1
|
Heni M. The insulin resistant brain: impact on whole-body metabolism and body fat distribution. Diabetologia 2024; 67:1181-1191. [PMID: 38363340 PMCID: PMC11153284 DOI: 10.1007/s00125-024-06104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024]
Abstract
Insulin exerts its actions not only on peripheral organs but is also transported into the brain where it performs distinct functions in various brain regions. This review highlights recent advancements in our understanding of insulin's actions within the brain, with a specific emphasis on investigations in humans. It summarises current knowledge on the transport of insulin into the brain. Subsequently, it showcases robust evidence demonstrating the existence and physiological consequences of brain insulin action, while also introducing the presence of brain insulin resistance in humans. This pathophysiological condition goes along with an impaired acute modulation of peripheral metabolism in response to brain insulin action, particularly in the postprandial state. Furthermore, brain insulin resistance has been associated with long-term adiposity and an unfavourable adipose tissue distribution, thus implicating it in the pathogenesis of subgroups of obesity and (pre)diabetes that are characterised by distinct patterns of body fat distribution. Encouragingly, emerging evidence suggests that brain insulin resistance could represent a treatable entity, thereby opening up novel therapeutic avenues to improve systemic metabolism and enhance brain functions, including cognition. The review closes with an outlook towards prospective research directions aimed at further elucidating the clinical implications of brain insulin resistance. It emphasises the critical need to establish feasible diagnostic measures and effective therapeutic interventions.
Collapse
Affiliation(s)
- Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany.
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Hummel J, Benkendorff C, Fritsche L, Prystupa K, Vosseler A, Gancheva S, Trenkamp S, Birkenfeld AL, Preissl H, Roden M, Häring HU, Fritsche A, Peter A, Wagner R, Kullmann S, Heni M. Brain insulin action on peripheral insulin sensitivity in women depends on menstrual cycle phase. Nat Metab 2023; 5:1475-1482. [PMID: 37735274 PMCID: PMC10513929 DOI: 10.1038/s42255-023-00869-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/19/2023] [Indexed: 09/23/2023]
Abstract
Insulin action in the human brain modulates eating behaviour, whole-body metabolism and body fat distribution1,2. In particular, brain insulin action increases whole-body insulin sensitivity, but these studies were mainly performed in lean men3,4. Here we investigate metabolic and hypothalamic effects of brain insulin action in women with a focus on the impact of menstrual cycle ( ClinicalTrials.gov registration: NCT03929419 ).Eleven women underwent four hyperinsulinemic-euglycemic clamps, two in the follicular phase and two in the luteal phase. Brain insulin action was introduced using nasal insulin spray5-7 and compared to placebo spray in a fourfold crossover design with change in glucose infusion rate as the primary endpoint. Here we show that during the follicular phase, more glucose has to be infused after administration of nasal insulin than after administration of placebo. This remains significant after adjustment for blood glucose and insulin. During the luteal phase, no significant influence of brain insulin action on glucose infusion rate is detected after adjustment for blood glucose and insulin (secondary endpoint). In 15 other women, hypothalamic insulin sensitivity was assessed in a within-subject design by functional magnetic resonance imaging with intranasal insulin administration8. Hypothalamus responsivity is influenced by insulin in the follicular phase but not the luteal phase.Our study therefore highlights that brain insulin action improves peripheral insulin sensitivity also in women but only during the follicular phase. Thus, brain insulin resistance could contribute to whole-body insulin resistance in the luteal phase of the menstrual cycle.
Collapse
Affiliation(s)
- Julia Hummel
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University of Ulm, Ulm, Germany
| | - Charlotte Benkendorff
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katsiaryna Prystupa
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Vosseler
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Trenkamp
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University of Ulm, Ulm, Germany.
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Becerra LA, Gavrieli A, Khan F, Novak P, Lioutas V, Ngo LH, Novak V, Mantzoros CS. Daily intranasal insulin at 40IU does not affect food intake and body composition: A placebo-controlled trial in older adults over a 24-week period with 24-weeks of follow-up. Clin Nutr 2023; 42:825-834. [PMID: 37084469 PMCID: PMC10330069 DOI: 10.1016/j.clnu.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Centrally administered insulin stimulates the reward system to reduce appetite in response to food intake in animal studies. In humans, studies have shown conflicting results, with some studies suggesting that intranasal insulin (INI) in relatively high doses may decrease appetite, body fat, and weight in various populations. These hypotheses have not been tested in a large longitudinal placebo-controlled study. Participants in the Memory Advancement with Intranasal Insulin in Type 2 Diabetes (MemAID) trial were enrolled in this study. This study on energy homeostasis enrolled 89 participants who completed baseline and at least 1 intervention visit (42 women; age 65 ± 9 years; 46 INI, 38 with type 2 diabetes) and 76 completed treatment (16 women, age 64 ± 9; 38 INI, 34 with type 2 diabetes). The primary outcome was the INI effect on food intake. Secondary outcomes included the effect of INI on appetite and anthropometric measures, including body weight and body composition. In exploratory analyses, we tested the interaction of treatment with gender, body mass index (BMI), and diagnosis of type 2 diabetes. There was no INI effect on food intake or any of the secondary outcomes. INI also showed no differential effect on primary and secondary outcomes when considering gender, BMI, and type 2 diabetes. INI did not alter appetite or hunger nor cause weight loss when used at 40 I.U. intranasally daily for 24 weeks in older adults with and without type 2 diabetes.
Collapse
Affiliation(s)
- Laura Aponte Becerra
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anna Gavrieli
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Faizan Khan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Novak
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vasileios Lioutas
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Long H Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
4
|
Kullmann S, Goj T, Veit R, Fritsche L, Wagner L, Schneeweiss P, Hoene M, Hoffmann C, Machann J, Niess A, Preissl H, Birkenfeld AL, Peter A, Häring HU, Fritsche A, Moller A, Weigert C, Heni M. Exercise restores brain insulin sensitivity in sedentary adults who are overweight and obese. JCI Insight 2022; 7:161498. [PMID: 36134657 DOI: 10.1172/jci.insight.161498] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDInsulin resistance of the brain can unfavorably affect long-term weight maintenance and body fat distribution. Little is known if and how brain insulin sensitivity can be restored in humans. We aimed to evaluate the effects of an exercise intervention on insulin sensitivity of the brain and how this relates to exercise-induced changes in whole-body metabolism and behavior.METHODSIn this clinical trial, sedentary participants who were overweight and obese underwent an 8-week supervised aerobic training intervention. Brain insulin sensitivity was assessed in 21 participants (14 women, 7 men; age range 21-59 years; BMI range 27.5-45.5 kg/m2) using functional MRI, combined with intranasal administration of insulin, before and after the intervention.RESULTSThe exercise program resulted in enhanced brain insulin action to the level of a person of healthy weight, demonstrated by increased insulin-induced striatal activity and strengthened hippocampal functional connectivity. Improved brain insulin action correlated with increased mitochondrial respiration in skeletal muscle, reductions in visceral fat and hunger, as well as improved cognition. Mediation analyses suggest that improved brain insulin responsiveness helps mediate the peripheral exercise effects leading to healthier body fat distribution and reduced perception of hunger.CONCLUSIONOur study demonstrates that an 8-week exercise intervention in sedentary individuals can restore insulin action in the brain. Hence, the ameliorating benefits of exercise toward brain insulin resistance may provide an objective therapeutic target in humans in the challenge to reduce diabetes risk factors.TRIAL REGISTRATIONClinicalTrials.gov (NCT03151590).FUNDINGBMBF/DZD 01GI0925.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Thomas Goj
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute for Clinical Chemistry and Pathobiochemistry and
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Lore Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Patrick Schneeweiss
- Department of Sports Medicine, University Hospital Tübingen, Germany.,Interfaculty Research Institute for Sport and Physical Activity, University of Tübingen, Tübingen, Germany
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry and
| | | | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Radiology, Section on Experimental Radiology, University Hospital Tübingen, Germany
| | - Andreas Niess
- Department of Sports Medicine, University Hospital Tübingen, Germany.,Interfaculty Research Institute for Sport and Physical Activity, University of Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute for Clinical Chemistry and Pathobiochemistry and
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anja Moller
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Cora Weigert
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute for Clinical Chemistry and Pathobiochemistry and
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry and.,Division of Endocrinology and Diabetology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
5
|
Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr Rev 2022; 43:507-557. [PMID: 35552683 PMCID: PMC9113190 DOI: 10.1210/endrev/bnab034] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
Recent insights into the pathophysiologic underlying mechanisms of obesity have led to the discovery of several promising drug targets and novel therapeutic strategies to address the global obesity epidemic and its comorbidities. Current pharmacologic options for obesity management are largely limited in number and of modest efficacy/safety profile. Therefore, the need for safe and more efficacious new agents is urgent. Drugs that are currently under investigation modulate targets across a broad range of systems and tissues, including the central nervous system, gastrointestinal hormones, adipose tissue, kidney, liver, and skeletal muscle. Beyond pharmacotherapeutics, other potential antiobesity strategies are being explored, including novel drug delivery systems, vaccines, modulation of the gut microbiome, and gene therapy. The present review summarizes the pathophysiology of energy homeostasis and highlights pathways being explored in the effort to develop novel antiobesity medications and interventions but does not cover devices and bariatric methods. Emerging pharmacologic agents and alternative approaches targeting these pathways and relevant research in both animals and humans are presented in detail. Special emphasis is given to treatment options at the end of the development pipeline and closer to the clinic (ie, compounds that have a higher chance to be added to our therapeutic armamentarium in the near future). Ultimately, advancements in our understanding of the pathophysiology and interindividual variation of obesity may lead to multimodal and personalized approaches to obesity treatment that will result in safe, effective, and sustainable weight loss until the root causes of the problem are identified and addressed.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew J Belanger
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Chrysi C Koliaki
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Guzzardi MA, La Rosa F, Campani D, Collado MC, Monleon D, Cacciato Insilla A, Tripodi M, Zega A, Dattilo A, Brunetto MR, Maffei M, Bonino F, Iozzo P. Liver and White/Brown Fat Dystrophy Associates with Gut Microbiota and Metabolomic Alterations in 3xTg Alzheimer's Disease Mouse Model. Metabolites 2022; 12:278. [PMID: 35448465 PMCID: PMC9028874 DOI: 10.3390/metabo12040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic impairments and liver and adipose depots alterations were reported in subjects with Alzheimer's disease (AD), highlighting the role of the liver-adipose-tissue-brain axis in AD pathophysiology. The gut microbiota might play a modulating role. We investigated the alterations to the liver and white/brown adipose tissues (W/BAT) and their relationships with serum and gut metabolites and gut bacteria in a 3xTg mouse model during AD onset (adulthood) and progression (aging) and the impact of high-fat diet (HFD) and intranasal insulin (INI). Glucose metabolism (18FDG-PET), tissue radiodensity (CT), liver and W/BAT histology, BAT-thermogenic markers were analyzed. 16S-RNA sequencing and mass-spectrometry were performed in adult (8 months) and aged (14 months) 3xTg-AD mice with a high-fat or control diet. Generalized and HFD resistant deficiency of lipid accumulation in both liver and W/BAT, hypermetabolism in WAT (adulthood) and BAT (aging), abnormal cytokine-hormone profiles, and liver inflammation were observed in 3xTg mice; INI could antagonize all these alterations. Specific gut microbiota-metabolome profiles correlated with a significant disruption of the gut-microbiota-liver-adipose axis in AD mice. In conclusion, fat dystrophy in liver and adipose depots contributes to AD progression, and associates with altered profiles of the gut microbiota, which candidates as an appealing early target for preventive intervention.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (M.T.); (A.Z.); (M.M.); (P.I.)
