1
|
Wright RC, Campbell DJ, Levings MK. Pharmacotherapeutic strategies to promote regulatory T cell function in autoimmunity. Curr Opin Immunol 2025; 94:102554. [PMID: 40187268 DOI: 10.1016/j.coi.2025.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Autoimmune diseases arise when self-antigen-specific T and B cells escape central and peripheral mechanisms of tolerance. One such mechanism is control of autoreactivity by regulatory T cells (Tregs), which have an essential role in suppressing autoimmunity. Consequently, there is significant interest in developing ways to boost or restore the function of Tregs in order to prevent or treat autoimmunity, induce tolerance, and thus reduce the reliance on broadly immunosuppressive agents. Strategies include enhancing the numbers and/or function of Tregs directly in vivo or via adoptive cell therapy. Here, we review recent advances in our understanding of how pharmacologic approaches can be applied to enhance Treg function in vivo through repurposing of established drug therapies or application of new therapies. Specifically, we discuss the potential of Treg-promoting drugs, including interleukin-2 and its derivatives, and tumor necrosis factor receptor 2 agonists, as well as Treg-preserving tyrosine kinase 2 inhibitors. We discuss how co-stimulatory blockade with CTLA-4 immunoglobulin affects tolerogenic environments and consider whether lymphodepleting therapies, such as antithymocyte globulin and teplizumab, might be needed to condition the environment for better Treg-promoting effects. We focus on the potential application of Treg-promoting drugs in type 1 diabetes and draw on evidence from transplantation. With multiple pharmacotherapeutic strategies to optimize Tregs in vivo, there is significant promise for new approaches to effectively and durably induce autoimmune disease remission.
Collapse
Affiliation(s)
- Robert C Wright
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada.
| |
Collapse
|
2
|
Li L, Yang X, Ren JS, Huang MZ, Zhao QW. Immunosuppressive agents in diabetes treatment: Hope or despair? World J Diabetes 2025; 16:100590. [DOI: 10.4239/wjd.v16.i5.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/19/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Exploration of immunosuppressive agents for the treatment of diabetes is a burgeoning field that has captured the attention of the medical community. The innovative approach of using these agents to combat diabetes is driven by their diverse capabilities to regulate the immune system, which is pivotal for disease pathogenesis. The primary objective is to enhance the management of blood glucose levels, which is a critical factor in the daily life of diabetic patients. This comprehensive review delves into the therapeutic horizons opened by immunosuppressive agents, particularly their potential impact on type 1 and type 2 diabetes mellitus, and their utility in the transplantation process. The complex etiology of diabetes, which involves a delicate interplay of genetic, environmental, and immunological factors, presents a multifaceted target landscape for these therapies. The agents discussed in the review, including CD3 inhibitors, cytotoxic T-lymphocyte-associated protein 4-immunoglobulin G, Janus kinase inhibitors, anti-thymocyte globulin, tumor necrosis factor-α inhibitors, CD20 inhibitors, alefacept, and alemtuzumab, each bring a unique mechanism to the table, offering a tailored approach to immune modulation. As research progresses, emphasis is being placed on evaluating the long-term efficacy and safety of these agents to pave the way for more personalized and effective diabetes management strategies.
Collapse
Affiliation(s)
- Lu Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xi Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jin-Shuai Ren
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ming-Zhu Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qing-Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
3
|
Mauvais FX, van Endert PM. Type 1 Diabetes: A Guide to Autoimmune Mechanisms for Clinicians. Diabetes Obes Metab 2025. [PMID: 40375390 DOI: 10.1111/dom.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025]
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells by autoreactive T lymphocytes, leading to insulin deficiency and lifelong insulin dependence. It develops in genetically predisposed individuals, triggered by environmental or immunological factors. Although the exact causes of T1D remain unknown, the autoimmune pathogenesis of the disease is clearly indicated by the genetic risk conferred by allelic human leukocyte antigens (HLA), the almost obligatory presence of islet cell autoantibodies (AAbs) and immune cell infiltration of pancreatic islets from patients. At the same time, epidemiological data point to a role of environmental factors, notably enteroviral infections, in the disease, although precise causative links between specific pathogens and T1D have been difficult to establish. Studies of human pancreas organs from patients made available through repositories and the advent of high-dimensional high-throughput technologies for genomic and proteomic studies have significantly elucidated our understanding of the disease in recent years and provided mechanistic insights that can be exploited for innovative targeted therapeutic approaches. This short overview will summarise current salient knowledge on immune cell and beta cell dysfunction in T1D pathogenesis. PLAIN LANGUAGE SUMMARY: Type 1 diabetes (T1D) is a chronic disease where the body's own immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to a lack of insulin, a hormone essential for regulating blood sugar, which means people with T1D need insulin for life. The disease can develop at any age but is most diagnosed in children and young adults. Despite advances in treatment, T1D still significantly reduces life expectancy, especially in countries with fewer healthcare resources. T1D develops in people with a genetic predisposition, often triggered by environmental factors such as viral infections or changes in the gut microbiome. The disease progresses silently through three stages: Stage 1: Autoantibodies to beta cell components appear, signalling the immune system is reacting against the pancreas, but there are no symptoms; Stage 2: Beta cell function starts to decline, but fasting blood sugar is still normal; Stage 3: Enough beta cells are destroyed that fasting blood sugar rises, and symptoms of diabetes appear. The risk of progressing from stage 1 to full-blown diabetes is about 35-50% within five years, and even higher from stage 2. Over 60 genes are linked to T1D risk, most of which affect how the immune system works. The strongest genetic risk comes from specific versions of histocompatibility genes, which help the immune system distinguish between the body's own cells and invaders. Some types of these genes make it easier for the immune system to mistakenly attack beta cells. However, 90% of people diagnosed with T1D have no family member with T1D, showing that genetics is only part of the story. Environmental factors also play a big role. For example, certain viral infections, especially with viruses infecting the intestine, are associated with a higher risk of developing T1D. The gut microbiome - the community of bacteria living in our intestines - also influences risk, with healthier, more diverse microbiomes appearing to offer some protection. In T1D, immune cells - especially so-called T lymphocytes - mistake beta cells in the pancreas for threats and destroy them. This process is called autoimmunity. The attack is often reflected by the presence of autoantibodies against proteins found in beta cells. Over time, as more beta cells are lost, the body can no longer produce enough insulin, leading to the symptoms of diabetes. Interestingly, not all people with T1D have the same pattern of disease. For example, children diagnosed before age 7 often have more aggressive disease, more autoantibodies, and stronger genetic risk factors than those diagnosed later. Much of our understanding of T1D has come from studying animal models, but new technologies now allow researchers to study human pancreas tissue and blood immune cells in greater detail. Scientists are also exploring how the gut microbiome, diet, and environmental exposures contribute to T1D risk and progression. Treatment currently focuses on replacing insulin, but researchers are working on therapies that target the immune system or aim to protect or replace beta cells. Strategies include immunotherapy, gene therapy, and even modifying the gut microbiome. The goal is to prevent or reverse the disease, not just manage its symptoms. In summary, T1D is a complex autoimmune disease influenced by both genes and the environment. It progresses silently before symptoms appear, and while insulin therapy is life-saving, new research is paving the way for treatments that could one day halt or even prevent the disease.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, Paris, France
| | - Peter M van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker - Enfants Malades, Paris, France
| |
Collapse
|
4
|
Mittal R, McKenna K, Lemos JRN, Juneja S, Mittal M, Hirani K. Therapeutic potential of anti-thymocyte globulin in type 1 diabetes: A systematic review. PLoS One 2025; 20:e0323642. [PMID: 40359439 PMCID: PMC12074605 DOI: 10.1371/journal.pone.0323642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/13/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune condition characterized by the destruction of insulin-producing beta cells in the pancreas. Anti-Thymocyte Globulin (ATG) has emerged as a promising immunomodulatory therapy aimed at preserving beta-cell function and altering the disease course. This systematic review synthesizes current evidence from the clinical trials evaluating the efficacy and safety of low-dose ATG in individuals with T1D. METHODS We conducted a comprehensive literature search of electronic databases, including PubMed (MEDLINE), Science Direct, Scopus, EMBASE, and ClinicalTrials.gov, to identify studies investigating ATG in T1D in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The Joanna Briggs Institute (JBI) Critical Appraisal Tools for randomized clinical trials and case-control studies were used to assess the quality and evaluate the risk of bias in the eligible studies. RESULTS The primary outcomes assessed were preservation of C-peptide levels, glycemic control, and adverse events. Results indicated that ATG showed potential in preserving beta-cell function and improving clinical outcomes in recent-onset T1D. However, the incidence of adverse events, such as cytokine release syndrome and lymphopenia, necessitated careful monitoring and management. CONCLUSION Low-dose ATG presents a promising therapeutic approach for modifying the progression of T1D. While early-phase trials demonstrate potential benefits in preserving beta-cell function, further large-scale, long-term studies are essential to establish optimal dosing regimens, long-term efficacy, and safety profiles. This review highlights the importance of continued research to fully elucidate the role of ATG in T1D management.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Keelin McKenna
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Shreya Juneja
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mannat Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
5
|
Liu D, Wang X, Han Y, Wang J, Sun Y, Hou Y, Wu Q, Zeng C, Ding X, Chang Y, Hu J, Huang X, Lu L. A donor PD-1 +CD8 + T SCM-like regulatory subset mobilized by G-CSF alleviates recipient acute graft-versus-host-disease. Signal Transduct Target Ther 2025; 10:120. [PMID: 40175340 PMCID: PMC11965471 DOI: 10.1038/s41392-025-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 04/04/2025] Open
Abstract
Donor selection determines the occurrence of acute graft-versus-host-disease (aGVHD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT). To optimize the current clinical donor selection criteria and identify putative donor lymphocyte subsets associated with better recipient outcomes, we analyzed the peripheral CD4+ and CD8+ subsets in 80 granulocyte colony-stimulating factor (G-CSF) mobilized donors and examined the aGVHD incidence of the corresponding 80 haploidentical and identical allo-HSCT recipients. The G-CSF-induced expansion of subsets varied among donors. We discovered a novel PD-1+CD8+CD45RA+CCR7+ T lymphocyte subset in suitable donors that was significantly correlated with lower incidence of aGVHD and post-transplant anti-infection. The anti-aGVHD activity of this subset was confirmed in a validation cohort (n = 30). Single-cell RNA sequencing revealed that this T cell subset exhibited transcriptomic features of stem cell-like memory T cell (TSCM) with both Treg and Teff activities which indicated its dual functions in aGVHD inhibition and graft-versus-leukemia (GVL) effect. Intriguingly, upon G-CSF mobilization, the donor PD-1+CD8+ TSCM-like regulatory cells increased the PD-1 expression in a BCL6-dependent manner. Next, we showed that the mouse counterpart of this subset (PD-1+CD8+CD44-CD62L+) ameliorated aGVHD, and confirmed the existence of this subset in clinical recipients. In summary, we, for the first time, identified a novel donor peripheral T cell subset suppressing aGVHD while promoting the immune reconstitution of recipients. It may serve as an indicator for optimal haploidentical and identical donor selection. Importantly, the dual Treg and Teff function of these T cells makes it a promising treatment for not only aGVHD but also auto-immune diseases.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xue Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Sun
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Hou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Zeng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuping Ding
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jiong Hu
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Foster TP, Bruggeman BS, Haller MJ. Emerging Immunotherapies for Disease Modification of Type 1 Diabetes. Drugs 2025; 85:457-473. [PMID: 39873914 PMCID: PMC11949705 DOI: 10.1007/s40265-025-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring. That said, immunotherapies are widely used to interdict autoimmune and autoinflammatory diseases and are emerging as potential therapeutics seeking the preservation of β-cell function among those with T1DM. In the past 4 decades of diabetes research, several immunomodulatory therapies have been explored, culminating with the US Food and Drug Administration approval of teplizumab to delay stage 3 (clinical) onset of T1DM. Clinical trials seeking to prevent or reverse T1DM by repurposing immunotherapies approved for other autoimmune conditions and by exploring new therapeutics are ongoing. Collectively, these efforts have the potential to transform the future of diabetes care. We encapsulate the past 40 years of immunotherapy trials, take stock of our successes and failures, and chart paths forward in this new age of clinically available immune therapies for T1DM.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
| | - Brittany S Bruggeman
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Xiong J, Li J, Wang Z, Lu S, Liang S, Xiao W, Han Y, Leng X. Case report: pembrolizumab-induced acute type 1 diabetes mellitus and diabetic ketoacidosis in a perioperative esophageal squamous cell carcinoma patient. AME Case Rep 2025; 9:61. [PMID: 40330922 PMCID: PMC12053383 DOI: 10.21037/acr-24-159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/07/2025] [Indexed: 05/08/2025]
Abstract
Background Immune checkpoint inhibitor (ICI) therapy rarely results in severe immune-related adverse events (irAEs). Autoimmune diabetes, an uncommon but serious irAE, can be life-threatening if not promptly treated. Although ICIs have been widely used in cancer therapy, there have been no reported cases in China of autoimmune diabetes developing during the perioperative treatment of esophageal squamous cell carcinoma (ESCC). This case report provides a significant clinical contribution by presenting the first documented instance of such an occurrence, emphasizing the need for vigilance and appropriate management strategies. Case Description We present a 52-year-old male with locally advanced stage III locally advanced lower thoracic ESCC who developed type 1 diabetes mellitus (DM1) leading to diabetic ketoacidosis (DKA) after pembrolizumab treatment. The patient had no prior history of diabetes mellitus. He initially presented with progressive dysphagia and underwent two cycles of chemo-immunotherapy with albumin paclitaxel, carboplatin, and pembrolizumab as neoadjuvant therapy, followed by maintenance pembrolizumab after minimally invasive esophagectomy. Following the fifth course, he was admitted to the hospital in a comatose state and quickly diagnosed with DKA. Hemoglobin A1c (HbA1c) was 7.3%, and fasting C-peptide and insulin assays were significantly low. Detailed blood glucose levels and HbA1c were monitored before pembrolizumab initiation, and pre-treatment levels were normal. Pathological examination confirmed a moderately differentiated ESCC with no signs of metastatic disease. The patient received prompt multidisciplinary treatment and has been under follow-up for 10 months with no recurrence of ESCC but requiring ongoing management of diabetes. Conclusions In summary, this case highlights the rare but potentially life-threatening risk of autoimmune diabetes following pembrolizumab therapy in ESCC patients. The unique clinical contributions of this case include identifying the onset of DM1 during the perioperative period and emphasizing the importance of early detection of DKA symptoms. Clinicians should remain vigilant for such irAEs, ensuring regular monitoring of blood glucose and thyroid function in patients undergoing ICI therapy. Further research is needed to clarify the pathogenesis of pembrolizumab-induced diabetes and develop guidelines for monitoring and managing these adverse events in ESCC patients.
