1
|
Jang JY, Kim N, Nam RH, Kim EH, Song CH, Ha S, Lee J. Establishment of an Organoid Culture Model Derived from Small Intestinal Epithelium of C57BL/6 Mice and Its Benefits over Tissues. J Cancer Prev 2025; 30:12-23. [PMID: 40201028 PMCID: PMC11973465 DOI: 10.15430/jcp.25.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
This study aimed to establish an organoid culture model using small intestine tissues from male and female C57BL/6 mice and to compare it with rat organoid cultures derived from frozen tissues. Crypts were isolated from the small intestines of eight-week-old male and female mice and cultured in 3D extracellular matrix with Wnt, R-spondin, and Noggin. In addition, small intestine tissues from sixteen-week-old F344 rats were preserved in a storage solution immediately post-sacrifice and stored at -80°C before being transferred to a nitrogen tank. Upon thawing, crypts from frozen rat tissues failed to develop into organoids due to structural damage, suggesting the need for fresh tissues or optimized preservation methods. In contrast, mouse-derived organoids showed viability for 7 days, with distinct morphological changes and clear differentiation by Day 7. Quantitative real-time PCR analysis revealed that Lgr5, a stem cell marker, showed significantly higher expression in organoids than in tissues, confirming the successful establishment of the organoid culture. Among epithelial markers, the antimicrobial enzyme Lyz1 was more highly expressed in organoids, while Muc2, a key goblet cell marker, was more highly expressed in male tissues. The enterocyte marker Alp exhibited higher expression in male organoids compared to females, with no sex differences in tissues. These findings highlight sex-specific differences in gene expression related to small intestine differentiation and demonstrate the challenges in organoid culture from frozen rat tissues. The results suggest the importance of immediate tissue processing or improved preservation methods for successful organoid cultures.
Collapse
Affiliation(s)
- Jae Young Jang
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Research Center for Sex- and Gender-specific Medicine, Seongnam, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Hye Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sungchan Ha
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jieun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
2
|
Johansen VBI, Gradel AKJ, Holm SK, Cuenco J, Merrild C, Petersen N, Demozay D, Mani BK, Suppli MP, Grøndahl MFG, Lund AB, Knop FK, Prada-Medina CA, Hogendorf WFJ, Lykkesfeldt J, Merkestein M, Sakamoto K, Holst B, Clemmensen C. Regulation of LEAP2 by insulin and glucagon in mice and humans. Cell Rep Med 2025; 6:101996. [PMID: 40056903 PMCID: PMC11970398 DOI: 10.1016/j.xcrm.2025.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/14/2024] [Accepted: 02/10/2025] [Indexed: 03/10/2025]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous antagonist and inverse agonist of the ghrelin receptor, countering ghrelin's effects on cell signaling and feeding. However, despite an emerging interest in LEAP2's physiology and pharmacology, its endocrine regulation remains unclear. Here, we report that plasma LEAP2 levels decrease significantly upon glucagon infusions during somatostatin clamps in humans. This effect is preserved in patients with obesity and type 2 diabetes while diminished following a hypercaloric diet and a sedentary lifestyle for 2 weeks. Additionally, insulin receptor antagonism offsets the upregulation of LEAP2 during the postprandial state in mice. Finally, insulin and glucagon receptor-expressing hepatocytes are the primary source of hepatic LEAP2 expression, coinciding with a putative enhancer-like signature bound by insulin- and glucagon-regulated transcription factors at the LEAP2 locus. Collectively, our findings implicate insulin and glucagon in regulating LEAP2 and warrant further investigations into the exact mechanisms orchestrating this endocrine axis.
Collapse
Affiliation(s)
- Valdemar Brimnes Ingemann Johansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Diabetes Pharmacology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark; Diabetes and Metabolism Biology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Anna Katrina Jógvansdóttir Gradel
- Diabetes Pharmacology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark; Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Kjærulff Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joyceline Cuenco
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Merrild
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalia Petersen
- Diabetes and Metabolism Biology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Damien Demozay
- Diabetes and Metabolism Biology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Bharath Kumar Mani
- Obesity and NASH Research, Global Drug Discovery, Novo Nordisk, Lexington, MA, USA
| | - Malte Palm Suppli
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Magnus F G Grøndahl
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Asger Bach Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Cesar A Prada-Medina
- Systems Biology and Target Discovery, AI and Digital Research, Novo Nordisk Research Center Oxford, Novo Nordisk A/S, Oxford, UK
| | | | - Jens Lykkesfeldt
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Myrte Merkestein
- Diabetes Pharmacology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Movahednasab M, Dianat-Moghadam H, Khodadad S, Nedaeinia R, Safabakhsh S, Ferns G, Salehi R. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetol Metab Syndr 2025; 17:60. [PMID: 39962520 PMCID: PMC11834518 DOI: 10.1186/s13098-025-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone mainly secreted by enteroendocrine intestinal L-cells. GLP-1 is also secreted by α-cells of the pancreas and the central nervous system (CNS). GLP-1 secretion is stimulated by nutrient intake and exerts its effects on glucose homeostasis by stimulating insulin secretion, gastric emptying confiding the food intake, and β-cell proliferation. The insulinotropic effects of GLP-1, and the reduction of its effects in type 2 diabetes mellitus (T2DM), have made GLP-1 an attractive option for the treatment of T2DM. Furthermore, GLP-1-based medications such as GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, have been shown to improve diabetes control in preclinical and clinical trials with human subjects. Importantly, increasing the endogenous production of GLP-1 by different mechanisms or by increasing the number of intestinal L-cells that tend to produce this hormone may be another effective therapeutic approach to managing T2DM. Herein, we briefly describe therapeutic agents/compounds that enhance GLP-1 function. Then, we will discuss the approaches that can increase the endogenous production of GLP-1 through various stimuli. Finally, we introduce the potential of L-cell differentiation as an attractive future therapeutic approach to increase GLP-1 production as an attractive therapeutic alternative for T2DM.
Collapse
Affiliation(s)
- Maedeh Movahednasab
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Khodadad
- Department of Genetics and Molecular Biology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU, 96910, USA
| | - Gordon Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
He X, Zhao W, Li P, Zhang Y, Li G, Su H, Lu B, Pang Z. Research progress of GLP-1RAs in the treatment of type 2 diabetes mellitus. Front Pharmacol 2025; 15:1483792. [PMID: 39902077 PMCID: PMC11788294 DOI: 10.3389/fphar.2024.1483792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid intestinal insulin-stimulating factor, which is mainly secreted by L cells in the distal ileum and colon. It has various physiological functions, such as promoting insulin secretion and synthesis, stimulating β-cell proliferation, inducing islet regeneration, inhibiting β-cell apoptosis and glucagon release, delaying gastric emptying and controlling appetite, etc. It plays a role through a specific GLP-1 receptor (GLP-1R) distributed in many organs or tissues and participates in the regulation of glucose homeostasis in the body. GLP-1 receptor agonists (GLP-1RAs) has the similar physiological function of GLP-1. Because of its structural difference from natural GLP-1, it is not easy to be degraded by dipeptidyl peptidase-4 (DPP-4), thus prolonging the action time. GLP-1RAs have been recognized as a new type of hypoglycemic drugs and widely used in the treatment of type 2 diabetes mellitus (T2DM). Compared with other non-insulin hypoglycemic drugs, it can not only effectively reduce blood glucose and glycosylated hemoglobin (HbA1c), but also protect cardiovascular system, nervous system and kidney function without causing hypoglycemia and weight gain. Therefore, GLP-1RAs has good application prospects and potential for further development.
