1
|
Senese R, Petito G, Silvestri E, Ventriglia M, Mosca N, Potenza N, Russo A, Falvo S, Manfrevola F, Cobellis G, Chioccarelli T, Porreca V, Mele VG, Chianese R, de Lange P, Ricci G, Cioffi F, Lanni A. The impact of cannabinoid receptor 1 absence on mouse liver mitochondria homeostasis: insight into mitochondrial unfolded protein response. Front Cell Dev Biol 2024; 12:1464773. [PMID: 39512900 PMCID: PMC11541708 DOI: 10.3389/fcell.2024.1464773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The contribution of Cannabinoid type 1 receptor (CB1) in mitochondrial energy transduction mechanisms and mitochondrial activities awaits deeper investigations. Our study aims to assess the impact of CB1 absence on the mitochondrial compartment in the liver, focusing on both functional aspects and remodeling processes. Methods We used CB1-/- and CB1+/+ male mice. Cytochrome C Oxidase activity was determined polarographically. The expression and the activities of separated mitochondrial complexes and supercomplexes were performed by using Blue-Native Page, Western blotting and histochemical staining for in-gel activity. Key players of Mitochondrial Quality Control processes were measured using RT-qPCR and Western blotting. Liver fine sub-cellular ultrastructural features were analyzed by TEM analysis. Results and discussion In the absence of CB1, several changes in the liver occur, including increased oxidative capacity, reduced complex I activity, enhanced complex IV activity, general upregulation of respiratory supercomplexes, as well as higher levels of oxidative stress. The mitochondria and cellular metabolism may be affected by these changes, increasing the risk of ROS-related damage. CB1-/- mice show upregulation of mitochondrial fusion, fission and biogenesis processes which suggests a dynamic response to the absence of CB1. Furthermore, oxidative stress disturbs mitochondrial proteostasis, initiating the mitochondrial unfolded protein response (UPRmt). We noted heightened levels of pivotal enzymes responsible for maintaining mitochondrial integrity, along with heightened expression of molecular chaperones and transcription factors associated with cellular stress reactions. Additionally, our discoveries demonstrate a synchronized reaction to cellular stress, involving both UPRmt and UPRER pathways.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Maria Ventriglia
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicola Mosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Aniello Russo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Sara Falvo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pieter de Lange
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| |
Collapse
|
2
|
Machado JPD, de Almeida V, Zuardi AW, Hallak JEC, Crippa JA, Vieira AS. Cannabidiol modulates hippocampal genes involved in mitochondrial function, ribosome biogenesis, synapse organization, and chromatin modifications. Acta Neuropsychiatr 2024; 36:330-336. [PMID: 38528655 DOI: 10.1017/neu.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main cannabinoids present in Cannabis sativa female flowers. Previous investigation has already provided insights into the CBD molecular mechanism; however, there is no transcriptome data for CBD effects on hippocampal subfields. Here, we investigate transcriptomic changes in dorsal and ventral CA1 of adult mice hippocampus after 100 mg/kg of CBD administration (i.p.) for one or seven consecutive days. METHODS C57BL/6JUnib mice were treated with either vehicle or CBD for 1 or 7 days. The collected brains were sectioned, and the hippocampal sub-regions were laser microdissected for RNA-Seq analysis. RESULTS The transcriptome analysis following 7 days of CBD administration indicates the differential expression of 1559 genes in dCA1 and 2924 genes in vCA1. Furthermore, GO/KEGG analysis identified 88 significantly enriched biological process and 26 significantly enriched pathways for dCBD7, whereas vCBD7 revealed 128 enriched BPs and 24 pathways. CONCLUSION This dataset indicates a widespread decrease of electron transport chain and ribosome biogenesis transcripts in CA1, while chromatin modifications and synapse organization transcripts were increased following CBD administration for 7 days.
Collapse
Affiliation(s)
- João P D Machado
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics,, Dept Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinsas, São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André S Vieira
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Dalle S, Schouten M, Deboutte J, de Lange E, Ramaekers M, Koppo K. The molecular signature of the peripheral cannabinoid receptor 1 antagonist AM6545 in adipose, liver and muscle tissue. Toxicol Appl Pharmacol 2024; 491:117081. [PMID: 39216835 DOI: 10.1016/j.taap.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The endocannabinoid system plays an important role in the regulation of metabolism, growth and regeneration of peripheral tissues, including liver, adipose and muscle tissue. Studies in cells, rodents and humans showed that cannabinoid receptor 1 (CB1) antagonist treatment is an effective strategy to improve features of metabolic health such as substrate metabolism, at least in models of metabolic dysregulation. However, acute signaling events that might induce these metabolic adaptations are not understood. It is not clear whether, and to which extent, a single treatment with a CB1 antagonist induces acute effects in peripheral, metabolic tissues. Therefore, the present study compared the phosphorylation status of signaling pathways and metabolic markers in liver, adipose and muscle tissue of mice treated with the peripherally restricted CB1 antagonist AM6545 and vehicle-treated mice. Protein kinase A phosphorylation was downregulated in white and brown adipose tissue, whereas the mitogen-activated protein kinase, phospho-extracellular signal-regulated kinase, was higher in liver, white adipose and muscle tissue of AM6545-treated mice. Additionally, Akt-mammalian target of rapamycin activation was higher in all tissues of AM6545-treated mice, whereas the phosphorylation status of metabolic markers remained unaffected. These data indicate that acute CB1 antagonism is effective to induce phosphorylation events of signaling cascades and metabolic markers in metabolic tissues of healthy, lean mice within a 90-min time window. The observed adaptations to AM6545 treatment do not fully align with earlier in vitro and in vivo findings, which could be ascribed to differences in cell type, exposure intensity (dose and time), health status and species.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium.
| | - Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Jolien Deboutte
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Elsa de Lange
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium.
| |
Collapse
|
4
|
Sabinari I, Horakova O, Cajka T, Kleinova V, Wieckowski MR, Rossmeisl M. Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD. Physiol Res 2024; 73:S295-S320. [PMID: 39016154 PMCID: PMC11412347 DOI: 10.33549/physiolres.935396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- I Sabinari
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
5
|
Dalle S, Hiroux C, Koppo K. Endocannabinoid remodeling in murine cachexic muscle associates with catabolic and metabolic regulation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167179. [PMID: 38653357 DOI: 10.1016/j.bbadis.2024.167179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Muscle degeneration is a common feature in cancer cachexia that cannot be reversed. Recent advances show that the endocannabinoid system, and more particularly cannabinoid receptor 1 (CB1), regulates muscle processes, including metabolism, anabolism and regenerative capacity. However, it is unclear whether muscle endocannabinoids, their receptors and enzymes are responsive to cachexia and exercise. Therefore, this study investigated whether cachexia and exercise affected muscle endocannabinoid signaling, and whether CB1 expression correlated with markers of muscle anabolism, catabolism and metabolism. Male BALB/c mice were injected with PBS (CON) or C26 colon carcinoma cells (C26) and had access to wheel running (VWR) or remained sedentary (n = 5-6/group). Mice were sacrificed 18 days upon PBS/tumor cell injection. Cachexic mice exhibited a lower muscle CB1 expression (-43 %; p < 0.001) and lower levels of the endocannabinoid anandamide (AEA; -22 %; p = 0.044), as well as a lower expression of the AEA-synthesizing enzyme NAPE-PLD (-37 %; p < 0.001), whereas the expression of the AEA degrading enzyme FAAH was higher (+160 %; p < 0.001). The 2-AG-degrading enzyme MAGL, was lower in cachexic muscle (-34 %; p = 0.007), but 2-AG and its synthetizing enzyme DAGLβ were not different between CON and C26. VWR increased muscle CB1 (+25 %; p = 0.005) and increased MAGL expression (+30 %; p = 0.035). CB1 expression correlated with muscle mass, markers of metabolism (e.g. p-AMPK, PGC1α) and of catabolism (e.g. p-FOXO, LC3b, Atg5). Our findings depict an emerging role of the endocannabinoid system in muscle physiology. Future studies should elaborate how this translates into potential therapies to combat cancer cachexia, and other degenerative conditions.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Dept. of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Charlotte Hiroux
- Exercise Physiology Research Group, Dept. of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Dept. of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
6
|
Yu X, Jia Y, Dong Y. Research progress on the cannabinoid type-2 receptor and Parkinson's disease. Front Aging Neurosci 2024; 15:1298166. [PMID: 38264546 PMCID: PMC10804458 DOI: 10.3389/fnagi.2023.1298166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) is featured by movement impairments, including tremors, bradykinesia, muscle stiffness, and imbalance. PD is also associated with many non-motor symptoms, such as cognitive impairments, dementia, and mental disorders. Previous studies identify the associations between PD progression and factors such as α-synuclein aggregation, mitochondrial dysfunction, inflammation, and cell death. The cannabinoid type-2 receptor (CB2 receptor) is a transmembrane G-protein-coupled receptor and has been extensively studied as part of the endocannabinoid system. CB2 receptor is recently emerged as a promising target for anti-inflammatory treatment for neurodegenerative diseases. It is reported to modulate mitochondrial function, oxidative stress, iron transport, and neuroinflammation that contribute to neuronal cell death. Additionally, CB2 receptor possesses the potential to provide feedback on electrophysiological processes, offering new possibilities for PD treatment. This review summarized the mechanisms underlying PD pathogenesis. We also discussed the potential regulatory role played by CB2 receptor in PD.
