol.1300483] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have generated a panel of transgenic mice expressing HLA-A*01:03, -A*24:02, -B*08:01, -B*27:05, -B*35:01, -B*44:02, or -C*07:01 as chimeric monochain molecules (i.e., appropriate HLA α1α2 H chain domains fused with a mouse α3 domain and covalently linked to human β2-microglobulin). Whereas surface expression of several transgenes was markedly reduced in recipient mice that coexpressed endogenous H-2 class I molecules, substantial surface expression of all human transgenes was observed in mice lacking H-2 class I molecules. In these HLA monochain transgenic/H-2 class I null mice, we observed a quantitative and qualitative restoration of the peripheral CD8(+) T cell repertoire, which exhibited a TCR diversity comparable with C57BL/6 WT mice. Potent epitope-specific, HLA-restricted, IFN-γ-producing CD8(+) T cell responses were generated against known reference T cell epitopes after either peptide or DNA immunization. HLA-wise, these new transgenic strains encompass a large proportion of individuals from all major human races and ethnicities. In combination with the previously created HLA-A*02:01 and -B*07:02 transgenic mice, the novel HLA transgenic mice described in this report should be a versatile preclinical animal model that will speed up the identification and optimization of HLA-restricted CD8(+) T cell epitopes of potential interest in various autoimmune human diseases and in preclinical evaluation of T cell-based vaccines.
Collapse
Affiliation(s)
- Rachid Boucherma
- INSERM U1016, Institut Cochin, Equipe Immunologie du Diabète, Hôpital Saint-Vincent-de-Paul, 75674 Paris, Cedex 14, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med 2013; 2:a007781. [PMID: 22474615 DOI: 10.1101/cshperspect.a007781] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes is characterized by recognition of one or more β-cell proteins by the immune system. The list of target antigens in this disease is ever increasing and it is conceivable that additional islet autoantigens, possibly including pivotal β-cell targets, remain to be discovered. Many knowledge gaps remain with respect to the disorder's pathogenesis, including the cause of loss of tolerance to islet autoantigens and an explanation as to why targeting of proteins with a distribution of expression beyond β cells may result in selective β-cell destruction and type 1 diabetes. Yet, our knowledge of β-cell autoantigens has already led to translation into tissue-specific immune intervention strategies that are currently being assessed in clinical trials for their efficacy to halt or delay disease progression to type 1 diabetes, as well as to reverse type 1 diabetes. Here we will discuss recently gained insights into the identity, biology, structure, and presentation of islet antigens in relation to disease heterogeneity and β-cell destruction.
Collapse
Affiliation(s)
- Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | | |
Collapse
|
17
|
Barcala Tabarrozzi AE, Castro CN, Dewey RA, Sogayar MC, Labriola L, Perone MJ. Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus. Clin Exp Immunol 2013; 171:135-46. [PMID: 23286940 DOI: 10.1111/cei.12019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) results from death of insulin-secreting β cells mediated by self-immune cells, and the consequent inability of the body to maintain insulin levels for appropriate glucose homeostasis. Probably initiated by environmental factors, this disease takes place in genetically predisposed individuals. Given the autoimmune nature of T1DM, therapeutics targeting immune cells involved in disease progress have been explored over the last decade. Several high-cost trials have been attempted to prevent and/or reverse T1DM. Although a definitive solution to cure T1DM is not yet available, a large amount of information about its nature and development has contributed greatly to both the improvement of patient's health care and design of new treatments. In this study, we discuss the role of different types of immune cells involved in T1DM pathogenesis and their therapeutic potential as targets and/or modified tools to treat patients. Recently, encouraging results and new approaches to sustain remnant β cell mass and to increase β cell proliferation by different cell-based means have emerged. Results coming from ongoing clinical trials employing cell therapy designed to arrest T1DM will probably proliferate in the next few years. Strategies under consideration include infusion of several types of stem cells, dendritic cells and regulatory T cells, either manipulated genetically ex vivo or non-manipulated. Their use in combination approaches is another therapeutic alternative. Cell-based interventions, without undesirable side effects, directed to block the uncontrollable autoimmune response may become a clinical reality in the next few years for the treatment of patients with T1DM.