| | - Federica La Rosa
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (M.T.); (A.Z.); (M.M.); (P.I.)
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain;
| | - Daniel Monleon
- Faculty of Medicine, Health Research Institute INCLIVA/CIBERFES for Frailty and Healthy Aging, University of Valencia, 46003 Valencia, Spain;
| | - Andrea Cacciato Insilla
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Maria Tripodi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (M.T.); (A.Z.); (M.M.); (P.I.)
| | - Alessandro Zega
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (M.T.); (A.Z.); (M.M.); (P.I.)
| | | | - Maurizia Rossana Brunetto
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
- Hepatology Unit, Department of Medical Specialties, Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, 56124 Pisa, Italy
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Margherita Maffei
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (M.T.); (A.Z.); (M.M.); (P.I.)
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (M.T.); (A.Z.); (M.M.); (P.I.)
| |
Collapse
|
7
|
Kullmann S, Hummel J, Wagner R, Dannecker C, Vosseler A, Fritsche L, Veit R, Kantartzis K, Machann J, Birkenfeld AL, Stefan N, Häring HU, Peter A, Preissl H, Fritsche A, Heni M. Empagliflozin Improves Insulin Sensitivity of the Hypothalamus in Humans With Prediabetes: A Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial. Diabetes Care 2022; 45:398-406. [PMID: 34716213 PMCID: PMC8914418 DOI: 10.2337/dc21-1136] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Insulin action in the human brain reduces food intake, improves whole-body insulin sensitivity, and modulates body fat mass and its distribution. Obesity and type 2 diabetes are often associated with brain insulin resistance, resulting in impaired brain-derived modulation of peripheral metabolism. So far, no pharmacological treatment for brain insulin resistance has been established. Since sodium-glucose cotransporter 2 (SGLT2) inhibitors lower glucose levels and modulate energy metabolism, we hypothesized that SGLT2 inhibition may be a pharmacological approach to reverse brain insulin resistance. RESEARCH DESIGN AND METHODS In this randomized, double-blind, placebo-controlled clinical trial, 40 patients (mean ± SD; age 60 ± 9 years; BMI 31.5 ± 3.8 kg/m2) with prediabetes were randomized to receive 25 mg empagliflozin every day or placebo. Before and after 8 weeks of treatment, brain insulin sensitivity was assessed by functional MRI combined with intranasal administration of insulin to the brain. RESULTS We identified a significant interaction between time and treatment in the hypothalamic response to insulin. Post hoc analyses revealed that only empagliflozin-treated patients experienced increased hypothalamic insulin responsiveness. Hypothalamic insulin action significantly mediated the empagliflozin-induced decrease in fasting glucose and liver fat. CONCLUSIONS Our results corroborate insulin resistance of the hypothalamus in humans with prediabetes. Treatment with empagliflozin for 8 weeks was able to restore hypothalamic insulin sensitivity, a favorable response that could contribute to the beneficial effects of SGLT2 inhibitors. Our findings position SGLT2 inhibition as the first pharmacological approach to reverse brain insulin resistance, with potential benefits for adiposity and whole-body metabolism.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Julia Hummel
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Robert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Corinna Dannecker
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Andreas Vosseler
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Konstantinos Kantartzis
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Department of Diagnostic and Interventional Radiology, Section of Experimental Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Interfaculty Center for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Porniece Kumar M, Cremer AL, Klemm P, Steuernagel L, Sundaram S, Jais A, Hausen AC, Tao J, Secher A, Pedersen TÅ, Schwaninger M, Wunderlich FT, Lowell BB, Backes H, Brüning JC. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat Metab 2021; 3:1662-1679. [PMID: 34931084 PMCID: PMC8688146 DOI: 10.1038/s42255-021-00499-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022]
Abstract
Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Marta Porniece Kumar
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Anna Lena Cremer
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Paul Klemm
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Sivaraj Sundaram
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - A Christine Hausen
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jenkang Tao
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Anna Secher
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - F Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Heiko Backes
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
9
|
Stahel P, Xiao C, Nahmias A, Tian L, Lewis GF. Multi-organ Coordination of Lipoprotein Secretion by Hormones, Nutrients and Neural Networks. Endocr Rev 2021; 42:815-838. [PMID: 33743013 PMCID: PMC8599201 DOI: 10.1210/endrev/bnab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease. Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut [glucagon-like peptide 1 (GLP-1) and 2 (GLP-2), ghrelin, cholecystokinin (CCK), peptide YY], adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signaling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion. Some of these factors have been extensively studied and shown to have robust regulatory effects whereas others are "emerging" regulators, whose significance remains to be determined. The quantitative importance of these factors relative to one another and relative to the key regulatory role of lipid availability remains largely unknown. Our understanding of the complex interorgan regulation of TRL secretion is rapidly evolving to appreciate the extensive hormonal, nutritional, and neural signals emanating not only from gut and liver but also from the brain, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Avital Nahmias
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary Franklin Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
11
|
Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ. Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrinol Metab 2021; 321:E156-E163. [PMID: 34056920 PMCID: PMC8321819 DOI: 10.1152/ajpendo.00642.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The brain has been traditionally thought to be insensitive to insulin, primarily because insulin does not stimulate glucose uptake/metabolism in the brain (as it does in classic insulin-sensitive tissues such as muscle, liver, and fat). However, over the past 20 years, research in this field has identified unique actions of insulin in the brain. There is accumulating evidence that insulin crosses into the brain and regulates central nervous system functions such as feeding, depression, and cognitive behavior. In addition, insulin acts in the brain to regulate systemic functions such as hepatic glucose production, lipolysis, lipogenesis, reproductive competence, and the sympathoadrenal response to hypoglycemia. Decrements in brain insulin action (or brain insulin resistance) can be observed in obesity, type 2 diabetes (T2DM), aging, and Alzheimer's disease (AD), indicating a possible link between metabolic and cognitive health. Here, we describe recent findings on the pleiotropic actions of insulin in the brain and highlight the precise sites, specific neuronal population, and roles for supportive astrocytic cells through which insulin acts in the brain. In addition, we also discuss how boosting brain insulin action could be a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases such as AD and T2DM. Overall, this perspective article serves to highlight some of these key scientific findings, identify unresolved issues, and indicate future directions of research in this field that would serve to improve the lives of people with metabolic and cognitive dysfunctions.
Collapse
Affiliation(s)
- Rahul Agrawal
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Candace M Reno
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sunny Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Camille Christensen
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yiqing Huang
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Simon J Fisher
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
12
|
Lewis GF, Carpentier AC, Pereira S, Hahn M, Giacca A. Direct and indirect control of hepatic glucose production by insulin. Cell Metab 2021; 33:709-720. [PMID: 33765416 DOI: 10.1016/j.cmet.2021.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
There is general agreement that the acute suppression of hepatic glucose production by insulin is mediated by both a direct and an indirect effect on the liver. There is, however, no consensus regarding the relative magnitude of these effects under physiological conditions. Extensive research over the past three decades in humans and animal models has provided discordant results between these two modes of insulin action. Here, we review the field to make the case that physiologically direct hepatic insulin action dominates acute suppression of glucose production, but that there is also a delayed, second order regulation of this process via extrahepatic effects. We further provide our views regarding the timing, dominance, and physiological relevance of these effects and discuss novel concepts regarding insulin regulation of adipose tissue fatty acid metabolism and central nervous system (CNS) signaling to the liver, as regulators of insulin's extrahepatic effects on glucose production.