Collapse
Affiliation(s)
- Xiaoqi Yu
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yi Jia
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Seymour-Jackson E, Laird BJ, Sayers J, Fallon M, Solheim TS, Skipworth R. Cannabinoids in the treatment of cancer anorexia and cachexia: Where have we been, where are we going? Asia Pac J Oncol Nurs 2023; 10:100292. [PMID: 38197037 PMCID: PMC10772158 DOI: 10.1016/j.apjon.2023.100292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/03/2023] [Indexed: 01/11/2024] Open
Abstract
Cachexia-anorexia cancer syndrome remains an unmet clinical need with a dearth of treatment and no standard of care. Acting through the endocannabinoid system, cannabinoids are one potential cancer cachexia treatment. Herein, the potential mechanisms for cannabinoids for cancer cachexia are discussed as are previous and ongoing clinical trials.
Collapse
Affiliation(s)
| | - Barry J.A. Laird
- St Columba's Hospice, Boswall Road, Edinburgh, UK
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Judith Sayers
- St Columba's Hospice, Boswall Road, Edinburgh, UK
- Clinical Surgery University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Marie Fallon
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tora S. Solheim
- Norwegian University of Science and Technology, Trondheim, Norway
- Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Richard Skipworth
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Kim JH, Hong M, Han JH, Ryu BR, Lim YS, Lim JD, Kim CH, Lee SU, Kwon TH. In Vitro and In Vivo Anti-Inflammatory Effects of Cannabidiol Isolated from Novel Hemp ( Cannabis sativa L.) Cultivar Pink Pepper. Molecules 2023; 28:6439. [PMID: 37764215 PMCID: PMC10535604 DOI: 10.3390/molecules28186439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Cannabis sativa L. contains more than 80 cannabinoids, among which cannabidiol (CBD) is the main neuroactive component. We aimed to investigate the anti-inflammatory efficacy of CBD in vitro and in vivo isolated from "Pink pepper", a novel hemp cultivar, by repeating the method of selecting and cultivating individuals with the highest CBD content. We investigated the effects of CBD on inflammatory markers elevated by lipopolysaccharide (LPS) treatment in RAW 264.7 mouse macrophage cells through Western blot and RT-PCR. In addition, we confirmed these effects through the ELISA of inflamed paw tissue of a λ-carrageenan-induced mouse edema model that received an oral administration of CBD. CBD inhibited the LPS-induced phosphorylation of NF-κB and MAPK in RAW 264.7 and exhibited anti-inflammatory effects by participating in these pathways. In our in vivo study, we confirmed that CBD also inhibited the inflammatory mediators of proteins extracted from edematous mouse paw tissue. These results show that CBD isolated from "Pink pepper" exhibits potent anti-inflammatory effects. These anti-inflammatory effects of CBD have pharmacological and physiological significance, highlighting the industrial value of this novel cultivar.
Collapse
Affiliation(s)
- Jong-Hui Kim
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Min Hong
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Joon-Hee Han
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Byeong Ryeol Ryu
- Department of Bio-Health Convergence, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea; (B.R.R.); (Y.S.L.); (J.D.L.)
| | - Young Seok Lim
- Department of Bio-Health Convergence, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea; (B.R.R.); (Y.S.L.); (J.D.L.)
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Dae Lim
- Department of Bio-Health Convergence, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea; (B.R.R.); (Y.S.L.); (J.D.L.)
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Republic of Korea
| | - Chang Hyeug Kim
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Soo-Ung Lee
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Tae-Hyung Kwon
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| |
Collapse
|
9
|
Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell Mol Life Sci 2023; 80:173. [PMID: 37266732 DOI: 10.1007/s00018-023-04814-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Mitochondria are present in the pre- and post-synaptic regions, providing the energy required for the activity of these very specialized neuronal compartments. Biogenesis of synaptic mitochondria takes place in the cell body, and these organelles are then transported to the synapse by motor proteins that carry their cargo along microtubule tracks. The transport of mitochondria along neurites is a highly regulated process, being modulated by the pattern of neuronal activity and by extracellular cues that interact with surface receptors. These signals act by controlling the distribution of mitochondria and by regulating their activity. Therefore, mitochondria activity at the synapse allows the integration of different signals and the organelles are important players in the response to synaptic stimulation. Herein we review the available evidence regarding the regulation of mitochondrial dynamics by neuronal activity and by neuromodulators, and how these changes in the activity of mitochondria affect synaptic communication.
Collapse
Affiliation(s)
- Filipe V Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- III - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniele Ciampi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
10
|
Ebrahimi N, Far NP, Fakhr SS, Faghihkhorasani F, Miraghel SA, Chaleshtori SR, Rezaei-Tazangi F, Beiranvand S, Baziyar P, Manavi MS, Zarrabi A, Nabavi N, Ren J, Aref AR. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. ENVIRONMENTAL RESEARCH 2023; 228:115914. [PMID: 37062475 DOI: 10.1016/j.envres.2023.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology,Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | | | - Seyed Ali Miraghel
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
11
|
van Doorslaer de Ten Ryen S, Dalle S, Terrasi R, Koppo K, Muccioli GG, Deldicque L. Regulation of the endocannabinoid system by endurance and resistance exercise in hypoxia in human skeletal muscle. J Appl Physiol (1985) 2023; 134:569-580. [PMID: 36701485 DOI: 10.1152/japplphysiol.00645.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exercise modulates the circulating levels of the endocannabinoids ligands N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) and possibly the levels of their receptors and downstream signaling in skeletal muscle. The aim of the present study was to investigate the regulation of the endocannabinoid system by several exercise paradigms in human skeletal muscle. A second aim was to compare endocannabinoid regulation in healthy and prediabetic people in response to an acute endurance exercise. Blood and muscle samples were taken before and after resistance and endurance exercise in normoxia and hypoxia to measure plasma endocannabinoid levels as well as muscle protein expression of CB1, CB2, and downstream signaling. We found that: 1) an acute resistance exercise session decreased plasma 2-AG and N-palmitoylethanolamine (PEA) levels in normoxia; 2) 4 wk resistance training decreased plasma AEA, PEA, and N-oleoylethanolamine (OEA) levels in both normoxia and hypoxia; 3) an acute moderate-intensity endurance exercise increased plasma OEA levels in the healthy and prediabetic groups in normoxia and hypoxia, whereas plasma 2-AG levels increased in the healthy group and AEA in the prediabetic group only in normoxia. The expression of the cannabinoid receptors was only marginally regulated by acute exercise, hypoxia, and prediabetes and downstream signaling did not follow the changes detected in the endocannabinoid ligands. Altogether, our results suggest that resistance and endurance exercise regulate the levels of the endocannabinoid ligands and CB1 expression in opposite ways. The physiological impact of the changes observed in the endocannabinoid ligands in human skeletal muscle after exercise needs further investigation.NEW & NOTEWORTHY We are the first to analyze both endocannabinoids ligands and receptors in response to endurance and resistance exercise. In addition, no study before has compared both exercise paradigms regarding endocannabinoid tone, which is of interest as endocannabinoids regulate energy metabolism, and these are different between endurance and resistance exercise. Furthermore, we investigated whether the endocannabinoid tone was differently regulated in response to acute endurance exercise in prediabetic people. Linking exercise, endocannabinoids and (pre)diabetic people has never been done before.