Collapse
Affiliation(s)
- A E Barcala Tabarrozzi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires
| | | | | | | | | | | |
Collapse
|
18
|
La Torre D. Immunobiology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:194-218. [PMID: 23393680 DOI: 10.1007/978-1-4614-5441-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes is a chronic disease characterized by severe insulin deficiency and hyperglycemia, due to autoimmune destruction of pancreatic islets of Langerhans. A susceptible genetic background is necessary, but not sufficient, for the development of the disease. Epidemiological and clinical observations underscore the importance of environmental factors as triggers of type 1 diabetes, currently under investigation. Islet-specific autoantibodies precede clinical onset by months to years and are established tools for risk prediction, yet minor players in the pathogenesis of the disease. Many efforts have been made to elucidate disease-relevant defects in the key immune effectors of islet destruction, from the early failure of specific tolerance to the vicious circle of destructive insulitis. However, the events triggering islet autoimmunity as well as the transition to overt diabetes are still largely unknown, making prevention and treatment strategies still a challenge.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, Clinical Research Center (CRC), Department of Clinical Sciences, Malmö, Sweden.
| |
Collapse
|
19
|
Abstract
Type 1 diabetes (T1D) represents 10 to 15% of all forms of diabetes. Its incidence shows a consistent rise in all countries under survey. Evidence for autoimmunity in human T1D relies on the detection of insulitis, of islet cell antibodies, of activated β-cell-specific T lymphocytes and on the association of T1D with a restricted set of class II major histocompatibility complex (MHC) alleles. However, mechanisms that initiate the failure of immune tolerance to β-cell autoantigens remain elusive in common forms of T1D. T1D commonly develop as a multifactorial disease in which environmental factors concur with a highly multigenic background. The disease is driven by the activation of T-lymphocytes against pancreatic β-cells. Several years elapse between initial triggering of the autoimmune response to β cells, as evidenced by the appearance or islet cell autoantibodies, and the onset of clinical diabetes, defining a prediabetes stage. Active mechanisms hold back autoreactive effector T-cells in prediabetes, in particular a subset of CD4+ T-cells (T(reg)) and other regulatory T-cells, such as invariant NKT cells. There is evidence in experimental models that systemic or local infections can trigger autoimmune reactions to β-cells. However, epidemiological observations that have accumulated over years have failed to identify undisputable environmental factors that trigger T1D. Moreover, multiple environmental factors may intervene in the disease evolution and protective as weel as triggering environmental factors may be involved. Available models also indicate that local signals within the islets are required for full-blown diabetes to develop. Many autoantigens that are expressed by β-cells but also by the other endocrine islet cells and by neurons are recognized by lymphocytes along the development of T1D. The immune image of β-cells is that of native components of the β-cell membrane, as seen by B-lymphocytes, and of fragments of intracellular β-cell proteins in the form of peptides loaded onto class I MHC molecules on the β-cell surface and class I and class II molecules onto professional antigen presenting cells. Given the key role of T lymphocytes in T1D, the cartography of autoantigen-derived peptides that are presented to class I-restricted CD8(+) T-cells and class II-restricted CD4(+) T-cells is of outmost importance and is a necessary step in the development of diagnostic T-cell assays and of immunotherapy of T1D.