Collapse
Affiliation(s)
- Gary F Lewis
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Andre C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sandra Pereira
- Centre for Addiction and Mental Health and Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Margaret Hahn
- Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Adria Giacca
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Rebelos E, Rinne JO, Nuutila P, Ekblad LL. Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline-Does Insulin Have Anything to Do with It? A Narrative Review. J Clin Med 2021; 10:jcm10071532. [PMID: 33917464 PMCID: PMC8038699 DOI: 10.3390/jcm10071532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Imaging brain glucose metabolism with fluorine-labelled fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) has long been utilized to aid the diagnosis of memory disorders, in particular in differentiating Alzheimer’s disease (AD) from other neurological conditions causing cognitive decline. The interest for studying brain glucose metabolism in the context of metabolic disorders has arisen more recently. Obesity and type 2 diabetes—two diseases characterized by systemic insulin resistance—are associated with an increased risk for AD. Along with the well-defined patterns of fasting [18F]-FDG-PET changes that occur in AD, recent evidence has shown alterations in fasting and insulin-stimulated brain glucose metabolism also in obesity and systemic insulin resistance. Thus, it is important to clarify whether changes in brain glucose metabolism are just an epiphenomenon of the pathophysiology of the metabolic and neurologic disorders, or a crucial determinant of their pathophysiologic cascade. In this review, we discuss the current knowledge regarding alterations in brain glucose metabolism, studied with [18F]-FDG-PET from metabolic disorders to AD, with a special focus on how manipulation of insulin levels affects brain glucose metabolism in health and in systemic insulin resistance. A better understanding of alterations in brain glucose metabolism in health, obesity, and neurodegeneration, and the relationships between insulin resistance and central nervous system glucose metabolism may be an important step for the battle against metabolic and cognitive disorders.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
| | - Juha O. Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
- Department of Endocrinology, Turku University Hospital, 20520 Turku, Finland
| | - Laura L. Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
- Correspondence: ; Tel.: +358-2-3138721
| |
Collapse
|
14
|
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol 2021; 33:e12952. [PMID: 33656205 DOI: 10.1111/jne.12952] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Food intake and energy expenditure are regulated by peripheral signals providing feedback on nutrient status and adiposity to the central nervous system. One of these signals is the pancreatic hormone, insulin. Unlike peripheral administration of insulin, which often causes weight gain, central administration of insulin leads to a reduction in food intake and body weight when administered long-term. This is a result of feedback processes in regions of the brain that regulate food intake. Within the hypothalamus, the arcuate nucleus (ARC) contains subpopulations of neurones that produce orexinergic neuropeptides agouti-related peptide (AgRP)/neuropeptide Y (NPY) and anorexigenic neuropeptides, pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular infusion of insulin down-regulates the expression of AgRP/NPY at the same time as up-regulating expression of POMC/CART. Recent evidence suggests that insulin activity within the amygdala may play an important role in regulating energy balance. Insulin infusion into the central nucleus of the amygdala (CeA) can decrease food intake, possibly by modulating activity of NPY and other neurone subpopulations. Insulin signalling within the CeA can also influence stress-induced obesity. Overall, it is evident that the CeA is a critical target for insulin signalling and the regulation of energy balance.
Collapse
Affiliation(s)
| | - Denovan P Begg
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Abstract
The intranasal (IN) route enables the delivery of insulin to the central nervous system in the relative absence of systemic uptake and related peripheral side effects. Intranasally administered insulin is assumed to travel along olfactory and adjacent pathways and has been shown to rapidly accumulate in cerebrospinal fluid, indicating efficient transport to the brain. Two decades of studies in healthy humans and patients have demonstrated that IN insulin exerts functional effects on metabolism, such as reductions in food intake and body weight and improvements of glucose homeostasis, as well as cognition, ie, enhancements of memory performance both in healthy individuals and patients with mild cognitive impairment or Alzheimer's disease; these studies moreover indicate a favourable safety profile of the acute and repeated use of IN insulin. Emerging findings suggest that IN insulin also modulates neuroendocrine activity, sleep-related mechanisms, sensory perception and mood. Some, but not all studies point to sex differences in the response to IN insulin that need to be further investigated along with the impact of age. "Brain insulin resistance" is an evolving concept that posits impairments in central nervous insulin signalling as a pathophysiological factor in metabolic and cognitive disorders such as obesity, type 2 diabetes and Alzheimer's disease, and, notably, a target of interventions that rely on IN insulin. Still, the negative outcomes of longer-term IN insulin trials in individuals with obesity or Alzheimer's disease highlight the need for conceptual as well as methodological advances to translate the promising results of proof-of-concept experiments and pilot clinical trials into the successful clinical application of IN insulin.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Tashima T. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules 2020; 25:E5188. [PMID: 33171799 PMCID: PMC7664636 DOI: 10.3390/molecules25215188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
The direct delivery of central nervous system (CNS) drugs into the brain after administration is an ideal concept due to its effectiveness and non-toxicity. However, the blood-brain barrier (BBB) prevents drugs from penetrating the capillary endothelial cells, blocking their entry into the brain. Thus, alternative approaches must be developed. The nasal cavity directly leads from the olfactory epithelium to the brain through the cribriform plate of the skull bone. Nose-to-brain drug delivery could solve the BBB-related repulsion problem. Recently, it has been revealed that insulin improved Alzheimer's disease (AD)-related dementia. Several ongoing AD clinical trials investigate the use of intranasal insulin delivery. Related to the real trajectory, intranasal labeled-insulins demonstrated distribution into the brain not only along the olfactory nerve but also the trigeminal nerve. Nonetheless, intranasally administered insulin was delivered into the brain. Therefore, insulin conjugates with covalent or non-covalent cargos, such as AD or other CNS drugs, could potentially contribute to a promising strategy to cure CNS-related diseases. In this review, I will introduce the CNS drug delivery approach into the brain using nanodelivery strategies for insulin through transcellular routes based on receptor-mediated transcytosis or through paracellular routes based on escaping the tight junction at the olfactory epithelium.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama, Kanagawa 222-0035, Japan
| |
Collapse
|
17
|
Gancheva S, Caspari D, Bierwagen A, Jelenik T, Caprio S, Santoro N, Rothe M, Markgraf DF, Herebian D, Hwang JH, Öner-Sieben S, Mennenga J, Pacini G, Thimm E, Schlune A, Meissner T, Vom Dahl S, Klee D, Mayatepek E, Roden M, Ensenauer R. Cardiometabolic risk factor clustering in patients with deficient branched-chain amino acid catabolism: A case-control study. J Inherit Metab Dis 2020; 43:981-993. [PMID: 32118306 DOI: 10.1002/jimd.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Classical organic acidemias (OAs) result from defective mitochondrial catabolism of branched-chain amino acids (BCAAs). Abnormal mitochondrial function relates to oxidative stress, ectopic lipids and insulin resistance (IR). We investigated whether genetically impaired function of mitochondrial BCAA catabolism associates with cardiometabolic risk factors, altered liver and muscle energy metabolism, and IR. In this case-control study, 31 children and young adults with propionic acidemia (PA), methylmalonic acidemia (MMA) or isovaleric acidemia (IVA) were compared with 30 healthy young humans using comprehensive metabolic phenotyping including in vivo 31 P/1 H magnetic resonance spectroscopy of liver and skeletal muscle. Among all OAs, patients with PA exhibited abdominal adiposity, IR, fasting hyperglycaemia and hypertriglyceridemia as well as increased liver fat accumulation, despite dietary energy intake within recommendations for age and sex. In contrast, patients with MMA more frequently featured higher energy intake than recommended and had a different phenotype including hepatomegaly and mildly lower skeletal muscle ATP content. In skeletal muscle of patients with PA, slightly lower inorganic phosphate levels were found. However, hepatic ATP and inorganic phosphate concentrations were not different between all OA patients and controls. In patients with IVA, no abnormalities were detected. Impaired BCAA catabolism in PA, but not in MMA or IVA, was associated with a previously unrecognised, metabolic syndrome-like phenotype with abdominal adiposity potentially resulting from ectopic lipid storage. These findings suggest the need for early cardiometabolic risk factor screening in PA.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Daria Caspari
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alessandra Bierwagen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Sonia Caprio
- Department of Pediatrics, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nicola Santoro
- Department of Pediatrics, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V.Tiberio" University of Molise Via de Sanctis, Campobasso, Italy
| | - Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Soner Öner-Sieben
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jasmin Mennenga
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Giovanni Pacini
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Schlune
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephan Vom Dahl
- Division of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dirk Klee
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Regina Ensenauer
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| |
Collapse
|
18
|
Markaki I, Winther K, Catrina SB, Svenningsson P. Repurposing GLP1 agonists for neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:91-112. [PMID: 32854860 DOI: 10.1016/bs.irn.2020.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is a large unmet medical need to find disease modifying therapies against neurodegenerative diseases. This review summarizes data indicating that insulin resistance occurs in neurodegeneration and strategies to normalize insulin sensitivity in neurons may provide neuroprotective actions. In particular, recent preclinical and clinical studies in Parkinson's disease and Alzheimer's disease have indicated that glucagon-like peptide 1 (GLP1) agonism and dipeptidyl peptidase-4 inhibition may exert neuroprotection. Mechanistic insights from these studies and future directions for drug development against neurodegeneration based on GLP1 agonism are discussed.