Collapse
Affiliation(s)
| | - Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Romano Terrasi
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Giulio G Muccioli
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Malheiro RF, Carmo H, Carvalho F, Silva JP. Cannabinoid-mediated targeting of mitochondria on the modulation of mitochondrial function and dynamics. Pharmacol Res 2023; 187:106603. [PMID: 36516885 DOI: 10.1016/j.phrs.2022.106603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria play a critical role in the regulation of several biological processes (e.g., programmed cell death, inflammation, neurotransmission, cell differentiation). In recent years, accumulating findings have evidenced that cannabinoids, a group of endogenous and exogenous (synthetic and plant-derived) psychoactive compounds that bind to cannabinoid receptors, may modulate mitochondrial function and dynamics. As such, mitochondria have gained increasing interest as central mediators in cannabinoids' pharmacological and toxicological signatures. Here, we review the mechanisms underlying the cannabinoids' modulation of mitochondrial activity and dynamics, as well as the potential implications of such mitochondrial processes' disruption on cell homeostasis and disease. Interestingly, cannabinoids may target different mitochondrial processes (e.g., regulation of intracellular calcium levels, bioenergetic metabolism, apoptosis, and mitochondrial dynamics, including mitochondrial fission and fusion, transport, mitophagy, and biogenesis), by modulating multiple and complex signaling pathways. Of note, the outcome may depend on the experimental models used, as well as the chemical structure, concentration, and exposure settings to the cannabinoid, originating equivocal data. Notably, this interaction seems to represent not only an important feature of cannabinoids' toxicological signatures, with potential implications for the onset of distinct pathological conditions (e.g., cancer, neurodegenerative diseases, metabolic syndromes), but also an opportunity to develop novel therapeutic strategies for such pathologies, which is also discussed in this review.
Collapse
Affiliation(s)
- Rui Filipe Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Pagano Zottola AC, Severi I, Cannich A, Ciofi P, Cota D, Marsicano G, Giordano A, Bellocchio L. Expression of Functional Cannabinoid Type-1 (CB 1) Receptor in Mitochondria of White Adipocytes. Cells 2022; 11:cells11162582. [PMID: 36010658 PMCID: PMC9406404 DOI: 10.3390/cells11162582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids' effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism.
Collapse
Affiliation(s)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Astrid Cannich
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Philippe Ciofi
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Daniela Cota
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luigi Bellocchio
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
- Correspondence: ; Tel.: +33-557-573-754
| |
Collapse
|
14
|
Morris G, Walder K, Berk M, Carvalho AF, Marx W, Bortolasci CC, Yung AR, Puri BK, Maes M. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110481. [PMID: 34826557 DOI: 10.1016/j.pnpbp.2021.110481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolf Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Alison R Yung
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Health Science, University of Manchester, UK.
| | - Basant K Puri
- University of Winchester, UK, and C.A.R., Cambridge, UK.
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
15
|
Abstract
The endocannabinoid system is found in most, if not all, mammalian organs and is involved in a variety of physiological functions, ranging from the control of synaptic plasticity in the brain to the modulation of smooth muscle motility in the gastrointestinal tract. This signaling complex consists of G protein-coupled cannabinoid receptors, endogenous ligands for those receptors (endocannabinoids) and enzymes/transporters responsible for the formation and deactivation of these ligands. There are two subtypes of cannabinoid receptors, CB1 and CB2, and two major endocannabinoids, arachidonoylethanolamide (anandamide) and 2-arachidonoyl-sn-glycerol (2-AG), which are produced upon demand through cleavage of distinct phospholipid precursors. All molecular components of the endocannabinoid system are represented in the adipose organ, where endocannabinoid signals are thought to regulate critical homeostatic processes, including adipogenesis, lipogenesis and thermogenesis. Importantly, obesity was found to be associated with excess endocannabinoid activity in visceral fat depots, and the therapeutic potential of normalizing such activity by blocking CB1 receptors has been the focus of substantial preclinical and clinical research. Results have been mixed thus far, mostly owing to the emergence of psychiatric side effects rooted in the protective functions served by brain endocannabinoids in mood and affect regulation. Further studies about the roles played by the endocannabinoid system in the adipose organ will offer new insights into the pathogenesis of obesity and might help identify new ways to leverage this signaling complex for therapeutic benefit.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA.
- Department of Pharmacology, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
16
|
Le Bacquer O, Salles J, Piscitelli F, Sanchez P, Martin V, Montaurier C, Di Marzo V, Walrand S. Alterations of the endocannabinoid system and circulating and peripheral tissue levels of endocannabinoids in sarcopenic rats. J Cachexia Sarcopenia Muscle 2022; 13:662-676. [PMID: 34854262 PMCID: PMC8818601 DOI: 10.1002/jcsm.12855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Activation of the endocannabinoid system (ECS) is associated with the development of obesity and insulin resistance, and with perturbed skeletal muscle development. Age-related sarcopenia is a progressive and generalized skeletal muscle disorder involving an accelerated loss of muscle mass and function, with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance. Hence, both obesity and sarcopenia share a common set of pathophysiological alterations leading to skeletal muscle impairment. The aim of this study was to characterize how sarcopenia impacts the ECS and if these modifications were related to the loss of muscle mass and function associated with aging in rats. METHODS Six-month-old and 24-month-old male rats were used to measure the contractile properties of the plantarflexors (isometric torque-frequency relationship & concentric power-velocity relationship) and to evaluate locomotor activity, motor coordination, and voluntary gait by open field, rotarod, and catwalk tests, respectively. Levels of endocannabinoids (AEA & 2-AG) and endocannabinoid-like molecules (OEA & PEA) were measured by LCF-MS/MS in plasma, skeletal muscle, and adipose tissue, while the expression of genes coding for the ECS were investigated by quantitative reverse transcription PCR (RT-qPCR). RESULTS Sarcopenia in old rats was exemplified by a 49% decrease in hindlimb muscle mass (P < 0.01), which was associated with severe impairment of isometric torque, power, voluntary locomotor activity, motor coordination, and gait quality. Sarcopenia was associated with (1) increased 2-AG (+32%, P = 0.07) and reduced PEA and OEA levels in the plasma (-25% and -40%, respectively, P < 0.01); (2) an increased content of AEA, PEA, and OEA in subcutaneous adipose tissue (P < 0.01); and (3) a four-fold increase of 2-AG content in the soleus (P < 0.01) and a reduced OEA content in EDL (-80%, P < 0.01). These alterations were associated with profound modifications in the expression of the ECS genes in the adipose tissue and skeletal muscle. CONCLUSIONS Taken together, these findings demonstrate that circulating and peripheral tissue endocannabinoid tone are altered in sarcopenia. They also demonstrate that OEA plasma levels are associated with skeletal muscle function and loss of locomotor activity in rats, suggesting OEA could be used as a circulating biomarker for sarcopenia.
Collapse
Affiliation(s)
- Olivier Le Bacquer
- INRAE, Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérôme Salles
- INRAE, Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Phelipe Sanchez
- INRAE, Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Vincent Martin
- AME2P, Université Clermont Auvergne, Clermont-Ferrand, France.,Institut Universitaire de France (IUF), Paris, France
| | - Christophe Montaurier
- INRAE, Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy.,Canada Excellence Research Chair Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agricutural and Food Sciences, IUCPQ, INAF and Centre NUTRISS, Université Laval, Quebec City, Quebec, Canada
| | - Stéphane Walrand
- INRAE, Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Service de Nutrition Clinique, Hôpital Gabriel Montpied, Clermont-Ferrand, France
| |
Collapse
|
17
|
Yan W, Li L, Ge L, Zhang F, Fan Z, Hu L. The cannabinoid receptor I (CB1) enhanced the osteogenic differentiation of BMSCs by rescue impaired mitochondrial metabolism function under inflammatory condition. Stem Cell Res Ther 2022; 13:22. [PMID: 35063024 PMCID: PMC8781353 DOI: 10.1186/s13287-022-02702-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Periodontitis is a chronic infectious disease leading to bone resorption and periodontal tissue disruption under inflammatory stimulation. The osteogenic differentiation ability of mesenchymal stem cells (MSCs) is impaired under the inflammatory environment, which limits the effect of treatment. The cannabinoid receptor I (CB1) is the main effector of the endogenous cannabinoid system (ECS), and our previous study verified that CB1 could enhance the osteo/dentinogenic differentiation of dental MSCs, which might be a target for alveolar bone regeneration. However, the effect of CB1 on the osteogenic differentiation of MSCs derived from bone remains unknown. In present study, we investigated the role and mechanism of CB1 on mitochondrial function and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) under inflammatory environment. METHODS Alkaline phosphatase (ALP) activity, alizarin red staining, quantitative calcium analysis, and osteogenic markers were used to detect the osteogenic differentiation ability of BMSCs. Real-time RT-PCR and Western blot were used to detect the gene expression. Seahorse Cell Mito Stress Test was used to detect the oxygen consumption rate (OCR). JC-10 assay was used to determine the mitochondrial membrane potential (MMP). RESULTS CB1 increased osteogenic differentiation potential and mitochondrial energy metabolism, including the OCR, MMP, and enhanced the expressions of Nrf1 and Nrf2 in hBMSCs without or with TNF-α or INF-γ stimulation. Then, the inhibitor of mitochondrial electron transport chain (ETC), rotenone (ROT), inhibited the osteogenic differentiation in hBMSCs, and CB1 could rescue ROT impaired osteogenic differentiation potentials of hBMSCs without or with TNF-α or INF-γ stimulation. Activation of ETC by Coenzyme Q10 (CoQ10) could restore the impaired osteogenic differentiation of hBMSCs by depletion of CB1 without or with TNF-α or INF-γ stimulation. Mechanismly, CB1 could activate the JNK signaling pathway, p38 MAPK signaling pathway, and inhibit the Erk1/2 signaling pathway. CONCLUSIONS The activating of CB1 enhanced the osteogenic differentiation by rescuing the mitochondrial metabolism function in hBMSCs under the inflammatory environment, suggesting that CB1 is a potential target for enhancing bone regeneration under the inflammatory environment.
