1
|
Alan MS, Tayebi A, Afshar EJ, Alan SS, Alan MS, Fazeli R, Sohbatzade T, Samimisedeh P, Rastad H. Association of detectable C-peptide levels with glycemic control and chronic complications in individuals with type 1 diabetes mellitus: A systematic review and meta-analysis. J Diabetes Complications 2025; 39:108867. [PMID: 39879848 DOI: 10.1016/j.jdiacomp.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 01/31/2025]
Abstract
AIMS Multiple studies have addressed the association between detectable levels of C-peptide and glycemic control, as well as the development of chronic complications of type 1 diabetes mellitus (T1DM), including both macrovascular and microvascular diseases. We aimed to summarize the available evidence on the clinical significance of detectable levels of C-peptide in T1DM. METHOD A systematic search was performed on online databases using the following key terms: T1DM, C-peptide, diabetes mellitus complications, and glycemic parameters. We pooled standardized mean difference (SMD) and odds ratios (OR). RESULTS Of the 1519 articles retrieved from the initial search, 38 (12 cohort and 26 cross-sectional studies) met our eligibility criteria. Individuals with T1DM in the detectable C-peptide group, compared with the undetectable C-peptide group, had lower mean HbA1c [pooled SMD (95 % confidence interval (95 % CI)): -0.08 (-0.13 to -0.02), I2 = 0 %, p. VALUE 0.005] and daily insulin dose [-0.41 (-0.65 to -0.18), I2 = 83 %, p.value < 0.001]. They also showed lower odds for retinopathy [pooled crude OR (95 % CI): 0.53 (0.41 to 0.69), I2 = 65 %, p.value < 0.001] and nephropathy complications [0.62 (0.55 to 0.70), I2 = 19 %, p.value < 0.001]; however, the two groups were similar regarding neuropathy [0.92 (0.65 to 1.31), I2 = 0 %, p. VALUE 0.31]. CONCLUSIONS The available evidence suggests that individuals with T1DM in the detectable C-peptide group may experience better clinical outcomes.
Collapse
Affiliation(s)
- Mahin Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Tayebi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elmira Jafari Afshar
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sanaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ramina Fazeli
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Tooba Sohbatzade
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 PMCID: PMC11964952 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
3
|
Vandewalle J, Desouter AK, Van der Auwera BJ, Chapaza KB, Nobels F, Abrams P, Lebrethon MC, Lapauw B, Keymeulen B, Gorus FK, Van de Casteele M. The stage- and subgroup-specific impact of non-HLA polymorphisms on preclinical type 1 diabetes progression. Heliyon 2025; 11:e42156. [PMID: 40196768 PMCID: PMC11947702 DOI: 10.1016/j.heliyon.2025.e42156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 01/20/2025] [Indexed: 04/09/2025] Open
Abstract
Besides variation within the HLA gene complex determining a major part of genetic susceptibility to Type 1 diabetes, genome-wide association studies have identified over 60 non-HLA loci also contributing to disease risk. While individual single nucleotide polymorphisms (SNPs) have limited predictive power, genetic risk scores (GRS) can identify at-risk individuals. However, current models do not fully capture the heterogeneous progression of asymptomatic islet autoimmunity, especially in autoantibody-positive subjects. In this study, we investigated the additional stage-specific impact of 17 non-HLA loci on previously established prediction models in 448 persistently autoantibody-positive first-degree relatives. Cox regression and Kaplan Meier survival analysis were used to assess their influence on progression from single to multiple autoantibody-positivity, and from there to clinical onset. FUT2 and CTSH significantly accelerated progression of single to multiple autoAb-positivity, but only in presence of insulin autoantibodies and HLA-DQ2/DQ8, respectively. At the stage of multiple autoantibody-positivity, progression to clinical onset was impacted by various non-HLA SNPs either as independent predictors (GLIS3, CENPW, IL2, GSDM, MEG3A, and NRP-1) or through interaction with HLA class I alleles (CLEC16A, NRP-1, TCF7L2), maternal diabetes status (CTSH), or a high-risk autoantibody-profile (CD226). Our data indicate that, unlike for GRS, the weight of distinct non-HLA polymorphisms varies significantly among individuals at risk, depending on disease stage and other stage-specific risk factors. They refine our previous stage-specific prediction models including age, autoantibody-profile, HLA genotype, and other non-HLA SNPs, and emphasize the importance of stratifying accordingly to personalize time-to-event prediction in risk groups, or for preparing or interpreting prevention trials.