Collapse
Affiliation(s)
- Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm, Sweden.
| | - Kristian Winther
- Center of Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Center of Diabetes, Academic Specialist Center, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
19
|
Kullmann S, Kleinridders A, Small DM, Fritsche A, Häring HU, Preissl H, Heni M. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol 2020; 8:524-534. [PMID: 32445739 DOI: 10.1016/s2213-8587(20)30113-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/22/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
Insulin acts on the CNS to modulate behaviour and systemic metabolism. Disturbances in brain insulin action represent a possible link between metabolic and cognitive health. Current findings from human research suggest that boosting central insulin action in the brain modulates peripheral metabolism, enhancing whole-body insulin sensitivity and suppressing endogenous glucose production. Moreover, central insulin action curbs food intake by reducing the salience of highly palatable food cues and increasing cognitive control. Animal models show that the mesocorticolimbic circuitry is finely tuned in response to insulin, driven mainly by the dopamine system. These mechanisms are impaired in people with obesity, which might increase their risk of developing type 2 diabetes and associated diseases. Overall, current findings highlight the role of insulin action in the brain and its consequences on peripheral metabolism and cognition. Hence, improving central insulin action could represent a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - André Kleinridders
- German Center for Diabetes Research, Neuherberg, Germany; Central Regulation of Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Dana M Small
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Psychiatry, Yale University, New Haven, CT, USA; Modern Diet and Physiology Research Centre, Yale University, New Haven, CT, USA
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
20
|
Carey M, Lontchi-Yimagou E, Mitchell W, Reda S, Zhang K, Kehlenbrink S, Koppaka S, Maginley SR, Aleksic S, Bhansali S, Huffman DM, Hawkins M. Central K ATP Channels Modulate Glucose Effectiveness in Humans and Rodents. Diabetes 2020; 69:1140-1148. [PMID: 32217610 PMCID: PMC7243288 DOI: 10.2337/db19-1256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this "glucose effectiveness" is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). KATP channels in the central nervous system have been shown to regulate EGP in humans and rodents. We examined the contribution of central KATP channels to glucose effectiveness. Under fixed hormonal conditions (studies using a pancreatic clamp), hyperglycemia suppressed EGP by ∼50% in both humans without diabetes and normal Sprague-Dawley rats. By contrast, antagonism of KATP channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes were abolished in rats by intracerebroventricular administration of the KATP channel agonist diazoxide. These findings indicate that about half of the suppression of EGP by hyperglycemia is mediated by central KATP channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in subjects with T2D.
Collapse
Affiliation(s)
- Michelle Carey
- Albert Einstein College of Medicine, Bronx, NY
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | | | | | - Sarah Reda
- Albert Einstein College of Medicine, Bronx, NY
| | - Kehao Zhang
- Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Brain insulin sensitivity is linked to adiposity and body fat distribution. Nat Commun 2020; 11:1841. [PMID: 32296068 PMCID: PMC7160151 DOI: 10.1038/s41467-020-15686-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/23/2020] [Indexed: 01/09/2023] Open
Abstract
Brain insulin action regulates eating behavior and energy fluxes throughout the body. However, numerous people are brain insulin resistant. How brain insulin responsiveness affects long-term weight and body fat composition in humans is still unknown. Here we show that high brain insulin sensitivity before lifestyle intervention associates with a more pronounced reduction in total and visceral fat during the program. High brain insulin sensitivity is also associated with less regain of fat mass during a nine year follow-up. Cross-sectionally, strong insulin responsiveness of the hypothalamus associates with less visceral fat, while subcutaneous fat is unrelated. Our results demonstrate that high brain insulin sensitivity is linked to weight loss during lifestyle intervention and associates with a favorable body fat distribution. Since visceral fat is strongly linked to diabetes, cardiovascular risk and cancer, these findings have implications beyond metabolic diseases and indicate the necessity of strategies to resolve brain insulin resistance. Brain insulin action regulates eating behavior and whole-body energy fluxes, however the impact of brain insulin resistance on long-term weight and body fat composition is unknown. Here, the authors show that high brain insulin sensitivity is linked to weight loss during lifestyle intervention and associates with a favorable body fat distribution.
Collapse
|
22
|
Abstract
Obesity and type 2 diabetes are the most frequent metabolic disorders, but their causes remain largely unclear. Insulin resistance, the common underlying abnormality, results from imbalance between energy intake and expenditure favouring nutrient-storage pathways, which evolved to maximize energy utilization and preserve adequate substrate supply to the brain. Initially, dysfunction of white adipose tissue and circulating metabolites modulate tissue communication and insulin signalling. However, when the energy imbalance is chronic, mechanisms such as inflammatory pathways accelerate these abnormalities. Here we summarize recent studies providing insights into insulin resistance and increased hepatic gluconeogenesis associated with obesity and type 2 diabetes, focusing on data from humans and relevant animal models.
Collapse
|
23
|
Shikov AN, Pozharitskaya ON, Faustova NM, Kosman VM, Makarov VG, Razzazi-Fazeli E, Novak J. Pharmacokinetic Study of Bioactive Glycopeptide from Strongylocentrotus droebachiensis After Intranasal Administration to Rats Using Biomarker Approach. Mar Drugs 2019; 17:E577. [PMID: 31614490 PMCID: PMC6835498 DOI: 10.3390/md17100577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
A glycopeptide fraction (GPF) from internal organs of green sea urchins (Strongylocentrotus droebachiensis Müller, Strongylocentrotidae) has been reported to be an effective bronchitis treatment. In this study, we evaluated the pharmacokinetic and tissue distribution of GPF, following single and repeated intranasal (i/n) administration over the course of seven days in rats. The method measuring lactate dehydrogenase as biomarker was used to analyse the plasma and tissue concentrations of GPF. GPF appears in the plasma 15 min after single i/n administration (100 µg/kg) and reaches its maximum at 45 min. The area under the curve (AUC)0-24 and Cmax were similar using both i/n and intravenous administration, while mean residence time (MRT) and T1/2 after i/n administration were significantly higher compared with intravenous (i/v) administration. The absolute bioavailability of GPF after i/n administration was 89%. The values of tissue availability (ft) provided evidence about the highest concentration of GPF in the nose mucosa (ft = 34.9), followed by spleen (ft = 4.1), adrenal glands (ft = 3.8), striated muscle (ft = 1.8), kidneys (ft = 0.5), and liver (ft = 0.3). After repeated dose administration, GPF exhibited significantly higher AUC0-24 and MRT, indicating its accumulation in the plasma.
Collapse
Affiliation(s)
- Alexander N. Shikov
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia
| | - Olga N. Pozharitskaya
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Natalia M. Faustova
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Vera M. Kosman
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Valery G. Makarov
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Ebrahim Razzazi-Fazeli
- Vetcore facility for Research, University of Veterinary Medicine, Veterinärplatz 1. 1210 Wien, Austria;
| | - Johannes Novak
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinärplatz 1. 1210 Wien, Austria;
| |
Collapse
|
24
|
Hackl MT, Fürnsinn C, Schuh CM, Krssak M, Carli F, Guerra S, Freudenthaler A, Baumgartner-Parzer S, Helbich TH, Luger A, Zeyda M, Gastaldelli A, Buettner C, Scherer T. Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis. Nat Commun 2019; 10:2717. [PMID: 31222048 PMCID: PMC6586634 DOI: 10.1038/s41467-019-10684-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Hepatic steatosis develops when lipid influx and production exceed the liver's ability to utilize/export triglycerides. Obesity promotes steatosis and is characterized by leptin resistance. A role of leptin in hepatic lipid handling is highlighted by the observation that recombinant leptin reverses steatosis of hypoleptinemic patients with lipodystrophy by an unknown mechanism. Since leptin mainly functions via CNS signaling, we here examine in rats whether leptin regulates hepatic lipid flux via the brain in a series of stereotaxic infusion experiments. We demonstrate that brain leptin protects from steatosis by promoting hepatic triglyceride export and decreasing de novo lipogenesis independently of caloric intake. Leptin's anti-steatotic effects are generated in the dorsal vagal complex, require hepatic vagal innervation, and are preserved in high-fat-diet-fed rats when the blood brain barrier is bypassed. Thus, CNS leptin protects from ectopic lipid accumulation via a brain-vagus-liver axis and may be a therapeutic strategy to ameliorate obesity-related steatosis.