Collapse
Affiliation(s)
- Wanhao Yan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Le Li
- Tsinghua University Hospital, Stomatological Disease Prevention and Control Center, Tsinghua University, Beijing, China
| | - Lihua Ge
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Fengqiu Zhang
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, 100050, China.
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Lei Hu
- Salivary Gland Disease Center and Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
18
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
19
|
Knuth MM, Stutts WL, Ritter MM, Garrard KP, Kullman SW. Vitamin D deficiency promotes accumulation of bioactive lipids and increased endocannabinoid tone in zebrafish. J Lipid Res 2021; 62:100142. [PMID: 34673019 PMCID: PMC8604674 DOI: 10.1016/j.jlr.2021.100142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
Vitamin D is well known for its traditional role in bone mineral homeostasis; however, recent evidence suggests that vitamin D also plays a significant role in metabolic control. This study served to investigate putative linkages between vitamin D deficiency (VDD) and metabolic disruption of bioactive lipids by MS imaging. Our approach employed infrared-matrix-assisted laser desorption electrospray ionization MS imaging for lipid metabolite profiling in 6-month-old zebrafish fed either a VDD or a vitamin D-sufficient (VDS) diet. Using a lipidomics pipeline, we found that VDD zebrafish had a greater abundance of bioactive lipids (N-acyls, endocannabinoids [ECs], diacylglycerols/triacylglycerols, bile acids/bile alcohols, and vitamin D derivatives) suggestive of increased EC tone compared with VDS zebrafish. Tandem MS was performed on several differentially expressed metabolites with sufficient ion abundances to aid in structural elucidation and provide additional support for MS annotations. To confirm activation of the EC pathways, we subsequently examined expression of genes involved in EC biosynthesis, metabolism, and receptor signaling in adipose tissue and liver from VDD and VDS zebrafish. Gene expression changes were congruent with increased EC tone, with VDD zebrafish demonstrating increased synthesis and metabolism of anandamide compared with VDS zebrafish. Taken together, our data suggest that VDD may promote accumulation of bioactive lipids and increased EC tone in zebrafish.
Collapse
Affiliation(s)
- Megan M Knuth
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Genetics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27514, USA; Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| | - Whitney L Stutts
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27606, USA
| | - Morgan M Ritter
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Kenneth P Garrard
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27606, USA; FTMS Laboratory for Human Health Research and Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA; Precision Engineering Consortium, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Seth W Kullman
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
20
|
The Peripheral Cannabinoid Receptor Type 1 (CB 1) as a Molecular Target for Modulating Body Weight in Man. Molecules 2021; 26:molecules26206178. [PMID: 34684760 PMCID: PMC8538448 DOI: 10.3390/molecules26206178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
The cannabinoid 1 (CB1) receptor regulates appetite and body weight; however, unwanted central side effects of both agonists (in wasting disorders) or antagonists (in obesity and diabetes) have limited their therapeutic utility. At the peripheral level, CB1 receptor activation impacts the energy balance of mammals in a number of different ways: inhibiting satiety and emesis, increasing food intake, altering adipokine and satiety hormone levels, altering taste sensation, decreasing lipolysis (fat break down), and increasing lipogenesis (fat generation). The CB1 receptor also plays an important role in the gut–brain axis control of appetite and satiety. The combined effect of peripheral CB1 activation is to promote appetite, energy storage, and energy preservation (and the opposite is true for CB1 antagonists). Therefore, the next generation of CB1 receptor medicines (agonists and antagonists, and indirect modulators of the endocannabinoid system) have been peripherally restricted to mitigate these issues, and some of these are already in clinical stage development. These compounds also have demonstrated potential in other conditions such as alcoholic steatohepatitis and diabetic nephropathy (peripherally restricted CB1 antagonists) and pain conditions (peripherally restricted CB1 agonists and FAAH inhibitors). This review will discuss the mechanisms by which peripheral CB1 receptors regulate body weight, and the therapeutic utility of peripherally restricted drugs in the management of body weight and beyond.
Collapse
|
21
|
Cinar R, Park JK, Zawatsky CN, Coffey NJ, Bodine SP, Abdalla J, Yokoyama T, Jourdan T, Jay L, Zuo MXG, O'Brien KJ, Huang J, Mackie K, Alimardanov A, Iyer MR, Gahl WA, Kunos G, Gochuico BR, Malicdan MCV. CB 1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome. Clin Transl Med 2021; 11:e471. [PMID: 34323400 PMCID: PMC8255071 DOI: 10.1002/ctm2.471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthMarylandUSA
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Joshua K. Park
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Charles N. Zawatsky
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Nathan J. Coffey
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Steven P. Bodine
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jasmina Abdalla
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Tadafumi Yokoyama
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- Present address:
Department of PediatricsKanazawa UniversityKanazawaJapan
| | - Tony Jourdan
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
- Present address:
INSERM Lipids, Nutrition, Cancer UMR1231University of Burgundy and Franche‐ComtéDijonFrance
| | - Lindsey Jay
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Mei Xing G. Zuo
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Kevin J. O'Brien
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Huang
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Ken Mackie
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Asaf Alimardanov
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Malliga R. Iyer
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - William A. Gahl
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - George Kunos
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Bernadette R. Gochuico
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - May Christine V. Malicdan
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
22
|
Cao T, Peng B, Zhou X, Cai J, Tang Y, Luo J, Xie H, Zhang J, Liu S. Integrated signaling system under endoplasmic reticulum stress in eukaryotic microorganisms. Appl Microbiol Biotechnol 2021; 105:4805-4818. [PMID: 34106312 DOI: 10.1007/s00253-021-11380-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle, which is crucial for correct folding and assembly of secretory and transmembrane proteins. Perturbations of ER function can cause ER stress. ER stress can activate the unfolded protein response (UPR) to cope with the accumulation of misfolded proteins and protein toxicity. UPR is a coordination system that regulates transcription and translation, leading to the recovery of ER homeostasis or cell death. However, cells have an integrated signaling system to cope with ER stress, which helps cells to restore and balance their ER function. The main components of this system are ER-associated degradation (ERAD), autophagy, hypoxia signaling, and mitochondrial biogenesis. If the balance cannot be restored, the imbalance will lead to cell death or apoptosis, or even to a series of diseases. In this review, a series of activities to restore the homeostasis of cells during ER stress are discussed. KEY POINTS: • Endoplasmic reticulum (ER) plays a key role in the biological process of cells. • Perturbations of ER function can cause ER stress, including the ER overload response (EOR), sterol-regulated cascade reaction, and the UPR. • Cells have an integrated signaling system (ERAD, autophagy, hypoxia signaling, and mitochondrial biogenesis) to cope with the adverse impact caused by ER stress.