Collapse
|
20
|
Boitard C, Timsit J. Towards an aetiological treatment of type 1 diabetes? New tools, new strategies. DIABETES & METABOLISM 2012; 38:375-7. [PMID: 23122483 DOI: 10.1016/j.diabet.2012.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/25/2022]
|
21
|
Arvan P, Pietropaolo M, Ostrov D, Rhodes CJ. Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a007658. [PMID: 22908193 DOI: 10.1101/cshperspect.a007658] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Islet autoantigens associated with autoimmune type 1 diabetes (T1D) are expressed in pancreatic β cells, although many show wider patterns of expression in the neuroendocrine system. Within pancreatic β cells, every T1D autoantigen is in one way or another linked to the secretory pathway. Together, these autoantigens play diverse roles in glucose regulation, metabolism of biogenic amines, as well as the regulation, formation, and packaging of secretory granules. The mechanism(s) by which immune tolerance to islet-cell antigens is lost during the development of T1D, remains unclear. Antigenic peptide creation for immune presentation may potentially link to the secretory biology of β cells in a number of ways, including proteasomal digestion of misfolded products, exocytosis and endocytosis of cell-surface products, or antigen release from dying β cells during normal or pathological turnover. In this context, we evaluate the biochemical nature and immunogenicity of the major autoantigens in T1D including (pro)insulin, GAD65, ZnT8, IA2, and ICA69.
Collapse
Affiliation(s)
- Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | | | | | | |
Collapse
|
22
|
Kronenberg D, Knight RR, Estorninho M, Ellis RJ, Kester MG, de Ru A, Eichmann M, Huang GC, Powrie J, Dayan CM, Skowera A, van Veelen PA, Peakman M. Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill β-cells. Diabetes 2012; 61:1752-9. [PMID: 22522618 PMCID: PMC3379678 DOI: 10.2337/db11-1520] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/03/2012] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes results from T cell-mediated β-cell destruction. The HLA-A*24 class I gene confers significant risk of disease and early onset. We tested the hypothesis that HLA-A24 molecules on islet cells present preproinsulin (PPI) peptide epitopes to CD8 cytotoxic T cells (CTLs). Surrogate β-cell lines secreting proinsulin and expressing HLA-A24 were generated and their peptide ligandome examined by mass spectrometry to discover naturally processed and HLA-A24-presented PPI epitopes. A novel PPI epitope was identified and used to generate HLA-A24 tetramers and examine the frequency of PPI-specific T cells in new-onset HLA-A*24(+) patients and control subjects. We identified a novel naturally processed and HLA-A24-presented PPI signal peptide epitope (PPI(3-11); LWMRLLPLL). HLA-A24 tetramer analysis reveals a significant expansion of PPI(3-11)-specific CD8 T cells in the blood of HLA-A*24(+) recent-onset patients compared with HLA-matched control subjects. Moreover, a patient-derived PPI(3-11)-specific CD8 T-cell clone shows a proinflammatory phenotype and kills surrogate β-cells and human HLA-A*24(+) islet cells in vitro. These results indicate that the type 1 diabetes susceptibility molecule HLA-A24 presents a naturally processed PPI signal peptide epitope. PPI-specific, HLA-A24-restricted CD8 T cells are expanded in patients with recent-onset disease. Human islet cells process and present PPI(3-11), rendering themselves targets for CTL-mediated killing.