Collapse
Affiliation(s)
- Jicheng Xiong
- Department of Clinical Medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jialong Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ziwei Wang
- Department of Clinical Medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Simiao Lu
- Department of Clinical Medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shuoming Liang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wenguang Xiao
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongtao Han
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefeng Leng
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Fazeli P, Abolhasani S, Karamali N, Hajivalili M, Daryabor G, Panji M, Karimian M, Hosseini M. The role of memory T cells in type 1 diabetes: Phenotypes, mechanisms, and therapeutic implications. Autoimmun Rev 2025; 24:103759. [PMID: 39880347 DOI: 10.1016/j.autrev.2025.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing cells in the pancreatic islets. Patients with T1D have autoreactive CD4+ and CD8+ T cells that show specific features, indicating previous exposure to self-antigens. Despite that memory T cells are vital components of the adaptive immune system, providing enduring protection against pathogens; individuals with T1D have a higher proportion of memory T cells compared to healthy individuals with naїve phenotypes. Targeting memory T cells in newly diagnosed T1D patients has shown promising results, providing evidence for the significant role of memory T cells in this disease. There are various types of memory T cells, each with unique characteristics and functions. Recent advancements in understanding the complexity and heterogeneity of T cell subpopulations have shown that T1D cannot be fully understood through simple categorization. This review aims to discuss various types of memory T cells in the immunopathogenesis of T1D, focusing on their phenotypes and frequencies, as well as epigenetic and metabolic alterations. Additionally, it will address novel immunotherapeutic approaches targeting memory T cell subsets in T1D.
Collapse
Affiliation(s)
- Pooria Fazeli
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Hajivalili
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Daryabor
- Autoimmune Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Panji
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Karimian
- Brigham and Women's Hospital, Harvard Medical School Brigham and Women's Hospital, Boston, USA
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 PMCID: PMC11964952 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
10
|
Shapiro MR, Tallon EM, Brown ME, Posgai AL, Clements MA, Brusko TM. Leveraging artificial intelligence and machine learning to accelerate discovery of disease-modifying therapies in type 1 diabetes. Diabetologia 2025; 68:477-494. [PMID: 39694914 PMCID: PMC11832708 DOI: 10.1007/s00125-024-06339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024]
Abstract
Progress in developing therapies for the maintenance of endogenous insulin secretion in, or the prevention of, type 1 diabetes has been hindered by limited animal models, the length and cost of clinical trials, difficulties in identifying individuals who will progress faster to a clinical diagnosis of type 1 diabetes, and heterogeneous clinical responses in intervention trials. Classic placebo-controlled intervention trials often include monotherapies, broad participant populations and extended follow-up periods focused on clinical endpoints. While this approach remains the 'gold standard' of clinical research, efforts are underway to implement new approaches harnessing the power of artificial intelligence and machine learning to accelerate drug discovery and efficacy testing. Here, we review emerging approaches for repurposing agents used to treat diseases that share pathogenic pathways with type 1 diabetes and selecting synergistic combinations of drugs to maximise therapeutic efficacy. We discuss how emerging multi-omics technologies, including analysis of antigen processing and presentation to adaptive immune cells, may lead to the discovery of novel biomarkers and subsequent translation into antigen-specific immunotherapies. We also discuss the potential for using artificial intelligence to create 'digital twin' models that enable rapid in silico testing of personalised agents as well as dose determination. To conclude, we discuss some limitations of artificial intelligence and machine learning, including issues pertaining to model interpretability and bias, as well as the continued need for validation studies via confirmatory intervention trials.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Erin M Tallon
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, MO, USA
- Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Matthew E Brown
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Mark A Clements
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Gómez-Peralta F, Pinés-Corrales PJ, Santos E, Cuesta M, González-Albarrán O, Azriel S, Castaño L, Mathieu C, on behalf of the AGORA Diabetes Collaborative Group. Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group. J Clin Med 2025; 14:418. [PMID: 39860426 PMCID: PMC11766439 DOI: 10.3390/jcm14020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta-cells, leading to lifelong insulin dependence. This review explores the current understanding of T1D pathogenesis, clinical progression, and emerging therapeutic approaches. We examined the complex interplay between genetic predisposition and environmental factors that could trigger the autoimmune response as well as the immunological mechanisms involved in beta-cell destruction. The clinical phases of T1D are discussed from the preclinical stage through diagnosis and long-term management, highlighting the importance of early detection and intervention. Recent advancements in treatment strategies are presented, including immunomodulatory therapies and potential cell-based treatments aimed at preserving or restoring beta-cell function. Additionally, this review critically evaluates the feasibility and potential benefits of implementing a population-wide screening program for T1D in Spain. The epidemiological, economic, and ethical implications of such an initiative were considered by the national expert panel, focusing on the potential of early diagnosis to improve clinical outcomes in the face of the challenges of large-scale implementation. This comprehensive analysis aims to provide healthcare professionals, researchers, and policymakers with valuable insights into the current landscape of T1D management and prospects for enhanced prevention and treatment strategies in the Spanish context.
Collapse
Affiliation(s)
| | - Pedro J. Pinés-Corrales
- Endocrinology and Nutrition Service, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain;
| | - Estefanía Santos
- Endocrinology and Nutrition Service, Complejo Hospitalario de Burgos, 09006 Burgos, Spain;
| | - Martín Cuesta
- Endocrinology and Nutrition Service, Hospital Clínico San Carlos, 28040 Madrid, Spain;
| | | | - Sharona Azriel
- Endocrinology and Nutrition Service, Hospital Universitario Infanta Sofía, 28702 San Sebastián De Los Reyes, Spain;
| | - Luis Castaño
- Biobizkaia Health Research Institute, Pediatric Endocrinology Department, Cruces University Hospital, UPU/EHU, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Endo-ERN, 48903 Barakaldo, Spain;
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium;
| | | |
Collapse
|
12
|
den Hollander NHM, Jansen DTSL, Roep BO. Batch-to-Batch Variation and Patient Heterogeneity in Thymoglobulin Binding and Specificity: One Size Does Not Fit All. J Clin Med 2025; 14:422. [PMID: 39860427 PMCID: PMC11765605 DOI: 10.3390/jcm14020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Thymoglobulin is used to prevent allograft rejection and is being explored at low doses as intervention immunotherapy in type 1 diabetes. Thymoglobulin consists of a diverse pool of rabbit antibodies directed against many different targets on human thymocytes that can also be expressed by other leukocytes. Since Thymoglobulin is generated by injecting rabbits with human thymocytes, this conceivably leads to differences between Thymoglobulin batches. Methods: We compared different batches for antibody composition and variation between individuals in binding to PBMC and T cell subsets, and induction of cytokines. Four different batches of Thymoglobulin were directly conjugated with Alexa-Fluor 647. Blood was collected from five healthy donors, and PBMCs were isolated and stained with Thymoglobulin followed or preceded by a panel of fluorescent antibodies to identify PBMC and T cell subsets. In addition, whole blood was incubated with unlabeled Thymoglobulin to measure cytokine induction. Results: Cluster analysis of flow cytometry data shows that Thymoglobulin bound to all PBMC subpopulations including regulatory T cells. However, Thymoglobulin binding was highly variable between donors and to a lesser extent between batches. Cytokines related to cytokine release syndrome were highly, but variably, increased by all Thymoglobulin batches, with strong differences between donors and moderate differences between batches. Discussion: The variation in Thymoglobulin binding and action between donors regarding PBMC recognition and cytokine response may underlie the different clinical responses to Thymoglobulin therapy and require personalized dose adjustment to maximize efficacy and minimize adverse side effects.
Collapse
Affiliation(s)
| | | | - Bart O. Roep
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.H.M.d.H.); (D.T.S.L.J.)
| |
Collapse
|
13
|
Hanna SJ, Bonami RH, Corrie B, Westley M, Posgai AL, Luning Prak ET, Breden F, Michels AW, Brusko TM. The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository in the AIRR Data Commons: a practical guide for access, use and contributions through the Type 1 Diabetes AIRR Consortium. Diabetologia 2025; 68:186-202. [PMID: 39467874 PMCID: PMC11663175 DOI: 10.1007/s00125-024-06298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024]
Abstract
Human molecular genetics has brought incredible insights into the variants that confer risk for the development of tissue-specific autoimmune diseases, including type 1 diabetes. The hallmark cell-mediated immune destruction that is characteristic of type 1 diabetes is closely linked with risk conferred by the HLA class II gene locus, in combination with a broad array of additional candidate genes influencing islet-resident beta cells within the pancreas, as well as function, phenotype and trafficking of immune cells to tissues. In addition to the well-studied germline SNP variants, there are critical contributions conferred by T cell receptor (TCR) and B cell receptor (BCR) genes that undergo somatic recombination to yield the Adaptive Immune Receptor Repertoire (AIRR) responsible for autoimmunity in type 1 diabetes. We therefore created the T1D TCR/BCR Repository (The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository) to study these highly variable and dynamic gene rearrangements. In addition to processed TCR and BCR sequences, the T1D TCR/BCR Repository includes detailed metadata (e.g. participant demographics, disease-associated parameters and tissue type). We introduce the Type 1 Diabetes AIRR Consortium goals and outline methods to use and deposit data to this comprehensive repository. Our ultimate goal is to facilitate research community access to rich, carefully annotated immune AIRR datasets to enable new scientific inquiry and insight into the natural history and pathogenesis of type 1 diabetes.