Collapse
Affiliation(s)
- Julie Vandewalle
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Aster K. Desouter
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | - Kaven B. Chapaza
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frank Nobels
- Department of Endocrinology, OLV Hospital Aalst, Aalst, Belgium
| | - Pascale Abrams
- Department of Endocrinology and Diabetology, GZA Hospitals Antwerp, Wilrijk, Antwerp, Belgium
| | | | - Bruno Lapauw
- Department of Endocrinology, University Hospital Ghent–UGent, Ghent, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Frans K. Gorus
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | |
Collapse
|
4
|
Tosur M, Onengut-Gumuscu S, Redondo MJ. Type 1 Diabetes Genetic Risk Scores: History, Application and Future Directions. Curr Diab Rep 2025; 25:22. [PMID: 39920466 DOI: 10.1007/s11892-025-01575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 02/09/2025]
Abstract
PURPOSE OF REVIEW To review the genetics of type 1 diabetes (T1D) and T1D genetic risk scores, focusing on their development, research and clinical applications, and future directions. RECENT FINDINGS More than 90 genetic loci have been linked to T1D risk, with approximately half of the genetic risk attributable to the human leukocyte antigen (HLA) locus, along with non-HLA loci that have smaller effects to disease risk. The practical use of T1D genetic risk scores simplifies the complex genetic information, within the HLA and non-HLA regions, by combining the additive effect and interactions of single nucleotide polymorphisms (SNPs) associated with risk. Genetic risk scores have proven to be useful in various aspects, including classifying diabetes (e.g., distinguishing between T1D vs. neonatal, type 2 or other diabetes types), predicting the risk of developing T1D, assessing the prognosis of the clinical course (e.g., determining the risk of developing insulin dependence and glycemic control), and research into the heterogeneity of diabetes (e.g., atypical diabetes). However, there are gaps in our current knowledge including the specific sets of genes that regulate transition between preclinical stages of T1D, response to disease modifying therapies, and other outcomes of interest such as persistence of beta cell function. Several T1D genetic risk scores have been developed and shown to be valuable in various contexts, from classification of diabetes to providing insights into its etiology and predicting T1D risk across different stages of T1D. Further research is needed to develop and validate T1D genetic risk scores that are effective across all populations and ancestries. Finally, barriers such as cost, and training of medical professionals have to be addressed before the use of genetic risk scores can be incorporated into routine clinical practice.
Collapse
Affiliation(s)
- Mustafa Tosur
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
- Children's Nutrition Research Center, USDA/ARS, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | - Maria J Redondo
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Roshandel D, Spiliopoulou A, McGurnaghan SJ, Iakovliev A, Lipschutz D, Hayward C, Bull SB, Klein BE, Lee KE, Kinney GL, Rewers M, Costacou T, Miller RG, McKeigue PM, Paterson AD, Colhoun HM. Genetics of C-Peptide and Age at Diagnosis in Type 1 Diabetes. Diabetes 2025; 74:223-233. [PMID: 39556808 PMCID: PMC11755686 DOI: 10.2337/db24-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
ARTICLE HIGHLIGHTS Identified genetic loci for C-peptide and type 1 diabetes (T1D) age at diagnosis (AAD) explain only a small proportion of their variation. We aimed to identify additional genetic loci associated with C-peptide and AAD. Some HLA allele/haplotypes associated with T1D also contributed to variability of C-peptide and AAD, whereas outside the HLA region, T1D loci were mostly not associated with C-peptide or AAD. Genetic variation within CTSH can affect AAD. There is still residual heritability of C-peptide and AAD outside of HLA that could benefit from larger meta-genome-wide association studies.