Collapse
Affiliation(s)
- Deborah Kronenberg
- National Institute for Health Research Comprehensive Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust and King’s College London, London, U.K
- Department of Immunobiology, King’s College London, London, U.K
| | - Robin R. Knight
- Department of Immunobiology, King’s College London, London, U.K
| | | | | | - Michel G. Kester
- Department of Hematology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Arnoud de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands
| | - Martin Eichmann
- Department of Immunobiology, King’s College London, London, U.K
| | - Guo C. Huang
- Division of Diabetes and Nutritional Science, King’s College London, London, U.K
| | - Jake Powrie
- National Institute for Health Research Comprehensive Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust and King’s College London, London, U.K
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ Hospital National Health Service Foundation Trust, London, U.K
| | - Colin M. Dayan
- Department of Medicine, Cardiff University, Cardiff, Wales, U.K
| | - Ania Skowera
- National Institute for Health Research Comprehensive Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust and King’s College London, London, U.K
- Department of Immunobiology, King’s College London, London, U.K
| | - Peter A. van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mark Peakman
- National Institute for Health Research Comprehensive Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust and King’s College London, London, U.K
- Department of Immunobiology, King’s College London, London, U.K
| |
Collapse
|
23
|
Coppieters KT, von Herrath MG. Viruses and cytotoxic T lymphocytes in type 1 diabetes. Clin Rev Allergy Immunol 2012; 41:169-78. [PMID: 21181304 DOI: 10.1007/s12016-010-8220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histopathological studies on pancreas tissues from individuals with recent-onset type 1 diabetes (T1D) consistently find that CD8 T cells substantially contribute to the formation of islet lesions. CD8 T cells reactive against islet-associated antigens can also be found in blood samples from T1D patients. Mechanistic studies on the pathogenic role of this T cell subset have mostly focused on two animal models, i.e., the non-obese diabetic mouse and the virally induced rat insulin promoter-lymphocytic choriomeningitis virus model. Data were obtained in support of a role for viral infection in expanding a population of diabetogenic cytotoxic T lymphocytes. In view of the theorized association of viral infection with initiation of islet autoimmunity and progression to clinically overt disease, CD8 T cells thus represent an attractive target for immunotherapy. We will review here arguments in favor of a pivotal role for CD8 T cells in driving T1D development and speculate on etiologic agents that may provoke their aberrant activation.
Collapse
Affiliation(s)
- Ken T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, CA, 92037, USA
| | | |
Collapse
|
24
|
Luce S, Lemonnier F, Briand JP, Coste J, Lahlou N, Muller S, Larger E, Rocha B, Mallone R, Boitard C. Single insulin-specific CD8+ T cells show characteristic gene expression profiles in human type 1 diabetes. Diabetes 2011; 60:3289-99. [PMID: 21998398 PMCID: PMC3219929 DOI: 10.2337/db11-0270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 09/06/2011] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Both the early steps and the high recurrence of autoimmunity once the disease is established are unexplained in human type 1 diabetes. Because CD8(+) T cells are central and insulin is a key autoantigen in the disease process, our objective was to characterize HLA class I-restricted autoreactive CD8(+) T cells specific for preproinsulin (PPI) in recent-onset and long-standing type 1 diabetic patients and healthy control subjects. RESEARCH DESIGN AND METHODS We used HLA-A*02:01 tetramers complexed to PPI peptides to enumerate circulating PPI-specific CD8(+) T cells in patients and characterize them using membrane markers and single-cell PCR. RESULTS Most autoreactive CD8(+) T cells detected in recent-onset type 1 diabetic patients are specific for leader sequence peptides, notably PPI(6-14), whereas CD8(+) T cells in long-standing patients recognize the B-chain peptide PPI(33-42) (B(9-18)). Both CD8(+) T-cell specificities are predominantly naïve, central, and effector memory cells, and their gene expression profile differs from cytomegalovirus-specific CD8(+) T cells. PPI(6-14)-specific CD8(+) T cells detected in one healthy control displayed Il-10 mRNA expression, which was not observed in diabetic patients. CONCLUSIONS PPI-specific CD8(+) T cells in type 1 diabetic patients include central memory and target different epitopes in new-onset versus long-standing disease. Our data support the hypothesis that insulin therapy may contribute to the expansion of autoreactive CD8(+) T cells in the long term.