Collapse
MESH Headings
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Humans
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Autoimmunity
Collapse
Affiliation(s)
- Stephanie J Hanna
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | - Rachel H Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
| | - Brian Corrie
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | | | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Haller MJ, Bell KJ, Besser RE, Casteels K, Couper JJ, Craig ME, Elding Larsson H, Jacobsen L, Lange K, Oron T, Sims EK, Speake C, Tosur M, Ulivi F, Ziegler AG, Wherrett DK, Marcovecchio ML. ISPAD Clinical Practice Consensus Guidelines 2024: Screening, Staging, and Strategies to Preserve Beta-Cell Function in Children and Adolescents with Type 1 Diabetes. Horm Res Paediatr 2024; 97:529-545. [PMID: 39662065 PMCID: PMC11854978 DOI: 10.1159/000543035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024] Open
Abstract
The International Society for Pediatric and Adolescent Diabetes (ISPAD) guidelines represent a rich repository that serves as the only comprehensive set of clinical recommendations for children, adolescents, and young adults living with diabetes worldwide. This guideline serves as an update to the 2022 ISPAD consensus guideline on staging for type 1 diabetes (T1D). Key additions include an evidence-based summary of recommendations for screening for risk of T1D and monitoring those with early-stage T1D. In addition, a review of clinical trials designed to delay progression to Stage 3 T1D and efforts seeking to preserve beta-cell function in those with Stage 3 T1D are included. Lastly, opportunities and challenges associated with the recent US Food and Drug Administration (FDA) approval of teplizumab as an immunotherapy to delay progression are discussed. The International Society for Pediatric and Adolescent Diabetes (ISPAD) guidelines represent a rich repository that serves as the only comprehensive set of clinical recommendations for children, adolescents, and young adults living with diabetes worldwide. This guideline serves as an update to the 2022 ISPAD consensus guideline on staging for type 1 diabetes (T1D). Key additions include an evidence-based summary of recommendations for screening for risk of T1D and monitoring those with early-stage T1D. In addition, a review of clinical trials designed to delay progression to Stage 3 T1D and efforts seeking to preserve beta-cell function in those with Stage 3 T1D are included. Lastly, opportunities and challenges associated with the recent US Food and Drug Administration (FDA) approval of teplizumab as an immunotherapy to delay progression are discussed.
Collapse
Affiliation(s)
- Michael J. Haller
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Kirstine J. Bell
- Charles Perkins Centre and Faculty Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel E.J. Besser
- Centre for Human Genetics, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jenny J. Couper
- Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Maria E. Craig
- The Children’s Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Pediatrics and Child Health, University of Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW, Australia
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö/Lund, Sweden
| | - Laura Jacobsen
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Karin Lange
- Department of Medical Psychology, Hannover Medical School, Hannover, Germany
| | - Tal Oron
- The Institute for Endocrinology and Diabetes, Schneider Children’s Medical Center of Israel, Petah-Tikva, Israel
| | - Emily K. Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mustafa Tosur
- The Division of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
- Children’s Nutrition Research Center, USDA/ARS, Houston, TX, USA
| | | | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Diane K. Wherrett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - M. Loredana Marcovecchio
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
15
|
O’Donovan AJ, Gorelik S, Nally LM. Shifting the paradigm of type 1 diabetes: a narrative review of disease modifying therapies. Front Endocrinol (Lausanne) 2024; 15:1477101. [PMID: 39568817 PMCID: PMC11576206 DOI: 10.3389/fendo.2024.1477101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024] Open
Abstract
A new diagnosis of type 1 diabetes (T1D) may be accompanied by numerous lifelong financial, emotional, and physical challenges, thus advancements in therapies that can delay the onset of clinical disease are crucial. T1D is an autoimmune condition involving destruction of pancreatic beta cells leading to insulin deficiency, hyperglycemia, and long-term insulin dependence. The pathogenesis of T1D is classified into stages, with the first signal being the detection of autoantibodies without any glycemic changes. In the second stage, dysglycemia develops without symptoms, and in stage 3, symptoms of hyperglycemia become apparent, and at this time a clinical diagnosis of T1D is made. As a greater understanding of these stages of T1D have evolved, research efforts have been devoted to delaying the onset of clinical disease. To date, only one medication, teplizumab, has been approved by the Food and Drug Administration (FDA) for the treatment of stage 2 T1D. This narrative review present published trials and ongoing research on disease modifying therapies (DMT) in T1D, the mechanisms of action for each therapy, and the stages of T1D that these interventions are being studied.
Collapse
Affiliation(s)
- Alexander J. O’Donovan
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| | - Seth Gorelik
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
- Bowdoin College, Brunswick, ME, United States
| | - Laura M. Nally
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| |
Collapse
|
16
|
Ray S, Palui R. Immunotherapy in type 1 diabetes: Novel pathway to the future ahead. World J Diabetes 2024; 15:2022-2035. [PMID: 39493558 PMCID: PMC11525730 DOI: 10.4239/wjd.v15.i10.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/26/2024] Open
Abstract
Since the discovery of insulin over 100 years ago, the focus of research in the management of type 1 diabetes (T1D) has centered around glycemic control and management of complications rather than the prevention of autoimmune destruction of pancreatic β cells. Fortunately, in recent years, there has been significant advancement in immune-targeted pharmacotherapy to halt the natural progression of T1D. The immune-targeted intervention aims to alter the underlying pathogenesis of T1D by targeting different aspects of the immune system. The immunotherapy can either antagonize the immune mediators like T cells, B cells or cytokines (antibody-based therapy), or reinduce self-tolerance to pancreatic β cells (antigen-based therapy) or stem-cell treatment. Recently, the US Food and Drug Administration approved the first immunotherapy teplizumab to be used only in stage 2 of T1D. However, the window of opportunity to practically implement this approved molecule in the selected target population is limited. In this Editorial, we briefly discuss the various promising recent developments in the field of immunotherapy research in T1D. However, further studies of these newer therapeutic agents are needed to explore their true potential for prevention or cure of T1D.
Collapse
Affiliation(s)
- Sayantan Ray
- Department of Endocrinology, All India Institute of Medical Sciences, Bhubaneswar 751019, India
| | - Rajan Palui
- Department of Endocrinology, The Mission Hospital, Durgapur 713212, India
| |
Collapse
|
17
|
Jacobsen LM, Schatz D. Immunotherapy-Based Strategies for Treatment of Type 1 Diabetes. Horm Res Paediatr 2024:1-10. [PMID: 39401495 PMCID: PMC12038710 DOI: 10.1159/000542002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/08/2024] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is more than an insulin-deficiency disease - it is an autoimmune disease, and the field is moving toward adopting disease-modifying immunotherapy as part of clinical care during T1D development. SUMMARY Recent successful immunotherapies as well as therapies that missed the mark are reviewed. T cell-directed therapies may allow for the greatest preservation of β cell function but also come with more side effects. Anti-cytokine therapies are very promising but likely need chronic administration. Antigen-specific therapies while safe have not produced meaningful results. Most successful trials have been conducted in adolescents and adults with stage 3 T1D (clinical T1D) with preserved C-peptide (up to 60% more compared to placebo) demonstrated 1-2 years post treatment. HbA1c and total insulin dose are less likely to be significantly different between treated and placebo groups because most participants in studies are meeting glycemic targets and because of the heterogeneous nature of these measures. In the prevention space (delaying progression from stage 2 to stage 3 T1D), the outcome is more discrete, and a T cell-directed therapy, teplizumab, has received FDA approval. Even negative studies with promising mechanistic and safety profiles have added value. KEY MESSAGES What is clear, a single administration or short course of an immunotherapy is unlikely to provide sustained freedom from exogenous insulin.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, Division of Endocrinology, University of Florida, Gainesville, Florida, USA
| | - Desmond Schatz
- Department of Pediatrics, Division of Endocrinology, University of Florida, Gainesville, Florida, USA,
| |
Collapse
|
18
|
Elkoshi Z. Autoimmune diseases refractory to corticosteroids and immunosuppressants. Front Immunol 2024; 15:1447337. [PMID: 39351223 PMCID: PMC11439723 DOI: 10.3389/fimmu.2024.1447337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Corticosteroids and immunosuppressive drugs can alleviate the symptoms of most autoimmune diseases and induce remission by restraining the autoimmune attack and limiting the damage to the target tissues. However, four autoimmune non-degenerative diseases-adult advanced type 1 diabetes mellitus, Hashimoto's thyroiditis, Graves' disease, and advanced primary biliary cholangitis-are refractory to these drugs. This article suggests that the refractoriness of certain autoimmune diseases is due to near-total loss of secreting cells coupled with the extremely low regenerative capacity of the affected tissues. The near-complete destruction of cells responsible for secreting insulin, thyroid hormones, or biliary HCO3 - diminishes the protective effects of immunosuppressants against further damage. The slow regeneration rate of these cells hinders tissue recovery, even after drug-induced immune suppression, thus preventing remission. Although the liver can fully regenerate after injury, severe primary biliary cholangitis may impair this ability, preventing liver recovery. Consequently, these four autoimmune diseases are resistant to immunosuppressive drugs and corticosteroids. In contrast, early stages of type 1 diabetes and early primary biliary cholangitis, where damage to secreting cells is partial, may benefit from immunosuppressant treatment. In contrast to these four diseases, chronic degenerative autoimmune conditions like multiple sclerosis may respond positively to corticosteroid use despite the limited regenerative potential of the affected tissue (the central nervous system). The opposite is true for acute autoimmune conditions like Guillain-Barré syndrome.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
19
|
Zhou YH, Yu LT, Wang XN, Li YJ, Xu KY, Li X, Pu CC, Xie FL, Xie BB, Gao Y, Luo C. Reg2 treatment is protective but the induced Reg2 autoantibody is destructive to the islets in NOD mice. Biochem Pharmacol 2024; 227:116444. [PMID: 39038551 DOI: 10.1016/j.bcp.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Regenerating family protein 2 (Reg2) is a trophic factor which stimulates β-cell replication and resists islet destruction. However, Reg2 also serves as an islet autoantigen, which makes it complicated to judge the effectiveness in treating diabetes. How Reg2 treatment behaves in non-obese diabetic (NOD) mice is to be investigated. NOD mice were treated with recombinant Reg2 protein, Complete Freund's adjuvant (CFA) + PBS and CFA+Reg2 vaccinations, CFA+PBS- and CFA+Reg2-immunized antisera, and single chain variable fragment (scFv)-Reg2 and mIgG2a-Reg2 antibodies. Glycemic level, bodyweight, serum Reg2 antibody titer, glucose tolerance, and insulin secretion were determined. Islet morphological characteristics, insulitis, cell apoptosis, islet cell components, and T cell infiltration were analyzed by histological examinations. The autoantigenicity of constructed Reg2C and Reg2X fragments was determined in healthy BALB/c mice, and the bioactivity in stimulating cell proliferation and survival was assessed in insulinoma MIN6 cells. Reg2 administration alleviated diabetes in NOD mice with improved glucose tolerance and insulin secretion but elevated serum Reg2 autoantibodies. Histomorphometry showed reduced inflammatory area, TUNEL signal and CD8 + T cell infiltration, and increased β-cell proportion in support of the islet-protective effect of Reg2 treatment. CFA+PBS and CFA+Reg2 immunizations prevented diabetic onset and alleviated insulitis while injections of the antisera offered mild protections. Antibody treatments accelerated diabetic onset without increasing the overall incidence. Reg2C fragment depletes antigenicity, but reserves protective activity in streptozotocin (STZ)-treated MIN6 cells. In conclusion, Reg2 treatment alleviates type 1 diabetes (T1D) by preserving islet β-cells, but induces Reg2 autoantibody production which poses a potential risk of accelerating diabetic progression.
