1
|
Asgharzadeh A, Patel M, Connock M, Damery S, Ghosh I, Jordan M, Freeman K, Brown A, Court R, Baldwin S, Ogunlayi F, Stinton C, Cummins E, Al-Khudairy L. Hybrid closed-loop systems for managing blood glucose levels in type 1 diabetes: a systematic review and economic modelling. Health Technol Assess 2024; 28:1-190. [PMID: 39673446 DOI: 10.3310/jypl3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
Background Hybrid closed-loop systems are a new class of technology to manage type 1 diabetes mellitus. The system includes a combination of real-time continuous glucose monitoring from a continuous glucose monitoring device and a control algorithm to direct insulin delivery through an insulin pump. Evidence suggests that such technologies have the potential to improve the lives of people with type 1 diabetes mellitus and their families. Aim The aim of this appraisal was to assess the clinical effectiveness and cost-effectiveness of hybrid closed-loop systems for managing glucose in people who have type 1 diabetes mellitus and are having difficulty managing their condition despite prior use of at least one of the following technologies: continuous subcutaneous insulin infusion, real-time continuous glucose monitoring or flash glucose monitoring (intermittently scanned continuous glucose monitoring). Methods A systematic review of clinical effectiveness and cost-effectiveness evidence following predefined inclusion criteria informed by the aim of this review. An independent economic assessment using iQVIA CDM to model cost-effectiveness. Results The clinical evidence identified 12 randomised controlled trials that compared hybrid closed loop with continuous subcutaneous insulin infusion + continuous glucose monitoring. Hybrid closed-loop arm of randomised controlled trials achieved improvement in glycated haemoglobin per cent [hybrid closed loop decreased glycated haemoglobin per cent by 0.28 (95% confidence interval -0.34 to -0.21), increased per cent of time in range (between 3.9 and 10.0 mmol/l) with a MD of 8.6 (95% confidence interval 7.03 to 10.22), and significantly decreased time in range (per cent above 10.0 mmol/l) with a MD of -7.2 (95% confidence interval -8.89 to -5.51), but did not significantly affect per cent of time below range (< 3.9 mmol/l)]. Comparator arms showed improvements, but these were smaller than in the hybrid closed-loop arm. Outcomes were superior in the hybrid closed-loop arm compared with the comparator arm. The cost-effectiveness search identified six studies that were included in the systematic review. Studies reported subjective cost-effectiveness that was influenced by the willingness-to-pay thresholds. Economic evaluation showed that the published model validation papers suggest that an earlier version of the iQVIA CDM tended to overestimate the incidences of the complications of diabetes, this being particularly important for severe visual loss and end-stage renal disease. Overall survival's medium-term modelling appeared good, but there was uncertainty about its longer-term modelling. Costs provided by the National Health Service Supply Chain suggest that hybrid closed loop is around an annual average of £1500 more expensive than continuous subcutaneous insulin infusion + continuous glucose monitoring, this being a pooled comparator of 90% continuous subcutaneous insulin infusion + intermittently scanned continuous glucose monitoring and 10% continuous subcutaneous insulin infusion + real-time continuous glucose monitoring due to clinical effectiveness estimates not being differentiated by continuous glucose monitoring type. This net cost may increase by around a further £500 for some systems. The Evidence Assessment Group base case applies the estimate of -0.29% glycated haemoglobin for hybrid closed loop relative to continuous subcutaneous insulin infusion + continuous glucose monitoring. There was no direct evidence of an effect on symptomatic or severe hypoglycaemia events, and therefore the Evidence Assessment Group does not include these in its base case. The change in glycated haemoglobin results in a gain in undiscounted life expectancy of 0.458 years and a gain of 0.160 quality-adjusted life-years. Net lifetime treatment costs are £31,185, with reduced complications leading to a net total cost of £28,628. The cost-effectiveness estimate is £179,000 per quality-adjusted life-year. Conclusions Randomised controlled trials of hybrid closed-loop interventions in comparison with continuous subcutaneous insulin infusion + continuous glucose monitoring achieved a statistically significant improvement in glycated haemoglobin per cent in time in range between 3.9 and 10 mmol/l, and in hyperglycaemic levels. Study registration This study is registered as PROSPERO CRD42021248512. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR133547) and is published in full in Health Technology Assessment; Vol. 28, No. 80. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Asra Asgharzadeh
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Mubarak Patel
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Martin Connock
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Sara Damery
- Murray Learning Centre, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Iman Ghosh
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Mary Jordan
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Karoline Freeman
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Anna Brown
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Rachel Court
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Sharin Baldwin
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Fatai Ogunlayi
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Chris Stinton
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Lena Al-Khudairy
- Warwick Evidence, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Jabari M. Efficacy and safety of closed-loop control system for type one diabetes in adolescents a meta analysis. Sci Rep 2023; 13:13165. [PMID: 37574494 PMCID: PMC10423718 DOI: 10.1038/s41598-023-40423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023] Open
Abstract
This meta-analysis compares the efficacy and safety of Closed-Loop Control (CLC) to Sensor-Augmented Insulin Pump (SAP) for adolescent patients with Type 1 Diabetes Mellitus (T1DM). Eleven randomized-controlled trials were included with a total of 570 patients, from a total of 869 articles found adhering to PRISMA guidelines. The efficacy of the therapies were evaluated from the day, night and during physical activities monitoring of the of the mean blood glucose (BG), Time In Range (TIR), and Standard Deviation (SD) of the glucose variability. The safety measure of the therapies, was assessed from the day and night recording of the hypoglycemic and hyperglycemic events occurred. Pooled results of comparison of mean BG values for day, night and physical activities, - 4.33 [- 6.70, - 1.96] (P = 0.0003), - 16.61 [- 31.68, - 1.54] (P = 0.03) and - 8.27 [- 19.52, 2.99] (P = 0.15). The monitoring for day, night and physical activities for TIR - 13.18 [- 19.18, - 7.17] (P < 0.0001), - 15.36 [- 26.81, - 3.92] (P = 0.009) and - 7.39 [- 17.65, 2.87] (P = 0.16). The day and night results of SD of glucose variability was - 0.40 [- 0.79, - 0.00] (P = 0.05) and - 0.86 [- 2.67, 0.95] (P = 0.35). These values shows the superiority of CLC system in terms of efficacy. The safety evaluation, of the day, night and physical activities observations of average blood glucose goal hypoglycemic events - 0.54 [- 1.86, 0.79] (P = 0.43), 0.04 [- 0.20, 0.27] (P = 0.77) and 0.00 [- 0.25, 0.25] (P = 1.00) and hyperglycemic events - 0.04 [- 0.20, 0.27] (P = 0.77), - 7.11 [- 12.77, - 1.45] (P = 0.01) and - 0.00 [- 0.10, 0.10] (P = 0.97), highlights the commendable safety factor of CLC. The CLC systems can be considered as an ideal preference in the management of adolescents with type 1 diabetes to be used during a 24 h basis.
Collapse
Affiliation(s)
- Mosleh Jabari
- Department of Pediatrics, Imam Mohammed Ibn Saud Islamic University, An Nada, 13317, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Künzler J, Züger T, Stettler C, Laimer MW, Melmer A. Comparing the technical reliability and insulin dosing of a "do-it-yourself artificial pancreas" with a commercial hybrid closed-loop system in a "shadow-mode" scenario: An exploratory study. Diabetes Obes Metab 2023. [PMID: 37311723 DOI: 10.1111/dom.15161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/15/2023]
Affiliation(s)
- Juri Künzler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Züger
- Department of Endocrinology and Metabolic Diseases, Kantonsspital Olten, Olten, Switzerland
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Wolfgang Laimer
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Melmer
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Michou P, Gkiourtzis N, Christoforidis A, Kotanidou EP, Galli-Tsinopoulou A. The efficacy of automated insulin delivery systems in children and adolescents with Type 1 Diabetes Mellitus: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2023; 199:110678. [PMID: 37094750 DOI: 10.1016/j.diabres.2023.110678] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
AIMS Insulin administration is the treatment of choice for people with type 1 diabetes mellitus (T1D). Technological advances have led to the development of automated insulin delivery (AID) systems, aiming to optimize the quality of life of patients with T1D. We present a systematic review and meta-analysis of the current literature about the efficacy of AID systems in children and adolescents with T1D. METHODS We conducted a systematic literature search for randomized controlled trials (RCTs) until August 8th, 2022, investigating the efficacy of AID systems in the management of patients <21 years of age with T1D. A priori subgroup and sensitivity analyses based on different settings (free-living settings, type of AID system, parallel group or crossover design) were also conducted. RESULTS In total, 26 RCTs reporting a total of 915 children and adolescents with T1D were included in the meta-analysis. AID systems revealed statistically significant differences in the main outcomes, such as the proportion of time in the target glucose range (3.9-10 mmol/L) (p<0.00001), in hypoglycemia (<3.9 mmol/L) (p=0.003) and mean proportion of HbA1C (p=0.0007) compared to control group. CONCLUSIONS According to the present meta-analysis, AID systems are superior to insulin pump therapy, sensor-augmented pumps and multiple daily insulin injections. Most of the included studies have a high risk of bias because of allocation, blinding of patients and blinding of assessment. Our sensitivity analyses showed that patients <21 years of age with T1D can use AID systems, after proper education, following their daily activities. Further RCTs examining the effect of AID systems on nocturnal hypoglycemia, under free-living settings and studies examining the effect of dual-hormone AID systems are pending.
Collapse
Affiliation(s)
- Panagiota Michou
- Program of Postgraduate Studies Adolescent Medicine and Adolescent Health Care, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54124; Department of Pediatrics, Gennimatas General Hospital of Thessaloniki, Thessaloniki, Greece, 54635.
| | - Nikolaos Gkiourtzis
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 56429.
| | - Athanasios Christoforidis
- 1st Department of Pediatrics, Ippokrateio General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54643.
| | - Eleni P Kotanidou
- Program of Postgraduate Studies Adolescent Medicine and Adolescent Health Care, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54124; 2nd Department of Pediatrics, AHEPA University General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54636.
| | - Asimina Galli-Tsinopoulou
- Program of Postgraduate Studies Adolescent Medicine and Adolescent Health Care, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54124; 2nd Department of Pediatrics, AHEPA University General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54636.
| |
Collapse
|
5
|
The Advanced Diabetes Technologies for Reduction of the Frequency of Hypoglycemia and Minimizing the Occurrence of Severe Hypoglycemia in Children and Adolescents with Type 1 Diabetes. J Clin Med 2023; 12:jcm12030781. [PMID: 36769430 PMCID: PMC9917934 DOI: 10.3390/jcm12030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Hypoglycemia is an often-observed acute complication in the management of children and adolescents with type 1 diabetes. It causes inappropriate glycemic outcomes and may impair the quality of life in the patients. Severe hypoglycemia with cognitive impairment, such as a convulsion and coma, is a lethal condition and is associated with later-onset cognitive impairment and brain-structural abnormalities, especially in young children. Therefore, reducing the frequency of hypoglycemia and minimizing the occurrence of severe hypoglycemia are critical issues in the management of children and adolescents with type 1 diabetes. Advanced diabetes technologies, including continuous glucose monitoring and sensor-augmented insulin pumps with low-glucose suspension systems, can reduce the frequency of hypoglycemia and the occurrence of severe hypoglycemia without aggravating glycemic control. The hybrid closed-loop system, an automated insulin delivery system, must be the most promising means to achieve appropriate glycemic control with preventing severe hypoglycemia. The use of these advanced diabetes technologies could improve glycemic outcomes and the quality of life in children and adolescents with type 1 diabetes.
Collapse
|
6
|
Kang SL, Hwang YN, Kwon JY, Kim SM. Effectiveness and safety of a model predictive control (MPC) algorithm for an artificial pancreas system in outpatients with type 1 diabetes (T1D): systematic review and meta-analysis. Diabetol Metab Syndr 2022; 14:187. [PMID: 36494830 PMCID: PMC9733359 DOI: 10.1186/s13098-022-00962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The purpose of this study was to assess the effectiveness and safety of a model predictive control (MPC) algorithm for an artificial pancreas system in outpatients with type 1 diabetes. METHODS We searched PubMed, EMBASE, Cochrane Central, and the Web of Science to December 2021. The eligibility criteria for study selection were randomized controlled trials comparing artificial pancreas systems (MPC, PID, and fuzzy algorithms) with conventional insulin therapy in type 1 diabetes patients. The heterogeneity of the overall results was identified by subgroup analysis of two factors including the intervention duration (overnight and 24 h) and the follow-up periods (< 1 week, 1 week to 1 month, and > 1 month). RESULTS The meta-analysis included a total of 41 studies. Considering the effect on the percentage of time maintained in the target range between the MPC-based artificial pancreas and conventional insulin therapy, the results showed a statistically significantly higher percentage of time maintained in the target range in overnight use (10.03%, 95% CI [7.50, 12.56] p < 0.00001). When the follow-up period was considered, in overnight use, the MPC-based algorithm showed a statistically significantly lower percentage of time maintained in the hypoglycemic range (-1.34%, 95% CI [-1.87, -0.81] p < 0.00001) over a long period of use (> 1 month). CONCLUSIONS Overnight use of the MPC-based artificial pancreas system statistically significantly improved glucose control while increasing time maintained in the target range for outpatients with type 1 diabetes. Results of subgroup analysis revealed that MPC algorithm-based artificial pancreas system was safe while reducing the time maintained in the hypoglycemic range after an overnight intervention with a long follow-up period (more than 1 month).