Collapse
Affiliation(s)
- Xu He
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Wei Zhao
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - PeiHang Li
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - YinJiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - GuoHua Li
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - HongYu Su
- Graduate School, Chengde Medical College, Chengde, China
| | - BiNan Lu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - ZongRan Pang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Lemmetyinen TT, Viitala EW, Wartiovaara L, Päivinen P, Virtanen HT, Pentinmikko N, Katajisto P, Mäkelä TP, Wang TC, Andressoo JO, Ollila S. Mesenchymal GDNF promotes intestinal enterochromaffin cell differentiation. iScience 2024; 27:111246. [PMID: 39634560 PMCID: PMC11616604 DOI: 10.1016/j.isci.2024.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Enteroendocrine cells (EECs) differentiate and mature to form functionally distinct populations upon migration along the intestinal crypt-villus axis, but how niche signals affect this process is poorly understood. Here, we identify expression of Glial cell line-derived neurotrophic factor (GDNF) in the intestinal subepithelial myofibroblasts (SEMFs), while the GDNF receptor RET was expressed in a subset of EECs, suggesting GDNF-mediated regulation. Indeed, GDNF-RET signaling induced increased expression of EEC genes including Tph1, encoding for the rate-limiting enzyme for 5-hydroxytryptamine (5-HT, serotonin) biosynthesis, and increased the frequency of 5-HT+ enterochromaffin cells (ECs) in mouse organoid culture experiments and in vivo. Moreover, expression of the 5-HT receptor Htr4 was enriched in Lgr5+ intestinal stem cells (ISCs) and 5-HT reduced the ISC clonogenicity. In summary, our results show that GDNF-RET signaling regulate EEC differentiation, and suggest 5-HT as a potential niche factor regulating Lgr5+ ISC activity, with potential implications in intestinal regeneration.
Collapse
Affiliation(s)
- Toni T. Lemmetyinen
- Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
| | - Emma W. Viitala
- Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
| | - Linnea Wartiovaara
- Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka Päivinen
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Heikki T. Virtanen
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Nalle Pentinmikko
- The Francis Crick Institute, London NW1 1AY, UK
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, 00014 Helsinki, Finland
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Tomi P. Mäkelä
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society (NVS), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Saara Ollila
- Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
6
|
Alcaino C, Reimann F, Gribble FM. Incretin hormones and obesity. J Physiol 2024:10.1113/JP286293. [PMID: 39576749 PMCID: PMC7617301 DOI: 10.1113/jp286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play critical roles in co-ordinating postprandial metabolism, including modulation of insulin secretion and food intake. They are secreted from enteroendocrine cells in the intestinal epithelium following food ingestion, and act at multiple target sites including pancreatic islets and the brain. With the recent development of agonists targeting GLP-1 and GIP receptors for the treatment of type 2 diabetes and obesity, and the ongoing development of new incretin-based drugs with improved efficacy, there is great interest in understanding the physiology and pharmacology of these hormones.
Collapse
Affiliation(s)
- Constanza Alcaino
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| |
Collapse
|
7
|
Huang Y, Mo H, Yang J, Gao L, Tao T, Shu Q, Guo W, Zhao Y, Lyu J, Wang Q, Guo J, Zhai H, Zhu L, Chen H, Xu G. Mechano-regulation of GLP-1 production by Piezo1 in intestinal L cells. eLife 2024; 13:RP97854. [PMID: 39509292 PMCID: PMC11542922 DOI: 10.7554/elife.97854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.
Collapse
Affiliation(s)
- Yanling Huang
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Haocong Mo
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Jie Yang
- Department of Pathology, School of Basic Medicine, Guangzhou Medical UniversityGuangdongChina
| | - Luyang Gao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Tian Tao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Qing Shu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Wenying Guo
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Jingya Lyu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Qimeng Wang
- Biotherapy Center, Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong KongShenzhenChina
| | - Hening Zhai
- Endoscopy Center, The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Linyan Zhu
- Department of Pharmacology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Hui Chen
- Biotherapy Center, Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of EducationGuangzhouChina
| |
Collapse
|
8
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Ho J, Puoplo N, Pokharel N, Hirdaramani A, Hanyaloglu AC, Cheng CW. Nutrigenomic underpinnings of intestinal stem cells in inflammatory bowel disease and colorectal cancer development. Front Genet 2024; 15:1349717. [PMID: 39280096 PMCID: PMC11393785 DOI: 10.3389/fgene.2024.1349717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Food-gene interaction has been identified as a leading risk factor for inflammatory bowel disease (IBD) and colorectal cancer (CRC). Accordingly, nutrigenomics emerges as a new approach to identify biomarkers and therapeutic targets for these two strongly associated gastrointestinal diseases. Recent studies in stem cell biology have further shown that diet and nutrition signal to intestinal stem cells (ISC) by altering nutrient-sensing transcriptional activities, thereby influencing barrier integrity and susceptibility to inflammation and tumorigenesis. This review recognizes the dietary factors related to both CRC and IBD and investigates their impact on the overlapping transcription factors governing stem cell activities in homeostasis and post-injury responses. Our objective is to provide a framework to study the food-gene regulatory network of disease-contributing cells and inspire new nutrigenomic approaches for detecting and treating diet-related IBD and CRC.
Collapse
Affiliation(s)
- Jennifer Ho
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York City, NY, United States
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
| | - Nicholas Puoplo
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
- Division of Neonatology-Perinatology, Department of Pediatrics, Columbia University Irving Medical Center, New York City, NY, United States
| | - Namrata Pokharel
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
| | - Aanya Hirdaramani
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Section of Nutrition, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aylin C Hanyaloglu
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
10
|
Banerjee P, Senapati S. Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases. Stem Cell Rev Rep 2024; 20:1441-1458. [PMID: 38758462 DOI: 10.1007/s12015-024-10733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
11
|
Segú H, Jalševac F, Lores M, Beltrán-Debón R, Terra X, Pinent M, Ardévol A, Rodríguez-Gallego E, Blay MT. Intestinal Taste Receptor Expression and Its Implications for Health: An Integrative Analysis in Female Rats after Chronic Insect Supplementation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13929-13942. [PMID: 38857423 PMCID: PMC11191688 DOI: 10.1021/acs.jafc.4c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
Taste receptors are found in the gastrointestinal tract, where they are susceptible to dietary modulation, a key point that is crucial for diet-related responses. Insects are sustainable and good-quality protein sources. This study analyzed the impact of insect consumption on the modulation of taste receptor expression across various segments of the rat intestine under healthy or inflammatory conditions. Female Wistar rats were supplemented with Tenebrio molitor (T) or Alphitobius diaperinus (B), alongside a control group (C), over 21 days under healthy or LPS-induced inflammation. The present study reveals, for the first time, that insect consumption modulates taste receptor gene expression, mainly in the ascending colon. This modulation was not found under inflammation. Integrative analysis revealed colonic Tas1r1 as a key discriminator for insect consumption (C = 1.04 ± 0.32, T = 1.78 ± 0.72, B = 1.99 ± 0.82, p-value <0.05 and 0.01, respectively). Additionally, correlation analysis showed the interplay between intestinal taste receptors and metabolic and inflammatory responses. These findings underscore how insect consumption modulates taste receptors, influencing intestinal function and broader physiological mechanisms.