Collapse
Affiliation(s)
- Ting Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Binfeng Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Jialun Cai
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Jie Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Haitao Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China.
| |
Collapse
|
23
|
El-Dahan KS, Machtoub D, Massoud G, Nasser SA, Hamam B, Kobeissy F, Zouein FA, Eid AH. Cannabinoids and myocardial ischemia: Novel insights, updated mechanisms, and implications for myocardial infarction. Curr Med Chem 2021; 29:1990-2010. [PMID: 34102966 DOI: 10.2174/0929867328666210608144818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
Cannabis is the most widely trafficked and abused illicit drug due to its calming psychoactive properties. It has been increasingly recognized as having potential health benefits and relatively less adverse health effects as compared to other illicit drugs; however, growing evidence clearly indicates that cannabis is associated with considerable adverse cardiovascular events. Recent studies have linked cannabis use to myocardial infarction (MI); yet, very little is known about the underlying mechanisms. A MI is a cardiovascular disease characterized by a mismatch in the oxygen supply and demand of the heart, resulting in ischemia and subsequent necrosis of the myocardium. Since cannabis is increasingly being considered a risk factor for MI, there is a growing need for better appreciating its potential health benefits and consequences. Here, we discuss the cellular mechanisms of cannabis that lead to an increased risk of MI. We provide a thorough and critical analysis of cannabinoids' actions, which include modulation of adipocyte biology, regional fat distribution, and atherosclerosis, as well as precipitation of hemodynamic stressors relevant in the setting of a MI. By critically dissecting the modulation of signaling pathways in multiple cell types, this paper highlights the mechanisms through which cannabis may trigger life-threatening cardiovascular events. This then provides a framework for future pharmacological studies which can identify targets or develop drugs that modulate cannabis' effects on the cardiovascular system as well as other organ systems. Cannabis' impact on the autonomic outflow, vascular smooth muscle cells, myocardium, cortisol levels and other hemodynamic changes are also mechanistically reviewed.
Collapse
Affiliation(s)
- Karim Seif El-Dahan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Dima Machtoub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Gaelle Massoud
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon
| | - Bassam Hamam
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, P.O. Box 146404, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha. Qatar
| |
Collapse
|
24
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
25
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
26
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
27
|
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288:2622-2644. [PMID: 33682344 DOI: 10.1111/febs.15800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
28
|
Myers MN, Zachut M, Tam J, Contreras GA. A proposed modulatory role of the endocannabinoid system on adipose tissue metabolism and appetite in periparturient dairy cows. J Anim Sci Biotechnol 2021; 12:21. [PMID: 33663611 PMCID: PMC7934391 DOI: 10.1186/s40104-021-00549-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
To sustain the nutrient demands of rapid fetal growth, parturition, and milk synthesis, periparturient dairy cows mobilize adipose tissue fatty acid stores through lipolysis. This process induces an inflammatory response within AT that is resolved as lactation progresses; however, excessive and protracted lipolysis compounds the risk for metabolic and inflammatory diseases. The suppression of lipolytic action and inflammation, along with amplification of adipogenesis and lipogenesis, serve as prospective therapeutic targets for improving the health of periparturient dairy cows. Generally, the activation of cannabinoid receptors by endocannabinoids enhances adipogenesis and lipogenesis, suppresses lipolysis, and increases appetite in mammals. These biological effects of activating the endocannabinoid system open the possibility of harnessing the endocannabinoid system through nutritional intervention in dairy herds as a potential tool to improve dairy cows' health, although much is still to be revealed in this context. This review summarizes the current knowledge surrounding the components of the endocannabinoid system, elaborates on the metabolic effects of its activation, and explores the potential to modulate its activity in periparturient dairy cows.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization / Volcani Center, 7505101, Rishon LeZion, Israel.
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001, Jerusalem, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
30
|
Aseer KR, Egan JM. An Autonomous Cannabinoid System in Islets of Langerhans. Front Endocrinol (Lausanne) 2021; 12:699661. [PMID: 34290671 PMCID: PMC8287299 DOI: 10.3389/fendo.2021.699661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
While endocannabinoids (ECs) and cannabis were primarily studied for their nervous system effects, it is now clear that ECs are also produced in the periphery where they regulate several physiological processes, including energy storage, glucose and lipid metabolism, insulin secretion and synthesis, and hepatocyte function. Within islet of Langerhans there is an autonomous EC system (ECS). Beta (β)-cells contain all the enzymes necessary for EC synthesis and degradation; ECs are generated in response to cellular depolarization; their paracrine influence on β-cells is mostly through the cannabinoid 1 receptor (CB1R) that is present on all β-cells; they modulate basal and glucose- and incretin-induced insulin secretion, and β-cell responses to various stressors. Furthermore, there is now accumulating evidence from preclinical studies that the autonomous islet ECS is a key player in obesity-induced inflammation in islets, and β-cell damage and apoptosis from many causes can be mitigated by CB1R blockers. We will thoroughly review the literature relevant to the effects of ECs and their receptors on β-cells and the other cell types within islets. Therapeutic potential of agents targeting EC/CB1R and CB2R is highly relevant because the receptors belong to the druggable G protein-coupled receptor superfamily. Present research in the ECS must be considered preliminary, especially with regards to human islet physiology, and further research is needed in order to translate basic cellular findings into clinical practice and the use of safe, clinically approved CBR modulators with and without glucose lowering combinations presently in therapeutic use for diabetes and obesity needs to be studied.
Collapse
|
31
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
32
|
Sun S, Jiang T, Duan N, Wu M, Yan C, Li Y, Cai M, Wang Q. Activation of CB1R-Dependent PGC-1α Is Involved in the Improved Mitochondrial Biogenesis Induced by Electroacupuncture Pretreatment. Rejuvenation Res 2020; 24:104-119. [PMID: 32746712 DOI: 10.1089/rej.2020.2315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Electroacupuncture (EA) pretreatment induces cerebral ischemic tolerance; however, the mechanism remains poorly understood. This study aimed to determine the participation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis in the neuroprotection of EA and whether cannabinoid receptor 1 (CB1R) is involved in this mechanism. At 2 hours after EA pretreatment, adult male C57BL/6j mice were subjected to 60-minute right middle cerebral artery occlusion (MCAO). Mitochondrial function, the level of mitochondrial biogenesis-related proteins (nuclear transcription factor 1, NRF1; mitochondrial transcription factor A, TFAM), and mitochondrial DNA (mtDNA) were measured. A small interfering RNA (siRNA) targeting PGC-1α and the CB1R antagonists AM251 and SR141716A were given to the animals before EA pretreatment, and mitochondrial function and biogenesis were examined after MCAO. EA ameliorated the mitochondrial function, upregulated the NRF1 and TFAM expression, and increased the mtDNA levels and the volume and number of mitochondria. EA pretreatment increased the expression of PGC-1α, whereas the PGC-1α siRNA and CB1R antagonists reversed the improved neuroprotection and increased mitochondrial biogenesis induced by EA. Our results indicated that EA pretreatment protects the mitochondria and promotes mitochondrial biogenesis by activating CB1R-dependent PGC-1α, which provides a novel mechanism for EA pretreatment-induced ischemic tolerance.
Collapse
Affiliation(s)
- Sisi Sun
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Medical Department of the Emergency Centre of Xi'an, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Duan
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meiyan Wu
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chaoying Yan
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Li
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Gambino G, Rizzo V, Giglia G, Ferraro G, Sardo P. Microtubule Dynamics and Neuronal Excitability: Advances on Cytoskeletal Components Implicated in Epileptic Phenomena. Cell Mol Neurobiol 2020; 42:533-543. [PMID: 32929563 PMCID: PMC8891195 DOI: 10.1007/s10571-020-00963-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Extensive researches have deepened knowledge on the role of synaptic components in epileptogenesis, but limited attention has been devoted to the potential implication of the cytoskeleton. The study of the development of epilepsy and hyperexcitability states involves molecular, synaptic, and structural alterations of neuronal bioelectric activity. In this paper we aim to explore the neurobiological targets involved in microtubule functioning and cytoskeletal transport, i.e. how dynamic scaffolding of microtubules can influence neuronal morphology and excitability, in order to suggest a potential role for microtubule dynamics in the processes turning a normal neuronal network in a hyperexcited one. Pathophysiological alterations of microtubule dynamics inducing neurodegeneration, network remodeling and relative impairment on synaptic transmission were overviewed. Recent researches were reported on the phosphorylation state of microtubule-associated proteins such as tau in neurodegenerative diseases and epileptic states, but also on the effect of microtubule-active agents influencing cytoskeleton destabilization in epilepsy models. The manipulation of microtubule polymerization was found effective in the modulation of hyperexcitability. In addition, it was considered the importance of microtubules and related neurotrophic factors during neural development since they are essential for the formation of a properly functional neuronal network. Otherwise, this can lead to cognitive deficits, hyperexcitability phenomena and neurodevelopmental disorders. Lastly, we evaluated the role of microtubule dynamics on neuronal efficiency considering their importance in the transport of mitochondria, cellular elements fulfilling energy requirements for neuronal activity, and a putative influence on cannabinoid-mediated neuroprotection. This review provides novel perspectives for the implication of microtubule dynamics in the development of epileptic phenomena.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Valerio Rizzo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Giglia
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy.