Collapse
Affiliation(s)
- Sandrine Luce
- INSERM, U986, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France
| | - François Lemonnier
- INSERM, U986, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France
| | - Jean-Paul Briand
- CNRS-UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Paris, France
| | - Joel Coste
- Unité de Biostatistique et Épidémiologie, Hôpital Cochin, Paris, France
| | - Najiba Lahlou
- CNRS-UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Paris, France
- Laboratoire de Biologie Hormonale, Hôpital Cochin, Paris, France
| | - Sylviane Muller
- CNRS-UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Paris, France
| | - Etienne Larger
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France
- Service de Diabétologie, Hôpital Cochin et Hôtel Dieu, Paris, France
| | - Benedita Rocha
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France
| | - Roberto Mallone
- INSERM, U986, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France
| | - Christian Boitard
- INSERM, U986, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France
- Service de Diabétologie, Hôpital Cochin et Hôtel Dieu, Paris, France
| |
Collapse
|
25
|
Culina S, Mallone R. Pathogenic and regulatory T cells in type 1 diabetes: losing self-control, restoring it, and how to take the temperature. Curr Diab Rep 2011; 11:426-33. [PMID: 21732231 DOI: 10.1007/s11892-011-0209-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The central role of T cells in type 1 diabetes pathogenesis is well established, but these cells continue to pose numerous challenges in understanding their dynamics and in following their modifications. Important progress has been recently made in pinpointing some novel antigens targeted by pathogenic T cells and the epitope sequences recognized. Studies on the interplay between effector T cells, their regulatory counterparts, and cells of the innate immune system have unraveled novel pathways and may inspire new therapeutic approaches. At the same time, the appreciation of the plasticity of regulatory T cells has raised important caveats on their use for cell-based therapies. Continuous development of T-cell assays exploring both pathogenic and regulatory players will be critical to "take the temperature" of undergoing disease progression and reversal.
Collapse
Affiliation(s)
- Slobodan Culina
- INSERM U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 75674, Paris, Cedex 14, France.
| | | |
Collapse
|
26
|
Brezar V, Carel JC, Boitard C, Mallone R. Beyond the hormone: insulin as an autoimmune target in type 1 diabetes. Endocr Rev 2011; 32:623-69. [PMID: 21700723 DOI: 10.1210/er.2011-0010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin is not only the hormone produced by pancreatic β-cells but also a key target antigen of the autoimmune islet destruction leading to type 1 diabetes. Despite cultural biases between the fields of endocrinology and immunology, these two facets should not be regarded separately, but rather harmonized in a unifying picture of diabetes pathogenesis. There is increasing evidence suggesting that metabolic factors (β-cell dysfunction, insulin resistance) and immunological components (inflammation and β-cell-directed adaptive immune responses) may synergize toward islet destruction, with insulin standing at the crossroad of these pathways. This concept further calls for a revision of the classical dichotomy between type 1 and type 2 diabetes because metabolic and immune mechanisms may both contribute to different extents to the development of different forms of diabetes. After providing a background on the mechanisms of β-cell autoimmunity, we will explain the role of insulin and its precursors as target antigens expressed not only by β-cells but also in the thymus. Available knowledge on the autoimmune antibody and T-cell responses against insulin will be summarized. A unifying scheme will be proposed to show how different aspects of insulin biology may lead to β-cell destruction and may be therapeutically exploited. We will argue about possible reasons why insulin remains the mainstay of metabolic control in type 1 diabetes but has so far failed to prevent or halt β-cell autoimmunity as an immune modulatory reagent.
Collapse
Affiliation(s)
- Vedran Brezar
- Institut National de la Santé et de la Recherche Médicale, Unité 986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, and Paris Descartes University, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | | | |
Collapse
|
27
|
T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. Clin Dev Immunol 2011; 2011:513210. [PMID: 21785617 PMCID: PMC3140193 DOI: 10.1155/2011/513210] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/18/2011] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease driven by the activation of lymphocytes against pancreatic β-cells. Among β-cell autoantigens, preproinsulin has been ascribed a key role in the T1D process. The successive steps that control the activation of autoreactive lymphocytes have been extensively studied in animal models of T1D, but remains ill defined in man. In man, T lymphocytes, especially CD8+ T cells, are predominant within insulitis. Developing T-cell assays in diabetes autoimmunity is, thus, a major challenge. It is expected to help defining autoantigens and epitopes that drive the disease process, to pinpoint key functional features of epitope-specific T lymphocytes along the natural history of diabetes and to pave the way towards therapeutic strategies to induce immune tolerance to β-cells. New T-cell technologies will allow defining autoreactive T-cell differentiation programs and characterizing autoimmune responses in comparison with physiologically appropriate immune responses. This may prove instrumental in the discovery of immune correlates of efficacy in clinical trials.