Collapse
Affiliation(s)
- Helena Segú
- MoBioFood Research Group,
Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Florijan Jalševac
- MoBioFood Research Group,
Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Mònica Lores
- MoBioFood Research Group,
Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Raúl Beltrán-Debón
- MoBioFood Research Group,
Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group,
Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group,
Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group,
Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group,
Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Maria Teresa Blay
- MoBioFood Research Group,
Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| |
Collapse
|
12
|
Dinteren SV, Araya-Cloutier C, Robaczewska E, den Otter M, Witkamp R, Vincken JP, Meijerink J. Switching the polarity of mouse enteroids affects the epithelial interplay with prenylated phenolics from licorice ( Glycyrrhiza) roots. Food Funct 2024; 15:1852-1866. [PMID: 38086658 DOI: 10.1039/d3fo02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The utility of 3D-small intestinal organoid (enteroid) models for evaluating effects of e.g. food (related) compounds is limited due to the apical epithelium facing the interior. To overcome this limitation, we developed a novel 3D-apical-out enteroid model for mice, which allows apical exposure. Using this model, we evaluated the effects on the enteroids' intestinal epithelium (including cytotoxicity, cell viability, and biotransformation) after exposure to glabridin, a prenylated secondary metabolite with antimicrobial properties from licorice roots (Glycyrrhiza glabra). Apical-out enteroids were five times less sensitive to glabridin exposure compared to conventional apical-in enteroids, with obtained cytotoxicities of 1.5 mM and 0.31 mM, respectively. Apical-out enteroids showed a luminal/apical layer of fucose rich mucus, which may contribute to the protection against potential cytotoxicity of glabridin. Furthermore, in apical-in enteroids IC50 values for cytotoxicity were determined for licochalcone A, glycycoumarin, and glabridin, the species-specific prenylated phenolics from the commonly used G. inflata, G. uralensis, and G. glabra, respectively. Both enteroid models differed in their functional phase II biotransformation capacity, where glabridin was transformed to glucuronide- and sulfate-conjugates. Lastly, our results indicate that the prenylated phenolics do not show cytotoxicity in mouse enteroids at previously reported minimum inhibitory concentrations (MICs) against a diverse set of Gram positive bacteria. Altogether, we show that apical-out enteroids provide a better mimic of the gastrointestinal tract compared to conventional enteroids and are consequently a superior model to study effects of food (related) compounds. This work revealed that prenylated phenolics with promising antibacterial activity show no harmful effects in the GI-tract at their MICs and therefore may offer a new perspective to control unwanted microbial growth.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Edyta Robaczewska
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Mellody den Otter
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
13
|
Farhadipour M, Arnauts K, Clarysse M, Thijs T, Liszt K, Van der Schueren B, Ceulemans LJ, Deleus E, Lannoo M, Ferrante M, Depoortere I. SCFAs switch stem cell fate through HDAC inhibition to improve barrier integrity in 3D intestinal organoids from patients with obesity. iScience 2023; 26:108517. [PMID: 38125020 PMCID: PMC10730380 DOI: 10.1016/j.isci.2023.108517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Stem cells are a keystone of intestinal homeostasis, but their function could be shifted during energy imbalance or by crosstalk with microbial metabolites in the stem cell niche. This study reports the effect of obesity and microbiota-derived short-chain fatty acids (SCFAs) on intestinal stem cell (ISC) fate in human crypt-derived intestinal organoids (enteroids). ISC fate decision was impaired in obesity, resulting in smaller enteroids with less outward protruding crypts. Our key finding is that SCFAs switch ISC commitment to the absorptive enterocytes, resulting in reduced intestinal permeability in obese enteroids. Mechanistically, SCFAs act as HDAC inhibitors in stem cells to enhance Notch signaling, resulting in transcriptional activation of the Notch target gene HES1 to promote enterocyte differentiation. In summary, targeted reprogramming of ISC fate, using HDAC inhibitors, may represent a potential, robust therapeutic strategy to improve gut integrity in obesity.
Collapse
Affiliation(s)
- Mona Farhadipour
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Kaline Arnauts
- Inflammatory Bowel Disease, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Mathias Clarysse
- Leuven Intestinal Failure and Transplantation (LIFT) Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Theo Thijs
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Kathrin Liszt
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | | | - Laurens J. Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT) Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ellen Deleus
- Department of Abdominal Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Matthias Lannoo
- Department of Abdominal Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Marc Ferrante
- Inflammatory Bowel Disease, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1169624. [PMID: 37560311 PMCID: PMC10407565 DOI: 10.3389/fendo.2023.1169624] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.
Collapse
Affiliation(s)
| | - Van B. Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Klett KC, Martin-Villa BC, Villarreal VS, Melemenidis S, Viswanathan V, Manjappa R, Ashraf MR, Soto L, Lau B, Dutt S, Rankin EB, Loo BW, Heilshorn SC. Human enteroids as a tool to study conventional and ultra-high dose rate radiation. Integr Biol (Camb) 2023; 15:zyad013. [PMID: 37874173 PMCID: PMC10594601 DOI: 10.1093/intbio/zyad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Radiation therapy, one of the most effective therapies to treat cancer, is highly toxic to healthy tissue. The delivery of radiation at ultra-high dose rates, FLASH radiation therapy (FLASH), has been shown to maintain therapeutic anti-tumor efficacy while sparing normal tissues compared to conventional dose rate irradiation (CONV). Though promising, these studies have been limited mainly to murine models. Here, we leveraged enteroids, three-dimensional cell clusters that mimic the intestine, to study human-specific tissue response to radiation. We observed enteroids have a greater colony growth potential following FLASH compared with CONV. In addition, the enteroids that reformed following FLASH more frequently exhibited proper intestinal polarity. While we did not observe differences in enteroid damage across groups, we did see distinct transcriptomic changes. Specifically, the FLASH enteroids upregulated the expression of genes associated with the WNT-family, cell-cell adhesion, and hypoxia response. These studies validate human enteroids as a model to investigate FLASH and provide further evidence supporting clinical study of this therapy. Insight Box Promising work has been done to demonstrate the potential of ultra-high dose rate radiation (FLASH) to ablate cancerous tissue, while preserving healthy tissue. While encouraging, these findings have been primarily observed using pre-clinical murine and traditional two-dimensional cell culture. This study validates the use of human enteroids as a tool to investigate human-specific tissue response to FLASH. Specifically, the work described demonstrates the ability of enteroids to recapitulate previous in vivo findings, while also providing a lens through which to probe cellular and molecular-level responses to FLASH. The human enteroids described herein offer a powerful model that can be used to probe the underlying mechanisms of FLASH in future studies.
Collapse
Affiliation(s)
- Katarina C Klett
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Victoria S Villarreal
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
17
|
Kumar A, Cai S, Allam M, Henderson S, Ozbeyler M, Saiontz L, Coskun AF. Single-Cell and Spatial Analysis of Emergent Organoid Platforms. Methods Mol Biol 2023; 2660:311-344. [PMID: 37191807 DOI: 10.1007/978-1-0716-3163-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Organoids have emerged as a promising advancement of the two-dimensional (2D) culture systems to improve studies in organogenesis, drug discovery, precision medicine, and regenerative medicine applications. Organoids can self-organize as three-dimensional (3D) tissues derived from stem cells and patient tissues to resemble organs. This chapter presents growth strategies, molecular screening methods, and emerging issues of the organoid platforms. Single-cell and spatial analysis resolve organoid heterogeneity to obtain information about the structural and molecular cellular states. Culture media diversity and varying lab-to-lab practices have resulted in organoid-to-organoid variability in morphology and cell compositions. An essential resource is an organoid atlas that can catalog protocols and standardize data analysis for different organoid types. Molecular profiling of individual cells in organoids and data organization of the organoid landscape will impact biomedical applications from basic science to translational use.