Collapse
Affiliation(s)
- Su Lim Kang
- Department of Medical Device and Healthcare, Dongguk University-Seoul, 26, Pil-Dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
| | - Yoo Na Hwang
- Department of Medical Device and Healthcare, Dongguk University-Seoul, 26, Pil-Dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
| | - Ji Yean Kwon
- Department of Medical Device and Healthcare, Dongguk University-Seoul, 26, Pil-Dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
| | - Sung Min Kim
- Department of Medical Device and Healthcare, Dongguk University-Seoul, 26, Pil-Dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
- Department of Medical Device Regulatory Science, Dongguk University-Seoul, 26, Pil-dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
| |
Collapse
|
7
|
Abraham MB, Karges B, Dovc K, Naranjo D, Arbelaez AM, Mbogo J, Javelikar G, Jones TW, Mahmud FH. ISPAD Clinical Practice Consensus Guidelines 2022: Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes 2022; 23:1322-1340. [PMID: 36537534 PMCID: PMC10107518 DOI: 10.1111/pedi.13443] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mary B Abraham
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Discipline of Pediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Beate Karges
- Division of Endocrinology and Diabetes, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Naranjo
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Ana Maria Arbelaez
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joyce Mbogo
- Department of Pediatric and Child Health, Aga Khan University Hospital, Nairobi, Kenya
| | - Ganesh Javelikar
- Department of Endocrinology and Diabetes, Max Super Speciality Hospital, New Delhi, India
| | - Timothy W Jones
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Discipline of Pediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Farid H Mahmud
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Rodríguez-Sarmiento DL, León-Vargas F, García-Jaramillo M. Artificial pancreas systems: experiences from concept to commercialisation. Expert Rev Med Devices 2022; 19:877-894. [DOI: 10.1080/17434440.2022.2150546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Abstract
First envisioned by early diabetes clinicians, a person-centred approach to care was an aspirational goal that aimed to match insulin therapy to each individual's unique requirements. In the 100 years since the discovery of insulin, this goal has evolved to include personalised approaches to type 1 diabetes diagnosis, treatment, prevention and prediction. These advances have been facilitated by the recognition of type 1 diabetes as an autoimmune disease and by advances in our understanding of diabetes pathophysiology, genetics and natural history, which have occurred in parallel with advancements in insulin delivery, glucose monitoring and tools for self-management. In this review, we discuss how these personalised approaches have improved diabetes care and how improved understanding of pathogenesis and human biology might inform precision medicine in the future.
Collapse
Affiliation(s)
- Alice L J Carr
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
10
|
Molveau J, Rabasa-Lhoret R, Myette-Côté É, Messier V, Suppère C, J. Potter K, Heyman E, Tagougui S. Prevalence of nocturnal hypoglycemia in free-living conditions in adults with type 1 diabetes: What is the impact of daily physical activity? Front Endocrinol (Lausanne) 2022; 13:953879. [PMID: 36237197 PMCID: PMC9551602 DOI: 10.3389/fendo.2022.953879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Studies investigating strategies to limit the risk of nocturnal hypoglycemia associated with physical activity (PA) are scarce and have been conducted in standardized, controlled conditions in people with type 1 diabetes (T1D). This study sought to investigate the effect of daily PA level on nocturnal glucose management in free-living conditions while taking into consideration reported mitigation strategies to limit the risk of nocturnal hyoglycemia in people with T1D. Methods Data from 25 adults (10 males, 15 females, HbA1c: 7.6 ± 0.8%), 20-60 years old, living with T1D, were collected. One week of continuous glucose monitoring and PA (assessed using an accelerometer) were collected in free-living conditions. Nocturnal glucose values (midnight-6:00 am) following an active day "ACT" and a less active day "L-ACT" were analyzed to assess the time spent within the different glycemic target zones (<3.9 mmol/L; 3.9 - 10.0 mmol/L and >10.0 mmol/L) between conditions. Self-reported data about mitigation strategies applied to reduce the risk of nocturnal hypoglycemia was also analyzed. Results Only 44% of participants reported applying a carbohydrate- or insulin-based strategy to limit the risk of nocturnal hypoglycemia on ACT day. Nocturnal hypoglycemia occurrences were comparable on ACT night versus on L-ACT night. Additional post-meal carbohydrate intake was higher on evenings following ACT (27.7 ± 15.6 g, ACT vs. 19.5 ± 11.0 g, L-ACT; P=0.045), but was frequently associated with an insulin bolus (70% of participants). Nocturnal hypoglycemia the night following ACT occurred mostly in people who administrated an additional insulin bolus before midnight (3 out of 5 participants with nocturnal hypoglycemia). Conclusions Although people with T1D seem to be aware of the increased risk of nocturnal hypoglycemia associated with PA, the risk associated with additional insulin boluses may not be as clear. Most participants did not report using compensation strategies to reduce the risk of PA related late-onset hypoglycemia which may be because they did not consider habitual PA as something requiring treatment adjustments.
Collapse
Affiliation(s)
- Joséphine Molveau
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Département de Nutrition, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Rémi Rabasa-Lhoret
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Département de Nutrition, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Département des Sciences Biomédicales, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Endocrinology Division, Montreal Diabetes Research Center, Montréal, QC, Canada
| | - Étienne Myette-Côté
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Department of Applied Human Sciences, Faculty of Science, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Virginie Messier
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Corinne Suppère
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | | | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sémah Tagougui
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Département de Nutrition, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| |
Collapse
|
11
|
Jiao Y, Lin R, Hua X, Churilov L, Gaca MJ, James S, Clarke PM, O'Neal D, Ekinci EI. A systematic review: Cost-effectiveness of continuous glucose monitoring compared to self-monitoring of blood glucose in type 1 diabetes. Endocrinol Diabetes Metab 2022; 5:e369. [PMID: 36112608 PMCID: PMC9659662 DOI: 10.1002/edm2.369] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 12/15/2022] Open
Abstract
Continuous glucose monitoring (CGM) is rapidly becoming a vital tool in the management of type 1 diabetes. Its use has been shown to improve glycaemic management and reduce the risk of hypoglycaemic events. The cost of CGM remains a barrier to its widespread application. We aimed to identify and synthesize evidence about the cost-effectiveness of utilizing CGM in patients with type 1 diabetes. Studies were identified from MEDLINE, Embase and Cochrane Library from January 2010 to February 2022. Those that assessed the cost-effectiveness of CGM compared to self-monitored blood glucose (SMBG) in patients with type 1 diabetes and reported lifetime incremental cost-effectiveness ratio (ICER) were included. Studies on critically ill or pregnant patients were excluded. Nineteen studies were identified. Most studies compared continuous subcutaneous insulin infusion and SMBG to a sensor-augmented pump (SAP). The estimated ICER range was [$18,734-$99,941] and the quality-adjusted life year (QALY) gain range was [0.76-2.99]. Use in patients with suboptimal management or greater hypoglycaemic risk revealed more homogenous results and lower ICERs. Limited studies assessed CGM in the context of multiple daily injections (MDI) (n = 4), MDI and SMBG versus SAP (n = 2) and three studies included hybrid closed-loop systems. Most studies (n = 17) concluded that CGM is a cost-effective tool. This systematic review suggests that CGM appears to be a cost-effective tool for individuals with type 1 diabetes. Cost-effectiveness is driven by reducing short- and long-term complications. Use in patients with suboptimal management or at risk of severe hypoglycaemia is most cost-effective.
Collapse
Affiliation(s)
- Yuxin Jiao
- Austin HealthHeidelbergVictoriaAustralia
| | - Rose Lin
- Austin HealthHeidelbergVictoriaAustralia
| | - Xinyang Hua
- Centre for Health PolicyMelbourne School of Population and Global HealthUniversity of MelbourneCarltonVictoriaAustralia
| | - Leonid Churilov
- Melbourne Medical SchoolThe University of MelbourneParkvilleVictoriaAustralia
| | - Michele J. Gaca
- Health Sciences LibraryAustin HealthHeidelbergVictoriaAustralia
| | - Steven James
- School of Nursing, Midwifery and ParamedicineUniversity of the Sunshine CoastPetrieQueenslandAustralia
| | - Philip M. Clarke
- Health Economics Research CentreNuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - David O'Neal
- Department of MedicineSt Vincent's Hospital Melbourne, Melbourne Medical School, The University of MelbourneParkvilleVictoriaAustralia
| | - Elif I. Ekinci
- Department of Medicine, Austin HealthMelbourne Medical School, The University of MelbourneParkvilleVictoriaAustralia,Department of EndocrinologyAustin HealthHeidelbergVictoriaAustralia
| |
Collapse
|
12
|
Abstract
Combining technologies including rapid insulin analogs, insulin pumps, continuous glucose monitors, and control algorithms has allowed for the creation of automated insulin delivery (AID) systems. These systems have proven to be the most effective technology for optimizing metabolic control and could hold the key to broadly achieving goal-level glycemic control for people with type 1 diabetes. The use of AID has exploded in the past several years with several options available in the United States and even more in Europe. In this article, we review the largest studies involving these AID systems, and then examine future directions for AID with an emphasis on usability.
Collapse
Affiliation(s)
- Gregory P. Forlenza
- School of Medicine, Barbara Davis Center, University of Colorado Anschutz Campus, Aurora, Colorado, USA
| | - Rayhan A. Lal
- Department of Medicine & Pediatrics, Divisions of Endocrinology Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
| |
Collapse
|
13
|
Underwood P, Hibben J, Gibson J, DiNardo M. Virtual visits and the use of continuous glucose monitoring for diabetes care in the era of COVID-19. J Am Assoc Nurse Pract 2022; 34:586-596. [PMID: 34907992 PMCID: PMC8893130 DOI: 10.1097/jxx.0000000000000659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 10/19/2022]
Abstract
ABSTRACT The coronavirus disease 2019 (COVID-19) pandemic has led to an increase in virtual care utilization for patients with diabetes mellitus (DM). Virtual DM care requires both providers and patients to become familiar with new technology that supports home health monitoring. Continuous glucose monitoring (CGM) is a DM technology that provides 24-hr glucose monitoring and is associated with improved clinical outcomes, including decreased rates of hypoglycemia and lower hemoglobin A1c (A1c). Continuous glucose monitoring use has increased due to ease of use and its ability to allow patients to share data with providers during virtual visits. Although the clinical benefits of CGM use are clear, many providers are overwhelmed by the various options available and large influx of data received. The purpose of this clinical case review is to provide an overview of CGM use in the virtual care setting. Various types of CGMs will be defined and an overview of the patient characteristics shown to benefit most from CGM use will be provided. Further, recommendations for improving clinic workflow when using CGM will be outlined, including strategies to handle the influx of large datasets, outlining the role of the nurse practitioner (NP) and other providers in the clinic, and organizing data for efficient and improved clinical decision making. Continuous glucose monitoring use is hallmarked to revolutionize DM care for many patients, particularly during and after the COVID-19 pandemic. It is important that clinicians understand the nuances of CGM use and organize their virtual clinics to efficiently manage CGM users, leading to improved clinical decisions and patient outcomes.
Collapse
Affiliation(s)
- Patricia Underwood
- William F. Connell School of Nursing, Boston College, Chestnut Hill, Massachusetts
- Endocrine Section, Department of Medicine, Veterans Health Administration (VHA) System, Boston, Massachusetts
| | - Jennifer Hibben
- Endocrine Section, Department of Medicine, Veterans Health Administration (VHA) System, Boston, Massachusetts
| | - Jolynn Gibson
- Endocrine Section, Department of Medicine VA Pittsburgh, Pittsburgh, Pennsylvania
| | - Monica DiNardo
- Endocrine Section, Department of Medicine VA Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Carlson AL, Sherr JL, Shulman DI, Garg SK, Pop-Busui R, Bode BW, Lilenquist DR, Brazg RL, Kaiserman KB, Kipnes MS, Thrasher JR, Reed JHC, Slover RH, Philis-Tsimikas A, Christiansen M, Grosman B, Roy A, Vella M, Jonkers RA, Chen X, Shin J, Cordero TL, Lee SW, Rhinehart AS, Vigersky RA. Safety and Glycemic Outcomes During the MiniMed™ Advanced Hybrid Closed-Loop System Pivotal Trial in Adolescents and Adults with Type 1 Diabetes. Diabetes Technol Ther 2022; 24:178-189. [PMID: 34694909 PMCID: PMC8971997 DOI: 10.1089/dia.2021.0319] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: This trial assessed safety and effectiveness of an advanced hybrid closed-loop (AHCL) system with automated basal (Auto Basal) and automated bolus correction (Auto Correction) in adolescents and adults with type 1 diabetes (T1D). Materials and Methods: This multicenter single-arm study involved an intent-to-treat population of 157 individuals (39 adolescents aged 14-21 years and 118 adults aged ≥22-75 years) with T1D. Study participants used the MiniMed™ AHCL system during a baseline run-in period in which sensor-augmented pump +/- predictive low glucose management or Auto Basal was enabled for ∼14 days. Thereafter, Auto Basal and Auto Correction were enabled for a study phase (∼90 days), with glucose target set to 100 or 120 mg/dL for ∼45 days, followed by the other target for ∼45 days. Study endpoints included safety events and change in mean A1C, time in range (TIR, 70-180 mg/dL) and time below range (TBR, <70 mg/dL). Run-in and study phase values were compared using Wilcoxon signed-rank test or paired t-test. Results: Overall group time spent in closed loop averaged 94.9% ± 5.4% and involved only 1.2 ± 0.8 exits per week. Compared with run-in, AHCL reduced A1C from 7.5% ± 0.8% to 7.0% ± 0.5% (<0.001, Wilcoxon signed-rank test, n = 155), TIR increased from 68.8% ± 10.5% to 74.5% ± 6.9% (<0.001, Wilcoxon signed-rank test), and TBR reduced from 3.3% ± 2.9% to 2.3% ± 1.7% (<0.001, Wilcoxon signed-rank test). Similar benefits to glycemia were observed for each age group and were more pronounced for the nighttime (12 AM-6 AM). The 100 mg/dL target increased TIR to 75.4% (n = 155), which was further optimized at a lower active insulin time (AIT) setting (i.e., 2 h), without increasing TBR. There were no severe hypoglycemic or diabetic ketoacidosis events during the study phase. Conclusions: These findings show that the MiniMed AHCL system is safe and allows for achievement of recommended glycemic targets in adolescents and adults with T1D. Adjustments in target and AIT settings may further optimize glycemia and improve user experience. Clinical Trial Registration number: NCT03959423.