Collapse
Affiliation(s)
- Martina Theresa Hackl
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Clemens Fürnsinn
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Christina Maria Schuh
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin Krssak
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, MOLIMA, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Sara Guerra
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Via Santa Cecilia 3, 56127, Pisa, Italy
| | - Angelika Freudenthaler
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anton Luger
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Maximilian Zeyda
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Via Santa Cecilia 3, 56127, Pisa, Italy
| | - Christoph Buettner
- Departments of Medicine and Neuroscience, and Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mt Sinai, One Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Thomas Scherer
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Plomgaard P, Hansen JS, Ingerslev B, Clemmesen JO, Secher NH, van Hall G, Fritsche A, Weigert C, Lehmann R, Häring HU, Heni M. Nasal insulin administration does not affect hepatic glucose production at systemic fasting insulin levels. Diabetes Obes Metab 2019; 21:993-1000. [PMID: 30552787 DOI: 10.1111/dom.13615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022]
Abstract
AIMS To evaluate the effects of brain insulin on endogenous glucose production in fasting humans, with a focus on hepatic glucose release by performing a randomized, placebo-controlled, blinded, crossover experiment. MATERIALS AND METHODS On two separate days, 2 H2 -glucose was infused to nine healthy lean men, and blood was sampled from the hepatic vein and a radial artery. On day 1, participants received 160 U human insulin through nasal spray, and on day 2 they received placebo spray, together with an intravenous insulin bolus to mimic spillover of nasal insulin to the circulation. Hepatic glucose fluxes and endogenous glucose production were calculated. RESULTS Plasma insulin concentrations were similar on the two study days, and no differences in whole-body endogenous glucose production or hepato-splanchnic glucose turnover were detected. CONCLUSIONS Nasal administration of insulin does not influence whole-body or hepatic glucose production in fasting humans. By contrast, pharmacological delivery of insulin to the brain might modulate insulin effectiveness in glucose-producing tissue when circulating insulin levels are elevated; therefore, the metabolic consequences of brain insulin action appear to be dependent on metabolic prandial status.
Collapse
Affiliation(s)
- Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Centre of Inflammation and Metabolism, and the Centre for Physical Activity Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Jakob S Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Centre of Inflammation and Metabolism, and the Centre for Physical Activity Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bodil Ingerslev
- Centre of Inflammation and Metabolism, and the Centre for Physical Activity Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens O Clemmesen
- Department of Hepatology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels H Secher
- Department of Anaesthesiology, Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Cora Weigert
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Rainer Lehmann
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
26
|
Rebelos E, Immonen H, Bucci M, Hannukainen JC, Nummenmaa L, Honka M, Soinio M, Salminen P, Ferrannini E, Iozzo P, Nuutila P. Brain glucose uptake is associated with endogenous glucose production in obese patients before and after bariatric surgery and predicts metabolic outcome at follow-up. Diabetes Obes Metab 2019; 21:218-226. [PMID: 30098134 PMCID: PMC6586041 DOI: 10.1111/dom.13501] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
AIMS To investigate further the finding that insulin enhances brain glucose uptake (BGU) in obese but not in lean people by combining BGU with measures of endogenous glucose production (EGP), and to explore the associations between insulin-stimulated BGU and peripheral markers, such as metabolites and inflammatory markers. MATERIALS AND METHODS A total of 20 morbidly obese individuals and 12 lean controls were recruited from the larger randomized controlled SLEEVEPASS study. All participants were studied under fasting and euglycaemic hyperinsulinaemic conditions using fluorodeoxyglucose-positron emission tomography. Obese participants were re-evaluated 6 months after bariatric surgery and were followed-up for ~3 years. RESULTS In obese participants, we found a positive association between BGU and EGP during insulin stimulation. Across all participants, insulin-stimulated BGU was associated positively with systemic inflammatory markers and plasma levels of leucine and phenylalanine. Six months after bariatric surgery, the obese participants had achieved significant weight loss. Although insulin-stimulated BGU was decreased postoperatively, the association between BGU and EGP during insulin stimulation persisted. Moreover, high insulin-stimulated BGU at baseline predicted smaller improvement in fasting plasma glucose at 2 and 3 years of follow-up. CONCLUSIONS Our findings suggest the presence of a brain-liver axis in morbidly obese individuals, which persists postoperatively. This axis might contribute to further deterioration of glucose homeostasis.
Collapse
Affiliation(s)
| | | | - Marco Bucci
- Turku PET CentreUniversity of TurkuTurkuFinland
| | | | - Lauri Nummenmaa
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of PsychologyUniversity of TurkuTurkuFinland
| | | | - Minna Soinio
- Department of EndocrinologyTurku University HospitalTurkuFinland
| | - Paulina Salminen
- Department of Digestive Surgery and UrologyTurku University HospitalTurkuFinland
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council (CNR)PisaItaly
| | - Patricia Iozzo
- Turku PET CentreUniversity of TurkuTurkuFinland
- Institute of Clinical Physiology, National Research Council (CNR)PisaItaly
| | - Pirjo Nuutila
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of EndocrinologyTurku University HospitalTurkuFinland
| |
Collapse
|
27
|
Inhibitory Effects of Intranasal Administration of Insulin on Fat Oxidation during Exercise Are Diminished in Young Overweight Individuals. J Clin Med 2018; 7:jcm7100308. [PMID: 30274197 PMCID: PMC6210388 DOI: 10.3390/jcm7100308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023] Open
Abstract
It remains unknown whether the high insulin (INS) levels in the brain affect fat oxidation during exercise. We examined the effects of the intranasal administration of INS, which increases the INS concentration in the cerebrospinal fluid when peripheral effects are lacking, on the maximum fat oxidation rate (maxFOR) and its intensity (FATmax) during exercise in 15 young normal-weight (N group) and eight young overweight (O group) individuals. On two separate days, either INS or placebo (PL) was randomly administered intranasally before a graded exercise test. Indirect calorimetry was used to assess maxFOR and FATmax during exercise. Blood INS and glucose levels did not change after INS administration. In the N group, maxFOR and FATmax were significantly smaller in the INS trial than in the PL trial. MaxFOR was significantly smaller in the O group than in the N group and was not influenced by INS administration. Exercise-induced elevation in blood epinephrine levels tended to be reduced by INS administration only in the N group. Intranasal INS administration reduces fat oxidation during exercise without any peripheral effects, possibly by suppressing sympathetic nerve activity. This inhibitory effect is diminished in overweight subjects, suggesting that cerebral insulin effects are attenuated in this population.
Collapse
|
28
|
Pozo M, Claret M. Hypothalamic Control of Systemic Glucose Homeostasis: The Pancreas Connection. Trends Endocrinol Metab 2018; 29:581-594. [PMID: 29866501 DOI: 10.1016/j.tem.2018.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
Maintenance of glucose homeostasis is mandatory for organismal survival. It is accomplished by complex and coordinated interplay between glucose detection mechanisms and multiple effector systems. The brain, in particular homeostatic regions such as the hypothalamus, plays a crucial role in orchestrating such a highly integral response. We review here current understanding of how the hypothalamus senses glucose availability and participates in systemic glucose homeostasis. We provide an update of the relevant signaling pathways and neuronal subsets involved, as well as of the mechanisms modulating metabolic processes in peripheral tissues such as liver, skeletal muscle, fat, and especially the pancreas. We also discuss the relevance of these networks in human biology and prevalent metabolic conditions such as diabetes and obesity.
Collapse
Affiliation(s)
- Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain.
| |
Collapse
|
29
|
Schmid V, Kullmann S, Gfrörer W, Hund V, Hallschmid M, Lipp HP, Häring HU, Preissl H, Fritsche A, Heni M. Safety of intranasal human insulin: A review. Diabetes Obes Metab 2018; 20:1563-1577. [PMID: 29508509 DOI: 10.1111/dom.13279] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
AIMS To conduct a review in order to assess the safety of intranasal human insulin in clinical studies as well as the temporal stability of nasal insulin sprays. MATERIAL AND METHODS An electronic search was performed using MEDLINE. We selected original research on intranasal human insulin without further additives in humans. The studies included could be of any design as long as they used human intranasal insulin as their study product. All outcomes and adverse side effects were extracted. RESULTS A total of 38 studies in 1092 individuals receiving acute human intranasal insulin treatment and 18 studies in 832 individuals receiving human intranasal insulin treatment lasting between 21 days and 9.7 years were identified. No cases of symptomatic hypoglycaemia or severe adverse events (AEs) were reported. Transient local side effects in the nasal area were frequently experienced after intranasal insulin and placebo spray, while other AEs were less commonly reported. There were no reports of participants being excluded as a result of AEs. No instances of temporal stability of nasal insulin were reported in the literature. Tests on insulin that had been repacked into spray flasks showed that it had a chemical stability of up to 57 days. CONCLUSIONS Our retrospective review of published studies on intranasal insulin did not reveal any safety concerns; however, there were insufficient data to ensure the long-term safety of this method of chronic insulin administration. Improved insulin preparations that cause less nasal irritation would be desirable for future treatment.
Collapse
MESH Headings
- Administration, Intranasal
- Aerosols
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Drug Compounding
- Drug Stability
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/chemically induced
- Hypoglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/therapeutic use
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/adverse effects
- Insulin, Regular, Human/chemistry
- Insulin, Regular, Human/therapeutic use
- Protein Stability
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- Vera Schmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
| | | | - Verena Hund
- University Pharmacy, University Hospital, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Centre at Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Xiao C, Dash S, Stahel P, Lewis GF. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men. Diabetes Obes Metab 2018. [PMID: 29536605 DOI: 10.1111/dom.13289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP.