Collapse
Affiliation(s)
- Aditi Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Samuel Henderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Melissa Ozbeyler
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lilly Saiontz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, , Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
18
|
Wu L, Zhou M, Xie Y, Lang H, Li T, Yi L, Zhang Q, Mi M. Dihydromyricetin Enhances Exercise-Induced GLP-1 Elevation through Stimulating cAMP and Inhibiting DPP-4. Nutrients 2022; 14:4583. [PMID: 36364846 PMCID: PMC9656859 DOI: 10.3390/nu14214583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 08/05/2023] Open
Abstract
The purpose of this study was to examine whether endogenous GLP-1 (glucagon-like peptide-1) could respond to exercise training in mice, as well as whether dihydromyricetin (DHM) supplementation could enhance GLP-1 levels in response to exercise training. After 2 weeks of exercise intervention, we found that GLP-1 levels were significantly elevated. A reshaped gut microbiota was identified following exercise, as evidenced by the increased abundance of Bifidobacterium, Lactococcus, and Alistipes genus, which are involved in the production of short-chain fatty acids (SCFAs). Antibiotic treatment negated exercise-induced GLP-1 secretion, which could be reversed with gut microbiota transplantation. Additionally, the combined intervention (DHM and exercise) was modeled in mice. Surprisingly, the combined intervention resulted in higher GLP-1 levels than the exercise intervention alone. In exercised mice supplemented with DHM, the gut microbiota composition changed as well, while the amount of SCFAs was unchanged in the stools. Additionally, DHM treatment induced intracellular cAMP in vitro and down-regulated the gene and protein expression of dipeptidyl peptidase-4 (DPP-4) both in vivo and in vitro. Collectively, the auxo-action of exercise on GLP-1 secretion is associated with the gut-microbiota-SCFAs axis. Moreover, our findings suggest that DHM interacts synergistically with exercise to enhance GLP-1 levels by stimulating cAMP and inhibiting DPP-4.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qianyong Zhang
- Correspondence: (Q.Z.); (M.M.); Fax: +86-2368771689 (Q.Z.); +86-2368771549 (M.M.)
| | - Mantian Mi
- Correspondence: (Q.Z.); (M.M.); Fax: +86-2368771689 (Q.Z.); +86-2368771549 (M.M.)
| |
Collapse
|
19
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
20
|
Chu L, Terasaki M, Mattsson CL, Teinturier R, Charbord J, Dirice E, Liu KC, Miskelly MG, Zhou Q, Wierup N, Kulkarni RN, Andersson O. In vivo drug discovery for increasing incretin-expressing cells identifies DYRK inhibitors that reinforce the enteroendocrine system. Cell Chem Biol 2022; 29:1368-1380.e5. [PMID: 35998625 PMCID: PMC9557248 DOI: 10.1016/j.chembiol.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/27/2022] [Accepted: 07/27/2022] [Indexed: 02/02/2023]
Abstract
Analogs of the incretin hormones Gip and Glp-1 are used to treat type 2 diabetes and obesity. Findings in experimental models suggest that manipulating several hormones simultaneously may be more effective. To identify small molecules that increase the number of incretin-expressing cells, we established a high-throughput in vivo chemical screen by using the gip promoter to drive the expression of luciferase in zebrafish. All hits increased the numbers of neurogenin 3-expressing enteroendocrine progenitors, Gip-expressing K-cells, and Glp-1-expressing L-cells. One of the hits, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor, additionally decreased glucose levels in both larval and juvenile fish. Knock-down experiments indicated that nfatc4, a downstream mediator of DYRKs, regulates incretin+ cell number in zebrafish, and that Dyrk1b regulates Glp-1 expression in an enteroendocrine cell line. DYRK inhibition also increased the number of incretin-expressing cells in diabetic mice, suggesting a conserved reinforcement of the enteroendocrine system, with possible implications for diabetes.
Collapse
Affiliation(s)
- Lianhe Chu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michishige Terasaki
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte L Mattsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Romain Teinturier
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jérémie Charbord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michael G Miskelly
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö 20502, Sweden
| | - Qiao Zhou
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö 20502, Sweden
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Ming Y, Hao S, Wang F, Lewis-Israeli YR, Volmert BD, Xu Z, Goestenkors A, Aguirre A, Zhou C. Longitudinal morphological and functional characterization of human heart organoids using optical coherence tomography. Biosens Bioelectron 2022; 207:114136. [PMID: 35325716 PMCID: PMC9713770 DOI: 10.1016/j.bios.2022.114136] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
Abstract
Organoids play an increasingly important role as in vitro models for studying organ development, disease mechanisms, and drug discovery. Organoids are self-organizing, organ-like three-dimensional (3D) cell cultures developing organ-specific cell types and functions. Recently, three groups independently developed self-assembling human heart organoids (hHOs) from human pluripotent stem cells (hPSCs). In this study, we utilized a customized spectral-domain optical coherence tomography (SD-OCT) system to characterize the growth of hHOs. Development of chamber structures and beating patterns of the hHOs were observed via OCT and calcium imaging. We demonstrated the capability of OCT to produce 3D images in a fast, label-free, and non-destructive manner. The hHOs formed cavities of various sizes, and complex interconnections were observed as early as on day 4 of differentiation. The hHOs models and the OCT imaging system showed promising insights as an in vitro platform for investigating heart development and disease mechanisms.
Collapse
Affiliation(s)
- Yixuan Ming
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Senyue Hao
- Department of Electrical & Systems Engineering, Washington University in Saint Louis, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Yonatan R Lewis-Israeli
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, USA
| | - Brett D Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, USA
| | - Zhiyao Xu
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Anna Goestenkors
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in Saint Louis, USA.
| |
Collapse
|
22
|
Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH. Revisiting the concept of incretin and enteroendocrine L-cells as type 2 diabetes mellitus treatment. Pharmacol Res 2022; 180:106237. [PMID: 35487405 PMCID: PMC7614293 DOI: 10.1016/j.phrs.2022.106237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022]
Abstract
The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
Collapse
Affiliation(s)
- Kok-Hou Lok
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Nicholas J Wareham
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge, UK.
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
23
|
Manfready RA, Forsyth CB, Voigt RM, Hall DA, Goetz CG, Keshavarzian A. Gut-Brain Communication in Parkinson's Disease: Enteroendocrine Regulation by GLP-1. Curr Neurol Neurosci Rep 2022; 22:335-342. [PMID: 35633466 DOI: 10.1007/s11910-022-01196-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Defective gut-brain communication has recently been proposed as a promoter of neurodegeneration, but mechanisms mediating communication remain elusive. In particular, the Parkinson's disease (PD) phenotype has been associated with both dysbiosis of intestinal microbiota and neuroinflammation. Here, we review recent advances in the PD field that connect these two concepts, providing an explanation based on enteroendocrine signaling from the gut to the brain. RECENT FINDINGS There have been several recent accounts highlighting the importance of the microbiota-gut-brain axis in PD. The objective of this review is to discuss the role of the neuroendocrine system in gut-brain communication as it relates to PD pathogenesis, as this system has not been comprehensively considered in prior reviews. The incretin hormone glucagon-like peptide 1 (GLP-1) is secreted by enteroendocrine cells of the intestinal epithelium, and there is evidence that it is neuroprotective in animal models and human subjects with PD. Agonists of GLP-1 receptors used in diabetes appear to be useful for preventing neurodegeneration. New tools and models have enabled us to study regulation of GLP-1 secretion by intestinal microbiota, to understand how this process may be defective in PD, and to develop methods for therapeutically modifying disease development or progression using the enteroendocrine system. GLP-1 secretion by enteroendocrine cells may be a key mediator of neuroprotection in PD, and new findings in this field may offer unique insights into PD pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Richard A Manfready
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA.,Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, 1725 W. Harrison Street Suite 207, Chicago, IL, 60612, USA
| | - Robin M Voigt
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA.,Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, 1725 W. Harrison Street Suite 207, Chicago, IL, 60612, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA. .,Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, 1725 W. Harrison Street Suite 207, Chicago, IL, 60612, USA.
| |
Collapse
|
24
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The intestinal enteroendocrine cells (EECs) are specialized hormone-secreting cells that respond to both circulating and luminal cues. Collectively, EECs constitute the largest endocrine organ of the body and signal to a multitude of targets including locally to neighboring intestinal cells, enteric neurons, as well as systemically to other organs, such as the pancreas and brain. To accomplish their wide range of downstream signaling effects, EECs secrete multiple hormones; however, the mechanisms that influence EEC development in the embryo and differentiation in adults are not well defined. RECENT FINDINGS This review highlights the recent discoveries in EEC differentiation and function while also discussing newly revealed roles of transcription factors and signaling networks involved in the allocation of EEC subtypes that were discovered using a combination of novel intestinal model systems and genetic sequencing. We also discuss the potential of these new experimental models that study the mechanisms regulating EEC function and development both to uncover novel therapeutic targets. SUMMARY Several EEC hormones are being used to treat various metabolic disorders, such as type 2 diabetes and obesity. Therefore, understanding the signaling pathways and gene regulatory networks that facilitate EEC formation is paramount to the development of novel therapies.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Division of Endocrinology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| |
Collapse
|
26
|
Enteroendocrine System and Gut Barrier in Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23073732. [PMID: 35409092 PMCID: PMC8998765 DOI: 10.3390/ijms23073732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
With the continuous rise in the worldwide prevalence of obesity and type 2 diabetes, developing therapies regulating body weight and glycemia has become a matter of great concern. Among the current treatments, evidence now shows that the use of intestinal hormone analogs (e.g., GLP1 analogs and others) helps to control glycemia and reduces body weight. Indeed, intestinal endocrine cells produce a large variety of hormones regulating metabolism, including appetite, digestion, and glucose homeostasis. Herein, we discuss how the enteroendocrine system is affected by local environmental and metabolic signals. These signals include those arising from unbalanced diet, gut microbiota, and the host metabolic organs and their complex cross-talk with the intestinal barrier integrity.