Collapse
Affiliation(s)
- Anders L. Carlson
- International Diabetes Center, HealthPartners Institute, Minneapolis, Minnesota, USA
| | - Jennifer L. Sherr
- Yale University School of Medicine Pediatric Endocrinology, New Haven, Connecticut, USA
| | - Dorothy I. Shulman
- University of South Florida Diabetes and Endocrinology, Tampa, Florida, USA
| | - Satish K. Garg
- Barbara Davis Center of Childhood Diabetes, Aurora, Colorado, USA
| | - Rodica Pop-Busui
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Ron L. Brazg
- Rainier Clinical Research Center, Renton, Washington, USA
| | | | - Mark S. Kipnes
- Diabetes and Glandular Disease Clinic, San Antonio, Texas, USA
| | - James R. Thrasher
- Arkansas Diabetes and Endocrinology Center, Little Rock, Arkansas, USA
| | | | - Robert H. Slover
- Barbara Davis Center of Childhood Diabetes, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | - John Shin
- Medtronic, Northridge, California, USA
| | | | | | | | | |
Collapse
|
15
|
Boughton CK, Hartnell S, Thabit H, Mubita WM, Draxlbauer K, Poettler T, Wilinska ME, Hood KK, Mader JK, Narendran P, Leelarathna L, Evans ML, Hovorka R. Hybrid closed-loop glucose control compared with sensor augmented pump therapy in older adults with type 1 diabetes: an open-label multicentre, multinational, randomised, crossover study. THE LANCET. HEALTHY LONGEVITY 2022; 3:e135-e142. [PMID: 35359882 PMCID: PMC8967297 DOI: 10.1016/s2666-7568(22)00005-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Older adults with type 1 diabetes have distinct characteristics that can make optimising glycaemic control challenging. We sought to test our hypothesis that hybrid closed-loop glucose control is safe and more effective than sensor-augmented pump (SAP) therapy in older adults with type 1 diabetes. Methods In an open-label, multicentre, multinational (UK and Austria), randomised, crossover study, adults aged 60 years and older with type 1 diabetes using insulin pump therapy underwent two 16-week periods comparing hybrid closed-loop (CamAPS FX, CamDiab, Cambridge, UK) and SAP therapy in random order. Block randomisation by means of central randomisation software to one of two treatment sequences was stratified by centre. The primary endpoint was the proportion of time sensor glucose was in target range between 3·9 and 10·0 mmol/L. Analysis for the primary endpoint and adverse events was by intention-to-treat. The study has completed and is registered at ClinicalTrials.gov NCT04025762. Findings 38 participants were enrolled. One participant withdrew during run-in because of difficulties with the study pump infusion sets. 37 participants (median [IQR] age 68 [63-70] years, mean [SD] baseline glycated haemoglobin [HbA1c]; 7·4% [0·9%]; 57 [10] mmol/mol) were randomly assigned between Sept 4, 2019, and Oct 2, 2020. The proportion of time with glucose between 3·9 and 10·0 mmol/L was significantly higher in the closed-loop group compared to the SAP group (79·9% [SD 7·9] vs 71·4% [13·2], difference 8·6 percentage points [95% CI 6·3 to 11·0]; p<0·0001). Two severe hypoglycaemia events occurred during the SAP period. There were two non-treatment related serious adverse events: cardiac arrest from pulmonary embolism associated with COVID-19 during the SAP period resulting in death, and a hospital presentation for parenteral hydrocortisone because of COVID-19 in a participant with adrenal insufficiency during the run-in period. Interpretation Hybrid closed-loop insulin delivery is safe and achieves superior glycaemic control to SAP therapy in older adults with long duration of type 1 diabetes. Importantly this was achieved without increasing the risk of hypoglycaemia in this population with risk factors for severe hypoglycaemia. This suggests that hybrid closed-loop therapy is a clinically important treatment option for older adults with type 1 diabetes.
Collapse
Affiliation(s)
- Charlotte K Boughton
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Sara Hartnell
- Cambridge University Hospitals NHS Foundation Trust, Wolfson Diabetes and Endocrine Clinic, Cambridge, UK
| | - Hood Thabit
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Womba M Mubita
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Tina Poettler
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | | | - Korey K Hood
- Division of Pediatric Endocrinology, Stanford University, Stanford Diabetes Research Center, CA, USA
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Parth Narendran
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lalantha Leelarathna
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Mark L Evans
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Roman Hovorka
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
16
|
Pauley ME, Berget C, Messer LH, Forlenza GP. Barriers to Uptake of Insulin Technologies and Novel Solutions. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2021; 14:339-354. [PMID: 34803408 PMCID: PMC8594891 DOI: 10.2147/mder.s312858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes-related technology has undergone great advancement in recent years. These technological devices are more commonly utilized in the type 1 diabetes population, which requires insulin as the primary treatment modality. Available devices include insulin pumps, continuous glucose monitors, and hybrid systems referred to as automated insulin delivery systems or hybrid closed-loop systems, which combine those two devices along with software algorithms to achieve advanced therapeutic capabilities, including automatic modulation of insulin delivery based on sensor-derived glucose levels to minimize abnormal glucose trends. Use of diabetes technology is associated with significant positive health and psychosocial outcomes, yet utilization rates are generally lacking across both adult and pediatric type 1 diabetes populations in the United States and other countries. There are consistent themes in existing barriers to technology uptake reported by individuals with type 1 diabetes or parents of children with type 1 diabetes, including physical burdens associated with wearing the devices, concerns in navigating the technology and the devices' abilities to meet user expectations, high cost, inadequate resources within the healthcare team to support device use, disparities in technology access, and psychosocial barriers. It is important to understand the common barriers to uptake of not only the automated insulin delivery systems but also their component devices (insulin pumps and continuous glucose monitors) to fully support individuals in utilizing these devices and optimizing health benefits. The purpose of this article is to summarize the current automated insulin delivery devices that are available for use in management of type 1 diabetes, review common barriers to uptake of those systems and their component devices, and provide expert opinion on existing and future solutions to identified barriers.
Collapse
Affiliation(s)
- Meghan E Pauley
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cari Berget
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel H Messer
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory P Forlenza
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Rankin D, Kimbell B, Allen JM, Besser REJ, Boughton CK, Campbell F, Elleri D, Fuchs J, Ghatak A, Randell T, Thankamony A, Trevelyan N, Wilinska ME, Hovorka R, Lawton J. Adolescents' Experiences of Using a Smartphone Application Hosting a Closed-loop Algorithm to Manage Type 1 Diabetes in Everyday Life: Qualitative Study. J Diabetes Sci Technol 2021; 15:1042-1051. [PMID: 34261348 PMCID: PMC8411472 DOI: 10.1177/1932296821994201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Closed-loop technology may help address health disparities experienced by adolescents, who are more likely to have suboptimal glycemic control than other age groups and, because of their age, find diabetes self-management particularly challenging. The CamAPS FX closed-loop has sought to address accessibility and usability issues reported by users of previous prototype systems. It comprises small components and a smartphone app used to: announce meal-time boluses, adjust ("boost" or "ease-off") closed-loop insulin delivery, customize alarms, and review/share data. We explored how using the CamAPS FX platform influences adolescents' self-management practices and everyday lives. METHODS Eighteen adolescents were interviewed after having ≥6 months experience using the closed-loop platform. Data were analyzed thematically. RESULTS Participants reported feeling less burdened and shackled by diabetes because closed-loop components were easier to carry/wear, finger-pricks were not required, the smartphone app provided a discreet and less stigmatizing way of managing diabetes in public, and they were able to customize alarms. Participants also reported checking and reviewing data more regularly, because they did so when using the smartphone for other reasons. Some reported challenges in school settings where use of personal phones was restricted. Participants highlighted how self-management practices were improved because they could easily review glucose data and adjust closed-loop insulin delivery using the "boost" and "ease-off" functions. Some described how using the system resulted in them forgetting about diabetes and neglecting certain tasks. CONCLUSIONS A closed-loop system with small components and control algorithm on a smartphone app can enhance usability and acceptability for adolescents and may help address the health-related disparities experienced by this age group. However, challenges can arise from using a medical app on a device which doubles as a smartphone. TRIAL REGISTRATION Closed Loop From Onset in Type 1 Diabetes (CLOuD); NCT02871089; https://clinicaltrials.gov/ct2/show/NCT02871089.
Collapse
Affiliation(s)
- David Rankin
- Usher Institute, Medical School,
University of Edinburgh, UK
- David Rankin, PhD, Usher Institute,
University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK.
| | - Barbara Kimbell
- Usher Institute, Medical School,
University of Edinburgh, UK
| | - Janet M. Allen
- Wellcome Trust – Medical Research
Institute of Metabolic Science, University of Cambridge, UK
- Department of Paediatrics, University of
Cambridge, UK
| | - Rachel E. J. Besser
- NIHR Oxford Biomedical Research Centre,
Oxford University Hospitals NHS Foundation Trust, UK
- Department of Paediatrics, University of
Oxford, UK
| | - Charlotte K. Boughton
- Wellcome Trust – Medical Research
Institute of Metabolic Science, University of Cambridge, UK
| | | | | | - Julia Fuchs
- Wellcome Trust – Medical Research
Institute of Metabolic Science, University of Cambridge, UK
- Department of Paediatrics, University of
Cambridge, UK
| | - Atrayee Ghatak
- Alder Hey Children’s NHS Foundation
Trust, Liverpool, UK
| | | | - Ajay Thankamony
- Addenbrookes Hospital, Cambridge
University Hospitals NHS Foundation Trust, UK
| | | | - Malgorzata E. Wilinska
- Wellcome Trust – Medical Research
Institute of Metabolic Science, University of Cambridge, UK
- Department of Paediatrics, University of
Cambridge, UK
| | - Roman Hovorka
- Wellcome Trust – Medical Research
Institute of Metabolic Science, University of Cambridge, UK
- Department of Paediatrics, University of
Cambridge, UK
| | - Julia Lawton
- Usher Institute, Medical School,
University of Edinburgh, UK
| |
Collapse
|
18
|
Porcellati F, Di Mauro S, Mazzieri A, Scamporrino A, Filippello A, De Fano M, Fanelli CG, Purrello F, Malaguarnera R, Piro S. Glucagon as a Therapeutic Approach to Severe Hypoglycemia: After 100 Years, Is It Still the Antidote of Insulin? Biomolecules 2021; 11:biom11091281. [PMID: 34572493 PMCID: PMC8464883 DOI: 10.3390/biom11091281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoglycemia represents a dark and tormented side of diabetes mellitus therapy. Patients treated with insulin or drug inducing hypoglycemia, consider hypoglycemia as a harmful element, which leads to their resistance and lack of acceptance of the pathology and relative therapies. Severe hypoglycemia, in itself, is a risk for patients and relatives. The possibility to have novel strategies and scientific knowledge concerning hypoglycemia could represent an enormous benefit. Novel available glucagon formulations, even now, allow clinicians to deal with hypoglycemia differently with respect to past years. Novel scientific evidence leads to advances concerning physiopathological mechanisms that regulated glycemic homeostasis. In this review, we will try to show some of the important aspects of this field.
Collapse
Affiliation(s)
- Francesca Porcellati
- Department of Medicine and Surgery, Perugia University School of Medicine, Via Gambuli 1, 06126 Perugia, Italy; (F.P.); (A.M.); (M.D.F.); (C.G.F.)
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Alessio Mazzieri
- Department of Medicine and Surgery, Perugia University School of Medicine, Via Gambuli 1, 06126 Perugia, Italy; (F.P.); (A.M.); (M.D.F.); (C.G.F.)
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Michelantonio De Fano
- Department of Medicine and Surgery, Perugia University School of Medicine, Via Gambuli 1, 06126 Perugia, Italy; (F.P.); (A.M.); (M.D.F.); (C.G.F.)
| | - Carmine Giuseppe Fanelli
- Department of Medicine and Surgery, Perugia University School of Medicine, Via Gambuli 1, 06126 Perugia, Italy; (F.P.); (A.M.); (M.D.F.); (C.G.F.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Roberta Malaguarnera
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; Tel.: +39-0935-536577
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| |
Collapse
|
19
|
Eckstein ML, Weilguni B, Tauschmann M, Zimmer RT, Aziz F, Sourij H, Moser O. Time in Range for Closed-Loop Systems versus Standard of Care during Physical Exercise in People with Type 1 Diabetes: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10112445. [PMID: 34072900 PMCID: PMC8198013 DOI: 10.3390/jcm10112445] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to compare time in range (TIR) (70–180 mg/dL (3.9–10.0 mmol/L)) between fully closed-loop systems (CLS) and standard of care (including hybrid systems) during physical exercise in people with type 1 diabetes (T1D). A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Science from January 1950 until January 2020. Randomized controlled trials including studies with different CLS were compared against standard of care in people with T1D. The meta-analysis was performed using the random effects model and restricted maximum likelihood estimation method. Six randomized controlled trials involving 153 participants with T1D of all age groups were included. Due to crossover test designs, studies were included repeatedly (a–d) if CLS or physical exercise interventions were different. Applying this methodology increased the comparisons to a total number of 266 participants. TIR was higher with an absolute mean difference (AMD) of 6.18%, 95% CI: 1.99 to 10.38% in favor of CLS. In a subgroup analysis, the AMD was 9.46%, 95% CI: 2.48% to 16.45% in children and adolescents while the AMD for adults was 1.07% 95% CI: −0.81% to 2.96% in favor of CLS. In this systematic review and meta-analysis CLS moderately improved TIR in comparison to standard of care during physical exercise in people with T1D. This effect was particularly pronounced for children and adolescents showing that the use of CLS improved TIR significantly compared to standard of care.
Collapse
Affiliation(s)
- Max L. Eckstein
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (R.T.Z.)
| | - Benjamin Weilguni
- Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.W.); (F.A.); (H.S.)
| | - Martin Tauschmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Rebecca T. Zimmer
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (R.T.Z.)
| | - Faisal Aziz
- Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.W.); (F.A.); (H.S.)