Collapse
Affiliation(s)
- Yi-Han Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lu-Ting Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xiao-Nan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - You-Jie Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ke-Yi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chun-Cheng Pu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fei-Lu Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bing-Bing Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Gao
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou, China; Suzhou Institute of Advanced Study in Public Health, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Chen Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; Antibody Engineering Laboratory, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
20
|
Nabi-Afjadi M, Ostadhadi S, Liaghat M, Pasupulla AP, Masoumi S, Aziziyan F, Zalpoor H, Abkhooie L, Tarhriz V. Revolutionizing type 1 diabetes management: Exploring oral insulin and adjunctive treatments. Biomed Pharmacother 2024; 176:116808. [PMID: 38805967 DOI: 10.1016/j.biopha.2024.116808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition that affects millions of people worldwide. Insulin pumps or injections are the standard treatment options for this condition. This article provides a comprehensive overview of the several type 1 diabetes treatment options, focusing on oral insulin. The article is divided into parts that include immune-focused treatments, antigen vaccination, cell-directed interventions, cytokine-directed interventions, and non-immunomodulatory adjuvant therapy. Under the section on non-immunomodulatory adjunctive treatment, the benefits and drawbacks of medications such as metformin, amylin, sodium-glucose cotransporter inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1 Ras), and verapamil are discussed. The article also discusses the advantages of oral insulin, including increased patient compliance and more dependable and regular blood sugar control. However, several variables, including the enzymatic and physical barriers of the digestive system, impair the administration of insulin via the mouth. Researchers have looked at a few ways to get over these challenges, such as changing the structure of the insulin molecule, improving absorption with the use of absorption enhancers or nanoparticles, and taking oral insulin together with other medications. Even with great advancements in the use of these treatment strategies, T1D still needs improvement in the therapeutic difficulties. Future studies in these areas should focus on creating tailored immunological treatments, looking into combination medications, and refining oral insulin formulations in an attempt to better control Type 1 Diabetes. The ultimate objective is to create accurate, customized strategies that will enhance glycemic management and the quality of life for individuals with the condition.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Samane Ostadhadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Ajay Prakash Pasupulla
- Oral and Maxillofacial Pathology, School of Medicine, Colllege of health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Sajjad Masoumi
- Department of Medical Biotechnology, National institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
21
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
22
|
Latres E, Greenbaum CJ, Oyaski ML, Dayan CM, Colhoun HM, Lachin JM, Skyler JS, Rickels MR, Ahmed ST, Dutta S, Herold KC, Marinac M. Evidence for C-Peptide as a Validated Surrogate to Predict Clinical Benefits in Trials of Disease-Modifying Therapies for Type 1 Diabetes. Diabetes 2024; 73:823-833. [PMID: 38349844 DOI: 10.2337/dbi23-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Type 1 diabetes is a chronic autoimmune disease in which destruction of pancreatic β-cells causes life-threatening metabolic dysregulation. Numerous approaches are envisioned for new therapies, but limitations of current clinical outcome measures are significant disincentives to development efforts. C-peptide, a direct byproduct of proinsulin processing, is a quantitative biomarker of β-cell function that is not cleared by the liver and can be measured in the peripheral blood. Studies of quantitative measures of β-cell function have established a predictive relationship between stimulated C-peptide as a measure of β-cell function and clinical benefits. C-peptide levels at diagnosis are often high enough to afford glycemic control benefits associated with protection from end-organ complications of diabetes, and even lower levels offer protection from severe hypoglycemia in type 1 diabetes, as observed in large prospective cohort studies and interventional trials of islet transplantation. These observations support consideration of C-peptide not just as a biomarker of β-cell function but also as a specific, sensitive, feasible, and clinically meaningful outcome defining β-cell preservation or restoration for clinical trials of disease-modifying therapies. Regulatory acceptance of C-peptide as a validated surrogate for demonstration of efficacy would greatly facilitate development of disease-modifying therapies for type 1 diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | | | | | | | - Helen M Colhoun
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| | - John M Lachin
- Biostatistics Center, George Washington University, Rockville, MD
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami, Miami, FL
| | - Michael R Rickels
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Simi T Ahmed
- New York Stem Cell Foundation Research Institute, New York, NY
| | | | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
23
|
Lin C, Hu S, Cai X, Lv F, Yang W, Liu G, Yang X, Ji L. The opportunities and challenges of the disease-modifying immunotherapy for type 1 diabetes: A systematic review and meta-analysis. Pharmacol Res 2024; 203:107157. [PMID: 38531504 DOI: 10.1016/j.phrs.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
There are multiple disease-modifying immunotherapies showing the potential of preventing or delaying the progression of type 1 diabetes (T1D). We designed and performed this systematic review and meta-analysis to gain an overview of what a role immunotherapy plays in the treatment of T1D. We searched PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to December 2023. We included clinical trials of immunotherapy conducted in patients with T1D that reported the incidence of hypoglycemia or changes from baseline in at least one of following outcomes: 2 h and 4 h mixed-meal-stimulated C-peptide area under the curve (AUC), fasting C-peptide, daily insulin dosage, glycated hemoglobin (HbA1c) and fasting plasma glucose (FPG). The results were computed as the weighted mean differences (WMDs) or odds ratios (ORs) and 95% confidence intervals (CIs) in random-effect model. In all, 34 clinical trials were included. When compared with control groups, 2 h C-peptide AUC was marginally higher in patient treated with nonantigen-based immunotherapies (WMD, 0.04nmol/L, 95% CI, 0.00-0.09 nmol/L, P=0.05), which was mainly driven by the effects of T cell-targeted therapy. A greater preservation in 4 h C-peptide AUC was observed in patients with nonantigen-based immunotherapies (WMD, 0.10nmol/L, 95% CI, 0.04-0.16 nmol/L, P=0.0007), which was mainly driven by the effects of tumor necrosis factor α (TNF-α) inhibitor and T cell-targeted therapy. After excluding small-sample trials, less daily insulin dosage was observed in patient treated with nonantigen-based immunotherapies when compared with control groups (WMD, -0.07units/kg/day, 95% CI, -0.11 to -0.03units/kg/day, P=0.0004). The use of antigen-based immunotherapies was also associated with a lower daily insulin dosage versus control groups (WMD, -0.11units/kg/day, 95% CI, -0.23 to -0.00units/kg/day, P=0.05). However, changes of HbA1c or FPG were comparable between nonantigen-based immunotherapies or antigen-based immunotherapies and control groups. The risk of hypoglycemia was not increased in patients treated with nonantigen-based immunotherapies or patients treated with antigen-based immunotherapies when compared with control groups. In conclusion, nonantigen-based immunotherapies were associated with a preservation of 2 h and 4 h C-peptide AUC in patients with T1D when compared with the controls, which was mainly driven by the effects of TNF-a inhibitor and T cell-targeted therapy. Both nonantigen-based immunotherapies and antigen-based immunotherapies tended to reduce the daily insulin dosage in patients with T1D when compared with the controls. However, they did not contribute to a substantial improvement in HbA1c or FPG. Both nonantigen-based immunotherapies and antigen-based immunotherapies were well tolerated with not increased risk of hypoglycemia in patients with T1D.
Collapse
Affiliation(s)
- Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Geling Liu
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xiaolin Yang
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
24
|
Long SA, Muir VS, Jones BE, Wall VZ, Ylescupidez A, Hocking AM, Pribitzer S, Thorpe J, Fuchs B, Wiedeman AE, Tatum M, Lambert K, Uchtenhagen H, Speake C, Ng B, Heubeck AT, Torgerson TR, Savage AK, Maldonado MA, Ray N, Khaychuk V, Liu J, Linsley PS, Buckner JH. Abatacept increases T cell exhaustion in early RA individuals who carry HLA risk alleles. Front Immunol 2024; 15:1383110. [PMID: 38650930 PMCID: PMC11033422 DOI: 10.3389/fimmu.2024.1383110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Exhausted CD8 T cells (TEX) are associated with worse outcome in cancer yet better outcome in autoimmunity. Building on our past findings of increased TIGIT+KLRG1+ TEX with teplizumab therapy in type 1 diabetes (T1D), in the absence of treatment we found that the frequency of TIGIT+KLRG1+ TEX is stable within an individual but differs across individuals in both T1D and healthy control (HC) cohorts. This TIGIT+KLRG1+ CD8 TEX population shares an exhaustion-associated EOMES gene signature in HC, T1D, rheumatoid arthritis (RA), and cancer subjects, expresses multiple inhibitory receptors, and is hyporesponsive in vitro, together suggesting co-expression of TIGIT and KLRG1 may broadly define human peripheral exhausted cells. In HC and RA subjects, lower levels of EOMES transcriptional modules and frequency of TIGIT+KLRG1+ TEX were associated with RA HLA risk alleles (DR0401, 0404, 0405, 0408, 1001) even when considering disease status and cytomegalovirus (CMV) seropositivity. Moreover, the frequency of TIGIT+KLRG1+ TEX was significantly increased in RA HLA risk but not non-risk subjects treated with abatacept (CTLA4Ig). The DR4 association and selective modulation with abatacept suggests that therapeutic modulation of TEX may be more effective in DR4 subjects and TEX may be indirectly influenced by cellular interactions that are blocked by abatacept.