Collapse
|
27
|
Yeo E, Brubaker PL, Sloboda DM. The intestine and the microbiota in maternal glucose homeostasis during pregnancy. J Endocrinol 2022; 253:R1-R19. [PMID: 35099411 PMCID: PMC8942339 DOI: 10.1530/joe-21-0354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
It is now well established that, beyond its role in nutrient processing and absorption, the intestine and its accompanying gut microbiome constitute a major site of immunological and endocrine regulation that mediates whole-body metabolism. Despite the growing field of host-microbe research, few studies explore what mechanisms govern this relationship in the context of pregnancy. During pregnancy, significant maternal metabolic adaptations are made to accommodate the additional energy demands of the developing fetus and to prevent adverse pregnancy outcomes. Recent data suggest that the maternal gut microbiota may play a role in these adaptations, but changes to maternal gut physiology and the underlying intestinal mechanisms remain unclear. In this review, we discuss selective aspects of intestinal physiology including the role of the incretin hormone, glucagon-like peptide 1 (GLP-1), and the role of the maternal gut microbiome in the maternal metabolic adaptations to pregnancy. Specifically, we discuss how bacterial components and metabolites could mediate the effects of the microbiota on host physiology, including nutrient absorption and GLP-1 secretion and action, and whether these mechanisms may change maternal insulin sensitivity and secretion during pregnancy. Finally, we discuss how these pathways could be altered in disease states during pregnancy including maternal obesity and diabetes.
Collapse
Affiliation(s)
- Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics, Gynecology and Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
28
|
Zeve D, Stas E, de Sousa Casal J, Mannam P, Qi W, Yin X, Dubois S, Shah MS, Syverson EP, Hafner S, Karp JM, Carlone DL, Ordovas-Montanes J, Breault DT. Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nat Commun 2022; 13:261. [PMID: 35017529 PMCID: PMC8752608 DOI: 10.1038/s41467-021-27901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2021] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.
Collapse
Affiliation(s)
- Daniel Zeve
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Eric Stas
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Joshua de Sousa Casal
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Prabhath Mannam
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Wanshu Qi
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Xiaolei Yin
- grid.116068.80000 0001 2341 2786David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.24516.340000000123704535Present Address: Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sarah Dubois
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.416498.60000 0001 0021 3995School of Arts and Sciences, MCPHS University, Boston, MA 02115 USA
| | - Manasvi S. Shah
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Erin P. Syverson
- grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Sophie Hafner
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Jeffrey M. Karp
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Diana L. Carlone
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Jose Ordovas-Montanes
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - David T. Breault
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| |
Collapse
|
29
|
Miedzybrodzka EL, Gribble FM, Reimann F. Targeting the Enteroendocrine System for Treatment of Obesity. Handb Exp Pharmacol 2022; 274:487-513. [PMID: 35419620 DOI: 10.1007/164_2022_583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mimetics of the anorexigenic gut hormone glucagon-like peptide 1 (GLP-1) were originally developed as insulinotropic anti-diabetic drugs but also evoke significant weight loss, leading to their recent approval as obesity therapeutics. Co-activation of receptors for GLP-1 and other gut hormones which reduce food intake - peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP) - is now being explored clinically to enhance efficacy. An alternative approach involves pharmacologically stimulating endogenous secretion of these hormones from enteroendocrine cells (EECs) to recapitulate the metabolic consequences of bariatric surgery, where highly elevated postprandial levels of GLP-1 and PYY3-36 are thought to contribute to improved glycaemia and weight loss.
Collapse
Affiliation(s)
- Emily L Miedzybrodzka
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
30
|
Roberts A, Phuah P, Cheng S, Murphy KG. Targeting Enteroendocrine Cells to Treat Metabolic Disease. COMPREHENSIVE PHARMACOLOGY 2022:344-372. [DOI: 10.1016/b978-0-12-820472-6.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Arora T, Tremaroli V. Therapeutic Potential of Butyrate for Treatment of Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:761834. [PMID: 34737725 PMCID: PMC8560891 DOI: 10.3389/fendo.2021.761834] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Metagenomics studies have shown that type 2 diabetes (T2D) is associated with an altered gut microbiota. Whereas different microbiota patterns have been observed in independent human cohorts, reduction of butyrate-producing bacteria has consistently been found in individuals with T2D, as well as in those with prediabetes. Butyrate is produced in the large intestine by microbial fermentations, particularly of dietary fiber, and serves as primary fuel for colonocytes. It also acts as histone deacetylase inhibitor and ligand to G-protein coupled receptors, affecting cellular signaling in target cells, such as enteroendocrine cells. Therefore, butyrate has become an attractive drug target for T2D, and treatment strategies have been devised to increase its intestinal levels, for example by supplementation of butyrate-producing bacteria and dietary fiber, or through fecal microbiota transplant (FMT). In this review, we provide an overview of current literature indicating that these strategies have yielded encouraging results and short-term benefits in humans, but long-term improvements of glycemic control have not been reported so far. Further studies are required to find effective approaches to restore butyrate-producing bacteria and butyrate levels in the human gut, and to investigate their impact on glucose regulation in T2D.
Collapse
Affiliation(s)
- Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
McGillis L, Bronte-Tinkew DM, Dang F, Capurro M, Prashar A, Ricciuto A, Greenfield L, Lozano-Ruf A, Siddiqui I, Hsieh A, Church P, Walters T, Roth DE, Griffiths A, Philpott D, Jones NL. Vitamin D deficiency enhances expression of autophagy-regulating miR-142-3p in mouse and "involved" IBD patient intestinal tissues. Am J Physiol Gastrointest Liver Physiol 2021; 321:G171-G184. [PMID: 34159811 DOI: 10.1152/ajpgi.00398.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vitamin D deficiency is an environmental factor involved in the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms surrounding its role remain unclear. Previous studies conducted in an intestinal epithelial-specific vitamin D receptor (VDR) knockout model suggest that a lack of vitamin D signaling causes a reduction in intestinal autophagy. A potential link between vitamin D deficiency and dysregulated autophagy is microRNA (miR)-142-3p, which suppresses autophagy. In this study, we found that wild-type C57BL/6 mice fed a vitamin D-deficient diet for 5 wk had increased miR-142-3p expression in ileal tissues compared with mice that were fed a matched control diet. Interestingly, there was no difference in expression of key autophagy markers ATG16L1 and LC3II in the ileum whole tissue. However, Paneth cells of vitamin D-deficient mice were morphologically abnormal and had an accumulation of the autophagy adaptor protein p62, which was not present in the total crypt epithelium. These findings suggest that Paneth cells exhibit early markers of autophagy dysregulation within the intestinal epithelium in response to vitamin D deficiency and enhanced miR-142-3p expression. Finally, we demonstrated that treatment-naïve IBD patients with low levels of vitamin D have an increase in miR-142-3p expression in colonic tissues procured from "involved" areas of the disease. Taken together, our findings demonstrate that insufficient vitamin D levels alter expression of autophagy-regulating miR-142-3p in intestinal tissues of mice and patients with IBD, providing insight into the mechanisms by which vitamin D deficiency modulates IBD pathogenesis.NEW & NOTEWORTHY Vitamin D deficiency has a role in IBD pathogenesis, and although the mechanisms surrounding its role remain unclear, it has been suggested that autophagy dysregulation is involved. Here, we show increased ileal expression of autophagy-suppressing miR-142-3p in mice that were fed a vitamin D-deficient diet and in "involved" colonic biopsies from pediatric IBD patients with low vitamin D. miR-142-3p serves as a potential mechanism mediating vitamin D deficiency and reduced autophagy.