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.W.); (F.A.); (H.S.)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (R.T.Z.)
- Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.W.); (F.A.); (H.S.)
- Correspondence: ; Tel.: +49-(0)921-55-3465
| |
Collapse
|
20
|
Dovc K, Battelino T. Time in range centered diabetes care. Clin Pediatr Endocrinol 2021; 30:1-10. [PMID: 33446946 PMCID: PMC7783127 DOI: 10.1297/cpe.30.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Optimal glycemic control remains challenging and elusive for many people with diabetes. With the comprehensive clinical evidence on safety and efficiency in large populations, and with broader reimbursement, the adoption of continuous glucose monitoring (CGM) is rapidly increasing. Standardized visual reporting and interpretation of CGM data and clear and understandable clinical targets will help professionals and individuals with diabetes use diabetes technology more efficiently, and finally improve long-term outcomes with less everyday disease burden. For the majority of people with type 1 or type 2 diabetes, time in range (between 70 and 180 mg/dL, or 3.9 and 10 mmol/L) target of more than 70% is recommended, with each incremental increase of 5% towards this target being clinically meaningful. At the same time, the goal is to minimize glycemic excursions: a recommended target for a time below range (< 70 mg/dL or < 3.9 mmol/L) is less than 4%, and time above range (> 180 mg/dL or 10 mmol/L) less than 25%, with less stringent goals for older individuals or those at increased risk. These targets should be individualized: the personal use of CGM with the standardized data presentation provides all necessary means to accurately tailor diabetes management to the needs of each individual with diabetes.
Collapse
Affiliation(s)
- Klemen Dovc
- University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Goez-Mora JE, Villa-Tamayo MF, Vallejo M, Rivadeneira PS. Performance Analysis of Different Embedded Systems and Open-Source Optimization Packages Towards an Impulsive MPC Artificial Pancreas. Front Endocrinol (Lausanne) 2021; 12:662348. [PMID: 33981286 PMCID: PMC8109177 DOI: 10.3389/fendo.2021.662348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Current technological advances have brought closer to reality the project of a safe, portable, and efficient artificial pancreas for people with type 1 diabetes (T1D). Among the developed control strategies for T1D, model predictive control (MPC) has been emphasized in literature as a promising control for glucose regulation. However, these control strategies are commonly designed in a computer environment, regardless of the limitations of a portable device. In this paper, the performances of six embedded platforms and three open-source optimization solver algorithms are assessed for T1D treatment. Their advantages and limitations are clarified using four MPC formulations of increasing complexity and a hardware-in-the-loop methodology to evaluate glucose control in virtual adult subjects. The performance comparison includes the execution time, the difference concerning the evolution obtained in MATLAB, the processor temperature, energy consumption, time percentage in normoglycemia, and the number of hypo- and hyperglycemic events. Results show that Quadprog is the package that faithfully follows the results obtained with control strategies designed and tuned on a computer with the MATLAB software. In addition, the Raspberry Pi 3 and the Tinker Board S embedded systems present the appropriate characteristics to be implemented as portable devices in the artificial pancreas application according to the criteria set out in this work.
Collapse
|
22
|
Joseph JI. Review of the Long-Term Implantable Senseonics Continuous Glucose Monitoring System and Other Continuous Glucose Monitoring Systems. J Diabetes Sci Technol 2021; 15:167-173. [PMID: 32345047 PMCID: PMC7783000 DOI: 10.1177/1932296820911919] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The article published by Kevin Cowart in this issue of the Journal of Diabetes Science and Technology (JDST) is a detailed overview of the clinical trial data and analysis used to demonstrate the safety and effectiveness of the Eversense continuous glucose monitoring (CGM) System for regulatory approval and clinical acceptance. The article describes the published study results for safety, accuracy, reliability, ease of insertion/removal, adverse events, and ease of diabetes patient-use for controlling their glucose levels short and long term. The author nicely compares Eversense CGM System safety and performance with the short-term subcutaneous tissue CGM systems being commercialized by Dexcom, Medtronic Diabetes, and Abbott Diabetes. This comparison may help the clinician define which type of patient with diabetes might benefit the most from the long-term implantable CGM system. The majority of studied patients describe a positive experience managing their diabetes with the Eversense CGM System and request implantation of a new sensor 90 or 180 days later.
Collapse
Affiliation(s)
- Jeffrey I. Joseph
- Jeffrey I. Joseph, DO, Department of Anesthesiology, Sidney Kimmel Medical College, Jefferson Artificial Pancreas Center, Thomas Jefferson University, 1020 Locust Street, JAH # 565, Philadelphia, PA 19072, USA.
| |
Collapse
|
23
|
Galindo RJ, Aleppo G. Continuous glucose monitoring: The achievement of 100 years of innovation in diabetes technology. Diabetes Res Clin Pract 2020; 170:108502. [PMID: 33065179 PMCID: PMC7736459 DOI: 10.1016/j.diabres.2020.108502] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring of glucose levels is essential to effective diabetes management. Over the past 100 years, there have been numerous innovations in glucose monitoring methods. The most recent advances have centered on continuous glucose monitoring (CGM) technologies. Numerous studies have demonstrated that use of continuous glucose monitoring confers significant glycemic benefits on individuals with type 1 diabetes (T1DM) and type 2 diabetes (T2DM). Ongoing improvements in accuracy and convenience of CGM devices have prompted increasing adoption of this technology. The development of standardized metrics for assessing CGM data has greatly improved and streamlined analysis and interpretation, enabling clinicians and patients to make more informed therapy modifications. However, many clinicians many be unfamiliar with current CGM and how use of these devices may help individuals with T1DM and T2DM achieve their glycemic targets. The purpose of this review is to present an overview of current CGM systems and provide guidance to clinicians for initiating and utilizing CGM in their practice settings.
Collapse
Affiliation(s)
- Rodolfo J Galindo
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 69 Jesse Hill Jr. Dr., Glenn Building, Suite 202, Atlanta, GA, 30303, USA.
| | - Grazia Aleppo
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave, Suite 530, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Dovc K, Battelino T. Closed-loop insulin delivery systems in children and adolescents with type 1 diabetes. Expert Opin Drug Deliv 2020; 17:157-166. [PMID: 32077342 DOI: 10.1080/17425247.2020.1713747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Optimal glycemic control remains challenging in children and adolescents with type 1 diabetes due to highly variable day-to-day and night-to-night insulin requirements. This hurdle could be addressed by glucose-responsive insulin delivery based on real-time continuous glucose measurements.Areas covered: This review summaries recent advances of closed-loop systems in children and adolescents with type 1 diabetes, using both single- and dual-hormone closed-loop systems. The main outcomes, proportions of time spent in target range 70-180 mg/dl, and time spent in hypoglycemia below 70 mg/dl, are assessed particularly during unsupervised free-living randomized controlled trials.Expert opinion: Noteworthy and clinically meaningful translation of experimental investigations from controlled in-hospital settings to unrestricted home studies have been achieved over the past years, resulting in the regulatory approval of the first hybrid closed-loop system also in the pediatric population and with several other advanced devices in the pipeline. Large multinational and pivotal clinical trials including broad age populations are underway to facilitate the use of closed-loop systems in routine clinical practice.
Collapse
Affiliation(s)
- Klemen Dovc
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Petrovski G, Al Khalaf F, Campbell J, Fisher H, Umer F, Hussain K. 10-Day structured initiation protocol from multiple daily injection to hybrid closed-loop system in children and adolescents with type 1 diabetes. Acta Diabetol 2020; 57:681-687. [PMID: 31953687 PMCID: PMC7220973 DOI: 10.1007/s00592-019-01472-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/27/2019] [Indexed: 02/03/2023]
Abstract
AIM The aim of this study was to evaluate the 10-day initiation protocol for MiniMed 670G hybrid closed-loop (HCL) system in individuals with type 1 diabetes on multiple daily injection (MDI) in achieving desirable glycemic control. METHODS An open-label single-arm, single-center, clinical investigation in children aged 7-18 years on MDI following a structured protocol: 2 days, HCL system assessment; 5 days, HCL system training (2-h sessions on 5 consecutive days with groups of 3-5 participants and families); 3 days, Manual Mode use of HCL system; 84 days, Auto Mode use of the HCL system, cumulating in 10 days from MDI to Auto Mode activation. RESULTS A total of 30 children (age 10.24 ± 2.6 years) were enrolled in the study, and all completed the planned 84 days on Auto Mode. The participants used the sensor for a median of 92% of the time and spent a median of 89% in Auto Mode. The mean HbA1c decreased from 8.2 ± 1.4% (66 ± 15.3 mmol/mol) at baseline to 6.7 ± 0.5% (50 ± 5.5 mmol/mol) at the end of the study (p = 0.017). Time in range (70-180 mg/dL) increased from 46.9 ± 18.5% at baseline to 75.6 ± 6.9% in Auto Mode (p < 0.001). This was achieved while spending 2.8% of the time below 70 mg/dL and without any severe hypoglycemia or DKA. CONCLUSION Children and adolescents with type 1 diabetes on MDI therapy can successfully initiate the HCL system, using a concise structured 10-day protocol.
Collapse
Affiliation(s)
- Goran Petrovski
- Division of Endocrinology and Diabetes, Department of Pediatric Medicine, Sidra Medicine, HB 6E 219, Al Luqta Street, Education City North Campus, PO Box 26999, Doha, Qatar.
| | - Fawziya Al Khalaf
- Division of Endocrinology and Diabetes, Department of Pediatric Medicine, Sidra Medicine, HB 6E 219, Al Luqta Street, Education City North Campus, PO Box 26999, Doha, Qatar
| | - Judith Campbell
- Division of Endocrinology and Diabetes, Department of Pediatric Medicine, Sidra Medicine, HB 6E 219, Al Luqta Street, Education City North Campus, PO Box 26999, Doha, Qatar
| | - Hannah Fisher
- Division of Endocrinology and Diabetes, Department of Pediatric Medicine, Sidra Medicine, HB 6E 219, Al Luqta Street, Education City North Campus, PO Box 26999, Doha, Qatar
| | - Fareeda Umer
- Division of Endocrinology and Diabetes, Department of Pediatric Medicine, Sidra Medicine, HB 6E 219, Al Luqta Street, Education City North Campus, PO Box 26999, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology and Diabetes, Department of Pediatric Medicine, Sidra Medicine, HB 6E 219, Al Luqta Street, Education City North Campus, PO Box 26999, Doha, Qatar
| |
Collapse
|
26
|
Fabris C, Kovatchev B. The closed‐loop artificial pancreas in 2020. Artif Organs 2020; 44:671-679. [DOI: 10.1111/aor.13704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chiara Fabris
- Center for Diabetes Technology University of Virginia Charlottesville VA USA
| | - Boris Kovatchev
- Center for Diabetes Technology University of Virginia Charlottesville VA USA
| |
Collapse
|
27
|
Dugan JA, Ahmed S, Vincent M, Perry R, Young CF. Managing Diabetes in the Digital Age. PHYSICIAN ASSISTANT CLINICS 2020. [DOI: 10.1016/j.cpha.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Boughton C, Allen JM, Tauschmann M, Hartnell S, Wilinska ME, Musolino G, Acerini CL, Dunger PD, Campbell F, Ghatak A, Randell T, Besser R, Trevelyan N, Elleri D, Northam E, Hood K, Scott E, Lawton J, Roze S, Sibayan J, Kollman C, Cohen N, Todd J, Hovorka R. Assessing the effect of closed-loop insulin delivery from onset of type 1 diabetes in youth on residual beta-cell function compared to standard insulin therapy (CLOuD study): a randomised parallel study protocol. BMJ Open 2020; 10:e033500. [PMID: 32169925 PMCID: PMC7069267 DOI: 10.1136/bmjopen-2019-033500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Management of newly diagnosed type 1 diabetes (T1D) in children and adolescents is challenging for patients, families and healthcare professionals. The objective of this study is to determine whether continued intensive metabolic control using hybrid closed-loop (CL) insulin delivery following diagnosis of T1D can preserve C-peptide secretion, a marker of residual beta-cell function, compared with standard multiple daily injections (MDI) therapy. METHODS AND ANALYSIS The study adopts an open-label, multicentre, randomised, parallel design, and aims to randomise 96 participants aged 10-16.9 years, recruited within 21 days of diagnosis with T1D. Following a baseline mixed meal tolerance test (MMTT), participants will be randomised to receive 24 months treatment with conventional MDI therapy or with CL insulin delivery. A further 24-month optional extension phase will be offered to all participants to continue with the allocated treatment. The primary outcome is the between group difference in area under the stimulated C-peptide curve (AUC) of the MMTT at 12 months post diagnosis. Analyses will be conducted on an intention-to-treat basis. Key secondary outcomes are between group differences in time spent in target glucose range (3.9-10 mmol/L), glycated haemoglobin (HbA1c) and time spent in hypoglycaemia (<3.9 mmol/L) at 12 months. Secondary efficacy outcomes include between group differences in stimulated C-peptide AUC at 24 months, time spent in target glucose range, glucose variability, hypoglycaemia and hyperglycaemia as recorded by periodically applied masked continuous glucose monitoring devices, total, basal and bolus insulin dose, and change in body weight. Cognitive, emotional and behavioural characteristics of participants and parents will be evaluated, and a cost-utility analysis performed to support adoption of CL as a standard treatment modality following diagnosis of T1D. ETHICS AND DISSEMINATION Ethics approval has been obtained from Cambridge East Research Ethics Committee. The results will be disseminated by peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT02871089; Pre-results.