Collapse
Affiliation(s)
- Delnaz Roshandel
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Athina Spiliopoulou
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| | | | - Andrii Iakovliev
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Debby Lipschutz
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Caroline Hayward
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| | - Shelley B. Bull
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Barbara E.K. Klein
- School of Medicine and Public Health, Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI
| | - Kristine E. Lee
- School of Medicine and Public Health, Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI
| | - Gregory L. Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO
| | - Marian Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Rachel G. Miller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Paul M. McKeigue
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Andrew D. Paterson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Helen M. Colhoun
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
6
|
McGrail C, Chiou J, Elgamal R, Luckett AM, Oram RA, Benaglio P, Gaulton KJ. Genetic Discovery and Risk Prediction for Type 1 Diabetes in Individuals Without High-Risk HLA-DR3/DR4 Haplotypes. Diabetes Care 2025; 48:202-211. [PMID: 39626097 PMCID: PMC11770152 DOI: 10.2337/dc24-1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/27/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE More than 10% of patients with type 1 diabetes (T1D) do not have high-risk HLA-DR3 or -DR4 haplotypes with distinct clinical features, such as later onset and reduced insulin dependence. We aimed to identify genetic drivers of T1D in the absence of DR3/DR4 and improve prediction of T1D risk in these individuals. RESEARCH DESIGN AND METHODS We performed T1D association and fine-mapping analyses in 12,316 non-DR3/DR4 samples. Next, we performed heterogeneity tests to examine differences in T1D risk variants in individuals without versus those with DR3/DR4 haplotypes. We further assessed genome-wide differences in gene regulatory element and biological pathway enrichments between the non-DR3/DR4 and DR3/DR4 cohorts. Finally, we developed a genetic risk score (GRS) to predict T1D in individuals without DR3/DR4 and compared with an existing T1D GRS. RESULTS A total of 18 T1D risk variants in non-DR3/DR4 samples were identified. Risk variants at the MHC and multiple other loci genome wide had heterogeneity in effects on T1D dependent on DR3/DR4 status, and non-DR3/DR4 T1D had evidence for a greater polygenic burden. T1D-associated variants in non-DR3/DR4 were more enriched for regulatory elements and pathways involved in antigen presentation, innate immunity, and β-cells and depleted in T cells compared with DR3/DR4. A non-DR3/DR4 GRS outperformed an existing risk score GRS2 in discriminating non-DR3/DR4 T1D from no diabetes (area under the curve 0.867; P = 7.48 × 10-32) and type 2 diabetes (0.907; P = 4.94 × 10-44). CONCLUSIONS In total, we identified heterogeneity in T1D genetic risk dependent on high-risk HLA-DR3/DR4 haplotype, which uncovers disease mechanisms and enables more accurate prediction of T1D across the HLA background.
Collapse
Affiliation(s)
- Carolyn McGrail
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Ruth Elgamal
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Amber M. Luckett
- University of Exeter College of Medicine and Health, Exeter, U.K
| | - Richard A. Oram
- University of Exeter College of Medicine and Health, Exeter, U.K
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, U.K
| | - Paola Benaglio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| |
Collapse
|
7
|
Grieve LM, Rani A, ZeRuth GT. Downregulation of Glis3 in INS1 cells exposed to chronically elevated glucose contributes to glucotoxicity-associated β cell dysfunction. Islets 2024; 16:2344622. [PMID: 38652652 PMCID: PMC11042057 DOI: 10.1080/19382014.2024.2344622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Chronically elevated levels of glucose are deleterious to pancreatic β cells and contribute to β cell dysfunction, which is characterized by decreased insulin production and a loss of β cell identity. The Krüppel-like transcription factor, Glis3 has previously been shown to positively regulate insulin transcription and mutations within the Glis3 locus have been associated with the development of several pathologies including type 2 diabetes mellitus. In this report, we show that Glis3 is significantly downregulated at the transcriptional level in INS1 832/13 cells within hours of being subjected to high glucose concentrations and that diminished expression of Glis3 is at least partly attributable to increased oxidative stress. CRISPR/Cas9-mediated knockdown of Glis3 indicated that the transcription factor was required to maintain normal levels of both insulin and MafA expression and reduced Glis3 expression was concomitant with an upregulation of β cell disallowed genes. We provide evidence that Glis3 acts similarly to a pioneer factor at the insulin promoter where it permissively remodels the chromatin to allow access to a transcriptional regulatory complex including Pdx1 and MafA. Finally, evidence is presented that Glis3 can positively regulate MafA transcription through its pancreas-specific promoter and that MafA reciprocally regulates Glis3 expression. Collectively, these results suggest that decreased Glis3 expression in β cells exposed to chronic hyperglycemia may contribute significantly to reduced insulin transcription and a loss of β cell identity.