| | - Giuseppe Ferraro
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Pierangelo Sardo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| |
Collapse
|
34
|
Activation of Cannabinoid Receptors Attenuates Endothelin-1-Induced Mitochondrial Dysfunction in Rat Ventricular Myocytes. J Cardiovasc Pharmacol 2020; 75:54-63. [PMID: 31815823 PMCID: PMC6964873 DOI: 10.1097/fjc.0000000000000758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Supplemental Digital Content is Available in the Text. Evidence suggests that the activation of the endocannabinoid system offers cardioprotection. Aberrant energy production by impaired mitochondria purportedly contributes to various aspects of cardiovascular disease. We investigated whether cannabinoid (CB) receptor activation would attenuate mitochondrial dysfunction induced by endothelin-1 (ET1). Acute exposure to ET1 (4 hours) in the presence of palmitate as primary energy substrate induced mitochondrial membrane depolarization and decreased mitochondrial bioenergetics and expression of genes related to fatty acid oxidation (ie, peroxisome proliferator–activated receptor-gamma coactivator-1α, a driver of mitochondrial biogenesis, and carnitine palmitoyltransferase-1β, facilitator of fatty acid uptake). A CB1/CB2 dual agonist with limited brain penetration, CB-13, corrected these parameters. AMP-activated protein kinase (AMPK), an important regulator of energy homeostasis, mediated the ability of CB-13 to rescue mitochondrial function. In fact, the ability of CB-13 to rescue fatty acid oxidation–related bioenergetics, as well as expression of proliferator-activated receptor-gamma coactivator-1α and carnitine palmitoyltransferase-1β, was abolished by pharmacological inhibition of AMPK using compound C and shRNA knockdown of AMPKα1/α2, respectively. Interventions that target CB/AMPK signaling might represent a novel therapeutic approach to address the multifactorial problem of cardiovascular disease.
Collapse
|
35
|
Lauterbach MA, Latz E, Christ A. Metabolomic Profiling Reveals Distinct and Mutual Effects of Diet and Inflammation in Shaping Systemic Metabolism in Ldlr-/- Mice. Metabolites 2020; 10:metabo10090336. [PMID: 32824900 PMCID: PMC7570335 DOI: 10.3390/metabo10090336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Changes in modern dietary habits such as consumption of Western-type diets affect physiology on several levels, including metabolism and inflammation. It is currently unclear whether changes in systemic metabolism due to dietary interventions are long-lasting and affect acute inflammatory processes. Here, we investigated how high-fat diet (HFD) feeding altered systemic metabolism and the metabolomic response to inflammatory stimuli. We conducted metabolomic profiling of sera collected from Ldlr−/− mice on either regular chow diet (CD) or HFD, and after an additional low-dose lipopolysaccharide (LPS) challenge. HFD feeding, as well as LPS treatment, elicited pronounced metabolic changes. HFD qualitatively altered the systemic metabolic response to LPS; particularly, serum concentrations of fatty acids and their metabolites varied between LPS-challenged mice on HFD or CD, respectively. To investigate whether systemic metabolic changes were sustained long-term, mice fed HFD were shifted back to CD after four weeks (HFD > CD). When shifted back to CD, serum metabolites returned to baseline levels, and so did the response to LPS. Our results imply that systemic metabolism rapidly adapts to dietary changes. The profound systemic metabolic rewiring observed in response to diet might affect immune cell reprogramming and inflammatory responses.
Collapse
Affiliation(s)
- Mario A. Lauterbach
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
- Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Correspondence: (E.L.); (A.C.)
| | - Anette Christ
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
- Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA
- Correspondence: (E.L.); (A.C.)
| |
Collapse
|
36
|
Tarragon E, Moreno JJ. Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior. Chem Senses 2020; 44:73-89. [PMID: 30481264 DOI: 10.1093/chemse/bjy068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herb Cannabis sativa has been traditionally used in many cultures and all over the world for thousands of years as medicine and recreation. However, because it was brought to the Western world in the late 19th century, its use has been a source of controversy with respect to its physiological effects as well as the generation of specific behaviors. In this regard, the CB1 receptor represents the most relevant target molecule of cannabinoid components on nervous system and whole-body energy homeostasis. Thus, the promotion of CB1 signaling can increase appetite and stimulate feeding, whereas blockade of CB1 suppresses hunger and induces hypophagia. Taste and flavor are sensory experiences involving the oral perception of food-derived chemicals and drive a primal sense of acceptable or unacceptable for what is sampled. Therefore, research within the last decades focused on deciphering the effect of cannabinoids on the chemical senses involved in food perception and consequently in the pattern of feeding. In this review, we summarize the data on the effect of cannabinoids on chemical senses and their influences on food intake control and feeding behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Psychobiology, Faculty of Health Sciences, University Jaume I of Castellon, Castellon, Spain.,Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, Madrid, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain.,IBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Moradi H, Park C, Streja E, Argueta DA, DiPatrizio NV, You AS, Rhee CM, Vaziri ND, Kalantar-Zadeh K, Piomelli D. Circulating Endocannabinoids and Mortality in Hemodialysis Patients. Am J Nephrol 2020; 51:86-95. [PMID: 31935741 DOI: 10.1159/000505444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/16/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Mortality in patients with end-stage renal disease (ESRD) on maintenance hemodialysis (MHD) remains exceptionally high. While traditional risk factors such as obesity are paradoxically associated with better survival, nontraditional risk factors including cachexia increase the likelihood of poor outcomes. There is accumulating evidence that the endocannabinoid (ECB) system plays a major role in energy preservation and storage, factors which can prevent the deleterious effects of cachexia. Hence, in this study, we evaluated the association of circulating ECB levels with mortality in MHD patients. METHODS Serum concentrations of anandamide (AEA) and 2-arachidonoyl-sn-glycerol (2-AG), major ECB ligands, were measured in MHD patients. Their correlation with various clinical/laboratory indices and association with 12-month all-cause mortality were examined. RESULTS Serum 2-AG levels positively correlated with body mass index, serum triglycerides and body anthropometric measures. Meanwhile, serum AEA levels correlated positively with serum interleukin-6, and negatively with serum very low-density lipoprotein levels. While increased serum 2-AG levels were associated with reduced risk of all-cause mortality (hazard ratio [HR] 0.52, 95% CI 0.28-0.98), there was no clear association between serum AEA levels and mortality (HR 0.91, 95% CI 0.48-1.72). CONCLUSIONS In MHD patients, the circulating levels of ECB ligand, 2-AG, may play an important role in determining body mass and risk of mortality. These observations were unique to 2-AG as similar findings were not obtained with serum AEA. Future studies need to investigate the mechanisms responsible for these associations and examine the modulation of the ECB system as a potential target for therapy in ESRD.
Collapse
Affiliation(s)
- Hamid Moradi
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA,
- Tibor Rubin VA Medical Center, Nephrology Section, Long Beach, California, USA,
| | - Christina Park
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Elani Streja
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
- Tibor Rubin VA Medical Center, Nephrology Section, Long Beach, California, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Amy S You
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Connie M Rhee
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Nosratola D Vaziri
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
- Tibor Rubin VA Medical Center, Nephrology Section, Long Beach, California, USA
| | - Daniele Piomelli
- Anatomy and Neurobiology, University of California Irvine School of Medicine, Irvine, California, USA
| |
Collapse
|
38
|
Ringseis R, Gessner DK, Eder K. The Gut-Liver Axis in the Control of Energy Metabolism and Food Intake in Animals. Annu Rev Anim Biosci 2019; 8:295-319. [PMID: 31689373 DOI: 10.1146/annurev-animal-021419-083852] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent research has convincingly demonstrated a bidirectional communication axis between the gut and liver that enables the gut microbiota to strongly affect animals' feeding behavior and energy metabolism. As such, the gut-liver axis enables the host to control and shape the gut microbiota and to protect the intestinal barrier. Gut microbiota-host communication is based on several gut-derived compounds, such as short-chain fatty acids, bile acids, methylamines, amino acid-derived metabolites, and microbial-associated molecular patterns, which act as communication signals, and multiple host receptors, which sense the signals, thereby stimulating signaling and metabolic pathways in all key tissues of energy metabolism and food intake regulation. Disturbance in the microbial ecosystem balance, or microbial dysbiosis, causes profound derangements in the regulation of appetite and satiety in the hypothalamic centers of the brain and in key metabolic pathways in peripheral tissues owing to intestinal barrier disruption and subsequent induction of hepatic and hypothalamic inflammation.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| |
Collapse
|
39
|
Veilleux A, Di Marzo V, Silvestri C. The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Curr Diab Rep 2019; 19:117. [PMID: 31686231 DOI: 10.1007/s11892-019-1248-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. RECENT FINDINGS As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D.