Collapse
Affiliation(s)
- Charlotte Boughton
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Janet M Allen
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Martin Tauschmann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sara Hartnell
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Malgorzata E Wilinska
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Gianluca Musolino
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | | | - Fiona Campbell
- Children's Diabetes Centre, Leeds Children's Hospital, Leeds, UK
| | - Atrayee Ghatak
- Department of Diabetes, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Tabitha Randell
- Department of Paediatric Diabetes and Endocrinology, Nottingham Children's Hospital, Nottingham, UK
| | - Rachel Besser
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Nicola Trevelyan
- Paediatric Diabetes, Southampton Children's Hospital, Southampton, UK
| | - Daniela Elleri
- Department of Diabetes, Royal Hospital for Sick Children, Edinburgh, UK
| | - Elizabeth Northam
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Korey Hood
- Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| | - Eleanor Scott
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Julia Lawton
- The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | | | - Judy Sibayan
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - Craig Kollman
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - Nate Cohen
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - John Todd
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Roman Hovorka
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Berget C, Thomas SE, Messer LH, Thivener K, Slover RH, Wadwa RP, Alonso GT. A Clinical Training Program for Hybrid Closed Loop Therapy in a Pediatric Diabetes Clinic. J Diabetes Sci Technol 2020; 14:290-296. [PMID: 30862242 PMCID: PMC7196862 DOI: 10.1177/1932296819835183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Hybrid closed loop (HCL) therapy is now available in clinical practice for treatment of type 1 diabetes; however, there is limited research on how to educate patients on this new therapy. The purpose of this quality improvement project was to optimize a HCL education program for pediatric patients with type 1 diabetes (T1D). METHODS Our multidisciplinary team developed a novel HCL clinical training program for current insulin pump users, using a quality improvement process called the Plan-Do-Study-Act model. Seventy-two patients participated in the HCL training program, which included (1) an in-person group class to reinforce conventional insulin pump and CGM use on the new system, (2) a live video conference class to teach HCL use, and (3) three follow-up phone calls in the first 4 weeks after HCL training to assess system use, make insulin adjustments, and provide targeted reeducation. Diabetes educators collected data during follow-up calls, and patients completed a training satisfaction survey. RESULTS The quality improvement process resulted in a training program that emphasized education on HCL exits, CGM use, and optimizing insulin to carbohydrate ratio settings. Patients successfully sustained time in HCL in the initial weeks of use and rated the trainings and follow-up calls highly. CONCLUSIONS Ongoing educational support is vital in the early weeks of HCL use. This quality improvement project is the first to examine strategies for implementation of HCL therapy into a large pediatric diabetes center, and may inform best practices for implementation of new diabetes technologies into other diabetes clinics.
Collapse
Affiliation(s)
- Cari Berget
- University of Colorado, Denver, Barbara
Davis Center for Childhood Diabetes, Aurora, CO, USA
- Cari Berget, RN, MPH, CDE University of
Colorado, Denver, Barbara Davis Center for Childhood Diabetes, 1775 Aurora Ct.,
Aurora, CO 80045, USA.
| | - Sarah E. Thomas
- University of Colorado, Denver, Barbara
Davis Center for Childhood Diabetes, Aurora, CO, USA
| | - Laurel H. Messer
- University of Colorado, Denver, Barbara
Davis Center for Childhood Diabetes, Aurora, CO, USA
| | - Katelin Thivener
- University of Colorado, Denver, Barbara
Davis Center for Childhood Diabetes, Aurora, CO, USA
| | - Robert H. Slover
- University of Colorado, Denver, Barbara
Davis Center for Childhood Diabetes, Aurora, CO, USA
| | - R. Paul Wadwa
- University of Colorado, Denver, Barbara
Davis Center for Childhood Diabetes, Aurora, CO, USA
| | - G. Todd Alonso
- University of Colorado, Denver, Barbara
Davis Center for Childhood Diabetes, Aurora, CO, USA
| |
Collapse
|
30
|
Sherr JL, Buckingham BA, Forlenza GP, Galderisi A, Ekhlaspour L, Wadwa RP, Carria L, Hsu L, Berget C, Peyser TA, Lee JB, O'Connor J, Dumais B, Huyett LM, Layne JE, Ly TT. Safety and Performance of the Omnipod Hybrid Closed-Loop System in Adults, Adolescents, and Children with Type 1 Diabetes Over 5 Days Under Free-Living Conditions. Diabetes Technol Ther 2020; 22:174-184. [PMID: 31596130 PMCID: PMC7047109 DOI: 10.1089/dia.2019.0286] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: The objective of this study was to assess the safety and performance of the Omnipod® personalized model predictive control (MPC) algorithm in adults, adolescents, and children aged ≥6 years with type 1 diabetes (T1D) under free-living conditions using an investigational device. Materials and Methods: A 96-h hybrid closed-loop (HCL) study was conducted in a supervised hotel/rental home setting following a 7-day outpatient standard therapy (ST) phase. Eligible participants were aged 6-65 years with A1C <10.0% using insulin pump therapy or multiple daily injections. Meals during HCL were unrestricted, with boluses administered per usual routine. There was daily physical activity. The primary endpoints were percentage of time with sensor glucose <70 and ≥250 mg/dL. Results: Participants were 11 adults, 10 adolescents, and 15 children aged (mean ± standard deviation) 28.8 ± 7.9, 14.3 ± 1.3, and 9.9 ± 1.0 years, respectively. Percentage time ≥250 mg/dL during HCL was 4.5% ± 4.2%, 3.5% ± 5.0%, and 8.6% ± 8.8% per respective age group, a 1.6-, 3.4-, and 2.0-fold reduction compared to ST (P = 0.1, P = 0.02, and P = 0.03). Percentage time <70 mg/dL during HCL was 1.9% ± 1.3%, 2.5% ± 2.0%, and 2.2% ± 1.9%, a statistically significant decrease in adults when compared to ST (P = 0.005, P = 0.3, and P = 0.3). Percentage time 70-180 mg/dL increased during HCL compared to ST, reaching significance for adolescents and children: HCL 73.7% ± 7.5% vs. ST 68.0% ± 15.6% for adults (P = 0.08), HCL 79.0% ± 12.6% vs. ST 60.6% ± 13.4% for adolescents (P = 0.01), and HCL 69.2% ± 13.5% vs. ST 54.9% ± 12.9% for children (P = 0.003). Conclusions: The Omnipod personalized MPC algorithm was safe and performed well over 5 days and 4 nights of use by a cohort of participants ranging from youth aged ≥6 years to adults with T1D under supervised free-living conditions with challenges, including daily physical activity and unrestricted meals.
Collapse
Affiliation(s)
- Jennifer L. Sherr
- Division of Pediatric Endocrinology & Diabetes, Department of Pediatrics, Yale University, New Haven, Connecticut
- Address correspondence to: Jennifer L. Sherr, MD, PhD, Division of Pediatric Endocrinology & Diabetes, Department of Pediatrics, Yale University, One Long Wharf Drive Suite 503, New Haven, CT 06511
| | - Bruce A. Buckingham
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California
| | - Gregory P. Forlenza
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alfonso Galderisi
- Division of Pediatric Endocrinology & Diabetes, Department of Pediatrics, Yale University, New Haven, Connecticut
| | - Laya Ekhlaspour
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California
| | - R. Paul Wadwa
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lori Carria
- Division of Pediatric Endocrinology & Diabetes, Department of Pediatrics, Yale University, New Haven, Connecticut
| | - Liana Hsu
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California
| | - Cari Berget
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Toffanin C, Kozak M, Sumnik Z, Cobelli C, Petruzelkova L. In Silico Trials of an Open-Source Android-Based Artificial Pancreas: A New Paradigm to Test Safety and Efficacy of Do-It-Yourself Systems. Diabetes Technol Ther 2020; 22:112-120. [PMID: 31769699 DOI: 10.1089/dia.2019.0375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: Safety data on Do-It-Yourself Artificial Pancreas Systems are missing. The most widespread in Europe is the AndroidAPS implementation of the OpenAPS algorithm. We used the UVA/Padova Type 1 Diabetes Simulator to in silico test safety and efficacy of this algorithm in different scenarios. Methods: We tested five configurations of the AndroidAPS algorithm differing in aggressiveness and patient's interaction with the system. All configurations were tested with insulin sensitivity variation of ±30%. The most promising configurations were tested in real-life scenarios: over- and underestimated bolus by 50%, bolus delivered 15 min before meal, and late bolus delivered 15 min after meal. Continuous Glucose Monitoring (CGM) time in ranges (TIRs) metrics were used to assess the glycemic control. Results: In silico testing showed that open-source closed-loop system AndroidAPS works effectively and safely. The best results were reached if AndroidAPS algorithm worked with microboluses and when half of calculated bolus was issued (mean glycemia 131 mg/dL, SD 27 mg/dL, TIR 91%, time between 54 and 70 mg/dL <1%, and low blood glucose index even <1). The meal bolus over- and underestimation as well as late bolus did not affect the TIR and, importantly, the time between 54 and 70 mg/dL. Conclusion: In silico testing proved that AndroidAPS implementation of the OpenAPS algorithm is safe and effective, and it showed a great potential to be tested in prospective home setting study.
Collapse
Affiliation(s)
- Chiara Toffanin
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Milos Kozak
- CLOSED LOOP Systems, Prague, Czech Republic, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Paediatrics, Motol University Hospital, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lenka Petruzelkova
- Department of Paediatrics, Motol University Hospital, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
32
|
Urakami T. Severe Hypoglycemia: Is It Still a Threat for Children and Adolescents With Type 1 Diabetes? Front Endocrinol (Lausanne) 2020; 11:609. [PMID: 33042005 PMCID: PMC7523511 DOI: 10.3389/fendo.2020.00609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Severe hypoglycemia is defined as a condition with serious cognitive dysfunction, such as a convulsion and coma, requiring external help from other persons. This condition is still lethal and is reported to be the cause of death in 4-10% in children and adolescents with type 1 diabetes. The incidence of severe hypoglycemia in the pediatric population was previously reported as high as more than 50-100 patient-years; however, there was a decline in the frequency of severe hypoglycemia during the past decades, and relationship with glycemic control became weaker than previously reported. A lot of studies have shown the neurological sequelae with severe hypoglycemia as cognitive dysfunction and abnormalities in brain structure. This serious condition also provides negative psychosocial outcomes and undesirable compensatory behaviors. Various possible factors, such as younger age, recurrent hypoglycemia, nocturnal hypoglycemia, and impaired awareness of hypoglycemia, are possible risk factors for developing severe hypoglycemia. A low HbA1c level is not a predictable value for severe hypoglycemia. Prevention of severe hypoglycemia remains one of the most critical issues in the management of pediatric patients with type 1 diabetes. Advanced technologies, such as continuous glucose monitoring (CGM), intermittently scanned CGM, and sensor-augmented pump therapy with low-glucose suspend system, potentially minimize the occurrence of severe hypoglycemia without worsening overall glycemic control. Hybrid closed-loop system must be the most promising tool for achieving optimal glycemic control with preventing the occurrence of severe hypoglycemia in pediatric patients with type 1 diabetes.
Collapse
|
33
|
Lal RA, Ekhlaspour L, Hood K, Buckingham B. Realizing a Closed-Loop (Artificial Pancreas) System for the Treatment of Type 1 Diabetes. Endocr Rev 2019; 40:1521-1546. [PMID: 31276160 PMCID: PMC6821212 DOI: 10.1210/er.2018-00174] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/28/2019] [Indexed: 01/20/2023]
Abstract
Recent, rapid changes in the treatment of type 1 diabetes have allowed for commercialization of an "artificial pancreas" that is better described as a closed-loop controller of insulin delivery. This review presents the current state of closed-loop control systems and expected future developments with a discussion of the human factor issues in allowing automation of glucose control. The goal of these systems is to minimize or prevent both short-term and long-term complications from diabetes and to decrease the daily burden of managing diabetes. The closed-loop systems are generally very effective and safe at night, have allowed for improved sleep, and have decreased the burden of diabetes management overnight. However, there are still significant barriers to achieving excellent daytime glucose control while simultaneously decreasing the burden of daytime diabetes management. These systems use a subcutaneous continuous glucose sensor, an algorithm that accounts for the current glucose and rate of change of the glucose, and the amount of insulin that has already been delivered to safely deliver insulin to control hyperglycemia, while minimizing the risk of hypoglycemia. The future challenge will be to allow for full closed-loop control with minimal burden on the patient during the day, alleviating meal announcements, carbohydrate counting, alerts, and maintenance. The human factors involved with interfacing with a closed-loop system and allowing the system to take control of diabetes management are significant. It is important to find a balance between enthusiasm and realistic expectations and experiences with the closed-loop system.