Collapse
Affiliation(s)
- LilyAnne M. Grieve
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Abhya Rani
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Gary T. ZeRuth
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| |
Collapse
|
8
|
Lalani S, Knudsen J, Kenney J, Hober D, DiPersio CM, Gerber A. A novel microRNA promotes coxsackievirus B4 infection of pancreatic β cells. Front Immunol 2024; 15:1414894. [PMID: 39697323 PMCID: PMC11652211 DOI: 10.3389/fimmu.2024.1414894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 12/20/2024] Open
Abstract
The epidemiological association of coxsackievirus B infection with type 1 diabetes suggests that therapeutic strategies that reduce viral load could delay or prevent disease onset. Moreover, recent studies suggest that treatment with antiviral agents against coxsackievirus B may help preserve insulin levels in type 1 diabetic patients. In the current study, we performed small RNA-sequencing to show that infection of immortalized trophoblast cells with coxsackievirus caused differential regulation of several miRNAs. One of these, hsa-miR-AMC1, was similarly upregulated in human pancreatic β cells infected with coxsackievirus B4. Moreover, treatment of β cells with non-cytotoxic concentrations of an antagomir that targets hsa-miR-AMC1 led to decreased CVB4 infection, suggesting a positive feedback loop wherein this microRNA further promotes viral infection. Interestingly, some predicted target genes of hsa-miR-AMC1 are shared with hsa-miR-184, a microRNA that is known to suppress genes that regulate insulin production in pancreatic β cells. Consistently, treatment of coxsackievirus B4-infected β cells with the hsa-miR-AMC1 antagomir was associated with a trend toward increased insulin production. Taken together, our findings implicate novel hsa-miR-AMC1 as a potential early biomarker of coxsackievirus B4-induced type 1 diabetes and suggest that inhibiting hsa-miR-AMC1 may provide therapeutic benefit to type 1 diabetes patients. Our findings also support the use of trophoblast cells as a model for identifying microRNAs that might be useful diagnostic markers or therapeutic targets for coxsackievirus B-induced type 1 diabetes.