Collapse
|
28
|
Unger WW, Velthuis J, Abreu JRF, Laban S, Quinten E, Kester MGD, Reker-Hadrup S, Bakker AH, Duinkerken G, Mulder A, Franken KLMC, Hilbrands R, Keymeulen B, Peakman M, Ossendorp F, Drijfhout JW, Schumacher TN, Roep BO. Discovery of low-affinity preproinsulin epitopes and detection of autoreactive CD8 T-cells using combinatorial MHC multimers. J Autoimmun 2011; 37:151-9. [PMID: 21636247 DOI: 10.1016/j.jaut.2011.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 11/27/2022]
Abstract
Autoreactive cytotoxic CD8 T-cells (CTLs) play a key pathogenic role in the destruction of insulin-producing beta-cells resulting in type 1 diabetes. However, knowledge regarding their targets is limited, restricting the ability to monitor the course of the disease and immune interventions. In a multi-step discovery process to identify novel CTL epitopes in human preproinsulin (PPI), PPI was digested with purified human proteasomes, and resulting COOH-fragments aligned with algorithm-predicted HLA-binding peptides to yield nine potential HLA-A1, -A2, -A3 or -B7-restricted candidates. An UV-exchange method allowed the generation of a repertoire of multimers including low-affinity HLA-binding peptides. These were labeled with quantum dot-fluorochromes and encoded in a combinatorial fashion, allowing parallel and sensitive detection of specific, low-avidity T-cells. Significantly increased frequencies of T-cells against four novel PPI epitopes (PPI(4-13)/B7, PPI(29-38)/A2, PPI(76-84)/A3 and PPI(79-88)/A3) were detected in stored blood of patients with recent onset diabetes but not in controls. Changes in frequencies of circulating CD8 T-cells against these novel epitopes were detected in blood of islet graft recipients at different time points after transplantation, which correlated with clinical outcome. In conclusion, our novel strategy involving a sensitive multiplex detection technology and requiring minimal volumes of stored blood represents a major improvement in the direct ex-vivo characterization and enumeration of immune cells in the pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Wendy W Unger
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Culina S, Boitard C, Mallone R. Antigen-based immune therapeutics for type 1 diabetes: magic bullets or ordinary blanks? Clin Dev Immunol 2011; 2011:286248. [PMID: 21647401 PMCID: PMC3102326 DOI: 10.1155/2011/286248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/03/2022]
Abstract
The ideal drug of modern medicine is the one that achieves its therapeutic target with minimal adverse effects. Immune therapy of Type 1 diabetes (T1D) is no exception, and knowledge of the antigens targeted by pathogenic T cells offers a unique opportunity towards this goal. Different antigen formulations are being considered, such as proteins or peptides, either in their native form or modified ad hoc, DNA plasmids, and cell-based agents. Translation from mouse to human should take into account important differences, particularly in the time scale of autoimmune progression, and intervention. Critical parameters such as administration route, dosing and interval remain largely empirical and need to be further dissected. T1D staging through immune surrogate markers before and after treatment will be key in understanding therapeutic actions and to finally turn ordinary blanks into magic bullets.