Collapse
Affiliation(s)
- Rayhan A Lal
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Laya Ekhlaspour
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Korey Hood
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Department of Psychiatry, Stanford University School of Medicine, Stanford, California
| | - Bruce Buckingham
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
34
|
O'Donnell S, Lewis D, Marchante Fernández M, Wäldchen M, Cleal B, Skinner T, Raile K, Tappe A, Ubben T, Willaing I, Hauck B, Wolf S, Braune K. Evidence on User-Led Innovation in Diabetes Technology (The OPEN Project): Protocol for a Mixed Methods Study. JMIR Res Protoc 2019; 8:e15368. [PMID: 31742563 PMCID: PMC6891827 DOI: 10.2196/15368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 01/24/2023] Open
Abstract
Background Digital innovations in health care have traditionally followed a top-down pathway, with manufacturers leading the design and production of technology-enabled solutions and those living with chronic conditions involved only as passive recipients of the end product. However, user-driven open-source initiatives in health care are becoming increasingly popular. An example is the growing movement of people with diabetes, who create their own “Do-It-Yourself Artificial Pancreas Systems” (DIYAPS). Objective The overall aim of this study is to establish the empirical evidence base for the clinical effectiveness and quality-of-life benefits of DIYAPS and identify the challenges and possible solutions to enable their wider diffusion. Methods A research program comprising 5 work packages will examine the outcomes and potential for scaling up DIYAPS solutions. Quantitative and qualitative methodologies will be used to examine clinical and self-reported outcome measures of DIYAPS users. The majority of members of the research team live with type 1 diabetes and are active DIYAPS users, making Outcomes of Patients’ Evidence With Novel, Do-It-Yourself Artificial Pancreas Technology (OPEN) a unique, user-driven research project. Results This project has received funding from the European Commission’s Horizon 2020 Research and Innovation Program, under the Marie Skłodowska-Curie Action Research and Innovation Staff Exchange. Researchers with both academic and nonacademic backgrounds have been recruited to formulate research questions, drive the research process, and disseminate ongoing findings back to the DIYAPS community and other stakeholders. Conclusions The OPEN project is unique in that it is a truly patient- and user-led research project, which brings together an international, interdisciplinary, and intersectoral research group, comprising health care professionals, technical developers, biomedical and social scientists, the majority of whom are also living with diabetes. Thus, it directly addresses the core research and user needs of the DIYAPS movement. As a new model of cooperation, it will highlight how researchers in academia, industry, and the patient community can create patient-centric innovation and reduce disease burden together. International Registered Report Identifier (IRRID) PRR1-10.2196/15368
Collapse
Affiliation(s)
- Shane O'Donnell
- School of Sociology, University College Dublin, Belfield, Ireland
| | | | | | - Mandy Wäldchen
- School of Sociology, University College Dublin, Belfield, Ireland
| | - Bryan Cleal
- Diabetes Management Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Timothy Skinner
- Diabetes Management Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Institut for Psykologi, Københavns Universitet, Copenhagen, Denmark
| | - Klemens Raile
- Department of Paediatric Endocrinology and Diabetes, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tebbe Ubben
- AndroidAPS, Vienna, Austria.,#dedoc° Diabetes Online Community, Berlin, Germany
| | - Ingrid Willaing
- Diabetes Management Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Saskia Wolf
- #dedoc° Diabetes Online Community, Berlin, Germany
| | - Katarina Braune
- Department of Paediatric Endocrinology and Diabetes, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Ekhlaspour L, Nally LM, El-Khatib FH, Ly TT, Clinton P, Frank E, Tanenbaum ML, Hanes SJ, Selagamsetty RR, Hood K, Damiano ER, Buckingham BA. Feasibility Studies of an Insulin-Only Bionic Pancreas in a Home-Use Setting. J Diabetes Sci Technol 2019; 13:1001-1007. [PMID: 31470740 PMCID: PMC6835195 DOI: 10.1177/1932296819872225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND We tested the safety and performance of the "insulin-only" configuration of the bionic pancreas (BP) closed-loop blood-glucose control system in a home-use setting to assess glycemic outcomes using different static and dynamic glucose set-points. METHOD This is an open-label non-randomized study with three consecutive intervention periods. Participants had consecutive weeks of usual care followed by the insulin-only BP with (1) an individualized static set-point of 115 or 130 mg/dL and (2) a dynamic set-point that automatically varied within 110 to 130 mg/dL, depending on hypoglycemic risk. Human factors (HF) testing was conducted using validated surveys. The last five days of each study arm were used for data analysis. RESULTS Thirteen participants were enrolled with a mean age of 28 years, mean A1c of 7.2%, and mean daily insulin dose of 0.6 U/kg (0.4-1.0 U/kg). The usual care arm had an average glucose of 145 ± 20 mg/dL, which increased in the static set-point arm (159 ± 8 mg/dL, P = .004) but not in the dynamic set-point arm (154 ± 10 mg/dL, P = ns). There was no significant difference in time spent in range (70-180 mg/dL) among the three study arms. There was less time <70 mg/dL with both the static (1.8% ± 1.4%, P = .009) and dynamic set-point (2.7±1.5, P = .051) arms compared to the usual-care arm (5.5% ± 4.2%). HF testing demonstrated preliminary user satisfaction and no increased risk of diabetes burden or distress. CONCLUSIONS The insulin-only configuration of the BP using either static or dynamic set-points and initialized only with body weight performed similarly to other published insulin-only systems.
Collapse
Affiliation(s)
- Laya Ekhlaspour
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Laya Ekhlaspour, MD, Pediatric Endocrinology and Diabetes, Lucille Packard Children’s Hospital at Stanford, 780 Welch Road, Stanford, CA 94305, USA.
| | - Laura M. Nally
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Firas H. El-Khatib
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Trang T. Ly
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Paula Clinton
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eliana Frank
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Molly L. Tanenbaum
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sarah J. Hanes
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Korey Hood
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Edward R. Damiano
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Bruce A. Buckingham
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
36
|
Messer LH, Berget C, Forlenza GP. A Clinical Guide to Advanced Diabetes Devices and Closed-Loop Systems Using the CARES Paradigm. Diabetes Technol Ther 2019; 21:462-469. [PMID: 31140878 PMCID: PMC6653788 DOI: 10.1089/dia.2019.0105] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laurel H. Messer
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
- Address correspondence to: Laurel H. Messer, RN, MPH, CDE, Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora CT MS A140, Aurora, CO 80045
| | - Cari Berget
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Gregory P. Forlenza
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
37
|
Artificial Pancreas: Current Progress and Future Outlook in the Treatment of Type 1 Diabetes. Drugs 2019; 79:1089-1101. [DOI: 10.1007/s40265-019-01149-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Abstract
Over the past 50 years, the diabetes technology field progressed remarkably through self-monitoring of blood glucose (SMBG), continuous subcutaneous insulin infusion (CSII), risk and variability analysis, mathematical models and computer simulation of the human metabolic system, real-time continuous glucose monitoring (CGM), and control algorithms driving closed-loop control systems known as the "artificial pancreas" (AP). This review follows these developments, beginning with an overview of the functioning of the human metabolic system in health and in diabetes and of its detailed quantitative network modeling. The review continues with a brief account of the first AP studies that used intravenous glucose monitoring and insulin infusion, and with notes about CSII and CGM-the technologies that made possible the development of contemporary AP systems. In conclusion, engineering lessons learned from AP research, and the clinical need for AP systems to prove their safety and efficacy in large-scale clinical trials, are outlined.
Collapse
Affiliation(s)
- Boris Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
39
|
Musolino G, Allen JM, Hartnell S, Wilinska ME, Tauschmann M, Boughton C, Campbell F, Denvir L, Trevelyan N, Wadwa P, DiMeglio L, Buckingham BA, Weinzimer S, Acerini CL, Hood K, Fox S, Kollman C, Sibayan J, Borgman S, Cheng P, Hovorka R. Assessing the efficacy, safety and utility of 6-month day-and-night automated closed-loop insulin delivery under free-living conditions compared with insulin pump therapy in children and adolescents with type 1 diabetes: an open-label, multicentre, multinational, single-period, randomised, parallel group study protocol. BMJ Open 2019; 9:e027856. [PMID: 31164368 PMCID: PMC6561428 DOI: 10.1136/bmjopen-2018-027856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Closed-loop systems titrate insulin based on sensor glucose levels, providing novel means to reduce the risk of hypoglycaemia while improving glycaemic control. We will assess effectiveness of 6-month day-and-night closed-loop insulin delivery compared with usual care (conventional or sensor-augmented pump therapy) in children and adolescents with type 1 diabetes. METHODS AND ANALYSIS The trial adopts an open-label, multicentre, multinational (UK and USA), randomised, single-period, parallel design. Participants (n=130) are children and adolescents (aged ≥6 and <19 years) with type 1 diabetes for at least 1 year, and insulin pump use for at least 3 months with suboptimal glycaemic control (glycated haemoglobin ≥58 mmol/mol (7.5%) and ≤86 mmol/mol (10%)). After a 2-3 week run-in period, participants will be randomised to 6-month use of hybrid closed-loop insulin delivery, or to usual care. Analyses will be conducted on an intention-to-treat basis. The primary outcome is glycated haemoglobin at 6 months. Other key endpoints include time in the target glucose range (3.9-10 mmol/L, 70-180 mg/dL), mean sensor glucose and time spent above and below target. Secondary outcomes include SD and coefficient of variation of sensor glucose levels, time with sensor glucose levels <3.5 mmol/L (63 mg/dL) and <3.0 mmol/L (54 mg/dL), area under the curve of glucose <3.5 mmol/L (63 mg/dL), time with glucose levels >16.7 mmol/L (300 mg/dL), area under the curve of glucose >10.0 mmol/L (180 mg/dL), total, basal and bolus insulin dose, body mass index z-score and blood pressure. Cognitive, emotional and behavioural characteristics of participants and caregivers and their responses to the closed-loop and clinical trial will be assessed. An incremental cost-effectiveness ratio for closed-loop will be estimated. ETHICS AND DISSEMINATION Cambridge South Research Ethics Committee and Jaeb Center for Health Research Institutional Review Office approved the study. The findings will be disseminated by peer-review publications and conference presentations. TRIAL REGISTRATION NUMBER NCT02925299; Pre-results.
Collapse
Affiliation(s)
- Gianluca Musolino
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Janet M Allen
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Sara Hartnell
- Department of Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Malgorzata E Wilinska
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Martin Tauschmann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Charlotte Boughton
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Fiona Campbell
- Department of Paediatric Diabetes, Leeds Children’s Hospital, Leeds, UK
| | - Louise Denvir
- Department of Paediatric Diabetes and Endocrinology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nicola Trevelyan
- Department of Paediatric Endocrinology and Diabetes, Southampton Children’s Hospital, Southampton General Hospital, Southampton, UK
| | - Paul Wadwa
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, Colorado, USA
| | - Linda DiMeglio
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bruce A Buckingham
- Division of Pediatric Endocrinology, Stanford University, Stanford, California, USA
| | - Stuart Weinzimer
- Department of Pediatrics, Yale University, New Haven, Connecticut, USA
| | - Carlo L Acerini
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Korey Hood
- Division of Pediatric Endocrinology, Stanford University, Stanford, California, USA
| | - Steven Fox
- Department of Pharmaceutical and Health Economics, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Craig Kollman
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - Judy Sibayan
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - Sarah Borgman
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - Peiyao Cheng
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - Roman Hovorka
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Anderson SM, Buckingham BA, Breton MD, Robic JL, Barnett CL, Wakeman CA, Oliveri MC, Brown SA, Ly TT, Clinton PK, Hsu LJ, Kingman RS, Norlander LM, Loebner SE, Reuschel-DiVirglio S, Kovatchev BP. Hybrid Closed-Loop Control Is Safe and Effective for People with Type 1 Diabetes Who Are at Moderate to High Risk for Hypoglycemia. Diabetes Technol Ther 2019; 21:356-363. [PMID: 31095423 PMCID: PMC6551970 DOI: 10.1089/dia.2019.0018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Typically, closed-loop control (CLC) studies excluded patients with significant hypoglycemia. We evaluated the effectiveness of hybrid CLC (HCLC) versus sensor-augmented pump (SAP) in reducing hypoglycemia in this high-risk population. Methods: Forty-four subjects with type 1 diabetes, 25 women, 37 ± 2 years old, HbA1c 7.4% ± 0.2% (57 ± 1.5 mmol/mol), diabetes duration 19 ± 2 years, on insulin pump, were enrolled at the University of Virginia (N = 33) and Stanford University (N = 11). Eligibility: increased risk of hypoglycemia confirmed by 1 week of blinded continuous glucose monitor (CGM); randomized to 4 weeks of home use of either HCLC or SAP. Primary/secondary outcomes: risk for hypoglycemia measured by the low blood glucose index (LBGI)/CGM-based time in ranges. Results: Values reported: mean ± standard deviation. From baseline to the final week of study: LBGI decreased more on HCLC (2.51 ± 1.17 to 1.28 ± 0.5) than on SAP (2.1 ± 1.05 to 1.79 ± 0.98), P < 0.001; percent time below 70 mg/dL (3.9 mmol/L) decreased on HCLC (7.2% ± 5.3% to 2.0% ± 1.4%) but not on SAP (5.8% ± 4.7% to 4.8% ± 4.5%), P = 0.001; percent time within the target range 70-180 mg/dL (3.9-10 mmol/L) increased on HCLC (67.8% ± 13.5% to 78.2% ± 10%) but decreased on SAP (65.6% ± 12.9% to 59.6% ± 16.5%), P < 0.001; percent time above 180 mg/dL (10 mmol/L) decreased on HCLC (25.1% ± 15.3% to 19.8% ± 10.1%) but increased on SAP (28.6% ± 14.6% to 35.6% ± 17.6%), P = 0.009. Mean glucose did not change significantly on HCLC (144.9 ± 27.9 to 143.8 ± 14.4 mg/dL [8.1 ± 1.6 to 8.0 ± 0.8 mmol/L]) or SAP (152.5 ± 24.3 to 162.4 ± 28.2 [8.5 ± 1.4 to 9.0 ± 1.6]), P = ns. Conclusions: Compared with SAP therapy, HCLC reduced the risk and frequency of hypoglycemia, while improving time in target range and reducing hyperglycemia in people at moderate to high risk of hypoglycemia.