Collapse
Affiliation(s)
- Salima Lalani
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Joseph Knudsen
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - James Kenney
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Univ Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - C. Michael DiPersio
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
- Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Allen Gerber
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
- Department of Neurology, Castle Point Medical Center, Wappingers Falls, NY, United States
| |
Collapse
|
9
|
Jin Q, Ren F, Song P. Innovate therapeutic targets for autoimmune diseases: insights from proteome-wide mendelian randomization and Bayesian colocalization. Autoimmunity 2024; 57:2330392. [PMID: 38515381 DOI: 10.1080/08916934.2024.2330392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Despite growing knowledge regarding the pathogenesis of autoimmune diseases (ADs) onset, the current treatment remains unsatisfactory. This study aimed to identify innovative therapeutic targets for ADs through various analytical approaches. RESEARCH DESIGN AND METHODS Utilizing Mendelian randomization, Bayesian co-localization, phenotype scanning, and protein-protein interaction network, we explored potential therapeutic targets for 14 ADs and externally validated our preliminary findings. RESULTS This study identified 12 circulating proteins as potential therapeutic targets for six ADs. Specifically, IL12B was judged to be a risk factor for ankylosing spondylitis (p = 1.61E - 07). TYMP (p = 6.28E - 06) was identified as a protective factor for ulcerative colitis. For Crohn's disease, ERAP2 (p = 4.47E - 14), HP (p = 2.08E - 05), and RSPO3 (p = 6.52E - 07), were identified as facilitators, whereas FLRT3 (p = 3.42E - 07) had a protective effect. In rheumatoid arthritis, SWAP70 (p = 3.26E - 10), SIGLEC6 (p = 2.47E - 05), ISG15 (p = 3.69E - 05), and FCRL3 (p = 1.10E - 10) were identified as risk factors. B4GALT1 (p = 6.59E - 05) was associated with a lower risk of Type 1 diabetes (T1D). Interestingly, CTSH was identified as a protective factor for narcolepsy (p = 1.58E - 09) but a risk factor for T1D (p = 7.36E - 11), respectively. External validation supported the associations of eight of these proteins with three ADs. CONCLUSIONS Our integrated study identified 12 potential therapeutic targets for ADs and provided novel insights into future drug development for ADs.
Collapse
Affiliation(s)
- Qiubai Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Bougnères P, Le Fur S, Kamatani Y, Mai TN, Belot MP, Perge K, Shao X, Lathrop M, Valleron AJ. Genomic variants associated with age at diagnosis of childhood-onset type 1 diabetes. J Hum Genet 2024; 69:585-590. [PMID: 38982180 DOI: 10.1038/s10038-024-01272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Age at diagnosis (AAD) of Type 1 diabetes (T1D) is determined by the age at onset of the autoimmune attack and by the rate of beta cell destruction that follows. Twin studies found that T1D AAD is strongly influenced by genetics, notably in young children. In young UK, Finnish, Sardinian patients AAD-associated genomic variants were previously identified, which may vary across populations and with time. In 1956 children of European ancestry born in mainland France in 1980-2008 who declared T1D before 15 years, we tested 94 T1D-associated SNPs for their association with AAD using nonparametric Kruskal-Wallis test. While high-risk HLA genotypes were not found to be associated with AAD, fourteen SNPs located in 12 non-HLA loci showed a strong association (2.9 × 10-12 < P < 1.4 × 10-3 after FDR correction). Four of these loci have been associated with AAD in previous cohorts (GSDMB, IL2, TNFAIP3, IL1), supporting a partially shared genetic influence on AAD of T1D in the studied European populations. In contrast, the association of 8 new loci CLEC16A, TYK2, ERBB3, CCR7, FCRL3, DNAH2, FGF3/4, and HPSE2 with AAD is novel. The 12 protein-coding genes located within these loci are involved in major immune pathways or in predisposition to other autoimmune diseases, which suggests a prominent role for these genes in the early immune mechanisms of beta cell destruction.
Collapse
Affiliation(s)
- Pierre Bougnères
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France.
- GETDOC Association, Paris, France.