Collapse
Affiliation(s)
- Sarah Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Virginia S. Muir
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Britta E. Jones
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Valerie Z. Wall
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Alyssa Ylescupidez
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Anne M. Hocking
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephan Pribitzer
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Jerill Thorpe
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Bryce Fuchs
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Alice E. Wiedeman
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Megan Tatum
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Katharina Lambert
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Hannes Uchtenhagen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Bernard Ng
- VA National Rheumatology Program, Specialty Care Program Office, Washington, DC, United States
- Rheumatology Section, VA Puget Sound Health Care System, Seattle, WA, United States
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | | | | | - Adam K. Savage
- Allen Institute for Immunology, Seattle, WA, United States
| | | | | | | | - Jinqi Liu
- Bristol Myers Squibb, Princeton, NJ, United States
| | - Peter S. Linsley
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| |
Collapse
|
25
|
Bi Y, Kong R, Peng Y, Cai D, Zhang Y, Yang F, Li X, Deng W, Liu F, He B, Cao C, Deng C, Tang X, Fan L, Yu H, Zhou Z. Multiply restimulated human cord blood-derived Tregs maintain stabilized phenotype and suppressive function and predict their therapeutic effects on autoimmune diabetes. Diabetol Metab Syndr 2024; 16:71. [PMID: 38515175 PMCID: PMC10956208 DOI: 10.1186/s13098-024-01277-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are involved in the maintenance of immune homeostasis and immune regulation. Clinical trials on the adoptive transfer of Tregs have been ongoing for > 10 years. However, many unresolved issues remain in the production of readymade Treg products and selection of patients. Hence, this study aimed to develop a method to expand off-the-shelf Tregs derived from umbilical cord blood (UCB-Tregs) in vitro without changing their phenotype and inhibitory function. In addition, the study intended to design an approach to precisely select patients who are more likely to benefit from the adoptive Treg transfer therapy. METHODS UCB-Tregs were isolated and cultured in a medium containing human recombinant IL-2 and rapamycin and then multiply restimulated with human T-activator CD3/CD28 dynabeads. The phenotype and suppressive capacity of Tregs were assessed on days 18 and 42. The relationship between the suppressive function of UCB-Tregs in vitro and clinical indicators was analyzed, and the ability of the in vitro suppressive capacity to predict the in vivo therapeutic effects was evaluated. RESULTS UCB-Tregs expanded 123-fold and 5,981-fold at 18 and 42 days, respectively. The suppressive function of UCB-Tregs on the proliferation of immune cells at 42 days was not significantly different compared with that of UCB-Tregs obtained at 18 days. The suppression rate of UCB-Tregs to PBMCs was negatively correlated with the course of diabetes. Moreover, the high-suppression group exhibited a better treatment response than the low-suppression group during the 12-month follow-up period. CONCLUSIONS Multiply restimulated UCB-Tregs expanded at a large scale without any alterations in their classical phenotypic features and inhibitory functions. The suppressive function of Tregs in vitro was negatively correlated with the disease duration. The present study revealed the possibility of predicting the in vivo therapeutic effects via the in vitro inhibition assay. Thus, these findings provided a method to obtain off-the-shelf Treg products and facilitated the selection of patients who are likely to respond to the treatment, thereby moving toward the goal of precision treatment.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Donghua Cai
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen Deng
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Binbin He
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuqing Cao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Deng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohan Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
26
|
Kennedy EC, Hawkes CP. Approaches to Measuring Beta Cell Reserve and Defining Partial Clinical Remission in Paediatric Type 1 Diabetes. CHILDREN (BASEL, SWITZERLAND) 2024; 11:186. [PMID: 38397298 PMCID: PMC10887271 DOI: 10.3390/children11020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
CONTEXT Type 1 diabetes (T1D) results from the autoimmune T-cell mediated destruction of pancreatic beta cells leading to insufficient insulin secretion. At the time of diagnosis of T1D, there is residual beta cell function that declines over the subsequent months to years. Recent interventions have been approved to preserve beta cell function in evolving T1D. OBJECTIVE The aim of this review is to summarise the approaches used to assess residual beta cell function in evolving T1D, and to highlight potential future directions. METHODS Studies including subjects aged 0 to 18 years were included in this review. The following search terms were used; "(type 1 diabetes) and (partial remission)" and "(type 1 diabetes) and (honeymoon)". References of included studies were reviewed to determine if additional relevant studies were eligible. RESULTS There are numerous approaches to quantifying beta cell reserve in evolving T1D. These include c-peptide measurement after a mixed meal or glucagon stimuli, fasting c-peptide, the urinary c-peptide/creatinine ratio, insulin dose-adjusted haemoglobin A1c, and other clinical models to estimate beta cell function. Other biomarkers may have a role, including the proinsulin/c-peptide ratio, cytokines, and microRNA. Studies using thresholds to determine if residual beta cell function is present often differ in values used to define remission. CONCLUSIONS As interventions are approved to preserve beta cell function, it will become increasingly necessary to quantify residual beta cell function in research and clinical contexts. In this report, we have highlighted the strengths and limitations of the current approaches.
Collapse
Affiliation(s)
- Elaine C Kennedy
- Department of Paediatrics and Child Health, University College Cork, T12 DC4A Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | - Colin P Hawkes
- Department of Paediatrics and Child Health, University College Cork, T12 DC4A Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Foster TP, Jacobsen LM, Bruggeman B, Salmon C, Hosford J, Chen A, Cintron M, Mathews CE, Wasserfall C, Brusko MA, Brusko TM, Atkinson MA, Schatz DA, Haller MJ. Low-Dose Antithymocyte Globulin: A Pragmatic Approach to Treating Stage 2 Type 1 Diabetes. Diabetes Care 2024; 47:285-289. [PMID: 38117469 PMCID: PMC10834389 DOI: 10.2337/dc23-1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Low-dose antithymocyte globulin (ATG) (2.5 mg/kg) preserves C-peptide and reduces HbA1c in new-onset stage 3 type 1 diabetes, yet efficacy in delaying progression from stage 2 to stage 3 has not been evaluated. RESEARCH DESIGN AND METHODS Children (n = 6) aged 5-14 years with stage 2 type 1 diabetes received off-label, low-dose ATG. HbA1c, C-peptide, continuous glucose monitoring, insulin requirements, and side effects were followed for 18-48 months. RESULTS Three subjects (50%) remained diabetes free after 1.5, 3, and 4 years of follow-up, while three developed stage 3 within 1-2 months after therapy. Eighteen months posttreatment, even disease progressors demonstrated near-normal HbA1c (5.1% [32 mmol/mol], 5.6% [38 mmol/mol], and 5.3% [34 mmol/mol]), time in range (93%, 88%, and 98%), low insulin requirements (0.17, 0.18, and 0.34 units/kg/day), and robust C-peptide 90 min after mixed meal (1.3 ng/dL, 2.3 ng/dL, and 1.4 ng/dL). CONCLUSIONS These observations support additional prospective studies evaluating ATG in stage 2 type 1 diabetes.
Collapse
Affiliation(s)
- Timothy P. Foster
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Laura M. Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Brittany Bruggeman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Chelsea Salmon
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Jennifer Hosford
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Angela Chen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Miriam Cintron
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Clayton E. Mathews
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Maigan A. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Todd M. Brusko
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Mark A. Atkinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Desmond A. Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| |
Collapse
|
28
|
Fanaropoulou NM, Tsatsani GC, Koufakis T, Kotsa K. Teplizumab: promises and challenges of a recently approved monoclonal antibody for the prevention of type 1 diabetes or preservation of residual beta cell function. Expert Rev Clin Immunol 2024; 20:185-196. [PMID: 37937833 DOI: 10.1080/1744666x.2023.2281990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a chronic autoimmune endocrinopathy with increasing incidence that results in the depletion of pancreatic beta cells and exogenous insulin dependence. Despite technological advances in insulin delivery, disease control remains suboptimal, while previous immunotherapy options have failed to prevent T1D. Recently, teplizumab, an immunomodulating monoclonal antibody, was approved to delay or prevent T1D. AREAS COVERED Five randomized controlled trials have tested different regimens of administration, mostly 14-day schemes with dose escalation. In participants with new-onset T1D, teplizumab delayed C-peptide decline, improved glycemic control, and reduced insulin demand for a median of 1 or 2 years. Studies in at-risk relatives of patients showed a decrease in T1D incidence during 2 years of follow-up. Subgroups of responders with unique metabolic and immunological characteristics were identified. Mild to moderate adverse effects were reported, including transient rash, cytopenia, nausea, vomiting, and infections. EXPERT OPINION Teplizumab marks a turning point in T1D therapy. Areas of future research include the ideal population for screening, cost-effectiveness, and challenges in treatment accessibility. More studies are essential to evaluate the ideal duration of the regimen, the potential benefit of combinations with other drugs, and to identify endophenotypes with a high probability of response.
Collapse
Affiliation(s)
- Nina Maria Fanaropoulou
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia C Tsatsani
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
29
|
Mathieu C, Wiedeman A, Cerosaletti K, Long SA, Serti E, Cooney L, Vermeiren J, Caluwaerts S, Van Huynegem K, Steidler L, Blomme S, Rottiers P, Nepom GT, Herold KC. A first-in-human, open-label Phase 1b and a randomised, double-blind Phase 2a clinical trial in recent-onset type 1 diabetes with AG019 as monotherapy and in combination with teplizumab. Diabetologia 2024; 67:27-41. [PMID: 37782353 PMCID: PMC10709251 DOI: 10.1007/s00125-023-06014-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that islet beta cell antigen presentation in the gut along with a tolerising cytokine would lead to antigen-specific tolerance in type 1 diabetes. We evaluated this in a parallel open-label Phase 1b study using oral AG019, food-grade Lactococcus lactis bacteria genetically modified to express human proinsulin and human IL-10, as a monotherapy and in a parallel, randomised, double-blind Phase 2a study using AG019 in combination with teplizumab. METHODS Adults (18-42 years) and adolescents (12-17 years) with type 1 diabetes diagnosed within 150 days were enrolled, with documented evidence of at least one autoantibody and a stimulated peak C-peptide level >0.2 nmol/l. Participants were allocated to interventions using interactive response technology. We treated 42 people aged 12-42 years with recent-onset type 1 diabetes, 24 with Phase 1b monotherapy (open-label) and 18 with Phase 2a combination therapy. In the Phase 2a study, after treatment of the first two open-label participants, all people involved were blinded to group assignment, except for the Data Safety Monitoring Board members and the unblinded statistician. The primary endpoint was safety and tolerability based on the incidence of treatment-emergent adverse events, collected up to 6 months post treatment initiation. The secondary endpoints were pharmacokinetics, based on AG019 detection in blood and faeces, and pharmacodynamic activity. Metabolic and immune endpoints included stimulated C-peptide levels during a mixed meal tolerance test, HbA1c levels, insulin use, and antigen-specific CD4+ and CD8+ T cell responses using an activation-induced marker assay and pooled tetramers, respectively. RESULTS Data from 24 Phase 1b participants and 18 Phase 2a participants were analysed. No serious adverse events were reported and none of the participants discontinued AG019 due to treatment-emergent adverse events. No systemic exposure to AG019 bacteria, proinsulin or human IL-10 was demonstrated. In AG019 monotherapy-treated adults, metabolic variables were stabilised up to 6 months (C-peptide, insulin use) or 12 months (HbA1c) post treatment initiation. In participants treated with AG019/teplizumab combination therapy, all measured metabolic variables stabilised or improved up to 12 months and CD8+ T cells with a partially exhausted phenotype were significantly increased at 6 months. Circulating preproinsulin-specific CD4+ and CD8+ T cells were detected before and after treatment, with a reduction in the frequency of preproinsulin-specific CD8+ T cells after treatment with monotherapy or combination therapy. CONCLUSIONS/INTERPRETATION Oral delivery of AG019 was well tolerated and safe as monotherapy and in combination with teplizumab. AG019 was not shown to interfere with the safety profile of teplizumab and may have additional biological effects, including changes in preproinsulin-specific T cells. These preliminary data support continuing studies with this agent alone and in combination with teplizumab or other systemic immunotherapies in type 1 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT03751007, EudraCT 2017-002871-24 FUNDING: This study was funded by Precigen ActoBio.
Collapse
Affiliation(s)
- Chantal Mathieu
- Clinical and Experimental Endocrinology, University Hospital of Leuven, Leuven, Belgium
| | - Alice Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | - Kevan C Herold
- Department of Immunology and Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
30
|
Ramos EL, Dayan CM, Chatenoud L, Sumnik Z, Simmons KM, Szypowska A, Gitelman SE, Knecht LA, Niemoeller E, Tian W, Herold KC. Teplizumab and β-Cell Function in Newly Diagnosed Type 1 Diabetes. N Engl J Med 2023; 389:2151-2161. [PMID: 37861217 DOI: 10.1056/nejmoa2308743] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
BACKGROUND Teplizumab, a humanized monoclonal antibody to CD3 on T cells, is approved by the Food and Drug Administration to delay the onset of clinical type 1 diabetes (stage 3) in patients 8 years of age or older with preclinical (stage 2) disease. Whether treatment with intravenous teplizumab in patients with newly diagnosed type 1 diabetes can prevent disease progression is unknown. METHODS In this phase 3, randomized, placebo-controlled trial, we assessed β-cell preservation, clinical end points, and safety in children and adolescents who were assigned to receive teplizumab or placebo for two 12-day courses. The primary end point was the change from baseline in β-cell function, as measured by stimulated C-peptide levels at week 78. The key secondary end points were the insulin doses that were required to meet glycemic goals, glycated hemoglobin levels, time in the target glucose range, and clinically important hypoglycemic events. RESULTS Patients treated with teplizumab (217 patients) had significantly higher stimulated C-peptide levels than patients receiving placebo (111 patients) at week 78 (least-squares mean difference, 0.13 pmol per milliliter; 95% confidence interval [CI], 0.09 to 0.17; P<0.001), and 94.9% (95% CI, 89.5 to 97.6) of patients treated with teplizumab maintained a clinically meaningful peak C-peptide level of 0.2 pmol per milliliter or greater, as compared with 79.2% (95% CI, 67.7 to 87.4) of those receiving placebo. The groups did not differ significantly with regard to the key secondary end points. Adverse events occurred primarily in association with administration of teplizumab or placebo and included headache, gastrointestinal symptoms, rash, lymphopenia, and mild cytokine release syndrome. CONCLUSIONS Two 12-day courses of teplizumab in children and adolescents with newly diagnosed type 1 diabetes showed benefit with respect to the primary end point of preservation of β-cell function, but no significant differences between the groups were observed with respect to the secondary end points. (Funded by Provention Bio and Sanofi; PROTECT ClinicalTrials.gov number, NCT03875729.).