Collapse
Affiliation(s)
- Slobodan Culina
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
- Université Paris-Descartes, 75006 Paris, France
| | - Christian Boitard
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
- Université Paris-Descartes, 75006 Paris, France
- Assistance Publique Hôpitaux de Paris, Hôtel Dieu, Service de Diabétologie, 75181 Paris, France
| | - Roberto Mallone
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
- Université Paris-Descartes, 75006 Paris, France
- Assistance Publique Hôpitaux de Paris, Hôtel Dieu, Service de Diabétologie, 75181 Paris, France
| |
Collapse
|
30
|
Liu J, Zhang S, Tan S, Zheng B, Gao GF. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Exp Biol Med (Maywood) 2011; 236:253-67. [PMID: 21330360 DOI: 10.1258/ebm.2010.010278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Immunogenic T-cell epitopes have a central role in the cellular immunity against pathogens and tumors. However, in the early stage of cellular immunity studies, it was complicated and time-consuming to identify and characterize T-cell epitopes. Currently, the epitope screening is experiencing renewed enthusiasm due to advances in novel techniques and theories. Moreover, the application of T-cell epitope-based diagnoses for tuberculosis and new data on epitope-based vaccine development have also revived the field. There is a growing knowledge on the emphasis of epitope-stimulated T-cell immune responses in the elimination of pathogens and tumors. In this review, we outline the significance of the identification and characterization of T-cell epitopes. We also summarize the methods and strategies for epitope definition and, more importantly, address the relevance of cytotoxic T-lymphocyte epitopes to clinical diagnoses, therapy and vaccine development.
Collapse
Affiliation(s)
- Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
31
|
Codina-Busqueta E, Scholz E, Muñoz-Torres PM, Roura-Mir C, Costa M, Xufré C, Planas R, Vives-Pi M, Jaraquemada D, Martí M. TCR bias of in vivo expanded T cells in pancreatic islets and spleen at the onset in human type 1 diabetes. THE JOURNAL OF IMMUNOLOGY 2011; 186:3787-97. [PMID: 21325620 DOI: 10.4049/jimmunol.1002423] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autoreactive T cells, responsible for the destruction of pancreatic β cells in type 1 diabetes, are known to have a skewed TCR repertoire in the NOD mouse. To define the autoreactive T cell repertoire in human diabetes, we searched for intraislet monoclonal expansions from a recent onset in human pancreas to then trace them down to the patient's peripheral blood and spleen. Islet infiltration was diverse, but five monoclonal TCR β-chain variable expansions were detected for Vβ1, Vβ7, Vβ11, Vβ17, and Vβ22 families. To identify any sequence bias in the TCRs from intrapancreatic T cells, we analyzed 139 different CDR3 sequences. We observed amino acid preferences in the NDN region that suggested a skewed TCR repertoire within infiltrating T cells. The monoclonal expanded TCR sequences contained amino acid combinations that fit the observed bias. Using these CDR3 sequences as a marker, we traced some of these expansions in the spleen. There, we identified a Vβ22 monoclonal expansion with identical CDR3 sequence to that found in the islets within a polyclonal TCR β-chain variable repertoire. The same Vβ22 TCR was detected in the patient's PBMCs, making a cross talk between the pancreas and spleen that was reflected in peripheral blood evident. No other pancreatic monoclonal expansions were found in peripheral blood or the spleen, suggesting that the Vβ22 clone may have expanded or accumulated in situ by an autoantigen present in both the spleen and pancreas. Thus, the patient's spleen might be contributing to disease perpetuation by expanding or retaining some autoreactive T cells.
Collapse
Affiliation(s)
- Eva Codina-Busqueta
- Laboratory of Cellular Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Moser A, Hsu HT, van Endert P. Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000 BIOLOGY REPORTS 2010; 2:75. [PMID: 21173836 PMCID: PMC2981181 DOI: 10.3410/b2-75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recognition of pancreatic beta cell antigens by autoreactive T lymphocytes plays a central role in the pathogenesis of insulin-dependent type 1 diabetes. Recent results suggest that non-conventional antigenic epitope processing and presentation may contribute to triggering and maintaining autoreactive responses. Moreover, promising results raise hope that autoantigens may become safe and specific therapeutics for type 1 diabetes in the future.