Collapse
Affiliation(s)
- Stacey M. Anderson
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
- Address correspondence to: Stacey M. Anderson, MD, Center for Diabetes Technology, University of Virginia, PO Box 400888, Charlottesville VA 22908-4888
| | - Bruce A. Buckingham
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Marc D. Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| | - Jessica L. Robic
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| | | | | | - Mary C. Oliveri
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| | - Sue A. Brown
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| | - Trang T. Ly
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Paula K. Clinton
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Liana J. Hsu
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ryan S. Kingman
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Lisa M. Norlander
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Sarah E. Loebner
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Suzette Reuschel-DiVirglio
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Boris P. Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| |
Collapse
|
41
|
Biester T, Nir J, Remus K, Farfel A, Muller I, Biester S, Atlas E, Dovc K, Bratina N, Kordonouri O, Battelino T, Philip M, Danne T, Nimri R. DREAM5: An open-label, randomized, cross-over study to evaluate the safety and efficacy of day and night closed-loop control by comparing the MD-Logic automated insulin delivery system to sensor augmented pump therapy in patients with type 1 diabetes at home. Diabetes Obes Metab 2019; 21:822-828. [PMID: 30478937 DOI: 10.1111/dom.13585] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
AIMS Previous DREAM studies demonstrated the safety and efficacy of the CE marked MD-Logic closed-loop system (DreaMed GlucoSitter) in different settings for overnight glycaemic control. The present study aimed to evaluate the system for day and night use for 60 hours during the weekend at home compared to sensor-augmented pump (SAP) therapy in participants with type 1 diabetes. METHODS This was a prospective, multicentre, crossover, controlled study (clinicaltrials.gov NCT01238406). All participants were connected in randomized order for one weekend to SAP therapy or the MD-Logic System. In the intervention arm only, the amount of carbohydrate was entered into the bolus calculator; the rest of insulin delivery was automated and wireless via a tablet computer. The primary endpoint was percentage of glucose values between 70 and 180 mg/dL. RESULTS The ITT population comprised 48 (19 males, 29 females) adolescents and adults experienced in sensor use: (median, [IQR]): age, 16.1years [13.2-18.5]; diabetes duration, 9.4 years [5.0-12.7]; pump use, 5.4 years [3.1-9.4]; HbA1c, 7.6% [7.0-8.1]. A significant increase in the percentage of time within target range (70-180 mg/dL) (66.6% vs 59.9%, P = 0.002) was observed with the closed-loop system vs control weekends with unchanged percentage of time below 70 mg/dL (2.3% vs 1.5%, P = 0.369). Mean weekend glucose level per participant was significantly lower (153 [142-175] vs 164 [150-186] mg/dL, P = 0.003). No safety signals were observed. CONCLUSIONS The MD-Logic system was safe and associated with better glycaemic control than SAP therapy for day and night use. The absence of remote monitoring did not lead to safety signals in adapting basal rates nor in administration of automated bolus corrections.
Collapse
Affiliation(s)
- Torben Biester
- Children's Hospital "Auf der Bult," Diabetes-Center for Children and Adolescents, Hannover, Germany
| | - Judith Nir
- Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Kerstin Remus
- Children's Hospital "Auf der Bult," Diabetes-Center for Children and Adolescents, Hannover, Germany
| | - Alon Farfel
- Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Ido Muller
- DreaMed Diabetes Ltd, Petah Tikvah, Israel
| | - Sarah Biester
- Children's Hospital "Auf der Bult," Diabetes-Center for Children and Adolescents, Hannover, Germany
| | - Eran Atlas
- DreaMed Diabetes Ltd, Petah Tikvah, Israel
| | - Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, UMC Ljubljana, Ljubljana, Slovenia
| | - Nataša Bratina
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, UMC Ljubljana, Ljubljana, Slovenia
| | - Olga Kordonouri
- Children's Hospital "Auf der Bult," Diabetes-Center for Children and Adolescents, Hannover, Germany
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, UMC Ljubljana, Ljubljana, Slovenia
| | - Moshe Philip
- Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Thomas Danne
- Children's Hospital "Auf der Bult," Diabetes-Center for Children and Adolescents, Hannover, Germany
| | - Revital Nimri
- Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| |
Collapse
|
42
|
Tauschmann M, Allen JM, Nagl K, Fritsch M, Yong J, Metcalfe E, Schaeffer D, Fichelle M, Schierloh U, Thiele AG, Abt D, Kojzar H, Mader JK, Slegtenhorst S, Barber N, Wilinska ME, Boughton C, Musolino G, Sibayan J, Cohen N, Kollman C, Hofer SE, Fröhlich-Reiterer E, Kapellen TM, Acerini CL, de Beaufort C, Campbell F, Rami-Merhar B, Hovorka R. Home Use of Day-and-Night Hybrid Closed-Loop Insulin Delivery in Very Young Children: A Multicenter, 3-Week, Randomized Trial. Diabetes Care 2019; 42:594-600. [PMID: 30692242 DOI: 10.2337/dc18-1881] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/18/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We aimed to assess the feasibility and safety of hybrid closed-loop insulin delivery in children with type 1 diabetes aged 1-7 years as well as evaluate the role of diluted insulin on glucose control. RESEARCH DESIGN AND METHODS In an open-label, multicenter, multinational, randomized crossover study, 24 children with type 1 diabetes on insulin pump therapy (median age 5 years [interquartile range 3-6] and mean ± SD HbA1c 7.4 ± 0.7% [57 ± 8 mmol/mol] and total insulin 13.2 ± 4.8 units/day) underwent two 21-day periods of unrestricted living and we compared hybrid closed-loop with diluted insulin (U20) and hybrid closed-loop with standard strength insulin (U100) in random order. During both interventions, the Cambridge model predictive control algorithm was used. RESULTS The proportion of time that sensor glucose was in the target range between 3.9 and 10 mmol/L (primary end point) was not different between interventions (mean ± SD 72 ± 8% vs. 70 ± 7% for closed-loop with diluted insulin vs. closed-loop with standard insulin, respectively; P = 0.16). There was no difference in mean glucose levels (8.0 ± 0.8 vs. 8.2 ± 0.6 mmol/L; P = 0.14), glucose variability (SD of sensor glucose 3.1 ± 0.5 vs. 3.2 ± 0.4 mmol/L; P = 0.16), or the proportion of time spent with sensor glucose <3.9 mmol/L (4.5 ± 1.7% vs. 4.7 ± 1.4%; P = 0.47) or <2.8 mmol/L (0.6 ± 0.5% vs. 0.6 ± 0.4%; P > 0.99). Total daily insulin delivery did not differ (17.3 ± 5.6 vs. 18.9 ± 6.9 units/day; P = 0.07). No closed-loop-related severe hypoglycemia or ketoacidosis occurred. CONCLUSIONS Unrestricted home use of day-and-night closed-loop in very young children with type 1 diabetes is feasible and safe. The use of diluted insulin during closed-loop does not provide additional benefits compared with standard strength insulin.
Collapse
Affiliation(s)
- Martin Tauschmann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.,Department of Paediatrics, University of Cambridge, Cambridge, U.K.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Janet M Allen
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.,Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Katrin Nagl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Maria Fritsch
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - James Yong
- Department of Paediatric Diabetes, Leeds Children's Hospital, Leeds, U.K
| | - Emily Metcalfe
- Department of Paediatric Diabetes, Leeds Children's Hospital, Leeds, U.K
| | - Dominique Schaeffer
- Department of Pediatric Diabetes and Endocrinology, Clinique Pédiatrique, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Muriel Fichelle
- Department of Pediatric Diabetes and Endocrinology, Clinique Pédiatrique, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Ulrike Schierloh
- Department of Pediatric Diabetes and Endocrinology, Clinique Pédiatrique, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Alena G Thiele
- Division for Paediatric Diabetology, University of Leipzig, Leipzig, Germany
| | - Daniela Abt
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Kojzar
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia K Mader
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sonja Slegtenhorst
- Department of Nutrition and Dietetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, U.K
| | - Nicole Barber
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - Malgorzata E Wilinska
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.,Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Charlotte Boughton
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - Gianluca Musolino
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | | | | | | | - Sabine E Hofer
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Fröhlich-Reiterer
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Thomas M Kapellen
- Division for Paediatric Diabetology, University of Leipzig, Leipzig, Germany
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Carine de Beaufort
- Department of Pediatric Diabetes and Endocrinology, Clinique Pédiatrique, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Fiona Campbell
- Department of Paediatric Diabetes, Leeds Children's Hospital, Leeds, U.K
| | - Birgit Rami-Merhar
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
43
|
Anderson SM, Dassau E, Raghinaru D, Lum J, Brown SA, Pinsker JE, Church MM, Levy C, Lam D, Kudva YC, Buckingham B, Forlenza GP, Wadwa RP, Laffel L, Doyle FJ, DeVries JH, Renard E, Cobelli C, Boscari F, Del Favero S, Kovatchev BP. The International Diabetes Closed-Loop Study: Testing Artificial Pancreas Component Interoperability. Diabetes Technol Ther 2019; 21:73-80. [PMID: 30649925 PMCID: PMC6354594 DOI: 10.1089/dia.2018.0308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Use of artificial pancreas (AP) requires seamless interaction of device components, such as continuous glucose monitor (CGM), insulin pump, and control algorithm. Mobile AP configurations also include a smartphone as computational hub and gateway to cloud applications (e.g., remote monitoring and data review and analysis). This International Diabetes Closed-Loop study was designed to demonstrate and evaluate the operation of the inControl AP using different CGMs and pump modalities without changes to the user interface, user experience, and underlying controller. METHODS Forty-three patients with type 1 diabetes (T1D) were enrolled at 10 clinical centers (7 United States, 3 Europe) and 41 were included in the analyses (39% female, >95% non-Hispanic white, median T1D duration 16 years, median HbA1c 7.4%). Two CGMs and two insulin pumps were tested by different study participants/sites using the same system hub (a smartphone) during 2 weeks of in-home use. RESULTS The major difference between the system components was the stability of their wireless connections with the smartphone. The two sensors achieved similar rates of connectivity as measured by percentage time in closed loop (75% and 75%); however, the two pumps had markedly different closed-loop adherence (66% vs. 87%). When connected, all system configurations achieved similar glycemic outcomes on AP control (73% [mean] time in range: 70-180 mg/dL, and 1.7% [median] time <70 mg/dL). CONCLUSIONS CGMs and insulin pumps can be interchangeable in the same Mobile AP system, as long as these devices achieve certain levels of reliability and wireless connection stability.
Collapse
Affiliation(s)
- Stacey M. Anderson
- Center for Diabetes Technology, Department of Medicine, University of Virginia
- Address correspondence to: Stacey M. Anderson, MD, Center for Diabetes Technology, Department of Medicine, University of Virginia, PO Box 400888, Charlottesville, VA 22903
| | - Eyal Dassau
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Sansum Diabetes Research Institute, Santa Barbara, California
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | | | - John Lum
- Jaeb Center for Health Research, Tampa, Florida
| | - Sue A. Brown
- Center for Diabetes Technology, Department of Medicine, University of Virginia
| | | | - Mei Mei Church
- Sansum Diabetes Research Institute, Santa Barbara, California
| | - Carol Levy
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - David Lam
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Yogish C. Kudva
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bruce Buckingham
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Gregory P. Forlenza
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - R. Paul Wadwa
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Lori Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Francis J. Doyle
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - J. Hans DeVries
- Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France
- INSERM 1411 Clinical Investigation Center, Institute of Functional Genomics, UMR CNRS 5203/INSERM U1191, University of Montpellier, Montpellier, France
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Simone Del Favero
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Boris P. Kovatchev
- Center for Diabetes Technology, Department of Medicine, University of Virginia
| |
Collapse
|
44
|
Karageorgiou V, Papaioannou TG, Bellos I, Alexandraki K, Tentolouris N, Stefanadis C, Chrousos GP, Tousoulis D. Effectiveness of artificial pancreas in the non-adult population: A systematic review and network meta-analysis. Metabolism 2019; 90:20-30. [PMID: 30321535 DOI: 10.1016/j.metabol.2018.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Artificial pancreas is a technology that minimizes user input by bridging continuous glucose monitoring and insulin pump treatment, and has proven safety in the adult population. The purpose of this systematic review and meta-analysis is to evaluate the efficacy of closed-loop (CL) systems in the glycemic control of non-adult type 1 diabetes patients in both a pairwise and network meta-analysis (NMA) context and investigate various parameters potentially affecting the outcome. METHODS Literature was systematically searched using the MEDLINE (1966-2018), Scopus (2004-2018), Cochrane Central Register of Controlled Trials (CENTRAL) (1999-2018), Clinicaltrials.gov (2008-2018) and Google Scholar (2004-2018) databases. Studies comparing the glycemic control in CL (either single- or dual-hormone) with continuous subcutaneous insulin infusion (CSII) in people with diabetes (PWD) aged <18 years old were deemed eligible. The primary outcome analysis was conducted with regard to time spent in the target glycemic range. All outcomes were evaluated in NMA in order to investigate potential between-algorithm differences. Pairwise meta-analysis and meta-regression were performed using the RevMan 5.3 and Open Meta-Analyst software. For NMA, the package pcnetmetain R 3.5.1 was used. RESULTS The meta-analysis was based on 25 studies with a total of 504 PWD. The CL group was associated with significantly higher percentage of time spent in the target glycemic range (Mean (SD): 67.59% (SD: 8.07%) in the target range and OL PWD spending 55.77% (SD: 11.73%), MD: -11.97%, 95% CI [-18.40, -5.54%]) and with lower percentages of time in hyperglycemia (MD: 3.01%, 95% CI [1.68, 4.34%]) and hypoglycemia (MD: 0.67%, 95% CI [0.21, 1.13%]. Mean glucose was also decreased in the CL group (MD: 0.75 mmol/L, 95% CI [0.18-1.33]). The NMA arm of the study showed that the bihormonal modality was superior to other algorithms and standard treatment in lowering mean glucose and increasing time spent in the target range. The DiAs platform was superior to PID in controlling hypoglycemia and mean glucose. Time in target range and mean glucose were unaffected by the confounding factors tested. CONCLUSIONS The findings of this meta-analysis suggest that artificial pancreas systems are superior to the standard sensor-augmented pump treatment of type 1 diabetes mellitus in non-adult PWD. Between-algorithm differences are also addressed, implying a superiority of the bihormonal treatment modality. Future large-scale studies are needed in the field to verify these outcomes and to determine the optimal algorithm to be used in the clinical setting.