| | - Sophie Le Fur
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
- GETDOC Association, Paris, France
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN Center now at the Graduate School of Frontier Sciences, Tokyo University, Tokyo, Japan
| | - Thanh-Nga Mai
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | - Marie-Pierre Belot
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
- GETDOC Association, Paris, France
| | - Kevin Perge
- Service d'Endocrinologie Diabétologie Pédiatrique, Hôpital Mère-Enfant, Lyon, France
| | - XiaoJian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Mark Lathrop
- Genome Québec Innovation Centre, Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Alain-Jacques Valleron
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| |
Collapse
|
11
|
Wu Y, Li Q, Lou Y, Zhou Z, Huang J. Cysteine cathepsins and autoimmune diseases: A bidirectional Mendelian randomization. Medicine (Baltimore) 2024; 103:e40268. [PMID: 39470488 PMCID: PMC11521024 DOI: 10.1097/md.0000000000040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Cysteine cathepsins are proteolytic enzymes crucial in various physiological and pathological processes, primarily operating within lysosomes. Their functions include protein degradation, immune system regulation, and involvement in various diseases. While some cysteine cathepsins play important roles in the immune system, their connection to autoimmune diseases remains unclear. This study proposes using Mendelian randomization to explore the causal relationship between cysteine cathepsins and autoimmune diseases. Single nucleotide polymorphisms (SNPs) for cysteine cathepsins were obtained from a publicly available genome-wide association study (GWAS) dataset, while outcome SNP data were sourced from 10 separate GWAS datasets. Mendelian randomization (MR) analysis employed the Wald ratio (WR) and inverse variance weighted (IVW) approach as primary methods, supplemented by the weighted median and MR-Egger methods. Heterogeneity was assessed using Cochran Q test, and sensitivity analysis was conducted using the MR-PRESSO method. The association strength between exposure and outcome was evaluated using odds ratios (OR) with 95% confidence intervals (CI). The study identified a potential positive correlation between elevated cathepsin B and psoriasis (Wald ratio OR = 1.449, 95% CI: 1.053-1.993, P = .0227). Elevated cathepsin F was potentially linked to ulcerative colitis (WR OR = 1.073, 95% CI: 1.021-1.127, P = .0056), ankylosing spondylitis (WR OR = 1.258, 95% CI: 1.082-1.463, P = .0029), and primary biliary cholangitis(PBC) (WR OR = 1.958, 95% CI: 1.326-2.889, P = .0007). Conversely, cathepsin H appeared protective against celiac disease (WR OR = 0.881, 95% CI: 0.838-0.926, P = 6.5e-7), though elevated levels may increase the risk of type 1 diabetes (IVW OR = 1.121, 95% CI: 1.053-1.194, P = .0003) and PBC (WR OR = 1.792, 95% CI: 1.062-3.024, P = .0288). Cathepsin Z was also associated with an increased risk of type 1 diabetes (IVW OR = 1.090, 95% CI: 1.006-1.181, P = .0349). The MR analysis suggests potential risks of cathepsin B with psoriasis, cathepsin F with ulcerative colitis, ankylosing spondylitis, and PBC, and cathepsin Z with type 1 diabetes. Conversely, cathepsin H may protect against celiac disease but could increase the risk of type 1 diabetes and PBC.
Collapse
Affiliation(s)
- Yetong Wu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaoqiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yake Lou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhongzheng Zhou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhou H, Wang J, Cui X. Causal effect of immune cells, metabolites, cathepsins, and vitamin therapy in diabetic retinopathy: a Mendelian randomization and cross-sectional study. Front Immunol 2024; 15:1443236. [PMID: 39430744 PMCID: PMC11487118 DOI: 10.3389/fimmu.2024.1443236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Background Diabetic retinopathy (DR) is a major microvascular complication of diabetes and a leading cause of blindness worldwide. The pathogenesis of DR involves complex interactions between metabolic disturbances, immune cells, and proteolytic enzymes such as cathepsins (CATs). Despite various studies, the precise roles of different CATs, metabolites, and vitamins in DR remain unclear. Method In this study, we employed Mendelian Randomization (MR) to assess causal relationships using genetic instruments selected based on genome-wide association studies (GWAS). We employed two-sample and mediation MR to explore the causal effects between nine CATs, immune cells, metabolites, vitamins, and DR. Additionally, the study also incorporated data from the NHANES survey to explore the associated relationship between vitamins and DR. We utilized cross-sectional data from the NHANES to analyze the association between vitamin intake and diabetic retinopathy (DR), adjusting for potential confounders to strengthen the validity of our findings. Results The MR analysis identified CAT H as a significant risk factor for both NPDR and PDR, with no evidence of reverse causality. Additionally, 62 immune cell traits were found to have causal relationships with NPDR and 49 with PDR. Enrichment analysis revealed that metabolic pathways such as sphingolipid metabolism are crucial in DR progression. Vitamins B6 and E were significantly associated with a reduced risk of PDR. Cross-sectional data indicated that vitamins B1, B2, B6, B12, and E progressively decreased with DR severity. Conclusion This study is the first to identify CAT H as a key risk factor for DR, while vitamins B6 and E showed significant protective effects, particularly against PDR. These findings suggest that CAT H, along with vitamins B6 and E, could serve as therapeutic targets for DR. Further validation through larger, multi-center studies is recommended to enhance the accuracy and applicability of these findings.