Collapse
Affiliation(s)
- Changting Xiao
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Satya Dash
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Abstract
While there is a growing consensus that insulin has diverse and important regulatory actions on the brain, seemingly important aspects of brain insulin physiology are poorly understood. Examples include: what is the insulin concentration within brain interstitial fluid under normal physiologic conditions; whether insulin is made in the brain and acts locally; does insulin from the circulation cross the blood-brain barrier or the blood-CSF barrier in a fashion that facilitates its signaling in brain; is insulin degraded within the brain; do privileged areas with a "leaky" blood-brain barrier serve as signaling nodes for transmitting peripheral insulin signaling; does insulin action in the brain include regulation of amyloid peptides; whether insulin resistance is a cause or consequence of processes involved in cognitive decline. Heretofore, nearly all of the studies examining brain insulin physiology have employed techniques and methodologies that do not appreciate the complex fluid compartmentation and flow throughout the brain. This review attempts to provide a status report on historical and recent work that begins to address some of these issues. It is undertaken in an effort to suggest a framework for studies going forward. Such studies are inevitably influenced by recent physiologic and genetic studies of insulin accessing and acting in brain, discoveries relating to brain fluid dynamics and the interplay of cerebrospinal fluid, brain interstitial fluid, and brain lymphatics, and advances in clinical neuroimaging that underscore the dynamic role of neurovascular coupling.
Collapse
Affiliation(s)
- Sarah M Gray
- Department of Pharmacology, Department of Medicine, University of Virginia, School of Medicine , Charlottesville, Virginia
| | - Eugene J Barrett
- Department of Pharmacology, Department of Medicine, University of Virginia, School of Medicine , Charlottesville, Virginia.,Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine , Charlottesville, Virginia
| |
Collapse
|
32
|
Batista AF, Forny-Germano L, Clarke JR, Lyra E Silva NM, Brito-Moreira J, Boehnke SE, Winterborn A, Coe BC, Lablans A, Vital JF, Marques SA, Martinez AM, Gralle M, Holscher C, Klein WL, Houzel JC, Ferreira ST, Munoz DP, De Felice FG. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer's disease. J Pathol 2018; 245:85-100. [PMID: 29435980 PMCID: PMC5947670 DOI: 10.1002/path.5056] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/13/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder that still lacks an effective treatment, and this has stimulated an intense pursuit of disease-modifying therapeutics. Given the increasingly recognized link between AD and defective brain insulin signaling, we investigated the actions of liraglutide, a glucagon-like peptide-1 (GLP-1) analog marketed for treatment of type 2 diabetes, in experimental models of AD. Insulin receptor pathology is an important feature of AD brains that impairs the neuroprotective actions of central insulin signaling. Here, we show that liraglutide prevented the loss of brain insulin receptors and synapses, and reversed memory impairment induced by AD-linked amyloid-β oligomers (AβOs) in mice. Using hippocampal neuronal cultures, we determined that the mechanism of neuroprotection by liraglutide involves activation of the PKA signaling pathway. Infusion of AβOs into the lateral cerebral ventricle of non-human primates (NHPs) led to marked loss of insulin receptors and synapses in brain regions related to memory. Systemic treatment of NHPs with liraglutide provided partial protection, decreasing AD-related insulin receptor, synaptic, and tau pathology in specific brain regions. Synapse damage and elimination are amongst the earliest known pathological changes and the best correlates of memory impairment in AD. The results illuminate mechanisms of neuroprotection by liraglutide, and indicate that GLP-1 receptor activation may be harnessed to protect brain insulin receptors and synapses in AD. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Andre F Batista
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jordano Brito-Moreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susan E Boehnke
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Brian C Coe
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ann Lablans
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Juliana F Vital
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen A Marques
- Departament of Neurobiology, Fluminense Federal University, Niteroi, Brazil
| | - Ana Mb Martinez
- Department of Pathology, Faculty of Medicine, Hospital Universitário Clementino Fraga Filho, UFRJ, Rio de Janeiro, Brazil
| | - Matthias Gralle
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christian Holscher
- Division of Biomed and Life Sciences, Faculty of Health and Medicine Lancaster University, Lancaster, UK
| | - William L Klein
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Jean-Christophe Houzel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Tytell M, Davis AT, Giles J, Snider LC, Xiao R, Dozier SG, Presley TD, Kavanagh K. Alfalfa-derived HSP70 administered intranasally improves insulin sensitivity in mice. Cell Stress Chaperones 2018; 23:189-194. [PMID: 28822083 PMCID: PMC5823803 DOI: 10.1007/s12192-017-0835-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
Heat shock protein (HSP) 70 is an abundant cytosolic chaperone protein that is deficient in insulin-sensitive tissues in diabetes and unhealthy aging, and is considered a longevity target. It is also protective in neurological disease models. Using HSP70 purified from alfalfa and administered as an intranasal solution, we tested in whether the administration of Hsp70 to diet-induced diabetic mice would improve insulin sensitivity. Both the 10 and 40 μg given three times per week for 26 days significantly improved the response to insulin. The HSP70 was found to pass into the olfactory bulbs within 4-6 hours of a single dose. These results suggest that a relatively inexpensive, plentiful source of HSP70 administered in a simple, non-invasive manner, has therapeutic potential in diabetes.
Collapse
Affiliation(s)
- Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Ashley T Davis
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Jareca Giles
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Lauren C Snider
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Ruoyu Xiao
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Stephen G Dozier
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Tennille D Presley
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King, Jr Drive, Winston-Salem, NC, 27110, USA
| | - Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| |
Collapse
|
34
|
Ziegler D, Strom A, Bönhof G, Püttgen S, Bódis K, Burkart V, Müssig K, Szendroedi J, Markgraf DF, Roden M. Differential associations of lower cardiac vagal tone with insulin resistance and insulin secretion in recently diagnosed type 1 and type 2 diabetes. Metabolism 2018; 79:1-9. [PMID: 29113812 DOI: 10.1016/j.metabol.2017.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVE It is unclear to which extent altered insulin sensitivity/secretion contribute to the development of diabetic cardiovascular autonomic neuropathy (CAN) characterized by diminished heart rate variability (HRV). We hypothesised that lower HRV is differentially associated with measures of insulin resistance and insulin secretion in recent-onset type 1 and type 2 diabetes. MATERIALS/METHODS This cross-sectional study included participants from the German Diabetes Study with type 1 (n=275) or type 2 diabetes (n=450) with known diabetes duration ≤1year and glucose-tolerant controls (n=81). Four time domain and frequency domain HRV measures each, reflecting vagal and/or sympathetic modulation were determined over 3h during a hyperinsulinaemic-euglycaemic clamp. Insulin sensitivity was calculated as the M-value, while insulin secretion was determined by glucagon-stimulated incremental C-peptide (ΔC-peptide). RESULTS After adjustment for sex, age, BMI, smoking, and HbA1c, both M-value and ΔC-peptide were lower in the diabetes groups compared to controls (P<0.05). In multiple linear regression analyses after Bonferroni correction, vagus-mediated HRV indices were positively associated with M-value in both diabetes types (P<0.05) and inversely associated with ΔC-peptide only in participants with type 1 diabetes (P<0.05). In type 2 diabetes, the low-frequency/high-frequency (LF/HF) power as an indicator of sympathovagal balance was weakly inversely associated with M-value. CONCLUSIONS Insulin resistance may contribute to the development of early cardiovagal suppression rather than sympathetic predominance in both diabetes types, while in type 1 diabetes a lower glucagon-stimulated insulin secretion is linked to a possibly compensatory higher parasympathetic tone. Whether interventions aimed at reducing insulin resistance could also reduce the risk of CAN remains to be established.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gidon Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sonja Püttgen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kálmán Bódis
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
35
|
Dash S, Xiao C, Stahel P, Koulajian K, Giacca A, Lewis GF. Evaluation of the specific effects of intranasal glucagon on glucose production and lipid concentration in healthy men during a pancreatic clamp. Diabetes Obes Metab 2018; 20:328-334. [PMID: 28730676 DOI: 10.1111/dom.13069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/01/2017] [Accepted: 07/13/2017] [Indexed: 01/19/2023]
Abstract
AIM To investigate the specific effects of intranasal glucagon (ING) on plasma glucose, endogenous glucose production (EGP) and lipid concentration. METHODS We conducted a single-blind, randomized, crossover study at our academic investigation unit. Under pancreatic clamp conditions with tracer infusion, 1 mg ING or intranasal placebo (INP) was administered to 10 healthy men. As pilot studies showed that ING transiently increased plasma glucagon, we infused intravenous glucagon for 30 minutes along with INP to ensure similar plasma glucagon concentrations between interventions. The main outcome measures were plasma glucose, EGP, free fatty acid (FFA) and triglyceride (TG) concentrations. RESULTS In the presence of similar plasma glucagon concentrations, the increase in plasma glucose under these experimental conditions was attenuated with ING (mean plasma glucose analysis of variance P < .001) with reduction in EGP (P = .027). No significant differences were seen in plasma FFA and TG concentrations. CONCLUSION ING raises plasma glucose but this route of administration attenuates the gluco-stimulatory effect of glucagon by reducing EGP. This observation invites speculation about a potential central nervous system effect of glucagon, which requires further investigation. If ING is developed as a treatment for hypoglycaemia, this attenuated effect on plasma glucose should be taken into account.