Collapse
Affiliation(s)
- Eleanor L Ramos
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Colin M Dayan
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Lucienne Chatenoud
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Zdenek Sumnik
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Kimber M Simmons
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Agnieszka Szypowska
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Stephen E Gitelman
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Laura A Knecht
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Elisabeth Niemoeller
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Wei Tian
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| | - Kevan C Herold
- From Provention Bio, a Sanofi company, Red Bank, NJ (E.L.R., L.A.K., W.T.); Cardiff University, Cardiff, United Kingdom (C.M.D.); Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris (L.C.); the Department of Pediatrics, Motol University Hospital, Second Faculty of Medicine-Charles University, Prague, Czech Republic (Z.S.); the Barbara Davis Center for Diabetes/University of Colorado School of Medicine, Aurora (K.M.S.); the Medical University of Warsaw, Warsaw, Poland (A.S.); the University of California, San Francisco, San Francisco (S.E.G.); Sanofi, Frankfurt, Germany (E.N.); and the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.)
| |
Collapse
|
31
|
Felton JL, Griffin KJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GSF, Evans-Molina C, DiMeglio LA, Ismail HM, Steck AK, Dabelea D, Johnson RK, Urazbayeva M, Gitelman S, Wentworth JM, Redondo MJ, Sims EK. Disease-modifying therapies and features linked to treatment response in type 1 diabetes prevention: a systematic review. COMMUNICATIONS MEDICINE 2023; 3:130. [PMID: 37794169 PMCID: PMC10550983 DOI: 10.1038/s43856-023-00357-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Prevention efforts have focused on immune modulation and supporting beta cell health before or around diagnosis; however, heterogeneity in disease progression and therapy response has limited translation to clinical practice, highlighting the need for precision medicine approaches to T1D disease modification. METHODS To understand the state of knowledge in this area, we performed a systematic review of randomized-controlled trials with ≥50 participants cataloged in PubMed or Embase from the past 25 years testing T1D disease-modifying therapies and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. RESULTS We identify and summarize 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss at disease onset. Seventeen interventions, mostly immunotherapies, show benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employ precision analyses to assess features linked to treatment response. Age, beta cell function measures, and immune phenotypes are most frequently tested. However, analyses are typically not prespecified, with inconsistent methods of reporting, and tend to report positive findings. CONCLUSIONS While the quality of prevention and intervention trials is overall high, the low quality of precision analyses makes it difficult to draw meaningful conclusions that inform clinical practice. To facilitate precision medicine approaches to T1D prevention, considerations for future precision studies include the incorporation of uniform outcome measures, reproducible biomarkers, and prespecified, fully powered precision analyses into future trial design.
Collapse
Affiliation(s)
- Jamie L Felton
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kurt J Griffin
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Sanford Research, Sioux Falls, SD, USA
| | - Richard A Oram
- NIHR Exeter Biomedical Research Centre (BRC), Academic Kidney Unit, University of Exeter, Devon, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, Devon, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, Devon, UK
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Gabriela S F Monaco
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Richard L. Roudebush VAMC, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M Ismail
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Randi K Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | | | - Stephen Gitelman
- Department of Pediatrics, Diabetes Center; University of California at San Francisco, San Francisco, CA, USA
| | - John M Wentworth
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne Department of Medicine, Parkville, VIC, Australia
| | - Maria J Redondo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX, USA
| | - Emily K Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Siddiqui K, Nawaz SS. Exploration of Immune Targets for Type 1 Diabetes and Latent Autoimmune Disease Immunotherapy. Immunotargets Ther 2023; 12:91-103. [PMID: 37795196 PMCID: PMC10546931 DOI: 10.2147/itt.s417917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic beta cells, which produce insulin in the islets of Langerhans. The risk of developing T1D is influenced by environmental factors, genetics, and autoantibodies. Latent autoimmune diabetes in adults (LADA) is a type of T1D that is genetically and phenotypically distinct from classic T1D. This review summarizes the accumulated information on the risk factors for T1D and LADA, and immunotherapy trials that offer insights into potential future combined therapeutic interventions for both T1D and LADA to slow the rate of islet cell loss and preserve beta cell function. Future research should also focus on improving intervention doses, conducting more thorough examinations of intervention responders, and/or combining minimally effective single-target immunotherapies to slow the rate of islet cell loss and preserve beta cell function.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules 2023; 28:6438. [PMID: 37764213 PMCID: PMC10535987 DOI: 10.3390/molecules28186438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody engineering has developed into a wide-reaching field, impacting a multitude of industries, most notably healthcare and diagnostics. The seminal work on developing the first monoclonal antibody four decades ago has witnessed exponential growth in the last 10-15 years, where regulators have approved monoclonal antibodies as therapeutics and for several diagnostic applications, including the remarkable attention it garnered during the pandemic. In recent years, antibodies have become the fastest-growing class of biological drugs approved for the treatment of a wide range of diseases, from cancer to autoimmune conditions. This review discusses the field of therapeutic antibodies as it stands today. It summarizes and outlines the clinical relevance and application of therapeutic antibodies in treating a landscape of diseases in different disciplines of medicine. It discusses the nomenclature, various approaches to antibody therapies, and the evolution of antibody therapeutics. It also discusses the risk profile and adverse immune reactions associated with the antibodies and sheds light on future applications and perspectives in antibody drug discovery.
Collapse
Affiliation(s)
- Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | | | | | | | | |
Collapse
|
34
|
Jacobsen LM, Diggins K, Blanchfield L, McNichols J, Perry DJ, Brant J, Dong X, Bacher R, Gersuk VH, Schatz DA, Atkinson MA, Mathews CE, Haller MJ, Long SA, Linsley PS, Brusko TM. Responders to low-dose ATG induce CD4+ T cell exhaustion in type 1 diabetes. JCI Insight 2023; 8:e161812. [PMID: 37432736 PMCID: PMC10543726 DOI: 10.1172/jci.insight.161812] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUNDLow-dose anti-thymocyte globulin (ATG) transiently preserves C-peptide and lowers HbA1c in individuals with recent-onset type 1 diabetes (T1D); however, the mechanisms of action and features of the response remain unclear. Here, we characterized the post hoc immunological outcomes of ATG administration and their potential use as biomarkers of metabolic response to therapy (i.e., improved preservation of endogenous insulin production).METHODSWe assessed gene and protein expression, targeted gene methylation, and cytokine concentrations in peripheral blood following treatment with ATG (n = 29), ATG plus granulocyte colony-stimulating factor (ATG/G-CSF, n = 28), or placebo (n = 31).RESULTSTreatment with low-dose ATG preserved regulatory T cells (Tregs), as measured by stable methylation of FOXP3 Treg-specific demethylation region (TSDR) and increased proportions of CD4+FOXP3+ Tregs (P < 0.001) identified by flow cytometry. While treatment effects were consistent across participants, not all maintained C-peptide. Responders exhibited a transient rise in IL-6, IP-10, and TNF-α (P < 0.05 for all) 2 weeks after treatment and a durable CD4+ exhaustion phenotype (increased PD-1+KLRG1+CD57- on CD4+ T cells [P = 0.011] and PD1+CD4+ Temra MFI [P < 0.001] at 12 weeks, following ATG and ATG/G-CSF, respectively). ATG nonresponders displayed higher proportions of senescent T cells (at baseline and after treatment) and increased methylation of EOMES (i.e., less expression of this exhaustion marker).CONCLUSIONAltogether in these exploratory analyses, Th1 inflammation-associated serum and CD4+ exhaustion transcript and cellular phenotyping profiles may be useful for identifying signatures of clinical response to ATG in T1D.TRIAL REGISTRATIONClinicalTrials.gov NCT02215200.FUNDINGThe Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D011), the NIH (R01 DK106191 Supplement, K08 DK128628), NIH TrialNet (U01 DK085461), and the NIH NIAID (P01 AI042288).
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Kirsten Diggins
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Lori Blanchfield
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - James McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Jason Brant
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Xiaoru Dong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Vivian H. Gersuk
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Desmond A. Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Todd M. Brusko
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
35
|
Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes. Lancet 2023; 401:2149-2162. [PMID: 37030316 DOI: 10.1016/s0140-6736(23)00223-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 04/10/2023]
Abstract
Type 1 diabetes is a chronic disease caused by autoimmune destruction of pancreatic β cells. Individuals with type 1 diabetes are reliant on insulin for survival. Despite enhanced knowledge related to the pathophysiology of the disease, including interactions between genetic, immune, and environmental contributions, and major strides in treatment and management, disease burden remains high. Studies aimed at blocking the immune attack on β cells in people at risk or individuals with very early onset type 1 diabetes show promise in preserving endogenous insulin production. This Seminar will review the field of type 1 diabetes, highlighting recent progress within the past 5 years, challenges to clinical care, and future directions in research, including strategies to prevent, manage, and cure the disease.
Collapse
Affiliation(s)
- Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA.
| | - Lucy D Mastrandrea
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
36
|
Kawasaki E. Anti-Islet Autoantibodies in Type 1 Diabetes. Int J Mol Sci 2023; 24:10012. [PMID: 37373160 PMCID: PMC10298549 DOI: 10.3390/ijms241210012] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Anti-islet autoantibodies serve as key markers in immune-mediated type 1 diabetes (T1D) and slowly progressive T1D (SPIDDM), also known as latent autoimmune diabetes in adults (LADA). Autoantibodies to insulin (IAA), glutamic acid decarboxylase (GADA), tyrosine phosphatase-like protein IA-2 (IA-2A), and zinc transporter 8 (ZnT8A) are currently employed in the diagnosis, pathological analysis, and prediction of T1D. GADA can also be detected in non-diabetic patients with autoimmune diseases other than T1D and may not necessarily reflect insulitis. Conversely, IA-2A and ZnT8A serve as surrogate markers of pancreatic β-cell destruction. A combinatorial analysis of these four anti-islet autoantibodies demonstrated that 93-96% of acute-onset T1D and SPIDDM cases were diagnosed as immune-mediated T1D, while the majority of fulminant T1D cases were autoantibody-negative. Evaluating the epitopes and immunoglobulin subclasses of anti-islet autoantibodies help distinguish between diabetes-associated and non-diabetes-associated autoantibodies and is valuable for predicting future insulin deficiency in SPIDDM (LADA) patients. Additionally, GADA in T1D patients with autoimmune thyroid disease reveals the polyclonal expansion of autoantibody epitopes and immunoglobulin subclasses. Recent advancements in anti-islet autoantibody assays include nonradioactive fluid-phase assays and the simultaneous determination of multiple biochemically defined autoantibodies. Developing a high-throughput assay for detecting epitope-specific or immunoglobulin isotype-specific autoantibodies will facilitate a more accurate diagnosis and prediction of autoimmune disorders. The aim of this review is to summarize what is known about the clinical significance of anti-islet autoantibodies in the pathogenesis and diagnosis of T1D.