Collapse
Affiliation(s)
- Anna Moser
- Faculté de Médecine René Descartes, Université Paris Descartes161 rue de Sèvres, 75015 ParisFrance
- Institut National de la Santé et de la Recherche MédicaleUnité 1013, 161 rue de Sèvres, 75015 ParisFrance
| | - Hsiang-Ting Hsu
- Faculté de Médecine René Descartes, Université Paris Descartes161 rue de Sèvres, 75015 ParisFrance
- Institut National de la Santé et de la Recherche MédicaleUnité 1013, 161 rue de Sèvres, 75015 ParisFrance
| | - Peter van Endert
- Faculté de Médecine René Descartes, Université Paris Descartes161 rue de Sèvres, 75015 ParisFrance
- Institut National de la Santé et de la Recherche MédicaleUnité 1013, 161 rue de Sèvres, 75015 ParisFrance
| |
Collapse
|
33
|
La Torre D, Lernmark A. Immunology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:537-83. [PMID: 20217514 DOI: 10.1007/978-90-481-3271-3_24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreatic islet beta-cells are the target for an autoimmune process that eventually results in an inability to control blood glucose due to the lack of insulin. The different steps that eventually lead to the complete loss of the beta-cells are reviewed to include the very first step of a triggering event that initiates the development of beta-cell autoimmunity to the last step of appearance of islet-cell autoantibodies, which may mark that insulitis is about to form. The observations that the initial beta-cell destruction by virus or other environmental factors triggers islet autoimmunity not in the islets but in the draining pancreatic lymph nodes are reviewed along with possible basic mechanisms of loss of tolerance to islet autoantigens. Once islet autoimmunity is established the question is how beta-cells are progressively killed by autoreactive lymphocytes which eventually results in chronic insulitis. Many of these series of events have been dissected in spontaneously diabetic mice or rats, but controlled clinical trials have shown that rodent observations are not always translated into mechanisms in humans. Attempts are therefore needed to clarify the step 1 triggering mechanisms and the step to chronic autoimmune insulitis to develop evidence-based treatment approaches to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, CRC, Department of Clinical Sciences, University Hospital MAS, SE-205 02, Malmö, Sweden.
| | | |
Collapse
|
34
|
Jarchum I, DiLorenzo TP. Ins2 deficiency augments spontaneous HLA-A*0201-restricted T cell responses to insulin. THE JOURNAL OF IMMUNOLOGY 2009; 184:658-65. [PMID: 19966211 DOI: 10.4049/jimmunol.0903414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type 1 diabetes results from the autoimmune destruction of insulin-producing beta cells by T cells specific for beta cell Ags, including insulin. In humans, the non-MHC locus conferring the strongest disease susceptibility is the insulin gene, and alleles yielding lower thymic insulin expression are predisposing. We sought to incorporate this characteristic into an HLA-transgenic model of the disease and to determine the influence of reduced thymic insulin expression on CD8+ T cell responses to preproinsulin. We examined NOD.Ins2(-/-) mice, which do not express insulin in the thymus and show accelerated disease, to determine whether they exhibit quantitative or qualitative differences in CD8+ T cell responses to preproinsulin. We also generated NOD.Ins2(-/-) mice expressing type 1 diabetes-associated HLA-A*0201 (designated NOD.beta2m(-/-).HHD.Ins2(-/-)) in an effort to obtain an improved humanized disease model. We found that CD8+ T cell reactivity to certain insulin peptides was more readily detected in NOD.Ins2(-/-) mice than in NOD mice. Furthermore, the proportion of insulin-reactive CD8+ T cells infiltrating the islets of NOD.Ins2(-/-) mice was increased. NOD.beta2m(-/-).HHD.Ins2(-/-) mice exhibited rapid onset of disease and had an increased proportion of HLA-A*0201-restricted insulin-reactive T cells, including those targeting the clinically relevant epitope Ins B10-18. Our results suggest that insulin alleles that predispose to type 1 diabetes in humans do so, at least in part, by facilitating CD8+ T cell responses to the protein. We propose the NOD.beta2m(-/-).HHD.Ins2(-/-) strain as an improved humanized disease model, in particular for studies seeking to develop therapeutic strategies targeting insulin-specific T cells.
Collapse
Affiliation(s)
- Irene Jarchum
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|