Collapse
Affiliation(s)
- Alain Veilleux
- École de nutrition, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada
| | - Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada
- Institut de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
- Department de médecine, Université Laval, Québec, QC, Canada
| | - Cristoforo Silvestri
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada.
- Institut de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada.
- Department de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
40
|
Moradi H, Park C, Igarashi M, Streja E, Argueta DA, Soohoo M, Daglian J, You AS, Rhee CM, Kashyap ML, DiPatrizio NV, Vaziri ND, Kalantar-Zadeh K, Piomelli D. Serum Endocannabinoid Levels in Patients With End-Stage Renal Disease. J Endocr Soc 2019; 3:1869-1880. [PMID: 31583368 PMCID: PMC6767629 DOI: 10.1210/js.2019-00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Previous studies have shown that the endocannabinoid system plays a major role in energy metabolism through the actions of its main mediators, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA). OBJECTIVE We examined serum levels of major endocannabinoid mediators and their association with clinical parameters in patients with end-stage renal disease (ESRD). DESIGN AND SETTING Serum concentrations of 2-AG and AEA were measured in patients on maintenance hemodialysis (MHD) and controls, and correlations with various clinical and laboratory indices were examined. 2-AG was also measured in age and sex-matched healthy subjects for comparison of levels in patients undergoing MHD. MAIN OUTCOME MEASURE Serum 2-AG. RESULTS Serum 2-AG levels were significantly elevated in patients with ESRD compared with healthy controls. Higher levels of 2-AG were found in patients on MHD compared to healthy subjects, and similar findings were seen in a second set of subjects in independent analyses. Among 96 patients on MHD, 2-AG levels correlated significantly and positively with serum triglycerides (ρ = 0.43; P < 0.0001), body mass index (ρ = 0.40; P < 0.0001), and body anthropometric measures and negatively with serum high-density lipoprotein cholesterol (ρ = -0.33; P = 0.001) following adjustment for demographic and clinical variables. CONCLUSIONS In patients on MHD, levels of serum 2-AG, a major endocannabinoid mediator, were increased. In addition, increasing serum 2-AG levels correlated with increased serum triglycerides and markers of body mass. Future studies will need to evaluate the potential mechanisms responsible for these findings.
Collapse
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Christina Park
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Miki Igarashi
- Anatomy and Neurobiology, University of California Irvine School of Medicine, Irvine, California
| | - Elani Streja
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Donovan A Argueta
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California
| | - Melissa Soohoo
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
- Department of Medicine, University of California Irvine School of Medicine, Irvine, California
| | - Jennifer Daglian
- Anatomy and Neurobiology, University of California Irvine School of Medicine, Irvine, California
| | - Amy S You
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
| | - Connie M Rhee
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
| | - Moti L Kashyap
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Daniele Piomelli
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
41
|
Role of Cannabinoid Receptor Type 1 in Insulin Resistance and Its Biological Implications. Int J Mol Sci 2019; 20:ijms20092109. [PMID: 31035653 PMCID: PMC6540410 DOI: 10.3390/ijms20092109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023] Open
Abstract
Endogenous cannabinoids (ECs) are lipid-signaling molecules that specifically bind to cannabinoid receptor types 1 and 2 (CB1R and CB2R) and are highly expressed in central and many peripheral tissues under pathological conditions. Activation of hepatic CB1R is associated with obesity, insulin resistance, and impaired metabolic function, owing to increased energy intake and storage, impaired glucose and lipid metabolism, and enhanced oxidative stress and inflammatory responses. Additionally, blocking peripheral CB1R improves insulin sensitivity and glucose metabolism and also reduces hepatic steatosis and body weight in obese mice. Thus, targeting EC receptors, especially CB1R, may provide a potential therapeutic strategy against obesity and insulin resistance. There are many CB1R antagonists, including inverse agonists and natural compounds that target CB1R and can reduce body weight, adiposity, and hepatic steatosis, and those that improve insulin sensitivity and reverse leptin resistance. Recently, the use of CB1R antagonists was suspended due to adverse central effects, and this caused a major setback in the development of CB1R antagonists. Recent studies, however, have focused on development of antagonists lacking adverse effects. In this review, we detail the important role of CB1R in hepatic insulin resistance and the possible underlying mechanisms, and the therapeutic potential of CB1R targeting is also discussed.
Collapse
|
42
|
Liu J, Godlewski G, Jourdan T, Liu Z, Cinar R, Xiong K, Kunos G. Cannabinoid-1 Receptor Antagonism Improves Glycemic Control and Increases Energy Expenditure Through Sirtuin-1/Mechanistic Target of Rapamycin Complex 2 and 5'Adenosine Monophosphate-Activated Protein Kinase Signaling. Hepatology 2019; 69:1535-1548. [PMID: 30506571 PMCID: PMC6438767 DOI: 10.1002/hep.30364] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022]
Abstract
Endocannabinoids promote energy conservation in obesity, whereas cannabinoid-1 receptor (CB1 R) blockade reverses body weight gain and insulin resistance and increases energy expenditure. Here we investigated the molecular mechanisms of the catabolic effects of CB1 R blockade in the liver. Exposure of primary mouse hepatocytes and HepG2 cells to the CB1 R agonist arachidonyl-2'-chloroethylamide inhibited the expression of Sirtuin-1 (Sirt1) and Rictor, a component of mechanistic target of rapamycin complex 2 (mTORC2) and suppressed insulin-induced Akt phosphorylation at serine 473. These effects were reversed by peripheral CB1 R antagonist JD5037 in control hepatocytes but not in hepatocytes deficient in Sirt1 and/or Rictor, indicating that these two proteins are required for the CB1 R-mediated inhibition of insulin signaling. Feeding C57BL/6J mice a high-fat diet (HFD) inhibited hepatic Sirt1/mTORC2/Akt signaling, and the inhibition was reversed by rimonabant or JD5037 in wild-type but not liver-specific Sirt1-/- (Sirt1-LKO) mice, to levels observed in hepatocyte-specific CB1 R-/- mice. A similar attenuation of hyperglycemia and hyperinsulinemia in wild-type mice with obesity but not in Sirt1-LKO mice could be attributed to insufficient reversal of HFD-induced mitochondrial reactive oxygen species generation in peripheral tissues in the latter. In contrast, JD5037 treatment was equally effective in HFD-fed wild-type and Sirt1-LKO mice in reducing hepatic steatosis, increasing fatty acid β-oxidation, and activating 5'adenosine monophosphate-activated protein kinase (AMPK) through liver kinase B1 (LKB1), resulting in a similar increase in total energy expenditure in the two strains. Conclusion: Peripheral CB1 R blockade in mice with obesity improves glycemic control through the hepatic Sirt1/mTORC2/Akt pathway, whereas it increases fatty acid oxidation through LKB1/AMPK signaling.