Collapse
Affiliation(s)
- Eiji Kawasaki
- Diabetes Center, Shin-Koga Hospital, Kurume 830-8577, Japan
| |
Collapse
|
37
|
Huang M, Chen W, Wang M, Huang Y, Liu H, Ming Y, Chen Y, Tang Z, Jia B. Advanced Delivery Strategies for Immunotherapy in Type I Diabetes Mellitus. BioDrugs 2023; 37:331-352. [PMID: 37178431 PMCID: PMC10182560 DOI: 10.1007/s40259-023-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been defined as an autoimmune disease characterised by immune-mediated destruction of the pancreatic β cells, leading to absolute insulin deficiency and hyperglycaemia. Current research has increasingly focused on immunotherapy based on immunosuppression and regulation to rescue T-cell-mediated β-cell destruction. Although T1DM immunotherapeutic drugs are constantly under clinical and preclinical development, several key challenges remain, including low response rates and difficulty in maintaining therapeutic effects. Advanced drug delivery strategies can effectively harness immunotherapies and improve their potency while reducing their adverse effects. In this review, we briefly introduce the mechanisms of T1DM immunotherapy and focus on the current research status of the integration of the delivery techniques in T1DM immunotherapy. Furthermore, we critically analyse the challenges and future directions of T1DM immunotherapy.
Collapse
Affiliation(s)
- Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
38
|
Min T, Bain SC. Emerging drugs for the treatment of type 1 diabetes mellitus: a review of phase 2 clinical trials. Expert Opin Emerg Drugs 2023; 28:1-15. [PMID: 36896700 DOI: 10.1080/14728214.2023.2188191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Despite therapeutic advances in the field of diabetes management since the discovery of insulin 100 years ago, there are still unmet clinical needs for people with type 1 diabetes mellitus (T1DM). AREAS COVERED Genetic testing and islet autoantibodies testing allow researchers to design prevention studies. This review discusses the emerging therapy for prevention of T1DM, disease modification therapy in early course of T1DM, and therapies and technologies for established T1DM. We focus on phase 2 clinical trials with promising results, thus avoiding the exhausted list of every new therapy for T1DM. EXPERT OPINION Teplizumab has demonstrated potential as a preventative agent for individuals at risk prior to the onset of overt dysglycemia. However, these agents are not without side effects, and there are uncertainties on long-term safety. Technological advances have led a substantial influence on quality of life of people suffering from T1DM. There remains variation in uptake of new technologies across the globe. Novel insulins (ultra-long acting), oral insulin, and inhaled insulin attempt to narrow the gap of unmet needs. Islet cell transplant is another exciting field, and stem cell therapy might have potential to provide unlimited supply of islet cells.
Collapse
Affiliation(s)
- Thinzar Min
- Diabetes Research Group, Swansea University Medical School, Swansea University, Swansea, UK
- Department of Diabetes and Endocrinology, Neath Port Talbot Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Stephen C Bain
- Diabetes Research Group, Swansea University Medical School, Swansea University, Swansea, UK
- Department of Diabetes and Endocrinology, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
| |
Collapse
|
39
|
Rigby MR, Hayes B, Li Y, Vercruysse F, Hedrick JA, Quattrin T. Two-Year Follow-up From the T1GER Study: Continued Off-Therapy Metabolic Improvements in Children and Young Adults With New-Onset T1D Treated With Golimumab and Characterization of Responders. Diabetes Care 2023; 46:561-569. [PMID: 36576974 PMCID: PMC10020023 DOI: 10.2337/dc22-0908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The T1GER (A Study of SIMPONI to Arrest β-Cell Loss in Type 1 Diabetes) study showed many metabolic benefits of the tumor necrosis factor-α blocker golimumab in children and young adults with type 1 diabetes (T1D). Off-therapy effects are reported. RESEARCH DESIGNS AND METHODS T1GER was a phase 2, placebo-controlled, randomized trial in which golimumab or placebo was administered for 52 weeks to participants 6-21 years old diagnosed with T1D within 100 days of randomization. Assessments occurred during the 52-week on-therapy and 52-week off-therapy periods. RESULTS After treatment was stopped, C-peptide area under the curve (AUC) remained greater in the treatment versus control group. At weeks 78 and 104, the golimumab group had lower reductions in the 4-h C-peptide AUC baseline than the placebo group, where specifically the golimumab group had reductions of 0.31 and 0.41 nmol/L, and the placebo group had reductions of 0.64 and 0.74 nmol/L. There were also trends in less insulin use, higher peak C-peptide levels and those in partial remission, and higher peak C-peptide levels in the golimumab group. Golimumab responders, defined as having an increase or minimal loss of C-peptide AUC and/or being in partial remission at week 52, showed even greater improvements in most metabolic parameters on and off therapy and had less hypoglycemia during the off-therapy period versus placebo. Adverse events, including infections, were similar between the groups during all time periods of the study. CONCLUSIONS In children and young adults with new-onset T1D, golimumab preserved endogenous β-cell function and resulted in other favorable metabolic parameters on and off therapy. A subpopulation had disease stabilization while on therapy, with improved metabolic parameters off therapy.
Collapse
Affiliation(s)
- Mark R. Rigby
- Janssen Pharmaceuticals Inc. Research and Development, Springhouse, PA
| | - Beverly Hayes
- Janssen Pharmaceuticals Inc. Research and Development, Springhouse, PA
| | - Yinglei Li
- Janssen Pharmaceuticals Inc. Research and Development, Springhouse, PA
| | - Frank Vercruysse
- Janssen Pharmaceuticals Inc. Research and Development, Beerse, Belgium
| | - Joseph A. Hedrick
- Janssen Pharmaceuticals Inc. Research and Development, Springhouse, PA
| | - Teresa Quattrin
- The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Diabetes Center, John R. Oishei Children’s Hospital, Buffalo, NY
| |
Collapse
|
40
|
Verhoeff K, Marfil-Garza BA, Dajani K, Bigam DL, Anderson B, Kin T, Lam A, O'Gorman D, Senior PA, Shapiro AMJ. C-peptide Targets and Patient-centered Outcomes of Relevance to Cellular Transplantation for Diabetes. Transplantation 2023; 107:774-781. [PMID: 36253897 DOI: 10.1097/tp.0000000000004328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND C-peptide levels are a key measure of beta-cell mass following islet transplantation, but threshold values required to achieve clinically relevant patient-centered outcomes are not yet established. METHODS We conducted a cross-sectional retrospective cohort study evaluating patients undergoing islet transplantation at a single center from 1999 to 2018. Cohorts included patients achieving insulin independence without hypoglycemia, those with insulin dependence without hypoglycemia, and those with recurrent symptomatic hypoglycemia. Primary outcome was fasting C-peptide levels at 6 to 12 mo postfirst transplant; secondary outcomes included stimulated C-peptide levels and BETA-2 scores. Fasting and stimulated C-peptide and BETA-2 cutoff values for determination of hypoglycemic freedom and insulin independence were evaluated using receiver operating characteristic curves. RESULTS We analyzed 192 patients, with 122 (63.5%) being insulin independent without hypoglycemia, 61 (31.8%) being insulin dependent without hypoglycemia, and 9 (4.7%) experiencing recurrent symptomatic hypoglycemia. Patients with insulin independence had a median (interquartile range) fasting C-peptide level of 0.66 nmol/L (0.34 nmol/L), compared with 0.49 nmol/L (0.25 nmol/L) for those being insulin dependent without hypoglycemia and 0.07 nmol/L (0.05 nmol/L) for patients experiencing hypoglycemia ( P < 0.001). Optimal fasting C-peptide cutoffs for insulin independence and hypoglycemia were ≥0.50 nmol/L and ≥0.12 nmol/L, respectively. Cutoffs for insulin independence and freedom of hypoglycemia using stimulated C-peptide were ≥1.2 nmol/L and ≥0.68 nmol/L, respectively, whereas optimal cutoff BETA-2 scores were ≥16.4 and ≥5.2. CONCLUSIONS We define C-peptide levels and BETA-2 scores associated with patient-centered outcomes. Characterizing these values will enable evaluation of ongoing clinical trials with islet or stem cell therapies.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Braulio A Marfil-Garza
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
- CHRISTUS-LatAm Hub-Excellence and Innovation Center, Monterrey, Mexico
| | - Khaled Dajani
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - David L Bigam
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Blaire Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Tatsuya Kin
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Anna Lam
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Endocrinology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, Edmonton, AB, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Peter A Senior
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Endocrinology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, Edmonton, AB, Canada
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, Edmonton, AB, Canada
| |
Collapse
|
41
|
Long SA, Buckner JH. Clinical and experimental treatment of type 1 diabetes. Clin Exp Immunol 2022; 210:105-113. [PMID: 35980300 PMCID: PMC9750829 DOI: 10.1093/cei/uxac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting in the destruction of the insulin-producing pancreatic beta cells. Disease progression occurs along a trajectory from genetic risk, the development of islet autoantibodies, and autoreactive T cells ultimately progressing to clinical disease. Natural history studies and mechanistic studies linked to clinical trials have provided insight into the role of the immune system in disease pathogenesis. Here, we review our current understanding of the underlying etiology of T1D, focusing on the immune cell types that have been implicated in progression from pre-symptomatic T1D to clinical diagnosis and established disease. This knowledge has been foundational for the development of immunotherapies aimed at the prevention and treatment of T1D.
Collapse
Affiliation(s)
- S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
42
|
Besser REJ, Bell KJ, Couper JJ, Ziegler AG, Wherrett DK, Knip M, Speake C, Casteels K, Driscoll KA, Jacobsen L, Craig ME, Haller MJ. ISPAD Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1175-1187. [PMID: 36177823 DOI: 10.1111/pedi.13410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rachel E J Besser
- Wellcome Centre for Human Genetics, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kirstine J Bell
- Charles Perkins Centre and Faculty Medicine and Health, University of Sydney, Sydney, Australia
| | - Jenny J Couper
- Department of Pediatrics, University of Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Diane K Wherrett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mikael Knip
- Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kimberly A Driscoll
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Laura Jacobsen
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Maria E Craig
- Department of Pediatrics, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
43
|
Nagy G, Szekely TE, Somogyi A, Herold M, Herold Z. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes 2022; 13:835-850. [PMID: 36312000 PMCID: PMC9606789 DOI: 10.4239/wjd.v13.i10.835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
It has been 100 years since the first successful clinical use of insulin, yet it remains the only treatment option for type 1 diabetes mellitus (T1DM) patients. Advances in diabetes care, such as insulin analogue therapies and new devices, including continuous glucose monitoring with continuous subcutaneous insulin infusion have improved the quality of life of patients but have no impact on the pathogenesis of the disease. They do not eliminate long-term complications and require several lifestyle sacrifices. A more ideal future therapy for T1DM, instead of supplementing the insufficient hormone production (a consequence of β-cell destruction), would also aim to stop or slow down the destructive autoimmune process. The discovery of the autoimmune nature of type 1 diabetes mellitus has presented several targets by which disease progression may be altered. The goal of disease-modifying therapies is to target autoimmune mechanisms and prevent β-cell destruction. T1DM patients with better β-cell function have better glycemic control, reduced incidence of long-term complications and hypoglycemic episodes. Unfortunately, at the time symptomatic T1DM is diagnosed, most of the insulin secreting β cells are usually lost. Therefore, to maximize the salvageable β-cell mass by disease-modifying therapies, detecting autoimmune markers in an early, optimally presymptomatic phase of T1DM is of great importance. Disease-modifying therapies, such as immuno- and regenerative therapies are expected to take a relevant place in diabetology. The aim of this article was to provide a brief insight into the pathogenesis and course of T1DM and present the current state of disease-modifying therapeutic interventions that may impact future diabetes treatment.