Collapse
Affiliation(s)
- Satya Dash
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Priska Stahel
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Khajag Koulajian
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Dhindsa S, Chemitiganti R, Ghanim H, Santiago E, Haider A, Chaar N, Mok M, McKee A, Dandona P. Intranasal Insulin Administration Does Not Affect LH Concentrations in Men with Diabetes. Int J Endocrinol 2018; 2018:6170154. [PMID: 30515210 PMCID: PMC6234437 DOI: 10.1155/2018/6170154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/10/2018] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
A quarter of men with obesity or type 2 diabetes have hypogonadotropic hypogonadism. Animal studies and in vitro data have shown that insulin action and insulin responsiveness in the brain are necessary for the maintenance of the functional integrity of the hypothalamo-hypophyseal-gonadal axis. We conducted a randomized, placebo-controlled trial to evaluate the effect of one dose of intranasal insulin (40 IU of regular insulin) or saline on LH concentrations in 14 men (8 with type 2 diabetes and 6 healthy lean men). Insulin or saline was administered intranasally on two different occasions, at least one week apart. Blood samples were collected to measure LH concentrations every 15 minutes for 5 hours. Study drug was administered intranasally after a 2-hour baseline sampling period. Patients remained fasting throughout the procedure. The primary endpoint of the study was to compare the change in LH concentrations after intranasal insulin as compared to placebo (intranasal saline). Change was defined as the difference between baseline LH concentrations (average of the 9 samples collected in two hours prior to drug administration) and average LH concentrations following drug administration (average of the 12 samples collected in 3 hours). There was no change in LH concentrations following insulin administration as compared to placebo in men with diabetes or in lean men. We conclude that one dose of 40 IU of regular insulin administered intranasally does not change LH concentrations acutely in men.
Collapse
Affiliation(s)
- Sandeep Dhindsa
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
- Division of Endocrinology, Diabetes and Metabolism, State University of New York, Buffalo and Kaleida Health 462 Grider Street, Buffalo NY-14215, USA
- Division of Endocrinology, Diabetes and Metabolism, Saint Louis University, 1402 S Grand Blvd, St. Louis MO-63141, USA
| | - Rama Chemitiganti
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Husam Ghanim
- Division of Endocrinology, Diabetes and Metabolism, State University of New York, Buffalo and Kaleida Health 462 Grider Street, Buffalo NY-14215, USA
| | - Evangelina Santiago
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Adnan Haider
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Natalia Chaar
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Mary Mok
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Alexis McKee
- Division of Endocrinology, Diabetes and Metabolism, Saint Louis University, 1402 S Grand Blvd, St. Louis MO-63141, USA
| | - Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York, Buffalo and Kaleida Health 462 Grider Street, Buffalo NY-14215, USA
| |
Collapse
|
37
|
Kullmann S, Veit R, Peter A, Pohmann R, Scheffler K, Häring HU, Fritsche A, Preissl H, Heni M. Dose-Dependent Effects of Intranasal Insulin on Resting-State Brain Activity. J Clin Endocrinol Metab 2018; 103:253-262. [PMID: 29095982 DOI: 10.1210/jc.2017-01976] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/23/2017] [Indexed: 02/05/2023]
Abstract
CONTEXT Insulin action in the human brain influences eating behavior, cognition, and whole-body metabolism. Studies investigating brain insulin rely on intranasal application. OBJECTIVE To investigate effects of three doses of insulin and placebo as nasal sprays on the central and autonomous nervous system and analyze absorption of insulin into the bloodstream. DESIGN, PARTICIPANTS, AND METHODS Nine healthy men received placebo or 40 U, 80 U, and 160 U insulin spray in randomized order. Before and after spray, brain activity was assessed by functional magnetic resonance imaging, and heart rate variability (HRV) was assessed from electrocardiogram. Plasma insulin, C-peptide, and glucose were measured regularly. SETTING General community. RESULTS Nasal insulin administration dose-dependently modulated regional brain activity and the normalized high-frequency component of the HRV. Post hoc analyses revealed that only 160 U insulin showed a considerable difference from placebo. Dose-dependent spillover of nasal insulin into the bloodstream was detected. The brain response was not correlated with this temporary rise in circulating insulin. CONCLUSIONS Nasal insulin dose-dependently modulated regional brain activity with the strongest effects after 160 U. However, this dose was accompanied by a transient increase in circulating insulin concentrations due to a spillover into circulation. Our current results may serve as a basis for future studies with nasal insulin to untangle brain insulin effects in health and disease.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Rolf Pohmann
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem 2017; 26:2888-2905. [PMID: 29170026 DOI: 10.1016/j.bmc.2017.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
39
|
Gancheva S, Bierwagen A, Markgraf DF, Bönhof GJ, Murphy KG, Hatziagelaki E, Lundbom J, Ziegler D, Roden M. Constant hepatic ATP concentrations during prolonged fasting and absence of effects of Cerbomed Nemos ® on parasympathetic tone and hepatic energy metabolism. Mol Metab 2017; 7:71-79. [PMID: 29122559 PMCID: PMC5784324 DOI: 10.1016/j.molmet.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/19/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023] Open
Abstract
Objective Brain insulin-induced improvement in glucose homeostasis has been proposed to be mediated by the parasympathetic nervous system. Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) activating afferent branches of the vagus nerve may prevent hyperglycemia in diabetes models. We examined the effects of 14-min taVNS vs sham stimulation by Cerbomed Nemos® on glucose metabolism, lipids, and hepatic energy homeostasis in fasted healthy humans (n = 10, age 51 ± 6 yrs, BMI 25.5 ± 2.7 kg/m2). Methods Heart rate variability (HRV), reflecting sympathetic and parasympathetic nerve activity, was measured before, during and after taVNS or sham stimulation. Endogenous glucose production was determined using [6,6-2H2]glucose, and hepatic concentrations of triglycerides (HCL), adenosine triphosphate (ATP), and inorganic phosphate (Pi) were quantified from 1H/31P magnetic resonance spectroscopy at baseline and for 180 min following stimulation. Results taVNS did not affect circulating glucose, free fatty acids, insulin, glucagon, or pancreatic polypeptide. Rates of endogenous glucose production (P = 0.79), hepatic HCL, ATP, and Pi were also not different (P = 0.91, P = 0.48 and P = 0.24) between taVNS or sham stimulation. Hepatic HCL, ATP, and Pi remained constant during prolonged fasting for 3 h. No changes in heart rate or shift in cardiac autonomic function from HRV towards sympathetic or parasympathetic predominance were detected. Conclusion Non-invasive vagus stimulation by Cerbomed Nemos® does not acutely modulate the autonomic tone to the visceral organs and thereby does not affect hepatic glucose and energy metabolism. This technique is therefore unable to mimic brain insulin-mediated effects on peripheral homeostasis in humans. Constant hepatic energy metabolism during prolonged fasting. Vagus stimulation with Cerbomed Nemos® does not alter parasympathetic tone. Cerbomed Nemos® does not modulate hepatic glucose and energy metabolism in humans.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Alessandra Bierwagen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Erifili Hatziagelaki
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, Athens University, "Attikon" University General Hospital, Athens, Greece
| | - Jesper Lundbom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
40
|
Xiao C, Dash S, Stahel P, Lewis GF. Effects of Intranasal Insulin on Triglyceride-Rich Lipoprotein Particle Production in Healthy Men. Arterioscler Thromb Vasc Biol 2017; 37:1776-1781. [DOI: 10.1161/atvbaha.117.309705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Changting Xiao
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Satya Dash
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Priska Stahel
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Gary F. Lewis
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
41
|
Intranasal Insulin Restores Metabolic Parameters and Insulin Sensitivity in Rats with Metabolic Syndrome. Bull Exp Biol Med 2017; 163:184-189. [PMID: 28726200 DOI: 10.1007/s10517-017-3762-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 10/19/2022]
Abstract
We studied the effect of 10-week treatment with intranasal insulin (0.5 IU/day) on glucose tolerance, glucose utilization, lipid metabolism, functions of pancreatic β cells, and insulin system in the liver of rats with cafeteria diet-induced metabolic syndrome. The therapy reduced body weight and blood levels of insulin, triglycerides, and atherogenic cholesterol that are typically increased in metabolic syndrome, normalized glucose tolerance and its utilization, and increased activity of insulin signaling system in the liver, thus reducing insulin resistance. The therapy did not affect the number of pancreatic islets and β cells. The study demonstrates prospects of using intranasal insulin for correction of metabolic parameters and reduction of insulin resistance in metabolic syndrome.