Collapse
Affiliation(s)
- Laurel McGillis
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dana M Bronte-Tinkew
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances Dang
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Capurro
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Akriti Prashar
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Ricciuto
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Greenfield
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ana Lozano-Ruf
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iram Siddiqui
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Adam Hsieh
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Peter Church
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Walters
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel E Roth
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Paediatric Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne Griffiths
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Dana Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nicola L Jones
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
High Glucose Exposure Impairs L-Cell Differentiation in Intestinal Organoids: Molecular Mechanisms and Clinical Implications. Int J Mol Sci 2021; 22:ijms22136660. [PMID: 34206340 PMCID: PMC8268781 DOI: 10.3390/ijms22136660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal organoids are used to analyze the differentiation of enteroendocrine cells (EECs) and to manipulate their density for treating type 2 diabetes. EEC differentiation is a continuous process tightly regulated in the gut by a complex regulatory network. However, the effect of chronic hyperglycemia, in the modulation of regulatory networks controlling identity and differentiation of EECs, has not been analyzed. This study aimed to investigate the effect of glucotoxicity on EEC differentiation in small intestinal organoid platforms. Mouse intestinal organoids were cultured in the presence/absence of high glucose concentrations (35 mM) for 48 h to mimic glucotoxicity. Chronic hyperglycemia impaired the expression of markers related to the differentiation of EEC progenitors (Ngn3) and L-cells (NeuroD1), and it also reduced the expression of Gcg and GLP-1 positive cell number. In addition, the expression of intestinal stem cell markers was reduced in organoids exposed to high glucose concentrations. Our data indicate that glucotoxicity impairs L-cell differentiation, which could be associated with decreased intestinal stem cell proliferative capacity. This study provides the identification of new targets involved in new molecular signaling mechanisms impaired by glucotoxicity that could be a useful tool for the treatment of type 2 diabetes.
Collapse
|
34
|
Arora T, Vanslette AM, Hjorth SA, Bäckhed F. Microbial regulation of enteroendocrine cells. MED 2021; 2:553-570. [DOI: 10.1016/j.medj.2021.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
|
35
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
36
|
Zhao M, Ren K, Xiong X, Cheng M, Zhang Z, Huang Z, Han X, Yang X, Alejandro EU, Ruan HB. Protein O-GlcNAc Modification Links Dietary and Gut Microbial Cues to the Differentiation of Enteroendocrine L Cells. Cell Rep 2021; 32:108013. [PMID: 32783937 PMCID: PMC7457433 DOI: 10.1016/j.celrep.2020.108013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Intestinal L cells regulate a wide range of metabolic processes, and L-cell dysfunction has been implicated in the pathogenesis of obesity and diabetes. However, it is incompletely understood how luminal signals are integrated to control the development of L cells. Here we show that food availability and gut microbiota-produced short-chain fatty acids control the posttranslational modification on intracellular proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) in intestinal epithelial cells. Via FOXO1 O-GlcNAcylation, O-GlcNAc transferase (OGT) suppresses expression of the lineage-specifying transcription factor Neurogenin 3 and, thus, L cell differentiation from enteroendocrine progenitors. Intestinal epithelial ablation of OGT in mice not only causes L cell hyperplasia and increased secretion of glucagon-like peptide 1 (GLP-1) but also disrupts gut microbial compositions, which notably contributes to decreased weight gain and improved glycemic control. Our results identify intestinal epithelial O-GlcNAc signaling as a brake on L cell development and function in response to nutritional and microbial cues. Zhao et al. identify OGT in intestinal epithelial cells as a “molecular brake” on L cell development and function in response to nutritional and microbial cues. OGT inhibits Ngn3 gene transcription and enteroendocrine differentiation via FOXO1 O-GlcNAcylation. Microbiota-derived SCFAs drive epithelial O-GlcNAcylation, which further influences gut microbiota to control systemic metabolism.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kaiqun Ren
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; College of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Meng Cheng
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zan Huang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
37
|
Kuhre RE, Deacon CF, Holst JJ, Petersen N. What Is an L-Cell and How Do We Study the Secretory Mechanisms of the L-Cell? Front Endocrinol (Lausanne) 2021; 12:694284. [PMID: 34168620 PMCID: PMC8218725 DOI: 10.3389/fendo.2021.694284] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Synthetic glucagon-like peptide-1 (GLP-1) analogues are effective anti-obesity and anti-diabetes drugs. The beneficial actions of GLP-1 go far beyond insulin secretion and appetite, and include cardiovascular benefits and possibly also beneficial effects in neurodegenerative diseases. Considerable reserves of GLP-1 are stored in intestinal endocrine cells that potentially might be mobilized by pharmacological means to improve the body's metabolic state. In recognition of this, the interest in understanding basic L-cell physiology and the mechanisms controlling GLP-1 secretion, has increased considerably. With a view to home in on what an L-cell is, we here present an overview of available data on L-cell development, L-cell peptide expression profiles, peptide production and secretory patterns of L-cells from different parts of the gut. We conclude that L-cells differ markedly depending on their anatomical location, and that the traditional definition of L-cells as a homogeneous population of cells that only produce GLP-1, GLP-2, glicentin and oxyntomodulin is no longer tenable. We suggest to sub-classify L-cells based on their differential peptide contents as well as their differential expression of nutrient sensors, which ultimately determine the secretory responses to different stimuli. A second purpose of this review is to describe and discuss the most frequently used experimental models for functional L-cell studies, highlighting their benefits and limitations. We conclude that no experimental model is perfect and that a comprehensive understanding must be built on results from a combination of models.