Collapse
Affiliation(s)
- Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Keming Xiong
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci 2019; 76:1341-1363. [PMID: 30599065 PMCID: PMC11105297 DOI: 10.1007/s00018-018-2994-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
The endocannabinoid (eCB) system is widely expressed in many central and peripheral tissues, and is involved in a plethora of physiological processes. Among these, activity of the eCB system promotes energy intake and storage, which, however, under pathophysiological conditions, can favour the development of obesity and obesity-related disorders. It is proposed that eCB signalling is evolutionary beneficial for survival under periods of scarce food resources. Remarkably, eCB signalling is increased both in hunger and in overnutrition conditions, such as obesity and type-2 diabetes. This apparent paradox suggests a role of the eCB system both at initiation and at clinical endpoint of obesity. This review will focus on recent findings about the role of the eCB system controlling whole-body metabolism in mice that are genetically modified selectively in different cell types. The current data in fact support the notion that eCB signalling is not only engaged in the development but also in the maintenance of obesity, whereby specific cell types in central and peripheral tissues are key sites in regulating the entire body's energy homeostasis.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Brain/metabolism
- Endocannabinoids/metabolism
- Energy Metabolism
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany.
| | - Beat Lutz
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany
| |
Collapse
|
44
|
Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. FRONT BIOSCI-LANDMRK 2019; 24:890-934. [PMID: 30844720 PMCID: PMC6689231 DOI: 10.2741/4758] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment of inflammatory cells, and impaired metabolic homeostasis that eventually results in the development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review explores the interplay between arginase and NO, and their effect on the development of metabolic disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive understanding of the mechanisms involved in the development of obesity-induced metabolic and vascular dysfunction is necessary for the identification of more effective and tailored therapeutic avenues for their prevention and treatment.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Katharine L Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology,and Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Robert W Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904,USA,
| |
Collapse
|
45
|
van Niekerk G, Mabin T, Engelbrecht AM. Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective. Inflammopharmacology 2019; 27:39-46. [PMID: 30610735 DOI: 10.1007/s10787-018-00560-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/29/2018] [Indexed: 12/14/2022]
Abstract
A number of studies have implicated cannabinoids as potent anti-inflammatory mediators. However, the exact mechanism by which cannabinoids exert these effects remains to be fully explained. The recent resurgence in interest regarding the metabolic adaptations undergone by activated immune cells has highlighted the intricate connection between metabolism and an inflammatory phenotype. In this regard, evidence suggests that cannabinoids may alter cell metabolism by increasing AMPK activity. In turn, emerging evidence suggests that the activation of AMPK by cannabinoids may mediate an anti-inflammatory effect through a range of processes. First, AMPK may promote oxidative metabolism, which have been shown to play a central role in immune cell polarisation towards a tolerogenic phenotype. AMPK activation may also attenuate anabolic processes which in turn may antagonise immune cell function. Furthermore, AMPK activity promotes the induction of autophagy, which in turn may promote anti-inflammatory effects through various well-described processes. Taken together, these observations implicate cannabinoids to mediate part of their anti-inflammatory effects through alterations in immune cell metabolism and the induction of autophagy.
Collapse
Affiliation(s)
- G van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - T Mabin
- Department of Medicine, Cardiology Division, University of Cape Town, Cape Town, South Africa
| | - A-M Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
46
|
Ye L, Cao Z, Wang W, Zhou N. New Insights in Cannabinoid Receptor Structure and Signaling. Curr Mol Pharmacol 2019; 12:239-248. [PMID: 30767756 PMCID: PMC6864585 DOI: 10.2174/1874467212666190215112036] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cannabinoid has long been used for medicinal purposes. Cannabinoid signaling has been considered the therapeutic target for treating pain, addiction, obesity, inflammation, and other diseases. Recent studies have suggested that in addition to CB1 and CB2, there are non-CB1 and non-CB2 cannabinoid-related orphan GPCRs including GPR18, GPR55, and GPR119. In addition, CB1 and CB2 display allosteric binding and biased signaling, revealing correlations between biased signaling and functional outcomes. Interestingly, new investigations have indicated that CB1 is functionally present within the mitochondria of striated and heart muscles directly regulating intramitochondrial signaling and respiration. CONCLUSION In this review, we summarize the recent progress in cannabinoid-related orphan GPCRs, CB1/CB2 structure, Gi/Gs coupling, allosteric ligands and biased signaling, and mitochondria-localized CB1, and discuss the future promise of this research.
Collapse
Affiliation(s)
- Lingyan Ye
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Zheng Cao
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Weiwei Wang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Abstract
The family of chemical structures that interact with a cannabinoid receptor are broadly termed cannabinoids. Traditionally known for their psychotropic effects and their use as palliative medicine in cancer, cannabinoids are very versatile and are known to interact with several orphan receptors besides cannabinoid receptors (CBR) in the body. Recent studies have shown that several key pathways involved in cell growth, differentiation and, even metabolism and apoptosis crosstalk with cannabinoid signaling. Several of these pathways including AKT, EGFR, and mTOR are known to contribute to tumor development and metastasis, and cannabinoids may reverse their effects, thereby by inducing apoptosis, autophagy and modulating the immune system. In this book chapter, we explore how cannabinoids regulate diverse signaling mechanisms in cancer and immune cells within the tumor microenvironment and whether they impart a therapeutic effect. We also provide some important insight into the role of cannabinoids in cellular and whole body metabolism in the context of tumor inhibition. Finally, we highlight recent and ongoing clinical trials that include cannabinoids as a therapeutic strategy and several combinational approaches towards novel therapeutic opportunities in several invasive cancer conditions.
Collapse
|
48
|
Drori A, Permyakova A, Hadar R, Udi S, Nemirovski A, Tam J. Cannabinoid-1 receptor regulates mitochondrial dynamics and function in renal proximal tubular cells. Diabetes Obes Metab 2019; 21:146-159. [PMID: 30091204 PMCID: PMC6586028 DOI: 10.1111/dom.13497] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
AIMS To evaluate the specific role of the endocannabinoid/cannabinoid type-1 (CB1 R) system in modulating mitochondrial dynamics in the metabolically active renal proximal tubular cells (RPTCs). MATERIALS AND METHODS We utilized mitochondrially-targeted GFP in live cells (wild-type and null for the CB1 R) and electron microscopy in kidney sections of RPTC-CB1 R-/- mice and their littermate controls. In both in vitro and in vivo conditions, we assessed the ability of CB1 R agonism or fatty acid flux to modulate mitochondrial architecture and function. RESULTS Direct stimulation of CB1 R resulted in mitochondrial fragmentation in RPTCs. This process was mediated, at least in part, by modulating the phosphorylation levels of the canonical fission protein dynamin-related protein 1 on both S637 and S616 residues. CB1 R-induced mitochondrial fission was associated with mitochondrial dysfunction, as documented by reduced oxygen consumption and ATP production, increased reactive oxygen species and cellular lactate levels, as well as a decline in mitochondrial biogenesis. Likewise, we documented that exposure of RPTCs to a fatty acid flux induced CB1 R-dependent mitochondrial fission, lipotoxicity and cellular dysfunction. CONCLUSIONS CB1 R plays a key role in inducing mitochondrial fragmentation in RPTCs, leading to a decline in the organelle's function and contributing to the renal tubular injury associated with lipotoxicity and other metabolic diseases.
Collapse
Affiliation(s)
- Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
49
|
Lipina C, Walsh SK, Mitchell SE, Speakman JR, Wainwright CL, Hundal HS. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. FASEB J 2018; 33:1299-1312. [PMID: 30148676 PMCID: PMC6355063 DOI: 10.1096/fj.201800171r] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Emerging evidence indicates that G-protein coupled receptor 55 (GPR55), a nonclassic receptor of the endocannabinoid system that is activated by L-α-lysophosphatidylinositol and various cannabinoid ligands, may regulate endocrine function and energy metabolism. We examined how GPR55 deficiency and modulation affects insulin signaling in skeletal muscle, adipose tissue, and liver alongside expression analysis of proteins implicated in insulin action and energy metabolism. We show that GPR55-null mice display decreased insulin sensitivity in these tissues, as evidenced by reduced phosphorylation of PKB/Akt and its downstream targets, concomitant with increased adiposity and reduced physical activity relative to wild-type counterparts. Impaired tissue insulin sensitivity coincided with reduced insulin receptor substrate-1 abundance in skeletal muscle, whereas in liver and epididymal fat it was associated with increased expression of the 3-phosphoinoistide lipid phosphatase, phosphatase and tensin homolog. In contrast, GPR55 activation enhanced insulin signaling in cultured skeletal muscle cells, adipocytes, and hepatocytes; this response was negated by receptor antagonists and GPR55 gene silencing in L6 myotubes. Sustained GPR55 antagonism in 3T3-L1 adipocytes enhanced expression of proteins implicated in lipogenesis and promoted triglyceride accumulation. Our findings identify GPR55 as a positive regulator of insulin action and adipogenesis and as a potential therapeutic target for countering obesity-induced metabolic dysfunction and insulin resistance.-Lipina, C., Walsh, S. K., Mitchell, S. E., Speakman, J. R., Wainwright, C. L., Hundal, H. S. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sarah K Walsh
- Centre for Cardiometabolic Health Research, Robert Gordon University, Aberdeen, United Kingdom
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cherry L Wainwright
- Centre for Cardiometabolic Health Research, Robert Gordon University, Aberdeen, United Kingdom
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
50
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|