Collapse
Affiliation(s)
- Vasilios Karageorgiou
- First Department of Cardiology, Biomedical Engineering Unit, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros G Papaioannou
- First Department of Cardiology, Biomedical Engineering Unit, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis Bellos
- First Department of Cardiology, Biomedical Engineering Unit, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Krystallenia Alexandraki
- Clinic of Endocrine Oncology, Section of Endocrinology, Department of Pathophysiology, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - George P Chrousos
- First Department of Pediatrics, Aghia Sophia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, Biomedical Engineering Unit, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
45
|
Forlenza GP, Pinhas-Hamiel O, Liljenquist DR, Shulman DI, Bailey TS, Bode BW, Wood MA, Buckingham BA, Kaiserman KB, Shin J, Huang S, Lee SW, Kaufman FR. Safety Evaluation of the MiniMed 670G System in Children 7-13 Years of Age with Type 1 Diabetes. Diabetes Technol Ther 2019; 21:11-19. [PMID: 30585770 PMCID: PMC6350071 DOI: 10.1089/dia.2018.0264] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate the safety of in-home use of the MiniMed™ 670G system with SmartGuard™ technology in children with type 1 diabetes (T1D). METHODS Participants (N = 105, ages 7-13 years, mean age 10.8 ± 1.8 years) were enrolled at nine centers (eight in the United States and one in Israel) and completed a 2-week baseline run-in phase in Manual Mode followed by a 3-month study phase with Auto Mode enabled. Sensor glucose (SG), glycated hemoglobin (HbA1c), percentage of SG values across glucose ranges, and SG variability, during the run-in and study phases were compared. Participants underwent frequent sample testing with i-STAT® venous reference measurement during a hotel period (6 days/5 nights) to evaluate the system's continuous glucose monitoring performance. RESULTS Auto Mode was used a median of 81% of the time. From baseline to end of study, overall SG dropped by 6.9 ± 17.2 mg/dL (P < 0.001), HbA1c decreased from 7.9% ± 0.8% to 7.5% ± 0.6% (P < 0.001), percentage of time in target glucose range (70-180 mg/dL) increased from 56.2% ± 11.4% to 65.0% ± 7.7% (P < 0.001), and the SG coefficient of variation decreased from 39.6% ± 5.4% to 38.5% ± 3.8% (P = 0.009). The percentage of SG values within target glucose range was 68.2% ± 9.1% and that of i-STAT reference values was 65.6% ± 17.7%. The percentage of values within 20%/20 of the i-STAT reference was 85.2%. There were no episodes of severe hypoglycemia or diabetic ketoacidosis during the study phase. CONCLUSION In-home use of MiniMed 670G system Auto Mode for 3 months by children with T1D, similar to MiniMed 670G system use by adolescents and adults with T1D, was safe and associated with reduced HbA1c levels and increased time in target glucose range, compared with baseline.
Collapse
Affiliation(s)
| | - Orit Pinhas-Hamiel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv, Israel
| | | | - Dorothy I. Shulman
- USF Diabetes Center, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | | | - Bruce A. Buckingham
- Department of Pediatric Endocrinology, Stanford University, Stanford, California
| | | | | | | | | | | |
Collapse
|
46
|
Sasangohar F, Davis E, Kash BA, Shah SR. Remote Patient Monitoring and Telemedicine in Neonatal and Pediatric Settings: Scoping Literature Review. J Med Internet Res 2018; 20:e295. [PMID: 30573451 PMCID: PMC6320401 DOI: 10.2196/jmir.9403] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/17/2018] [Accepted: 09/17/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Telemedicine and telehealth solutions are emerging rapidly in health care and have the potential to decrease costs for insurers, providers, and patients in various settings. Pediatric populations that require specialty care are disadvantaged socially or economically or have chronic health conditions that will greatly benefit from results of studies utilizing telemedicine technologies. This paper examines the emerging trends in pediatric populations as part of a systematic literature review and provides a scoping review of the type, extent, and quantity of research available. OBJECTIVE This paper aims to examine the role of remote patient monitoring (RPM) and telemedicine in neonatal and pediatric settings. Findings can be used to identify strengths, weaknesses, and gaps in the field. The identification of gaps will allow for interventions or research to improve health care quality and costs. METHODS A systematic literature review is being conducted to gather an adequate amount of relevant research for telehealth in pediatric populations. The fields of RPM and telemedicine are not yet very well established by the health care services sector, and definitions vary across health care systems; thus, the terms are not always defined similarly throughout the literature. Three databases were scoped for information for this specific review, and 56 papers were included for review. RESULTS Three major telemedicine trends emerged from the review of 45 relevant papers-RPM, teleconsultation, and monitoring patients within the hospital, but without contact-thus, decreasing the likelihood of infection or other adverse health effects. CONCLUSIONS While the current telemedicine approaches show promise, limited studied conditions and small sample sizes affect generalizability, therefore, warranting further research. The information presented can inform health care providers of the most widely implemented, studied, and effective forms of telemedicine for patients and their families and the telemedicine initiatives that are most cost efficient for health systems. While the focus of this review is to summarize some telehealth applications in pediatrics, we have also presented research studies that can inform providers about the importance of data sharing of remote monitoring data between hospitals. Further reports will be developed to inform health systems as the systematic literature review continues.
Collapse
Affiliation(s)
- Farzan Sasangohar
- Industrial and Systems Engineering, Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, United States
- National Science Foundation Center for Health Organization Transformation, Department of Health Policy and Management, Texas A&M University, College Station, TX, United States
- Houston Methodist Hospital, Center for Outcomes Research, Houston, TX, United States
| | - Elise Davis
- National Science Foundation Center for Health Organization Transformation, Department of Health Policy and Management, Texas A&M University, College Station, TX, United States
| | - Bita A Kash
- National Science Foundation Center for Health Organization Transformation, Department of Health Policy and Management, Texas A&M University, College Station, TX, United States
- Houston Methodist Hospital, Center for Outcomes Research, Houston, TX, United States
| | - Sohail R Shah
- Division of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
47
|
Brown S, Raghinaru D, Emory E, Kovatchev B. First Look at Control-IQ: A New-Generation Automated Insulin Delivery System. Diabetes Care 2018; 41:2634-2636. [PMID: 30305346 PMCID: PMC6245207 DOI: 10.2337/dc18-1249] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/08/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To pilot test a new closed-loop control technology to validate it for a further large clinical trial. RESEARCH DESIGN AND METHODS The t:slim X2 insulin pump with Control-IQ Technology (Tandem Diabetes Care) includes a Dexcom G6 sensor and a closed-loop algorithm implemented in the pump that 1) automates insulin correction boluses, 2) has a dedicated hypoglycemia safety system, and 3) gradually intensifies control overnight, aiming for blood glucose levels of approximately 100-120 mg/dL every morning. RESULTS Five patients with type 1 diabetes (mean age 52.8 years, 2/3 male/female, mean A1C 6.5%) used Control-IQ in an outpatient setting (hotel) for approximately 37 h. During the closed loop, mean glucose was 129 mg/dL (135/121 mg/dL during the day/night), time within target range 70-180 mg/dL was 87% (82%/94% during the day/night), and time <60 mg/dL was 1.1% (2.0%/0.0% during the day/night). CONCLUSIONS Following this pilot trial, Control-IQ was deployed in several studies, including the large-scale National Institutes of Health International Diabetes Closed-Loop (iDCL) Trial.
Collapse
Affiliation(s)
- Sue Brown
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA.,Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA
| | | | - Emma Emory
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| | - Boris Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA
| |
Collapse
|
48
|
Kovatchev B. Automated closed-loop control of diabetes: the artificial pancreas. Bioelectron Med 2018; 4:14. [PMID: 32232090 PMCID: PMC7098217 DOI: 10.1186/s42234-018-0015-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022] Open
Abstract
The incidence of Diabetes Mellitus is on the rise worldwide, which exerts enormous health toll on the population and enormous pressure on the healthcare systems. Now, almost hundred years after the discovery of insulin in 1921, the optimization problem of diabetes is well formulated as maintenance of strict glycemic control without increasing the risk for hypoglycemia. External insulin administration is mandatory for people with type 1 diabetes; various medications, as well as basal and prandial insulin, are included in the daily treatment of type 2 diabetes. This review follows the development of the Diabetes Technology field which, since the 1970s, progressed remarkably through continuous subcutaneous insulin infusion (CSII), mathematical models and computer simulation of the human metabolic system, real-time continuous glucose monitoring (CGM), and control algorithms driving closed-loop control systems known as the "artificial pancreas" (AP). All of these developments included significant engineering advances and substantial bioelectronics progress in the sensing of blood glucose levels, insulin delivery, and control design. The key technologies that enabled contemporary AP systems are CSII and CGM, both of which became available and sufficiently portable in the beginning of this century. This powered the quest for wearable home-use AP, which is now under way with prototypes tested in outpatient studies during the past 6 years. Pivotal trials of new AP technologies are ongoing, and the first hybrid closed-loop system has been approved by the FDA for clinical use. Thus, the closed-loop AP is well on its way to become the digital-age treatment of diabetes.
Collapse
Affiliation(s)
- Boris Kovatchev
- Center for Diabetes Technology, University of Virginia, P.O. Box 400888, Charlottesville, VA 22908 USA
| |
Collapse
|
49
|
Tanenbaum ML, Adams RN, Lanning MS, Hanes SJ, Agustin BI, Naranjo D, Hood KK. Using Cluster Analysis to Understand Clinician Readiness to Promote Continuous Glucose Monitoring Adoption. J Diabetes Sci Technol 2018; 12:1108-1115. [PMID: 29991281 PMCID: PMC6232742 DOI: 10.1177/1932296818786486] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Many people with type 1 diabetes (T1D) report barriers to using continuous glucose monitoring (CGM). Diabetes care providers may have their own barriers to promoting CGM uptake. The goal of this study was to develop clinician "personas" with regard to readiness to promote CGM uptake. METHODS Diabetes care providers who treat people with T1D (N = 209) completed a survey on perceived patient barriers to device uptake, technology attitudes, and characteristics and barriers specific to their clinical practice. K-means cluster analyses grouped the sample by CGM barriers and attitudes. ANOVAs and chi-square tests assessed group differences on provider and patient characteristics. The authors assigned descriptive names for each persona. RESULTS Analyses yielded three clinician personas regarding readiness to promote CGM uptake. Ready clinicians (20% of sample; 24% physicians, 38% certified diabetes educators/CDEs) had positive technology attitudes, had clinic time to work with patients using CGM, and found it easy to keep up with technology advances. In comparison, Cautious clinicians (41% of sample; 17% physicians, 53% CDEs) perceived that their patients had many barriers to adopting CGM and had less time than the Ready group to work with patients using CGM data. Not Yet Ready clinicians (40% of sample; 9% physicians; 79% CDEs) had negative technology attitudes and the least clinic time to work with CGM data. They found it difficult to keep up with technology advances. CONCLUSION Some diabetes clinicians may benefit from tailored interventions and additional time and resources to empower them to help facilitate increased uptake of CGM technology.
Collapse
Affiliation(s)
- Molly L. Tanenbaum
- Department of Pediatrics, Stanford
University School of Medicine, Palo Alto, CA, USA
| | - Rebecca N. Adams
- Department of Pediatrics, Stanford
University School of Medicine, Palo Alto, CA, USA
| | - Monica S. Lanning
- Department of Pediatrics, Stanford
University School of Medicine, Palo Alto, CA, USA
| | - Sarah J. Hanes
- Department of Pediatrics, Stanford
University School of Medicine, Palo Alto, CA, USA
| | - Bianca I. Agustin
- Department of Pediatrics, Stanford
University School of Medicine, Palo Alto, CA, USA
| | - Diana Naranjo
- Department of Pediatrics, Stanford
University School of Medicine, Palo Alto, CA, USA
| | - Korey K. Hood
- Department of Pediatrics, Stanford
University School of Medicine, Palo Alto, CA, USA
- Korey K. Hood, PhD, Department of
Pediatrics, Stanford University School of Medicine, 780 Welch Rd, Palo Alto, CA
94304, USA.
| |
Collapse
|
50
|
Petruzelkova L, Soupal J, Plasova V, Jiranova P, Neuman V, Plachy L, Pruhova S, Sumnik Z, Obermannova B. Excellent Glycemic Control Maintained by Open-Source Hybrid Closed-Loop AndroidAPS During and After Sustained Physical Activity. Diabetes Technol Ther 2018; 20:744-750. [PMID: 30285476 DOI: 10.1089/dia.2018.0214] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Officially licensed hybrid closed-loop systems are not currently available worldwide; therefore, open-source systems have become increasingly popular. Our aim was to assess the safety, feasibility, and efficacy of an open-source hybrid closed-loop system (AndroidAPS) versus SmartGuard® technology for day-and-night glucose control in children under extreme sports conditions. RESEARCH DESIGN AND METHODS Twenty-two children (16 girls, 6-15 years of age, median HbA1c 56 ± 9 mmol/mol) were enrolled in this pivotal winter sports camp study. The participants were divided into two groups using either the AndroidAPS or SmartGuard technology. Physical exertion was represented by all-day alpine skiing. The primary endpoints were mean glucose level, time below the threshold of 3.9 mmol/L, and time within the target range of 3.9 to 10 mmol/L. RESULTS The children using the AndroidAPS had significantly lower mean glycemia levels (7.2 ± 2.7 vs. 7.7 ± 2.8 mmol/L; 129.6 ± 49 vs. 138.6 ± 50 mg/dL, P < 0.042) than the children using the SmartGuard. The proportion of time below the target (median 5.0% ± 2.5% vs. 3.0% ± 2.3%, P = 0.6) and in the target zone (63% ± 9.5% vs. 63% ± 18%, P = 0.5) did not significantly differ. The AndroidAPS group experienced more frequent malfunctions of the cannula set (median 0.8 ± 0.4 vs. 0.2 ± 0.4, P = 0.02), which could have affected the results. No significant difference was found in the amount of carbohydrates consumed for the prevention and treatment of hypoglycemia [median 40 ± 23 vs. 25 ± 29 g/(patient ·3 days)]. No episodes of severe hypoglycemia or other serious adverse events were noted. CONCLUSIONS This pilot study showed that the AndroidAPS system was a safe and feasible alternative to the SmartGuard Technology.
Collapse
Affiliation(s)
- Lenka Petruzelkova
- 1 Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | - Jan Soupal
- 2 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | - Veronika Plasova
- 1 Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | - Pavlina Jiranova
- 1 Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | - Vit Neuman
- 1 Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | - Lukas Plachy
- 1 Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | - Stepanka Pruhova
- 1 Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | - Zdenek Sumnik
- 1 Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | - Barbora Obermannova
- 1 Department of Pediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| |
Collapse
|