Collapse
Affiliation(s)
- Rune E. Kuhre
- Department of Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Rune E. Kuhre, ;
| | - Carolyn F. Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
38
|
Abstract
Aging is characterized by the functional decline of tissues and organs and increased risk of aging-associated disorders, which pose major societal challenges and are a public health priority. Despite extensive human genetics studies, limited progress has been made linking genetics with aging. There is a growing realization that the altered assembly, structure and dynamics of the gut microbiota actively participate in the aging process. Age-related microbial dysbiosis is involved in reshaping immune responses during aging, which manifest as immunosenescence (insufficiency) and inflammaging (over-reaction) that accompany many age-associated enteric and extraenteric diseases. The gut microbiota can be regulated, suggesting a potential target for aging interventions. This review summarizes recent findings on the physiological succession of gut microbiota across the life-cycle, the roles and mechanisms of gut microbiota in healthy aging, alterations of gut microbiota and aging-associated diseases, and the gut microbiota-targeted anti-aging strategies.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People's Hospital, Lishui, Zhejiang, China
| | - Shaochang Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Modasia A, Parker A, Jones E, Stentz R, Brion A, Goldson A, Defernez M, Wileman T, Ashley Blackshaw L, Carding SR. Regulation of Enteroendocrine Cell Networks by the Major Human Gut Symbiont Bacteroides thetaiotaomicron. Front Microbiol 2020; 11:575595. [PMID: 33240233 PMCID: PMC7677362 DOI: 10.3389/fmicb.2020.575595] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbes have critical roles in maintaining host physiology, but their effects on epithelial chemosensory enteroendocrine cells (EEC) remain unclear. We investigated the role that the ubiquitous commensal gut bacterium Bacteriodes thetaiotaomicron (Bt) and its major fermentation products, acetate, propionate, and succinate (APS) have in shaping EEC networks in the murine gastrointestinal tract (GIT). The distribution and numbers of EEC populations were assessed in tissues along the GIT by fluorescent immunohistochemistry in specific pathogen free (SPF), germfree (GF) mice, GF mice conventionalized by Bt or Lactobacillus reuteri (Lr), and GF mice administered APS. In parallel, we also assessed the suitability of using intestinal crypt-derived epithelial monolayer cultures for these studies. GF mice up-regulated their EEC network, in terms of a general EEC marker chromogranin A (ChrA) expression, numbers of serotonin-producing enterochromaffin cells, and both hormone-producing K- and L-cells, with a corresponding increase in serum glucagon-like peptide-1 (GLP-1) levels. Bt conventionalization restored EEC numbers to levels in SPF mice with regional specificity; the effects on ChrA and L-cells were mainly in the small intestine, the effects on K-cells and EC cells were most apparent in the colon. By contrast, Lr did not restore EEC networks in conventionalized GF mice. Analysis of secretory epithelial cell monolayer cultures from whole small intestine showed that intestinal monolayers are variable and with the possible exclusion of GIP expressing cells, did not accurately reflect the EEC cell makeup seen in vivo. Regarding the mechanism of action of Bt on EECs, colonization of GF mice with Bt led to the production and accumulation of acetate, propionate and succinate (APS) in the caecum and colon, which when administered at physiological concentrations to GF mice via their drinking water for 10 days mimicked to a large extent the effects of Bt in GF mice. After withdrawal of APS, the changes in some EEC were maintained and, in some cases, were greater than during APS treatment. This data provides evidence of microbiota influences on regulating EEC networks in different regions of the GIT, with a single microbe, Bt, recapitulating its role in a process that may be dependent upon its fermentation products.
Collapse
Affiliation(s)
- Amisha Modasia
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Aimee Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Emily Jones
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Regis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Arlaine Brion
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Andrew Goldson
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Marianne Defernez
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Tom Wileman
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - L. Ashley Blackshaw
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
40
|
Beumer J, Gehart H, Clevers H. Enteroendocrine Dynamics - New Tools Reveal Hormonal Plasticity in the Gut. Endocr Rev 2020; 41:5856764. [PMID: 32531023 PMCID: PMC7320824 DOI: 10.1210/endrev/bnaa018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
The recent intersection of enteroendocrine cell biology with single-cell technologies and novel in vitro model systems has generated a tremendous amount of new data. Here we highlight these recent developments and explore how these findings contribute to the understanding of endocrine lineages in the gut. In particular, the concept of hormonal plasticity, the ability of endocrine cells to produce different hormones over the course of their lifetime, challenges the classic notion of cell types. Enteroendocrine cells travel in the course of their life through different signaling environments that directly influence their hormonal repertoire. In this context, we examine how enteroendocrine cell fate is determined and modulated by signaling molecules such as bone morphogenetic proteins (BMPs) or location along the gastrointestinal tract. We analyze advantages and disadvantages of novel in vitro tools, adult stem cell or iPS-derived intestinal organoids, that have been crucial for recent findings on enteroendocrine development and plasticity. Finally, we illuminate the future perspectives of the field and discuss how understanding enteroendocrine plasticity can lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, CT Utrecht, The Netherlands
| | - Helmuth Gehart
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, CT Utrecht, The Netherlands.,Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, CT Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute, CT Utrecht, The Netherlands
| |
Collapse
|
41
|
Yan T, Nian T, Li F, He B, Jia Y, Bi K, Wang Z. Salidroside from Rhodiola wallichiana var. cholaensis reverses insulin resistance and stimulates the GLP-1 secretion by alleviating ROS-mediated activation of MAPKs signaling pathway and mitigating apoptosis. J Food Biochem 2020; 44:e13446. [PMID: 32910486 DOI: 10.1111/jfbc.13446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
The present study was aimed to investigate the mechanisms of salidroside (SAL) from Rhodiola wallichiana var. cholaensis on hypoglycemic and oxidative stress responses. The palmitate (PA)-induced GLUTag cells model and the glucosamine-induced insulin resistance model in HepG2 cells were built. SAL led to the up-regulation of the serum glucagon-like peptide 1 (GLP-1) level by facilitating the SCFAs production, the promotion of GLP-1 synthesis by improving p38 MAPK phosphorylation and regulating insulin resistance. Moreover, the production of reactive oxygen species (ROS) and the expression of MAPKs were down-regulated. Furthermore, SAL was found to be able to inhibit PA-induced apoptosis that down-regulates cleaved caspase-3 and Bax expressions, while up-regulating Bcl-2 expression and up-regulates the Bcl-2/Bax ratio in glucosamine induced insulin resistance model. Besides, SAL can also up-regulate the mTOR/p70S6k signaling pathway in the PA-induced GLUTag cells model. Our data demonstrated that SAL could reverse insulin resistance and stimulates the GLP-1 secretion by alleviating ROS-mediated activation of MAPKs signaling pathway and mitigating apoptosis. PRACTICAL APPLICATIONS: Our data showed that SAL could increase the GLP-1 level by stimulating the SCFAs production and p38 phosphorylation and facilitate the IR and GLP-1 synthesis by alleviating ROS-mediated activation of MAPKs signaling pathway and mitigating apoptosis. Furthermore, the SAL has also stimulated the mTOR/p70S6k signaling pathway in PA-induced GLUTag cells model. The results provided a possibility to employ SAL for diabetes treatment.
Collapse
Affiliation(s)
- Tingxu Yan
- Jiangsu Kangyuan Pharmaceutical Co., Ltd, Lianyungang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tingting Nian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Fuyuan Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhenzhong Wang
- Jiangsu Kangyuan Pharmaceutical Co., Ltd, Lianyungang, China.,State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, China
| |
Collapse
|
42
|
Xie C, Jones KL, Rayner CK, Wu T. Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
43
|
Casanova-Martí À, González-Abuín N, Serrano J, Blay MT, Terra X, Frost G, Pinent M, Ardévol A. Long Term Exposure to a Grape Seed Proanthocyanidin Extract Enhances L-Cell Differentiation in Intestinal Organoids. Mol Nutr Food Res 2020; 64:e2000303. [PMID: 32613679 DOI: 10.1002/mnfr.202000303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Indexed: 01/08/2023]
Abstract
SCOPE A grape-seed proanthocyanidin extract (GSPE) interacts at the intestinal level, enhancing glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) release, which modulate appetite and glucose homeostasis. Thus, enhancing L-cell numbers could be a strategy to promote hormone production, providing a potential strategy for obesity and type-2 diabetes mellitus (T2DM) treatment. METHODS AND RESULTS Mice ileum organoids are used to evaluate the long-term effects of GSPE and two of its main components, epicatechin (EC) and gallic acid (GA), on intestinal differentiation. Hormone levels are determined using RIA and ELISA kits, and gene expression of transcription factors involved in intestinal cell differentiation, as well as markers of different cell types, are assessed by real-time qPCR. GSPE upregulates enterohormone gene expression and content, as well as the pan-endocrine marker chromogranin A. GSPE also modulates the temporal gene expression profile of early and late transcription factors involved in L-cell differentiation. Furthermore, GSPE upregulates goblet cell (Muc2) and enterocyte (sucraseisomaltase) markers, while downregulating stem cell markers (Lgr5+). Although EC and GA modified enterohormone release, they do not reproduce GSPE effects on transcription factor's profile. CONCLUSIONS This study shows the potential role of GSPE in promoting enteroendocrine differentiation, effect that is not mediated by EC or GA.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Noemi González-Abuín
- Section for Nutrition Research, Department of Metabolism, Digestion, and Reproduction, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Maria Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion, and Reproduction, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| |
Collapse
|
44
|
Huang WK, Xie C, Young RL, Zhao JB, Ebendorff-Heidepriem H, Jones KL, Rayner CK, Wu TZ. Development of innovative tools for investigation of nutrient-gut interaction. World J Gastroenterol 2020; 26:3562-3576. [PMID: 32742126 PMCID: PMC7366065 DOI: 10.3748/wjg.v26.i25.3562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is the key interface between the ingesta and the human body. There is wide recognition that the gastrointestinal response to nutrients or bioactive compounds, particularly the secretion of numerous hormones, is critical to the regulation of appetite, body weight and blood glucose. This concept has led to an increasing focus on "gut-based" strategies for the management of metabolic disorders, including type 2 diabetes and obesity. Understanding the underlying mechanisms and downstream effects of nutrient-gut interactions is fundamental to effective translation of this knowledge to clinical practice. To this end, an array of research tools and platforms have been developed to better understand the mechanisms of gut hormone secretion from enteroendocrine cells. This review discusses the evolution of in vitro and in vivo models and the integration of innovative techniques that will ultimately enable the development of novel therapies for metabolic diseases.