Collapse
|
42
|
Hypothalamic insulin responsiveness is associated with pancreatic insulin secretion in humans. Physiol Behav 2017; 176:134-138. [DOI: 10.1016/j.physbeh.2017.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
|
43
|
Heni M, Wagner R, Kullmann S, Gancheva S, Roden M, Peter A, Stefan N, Preissl H, Häring HU, Fritsche A. Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men. Diabetes 2017; 66:1797-1806. [PMID: 28174292 DOI: 10.2337/db16-1380] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/31/2017] [Indexed: 01/12/2023]
Abstract
Intranasal spray application facilitates insulin delivery to the human brain. Although brain insulin modulates peripheral metabolism, the mechanisms involved remain elusive. Twenty-one men underwent two hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose infusion to measure endogenous glucose production and glucose disappearance. On two separate days, participants received intranasal insulin or placebo. Insulin spillover into circulation after intranasal insulin application was mimicked by an intravenous insulin bolus on placebo day. On a different day, brain insulin sensitivity was assessed by functional MRI. Glucose infusion rates (GIRs) had to be increased more after nasal insulin than after placebo to maintain euglycemia in lean but not in overweight people. The increase in GIRs was associated with regional brain insulin action in hypothalamus and striatum. Suppression of endogenous glucose production by circulating insulin was more pronounced after administration of nasal insulin than after placebo. Furthermore, glucose uptake into tissue tended to be higher after nasal insulin application. No such effects were detected in overweight participants. By increasing insulin-mediated suppression of endogenous glucose production and stimulating peripheral glucose uptake, brain insulin may improve glucose metabolism during systemic hyperinsulinemia. Obese people appear to lack these mechanisms. Therefore, brain insulin resistance in obesity may have unfavorable consequences for whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Martin Heni
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert Wagner
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas Peter
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Norbert Stefan
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hubert Preissl
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hans-Ulrich Häring
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
44
|
Scherer T, Wolf P, Smajis S, Gaggini M, Hackl M, Gastaldelli A, Klimek P, Einwallner E, Marculescu R, Luger A, Fürnsinn C, Trattnig S, Buettner C, Krššák M, Krebs M. Chronic Intranasal Insulin Does Not Affect Hepatic Lipids but Lowers Circulating BCAAs in Healthy Male Subjects. J Clin Endocrinol Metab 2017; 102:1325-1332. [PMID: 28323986 PMCID: PMC6283450 DOI: 10.1210/jc.2016-3623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/11/2017] [Indexed: 02/08/2023]
Abstract
CONTEXT Nonalcoholic fatty liver disease and elevated circulating branched-chain amino acids (BCAAs) are common characteristics of obesity and type 2 diabetes. In rodents, brain insulin signaling controls both hepatic triglyceride secretion and BCAA catabolism. Whether brain insulin signaling controls similar metabolic pathways in humans is unknown. OBJECTIVE Here we assessed if intranasal insulin, a method to preferentially deliver insulin to the central nervous system, is able to modulate hepatic lipid content and plasma BCAAs in humans. DESIGN/SETTING We conducted a randomized, double-blind, placebo-controlled trial at the Medical University of Vienna. PARTICIPANTS/INTERVENTION We assessed if a chronic 4-week intranasal insulin treatment (40 IU, 4 times daily) reduces hepatic triglyceride content and circulating BCAAs in 20 healthy male volunteers. MAIN OUTCOME MEASURES Hepatic lipid content was assessed noninvasively by 1H-magnetic resonance spectroscopy, and BCAAs were measured by gas chromatography mass spectrometry at defined time points during the study. RESULTS Chronic intranasal insulin treatment did not alter body weight, body mass index, and hepatic lipid content but reduced circulating BCAA levels. CONCLUSIONS These findings support the notion that brain insulin controls BCAA metabolism in humans. Thus, brain insulin resistance could account at least in part for the elevated BCAA levels observed in the insulin-resistant state.
Collapse
Affiliation(s)
- Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Peter Wolf
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Sabina Smajis
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Melania Gaggini
- National Research Council Institute of Clinical Physiology, 56124 Pisa, Italy
| | - Martina Hackl
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Amalia Gastaldelli
- National Research Council Institute of Clinical Physiology, 56124 Pisa, Italy
| | | | | | | | - Anton Luger
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Clemens Fürnsinn
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Buettner
- Department of Medicine and Department of Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism
- High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Krebs
- Department of Medicine III, Division of Endocrinology and Metabolism
| |
Collapse
|
45
|
Chen W, Balland E, Cowley MA. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis. Neuroendocrinology 2017; 104:364-381. [PMID: 28122381 DOI: 10.1159/000455865] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
The central link between obesity and type 2 diabetes is the development of insulin resistance. To date, it is still not clear whether hyperinsulinemia causes insulin resistance, which underlies the pathogenesis of obesity-associated type 2 diabetes, owing to the sophisticated regulatory mechanisms that exist in the periphery and in the brain. In recent years, accumulating evidence has demonstrated the existence of insulin resistance within the hypothalamus. In this review, we have integrated the recent discoveries surrounding both central and peripheral insulin resistance to provide a comprehensive overview of insulin resistance in obesity and the regulation of systemic glucose homeostasis. In particular, this review will discuss how hyperinsulinemia and hyperleptinemia in obesity impair insulin sensitivity in tissues such as the liver, skeletal muscle, adipose tissue, and the brain. In addition, this review highlights insulin transport into the brain, signaling pathways associated with hypothalamic insulin receptor expression in the regulation of hepatic glucose production, and finally the perturbation of systemic glucose homeostasis as a consequence of central insulin resistance. We also suggest future approaches to overcome both central and peripheral insulin resistance to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Physiology/Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
46
|
Abstract
This article describes phenotypes observed in a prediabetic population (i.e. a population with increased risk for type 2 diabetes) from data collected at the University hospital of Tübingen. We discuss the impact of genetic variation on insulin secretion, in particular the effect on compensatory hypersecretion, and the incretin-resistant phenotype of carriers of the gene variant TCF7L2 is described. Imaging studies used to characterise subphenotypes of fat distribution, metabolically healthy obesity and metabolically unhealthy obesity are described. Also discussed are ectopic fat stores in liver and pancreas that determine the phenotype of metabolically healthy and unhealthy fatty liver and the recently recognised phenotype of fatty pancreas. The metabolic impact of perivascular adipose tissue and pancreatic fat is discussed. The role of hepatokines, particularly that of fetuin-A, in the crosstalk between these organs is described. Finally, the role of brain insulin resistance in the development of the different prediabetes phenotypes is discussed.
Collapse
Affiliation(s)
- Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases (IDM), University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
47
|
Affiliation(s)
- Sofiya Gancheva
- Institute for Clinical Diabetology and Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology and Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
48
|
Esterson YB, Carey M, Boucai L, Goyal A, Raghavan P, Zhang K, Mehta D, Feng D, Wu L, Kehlenbrink S, Koppaka S, Kishore P, Hawkins M. Central Regulation of Glucose Production May Be Impaired in Type 2 Diabetes. Diabetes 2016; 65:2569-79. [PMID: 27207526 PMCID: PMC5001178 DOI: 10.2337/db15-1465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/19/2016] [Indexed: 12/21/2022]
Abstract
The challenges of achieving optimal glycemic control in type 2 diabetes highlight the need for new therapies. Inappropriately elevated endogenous glucose production (EGP) is the main source of hyperglycemia in type 2 diabetes. Because activation of central ATP-sensitive potassium (KATP) channels suppresses EGP in nondiabetic rodents and humans, this study examined whether type 2 diabetic humans and rodents retain central regulation of EGP. The KATP channel activator diazoxide was administered in a randomized, placebo-controlled crossover design to eight type 2 diabetic subjects and seven age- and BMI-matched healthy control subjects. Comprehensive measures of glucose turnover and insulin sensitivity were performed during euglycemic pancreatic clamp studies following diazoxide and placebo administration. Complementary rodent clamp studies were performed in Zucker Diabetic Fatty rats. In type 2 diabetic subjects, extrapancreatic KATP channel activation with diazoxide under fixed hormonal conditions failed to suppress EGP, whereas matched control subjects demonstrated a 27% reduction in EGP (P = 0.002) with diazoxide. Diazoxide also failed to suppress EGP in diabetic rats. These results suggest that suppression of EGP by central KATP channel activation may be lost in type 2 diabetes. Restoration of central regulation of glucose metabolism could be a promising therapeutic target to reduce hyperglycemia in type 2 diabetes.
Collapse
Affiliation(s)
- Yonah B Esterson
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Michelle Carey
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Laura Boucai
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Akankasha Goyal
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Pooja Raghavan
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Kehao Zhang
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Deeksha Mehta
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Daorong Feng
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Licheng Wu
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Sylvia Kehlenbrink
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Sudha Koppaka
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Preeti Kishore
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Meredith Hawkins
- Diabetes Research and Training Center and Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
49
|
Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev 2016; 96:1169-209. [PMID: 27489306 DOI: 10.1152/physrev.00032.2015] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
50
|
Lee SH, Zabolotny JM, Huang H, Lee H, Kim YB. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood. Mol Metab 2016; 5:589-601. [PMID: 27656397 PMCID: PMC5021669 DOI: 10.1016/j.molmet.2016.06.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Insulin, a pleotrophic hormone, has diverse effects in the body. Recent work has highlighted the important role of insulin's action in the nervous system on glucose and energy homeostasis, memory, and mood. SCOPE OF REVIEW Here we review experimental and clinical work that has broadened the understanding of insulin's diverse functions in the central and peripheral nervous systems, including glucose and body weight homeostasis, memory and mood, with particular emphasis on intranasal insulin. MAJOR CONCLUSIONS Implications for the treatment of obesity, type 2 diabetes, dementia, and mood disorders are discussed in the context of brain insulin action. Intranasal insulin may have potential in the treatment of central nervous system-related metabolic disorders.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea.
| | - Janice M Zabolotny
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA.
| | - Hu Huang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA; Human Performance Laboratory, Department of Kinesiology and Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Dr., Greenville, NC 27858, USA.
| | - Hyon Lee
- Department of Neurology, Neuroscience Research Institute, Gachon University Gil Medical Center, 21 Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, South Korea.
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA.
| |
Collapse
|