Collapse
Affiliation(s)
- Geza Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Tekla Evelin Szekely
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest H-1083, Hungary
| |
Collapse
|
44
|
Zhang X, Dong Y, Liu D, Yang L, Xu J, Wang Q. Antigen-specific immunotherapies in type 1 diabetes. J Trace Elem Med Biol 2022; 73:127040. [PMID: 35868165 DOI: 10.1016/j.jtemb.2022.127040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/18/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by the destruction of pancreatic beta cells, in which immune system disorder plays an important role. Finding a cure for T1DM and restoring beta cell function has been a long-standing goal. Research has shown that immune regulation with pancreatic islet auto-antigens may be the most specific and safe treatment for T1DM. Immunological intervention using diabetogenic auto-antigens as a target can help identify T1DM in high-risk individuals by early screening of autoantibodies (AAbs) before the loss of pancreatic islet function and thus achieve primary prevention of T1DM. However, induction of self-tolerance in patients with pre-diabetes can also slow down the attack of autoimmunity, and achieve secondary prevention. Antigen-based immune therapy opens up new avenues for the prevention and treatment of T1DM. The zinc transporter 8 (ZnT8) protein, presents in the serum of pre-diabetic and diabetic patients, is immunogenic and can cause T1D autoimmune responses. ZnT8 has become a potential target of humoral autoimmunity; it is of great significance for the early diagnosis of T1D. ZnT8-specific CD8+ T cells can be detected in most T1DM patients, and play a key role in the progression of T1D. As an immunotherapy target, it can improve the dysfunction of beta cells in T1DM and provide new ideas for the treatment of T1D. In this review, we summarize research surrounding antigen-specific immunotherapies (ASI) over the past 10 years and the ZnT8 antigen as an autoimmune target to induce self-tolerance for T1DM.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Ying Dong
- Department of Radiation Oncology, Jilin Cancer Hospital, Changchun 130000, China
| | - Dianyuan Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jiayi Xu
- School of Public Health, Jilin University, Changchun 130000, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
45
|
Piemonti L, Keymeulen B, Gillard P, Linn T, Bosi E, Rose L, Pozzilli P, Giorgino F, Cossu E, Daffonchio L, Goisis G, Ruffini PA, Maurizi AR, Mantelli F, Allegretti M. Ladarixin, an inhibitor of the interleukin-8 receptors CXCR1 and CXCR2, in new-onset type 1 diabetes: A multicentre, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2022; 24:1840-1849. [PMID: 35589610 PMCID: PMC9540558 DOI: 10.1111/dom.14770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023]
Abstract
AIM To evaluate the ability of ladarixin (LDX, 400 mg twice-daily for three cycles of 14 days on/14 days off), an inhibitor of the CXCR1/2 chemokine receptors, to maintain C-peptide production in adult patients with newly diagnosed type 1 diabetes. MATERIALS AND METHODS A double-blind, randomized (2:1), placebo-controlled study was conducted in 45 males and 31 females (aged 18-46 years) within 100 days of the first insulin administration. The primary endpoint was the area under the curve (AUC) for C-peptide in response to a 2-hour mixed meal tolerance test (AUC[0-120 min] ) at week 13 ± 1. Secondary endpoints included C-peptide AUC(15-120 min) , HbA1c, daily insulin requirement, severe hypoglycaemic events (SHE), the proportion of subjects achieving HbA1c less than 7.0% without SHE and maintaining a residual beta cell function. Follow-up assessments were scheduled at weeks 13 ± 1, 26 ± 2 and 52 ± 2. RESULTS In total, 26/26 (100%, placebo) and 49/50 (98%, LDX) patients completed week 13. The mean change from baseline to week 13 in C-peptide AUC(0-120 min) was -0.144 ± 0.449 nmol/L with placebo and 0.003 ± .322 nmol/L with LDX. The difference was not significant (0.149 nmol/L, 95% CI -0.04 to 0.33; P = .122). At week 26, the proportion of patients with HbA1c less than 7.0% without SHE was transiently higher in the LDX group (81% vs. 54%, P = .024). Otherwise, no significant secondary endpoint differences were noted. Transient metabolic benefit was seen at week 26 in favour of the LDX group in the prespecified subpopulation with fasting C-peptide less than the median value at screening. CONCLUSIONS In newly diagnosed patients with type 1 diabetes, short-term LDX treatment had no appreciable effect on preserving residual beta cell function.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- IRCCS Ospedale San Raffaele and Università Vita‐SaluteDiabetes Research InstituteMilanItaly
| | - Bart Keymeulen
- The Belgian Diabetes Registry, Academic Hospital and Diabetes Research CentreVrije Universiteit BrusselBrusselsBelgium
| | - Pieter Gillard
- Department of EndocrinologyUniversity Hospitals Leuven‐KU LeuvenLeuvenBelgium
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic IIICenter of Internal Medicine, Justus Liebig UniversityGiessenGermany
| | - Emanuele Bosi
- IRCCS Ospedale San Raffaele and Università Vita‐SaluteDiabetes Research InstituteMilanItaly
| | - Ludger Rose
- Zentrum für Diabetes und Gefäßerkrankungen MünsterMunsterGermany
| | - Paolo Pozzilli
- Department of Endocrinology and Metabolic DiseasesUniversity Campus Bio‐MedicoRomeItaly
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic DiseasesUniversity of Bari Aldo MoroBariItaly
| | - Efisio Cossu
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | | | - Giovanni Goisis
- Research and Development, Dompé farmaceutici S.p.AMilanItaly
| | | | | | - Flavio Mantelli
- Research and Development, Dompé farmaceutici S.p.AMilanItaly
| | | |
Collapse
|
46
|
Mastrandrea LD, Quattrin T. Preventing type 1 diabetes development and preserving beta-cell function. Curr Opin Endocrinol Diabetes Obes 2022; 29:386-391. [PMID: 35799459 DOI: 10.1097/med.0000000000000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) is the most common chronic disease of childhood presenting a significant burden, both in terms of day-to-day medical management and lifelong care. Studies aligned with diverse strategies to prevent or modify the course of T1D are reviewed. RECENT FINDINGS The diagnosis of T1D precedes the classic clinical presentation when insulin dependence develops. With an increased understanding of the pathophysiology of the autoimmune process leading to T1D, treatment strategies to prevent the development of autoimmunity and/or modify the immune response have been trialed in persons at risk for developing the disease. Interventions prior to insulin dependence or very early after clinical diagnosis show some promise both in preventing disease onset and prolonging beta-cell insulin production. SUMMARY Significant progress has been made in the treatment of T1D. However, suboptimal glycemic control remains a challenge impacting overall health and quality of life for patients with this chronic disease. Although physicians and basic sciences investigators continue to pursue the prevention of the autoimmune process, the advent of disease-modifying agents is a promising strategy. Further studies are needed to ensure that insulin preservation can be achieved longer term.
Collapse
Affiliation(s)
- Lucy D Mastrandrea
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- Diabetes Center, John R. Oishei Children's Hospital, Buffalo, New York, USA
| | - Teresa Quattrin
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- Diabetes Center, John R. Oishei Children's Hospital, Buffalo, New York, USA
| |
Collapse
|
47
|
Nguyen HV, Schatz DA, Mital S, Jacobsen LM, Haller MJ. Cost-Effectiveness of Low-Dose Antithymocyte Globulin Versus Other Immunotherapies for Treatment of New-Onset Type 1 Diabetes. Diabetes Technol Ther 2022; 24:258-267. [PMID: 34704801 DOI: 10.1089/dia.2021.0329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective: Several immunotherapies have shown efficacy in slowing C-peptide decline in new-onset type 1 diabetes. Although most of these biologic drugs are expensive, they offer the opportunity to reduce downstream disease management costs and risk of complications. The objective of this study is to examine the cost-effectiveness of immunotherapies versus no treatment for patients with new-onset type 1 diabetes. Methods: Using Markov microsimulation modeling and efficacy data from immunotherapy trials, we examined the cost-effectiveness of six immunotherapies for new-onset type 1 diabetes, namely, low-dose (2.5 mg/kg) antithymocyte globulin (ATG), high-dose (6.5 mg/kg) ATG, abatacept, alefacept, rituximab, and teplizumab, versus no treatment. Effectiveness was measured by quality-adjusted life-years (QALYs). Costs were estimated from a health system perspective. Results: Low-dose ATG treatment saves US$10,270, on average, over a patient's lifetime and generates 0.09 additional QALYs compared with no treatment. These cost savings arise as low-dose ATG generates downstream savings in disease management costs that more than offset its cost. In contrast, treatment with other immunotherapies yields smaller QALY gains (0.02-0.05 additional QALYs) and increases lifetime costs by US$9500-US$168,380 relative to no treatment, with incremental cost-effectiveness ratios that exceed the willingness-to-pay threshold of US$100,000 per QALY. Conclusions: Low-dose ATG treatment is both less costly and more effective relative to other immunotherapies and no treatment for new-onset type 1 diabetes.
Collapse
Affiliation(s)
- Hai V Nguyen
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Canada
| | - Desmond A Schatz
- Department of Pediatrics, Division of Endocrinology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Shweta Mital
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Canada
| | - Laura M Jacobsen
- Department of Pediatrics, Division of Endocrinology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Michael J Haller
- Department of Pediatrics, Division of Endocrinology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
48
|
Söderström H, Cervin M, Dereke J, Hillman M, Tiberg I, Norström F, Carlsson A. Does a gluten-free diet lead to better glycemic control in children with type 1 diabetes? Results from a feasibility study and recommendations for future trials. Contemp Clin Trials Commun 2022; 26:100893. [PMID: 35243123 PMCID: PMC8866053 DOI: 10.1016/j.conctc.2022.100893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hanna Söderström
- Department of Clinical Sciences, Pediatrics, Skåne University Hospital Lund, Lund University, Lund, Sweden
- Corresponding author.
| | - Matti Cervin
- Department of Clinical Sciences, Child and Adolescent Psychiatry, Lund University, Lund, Sweden
| | - Jonatan Dereke
- Department of Clinical Sciences, Diabetes Research Laboratory, Lund University, Lund, Sweden
| | - Magnus Hillman
- Department of Health Sciences, Lund University, Lund, Sweden
| | - Iren Tiberg
- Department of Health Sciences, Lund University, Lund, Sweden
| | - Fredrik Norström
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Annelie Carlsson
- Department of Clinical Sciences, Pediatrics, Skåne University Hospital Lund, Lund University, Lund, Sweden
| |
Collapse
|
49
|
Phenolic profile and investigation of biological activities of Allium scorodoprasum L. subsp. rotundum. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Personalized Immunotherapies for Type 1 Diabetes: Who, What, When, and How? J Pers Med 2022; 12:jpm12040542. [PMID: 35455658 PMCID: PMC9031881 DOI: 10.3390/jpm12040542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the immunopathological features of type 1 diabetes (T1D) has greatly improved over the past two decades and has shed light on disease heterogeneity dictated by multiple immune, metabolic, and clinical parameters. This may explain the limited effects of immunotherapies tested so far to durably revert or prevent T1D, for which life-long insulin replacement remains the only therapeutic option. In the era of omics and precision medicine, offering personalized treatment could contribute to turning this tide. Here, we discuss how to structure the selection of the right patient at the right time for the right treatment. This individualized therapeutic approach involves enrolling patients at a defined disease stage depending on the target and mode of action of the selected drug, and better stratifying patients based on their T1D endotype, reflecting intrinsic disease aggressiveness and immune context. To this end, biomarker screening will be critical, not only to help stratify patients and disease stage, but also to select the best predicted responders ahead of treatment and at early time points during clinical trials. This strategy could contribute to increase therapeutic efficacy, notably through the selection of drugs with complementary effects, and to further develop precision multi-hit medicine.
Collapse
|