Collapse
Affiliation(s)
- Huijun Zhou
- Department of Endocrinology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Xuehao Cui
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| |
Collapse
|
13
|
Negueruela J, Vandenbempt V, Talamantes S, Ribeiro-Costa F, Nunes M, Dias A, Bansal M, Gurzov EN. Protocol for CRISPR-Cas12a genome editing of protein tyrosine phosphatases in human pluripotent stem cells and functional β-like cell generation. STAR Protoc 2024; 5:103297. [PMID: 39243376 PMCID: PMC11409021 DOI: 10.1016/j.xpro.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024] Open
Abstract
Gene editing of human pluripotent stem cells is a promising approach for developing targeted gene therapies for metabolic diseases. Here, we present a protocol for generating a CRISPR-Cas12a gene knockout of protein tyrosine phosphatases in human embryonic stem cells. We describe steps for differentiating the edited clones into pancreatic islet-like spheroids rich in β-like cells. We then detail procedures for implanting these spheroids under the murine kidney capsule for in vivo maturation.
Collapse
Affiliation(s)
- Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium.
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Francisco Ribeiro-Costa
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Mariana Nunes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - André Dias
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Mayank Bansal
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium.
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium.
| |
Collapse
|
14
|
Qian Y, Chen S, Wang Y, Zhang Y, Zhang J, Jiang L, Dai H, Shen M, He Y, Jiang H, Yang T, Fu Q, Xu K. A functional variant rs912304 for late-onset T1D risk contributes to islet dysfunction by regulating proinflammatory cytokine-responsive gene STXBP6 expression. BMC Med 2024; 22:357. [PMID: 39227839 PMCID: PMC11373477 DOI: 10.1186/s12916-024-03583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Our previous genome‑wide association studies (GWAS) have suggested rs912304 in 14q12 as a suggestive risk variant for type 1 diabetes (T1D). However, the association between this risk region and T1D subgroups and related clinical risk features, the underlying causal functional variant(s), putative candidate gene(s), and related mechanisms are yet to be elucidated. METHODS We assessed the association between variant rs912304 and T1D, as well as islet autoimmunity and islet function, stratified by the diagnosed age of 12. We used epigenome bioinformatics analyses, dual luciferase reporter assays, and expression quantitative trait loci (eQTL) analyses to prioritize the most likely functional variant and potential causal gene. We also performed functional experiments to evaluate the role of the causal gene on islet function and its related mechanisms. RESULTS We identified rs912304 as a risk variant for T1D subgroups with diagnosed age ≥ 12 but not < 12. This variant is associated with residual islet function but not islet-specific autoantibody positivity in T1D individuals. Bioinformatics analysis indicated that rs912304 is a functional variant exhibiting spatial overlaps with enhancer active histone marks (H3K27ac and H3K4me1) and open chromatin status (ATAC-seq) in the human pancreas and islet tissues. Luciferase reporter gene assays and eQTL analyses demonstrated that the biallelic sites of rs912304 had differential allele-specific enhancer activity in beta cell lines and regulated STXBP6 expression, which was defined as the most putative causal gene based on Open Targets Genetics, GTEx v8 and Tiger database. Moreover, Stxbp6 was upregulated by T1D-related proinflammatory cytokines but not high glucose/fat. Notably, Stxbp6 over-expressed INS-1E cells exhibited decreasing insulin secretion and increasing cell apoptosis through Glut1 and Gadd45β, respectively. CONCLUSIONS This study expanded the genomic landscape regarding late-onset T1D risk and supported islet function mechanistically connected to T1D pathogenesis.