Collapse
Affiliation(s)
- Wei-Kun Huang
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cong Xie
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard L Young
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Diabetes, Nutrition and Gut Health, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Jiang-Bo Zhao
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Karen L Jones
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher K Rayner
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Tong-Zhi Wu
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
45
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
46
|
Campbell JR, Martchenko A, Sweeney ME, Maalouf MF, Psichas A, Gribble FM, Reimann F, Brubaker PL. Essential Role of Syntaxin-Binding Protein-1 in the Regulation of Glucagon-Like Peptide-1 Secretion. Endocrinology 2020; 161:5788420. [PMID: 32141504 PMCID: PMC7124137 DOI: 10.1210/endocr/bqaa039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Circadian secretion of the incretin, glucagon-like peptide-1 (GLP-1), correlates with expression of the core clock gene, Bmal1, in the intestinal L-cell. Several SNARE proteins known to be circadian in pancreatic α- and β-cells are also necessary for GLP-1 secretion. However, the role of the accessory SNARE, Syntaxin binding protein-1 (Stxbp1; also known as Munc18-1) in the L-cell is unknown. The aim of this study was to determine whether Stxbp1 is under circadian regulation in the L-cell and its role in the control of GLP-1 secretion. Stxbp1 was highly-enriched in L-cells, and STXBP1 was expressed in a subpopulation of L-cells in mouse and human intestinal sections. Stxbp1 transcripts and protein displayed circadian patterns in mGLUTag L-cells line, while chromatin-immunoprecipitation revealed increased interaction between BMAL1 and Stxbp1 at the peak time-point of the circadian pattern. STXBP1 recruitment to the cytosol and plasma membrane within 30 minutes of L-cell stimulation was also observed at this time-point. Loss of Stxbp1 in vitro and in vivo led to reduced stimulated GLP-1 secretion at the peak time-point of circadian release, and impaired GLP-1 secretion ex vivo. In conclusion, Stxbp1 is a circadian regulated exocytotic protein in the intestinal L-cell that is an essential regulatory component of GLP-1 secretion.
Collapse
Affiliation(s)
| | | | - Maegan E Sweeney
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael F Maalouf
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Arianna Psichas
- Departments of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fiona M Gribble
- Departments of Medicine, University of Toronto, Toronto, ON, Canada
| | - Frank Reimann
- Departments of Medicine, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
- Wellcome Trust-MRC Institute of Metabolic Science – Metabolic Research Laboratories (IMS-MRL), University of Cambridge, Cambridge, UK
- Correspondence: P.L. Brubaker, Rm. 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8. E-mail:
| |
Collapse
|
47
|
Abstract
In recent years, the importance of the gut microbiota in human health has been revealed and many publications have highlighted its role as a key component of human physiology. Owing to the use of modern sequencing approaches, the characterisation of the microbiome in healthy individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis, associated with pathological conditions. The microbiota establishes a symbiotic crosstalk with their host: commensal microbes benefit from the nutrient-rich environment provided by the gut and the microbiota produces hundreds of proteins and metabolites that modulate key functions of the host, including nutrient processing, maintenance of energy homoeostasis and immune system development. Many bacteria-derived metabolites originate from dietary sources. Among them, an important role has been attributed to the metabolites derived from the bacterial fermentation of dietary fibres, namely SCFA linking host nutrition to intestinal homoeostasis maintenance. SCFA are important fuels for intestinal epithelial cells (IEC) and regulate IEC functions through different mechanisms to modulate their proliferation, differentiation as well as functions of subpopulations such as enteroendocrine cells, to impact gut motility and to strengthen the gut barrier functions as well as host metabolism. Recent findings show that SCFA, and in particular butyrate, also have important intestinal and immuno-modulatory functions. In this review, we discuss the mechanisms and the impact of SCFA on gut functions and host immunity and consequently on human health.
Collapse
|
48
|
Lund ML, Sorrentino G, Egerod KL, Kroone C, Mortensen B, Knop FK, Reimann F, Gribble FM, Drucker DJ, de Koning EJP, Schoonjans K, Bäckhed F, Schwartz TW, Petersen N. L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes 2020; 69:614-623. [PMID: 32041793 PMCID: PMC7224989 DOI: 10.2337/db19-0764] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) mimetics are effective drugs for treatment of type 2 diabetes, and there is consequently extensive interest in increasing endogenous GLP-1 secretion and L-cell abundance. Here we identify G-protein-coupled bile acid receptor 1 (GPBAR1) as a selective regulator of intestinal L-cell differentiation. Lithocholic acid and the synthetic GPBAR1 agonist, L3740, selectively increased L-cell density in mouse and human intestinal organoids and elevated GLP-1 secretory capacity. L3740 induced expression of Gcg and transcription factors Ngn3 and NeuroD1 L3740 also increased the L-cell number and GLP-1 levels and improved glucose tolerance in vivo. Further mechanistic examination revealed that the effect of L3740 on L cells required intact GLP-1 receptor and serotonin 5-hydroxytryptamine receptor 4 (5-HT4) signaling. Importantly, serotonin signaling through 5-HT4 mimicked the effects of L3740, acting downstream of GLP-1. Thus, GPBAR1 agonists and other powerful GLP-1 secretagogues facilitate L-cell differentiation through a paracrine GLP-1-dependent and serotonin-mediated mechanism.
Collapse
Affiliation(s)
- Mari Lilith Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni Sorrentino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristoffer Lihme Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal Kroone
- Department of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Brynjulf Mortensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip Krag Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Frank Reimann
- Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| | - Fiona M Gribble
- Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| | - Daniel J Drucker
- Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Centre, Leiden, the Netherlands
- Hubrecht Institute/Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular and Clinical Medicine at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
50
|
Sato M, Inaba A, Iwatsuki K, Saito Y, Tadaishi M, Shimizu M, Kobayashi-Hattori K. Identification of Reg3β-producing cells using IL-22-stimulated enteroids. Biosci Biotechnol Biochem 2020; 84:594-597. [PMID: 31760857 DOI: 10.1080/09168451.2019.1695575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Reg3β, a lectin, displays antibacterial activity. This study investigated Reg3β-expressing cells using IL-22-stimulated enteroids. IL-22 stimulation elevated the mRNA and protein levels of Reg3β. IL-22 also increased the mRNA levels of CD133 (a transit-amplifying cell marker) and lysozyme (a Paneth cell marker). Immunohistochemistry showed partial colocalization of Reg3β- and lysozyme-positive cells, suggesting that Paneth cells are one of Reg3β-producing cells.
Collapse
Affiliation(s)
- Mika Sato
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Akihiko Inaba
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ken Iwatsuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuki Saito
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Miki Tadaishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Makoto Shimizu
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kazuo Kobayashi-Hattori
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|