Collapse
Affiliation(s)
- Yu Qian
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shu Chen
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226000, China
| | - Yan Wang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuyue Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liying Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Dai
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Min Shen
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yunqiang He
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hemin Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Fu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Kuanfeng Xu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
15
|
Guo AJ, Deng QY, Dong P, Zhou L, Shi L. Biomarkers associated with immune-related adverse events induced by immune checkpoint inhibitors. World J Clin Oncol 2024; 15:1002-1020. [PMID: 39193157 PMCID: PMC11346067 DOI: 10.5306/wjco.v15.i8.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) constitute a pivotal class of immunotherapeutic drugs in cancer treatment. However, their widespread clinical application has led to a notable surge in immune-related adverse events (irAEs), significantly affecting the efficacy and survival rates of patients undergoing ICI therapy. While conventional hematological and imaging tests are adept at detecting organ-specific toxicities, distinguishing adverse reactions from those induced by viruses, bacteria, or immune diseases remains a formidable challenge. Consequently, there exists an urgent imperative for reliable biomarkers capable of accurately predicting or diagnosing irAEs. Thus, a thorough review of existing studies on irAEs biomarkers is indispensable. Our review commences by providing a succinct overview of major irAEs, followed by a comprehensive summary of irAEs biomarkers across various dimensions. Furthermore, we delve into innovative methodologies such as machine learning, single-cell RNA sequencing, multiomics analysis, and gut microbiota profiling to identify novel, robust biomarkers that can facilitate precise irAEs diagnosis or prediction. Lastly, this review furnishes a concise exposition of irAEs mechanisms to augment understanding of irAEs prediction, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- An-Jie Guo
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Qing-Yuan Deng
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Lian Zhou
- Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400000, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|
16
|
Robino A, Bevilacqua E, Aldegheri L, Conti A, Bazzo V, Tornese G, Catamo E. Next-generation sequencing reveals additional HLA class I and class II alleles associated with type 1 diabetes and age at onset. Front Immunol 2024; 15:1427349. [PMID: 39185409 PMCID: PMC11341356 DOI: 10.3389/fimmu.2024.1427349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Type 1 diabetes is an autoimmune disease with an significant genetic component, played mainly by the HLA class II genes. Although evidence on the role of HLA class I genes in developing type 1 diabetes and its onset have emerged, current HLA screening is limited to determining DR3 and DR4 haplotypes. This study aimed to investigate the role of HLA genes on type 1 diabetes risk and age of onset by extensive typing. Methods This study included 115 children and young adults with type 1 diabetes for whom typing of HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1 and -DPB1 genes was conducted using Next Generation Sequencing. Results We observed that 13% of type 1 diabetes subjects had non-classical HLA haplotypes that predispose to diabetes. We also found that compared to type 1 diabetes subjects with classical HLA haplotypes, non-classical HLA subjects had a significantly higher frequency of HLA-B*39:06:02 (p-value=0.01) and HLA-C*07:02:01 (p-value=0.03) alleles, known to be involved in activating the immune response. Non-classical HLA subjects also presented peculiar clinical features compared to classical HLA subjects, such as multiple diabetic antibodies and the absence of other autoimmune diseases (i.e., coeliac disease and thyroiditis). We also observed that subjects with early onset had a higher frequency of DQ2/DQ8 genotype than late-onset individuals. Moreover, subjects with late-onset had a higher frequency of alleles HLA-B*27 (p-value=0.003), HLA-C*01:02:01 (p-value=0.027) and C*02:02:02 (p-value=0.01), known to be associated with increased protection against viral infections. Discussion This study reveals a broader involvement of the HLA locus in the development and onset of type 1 diabetes, providing insights into new possible disease prevention and management strategies.
Collapse
Affiliation(s)
- Antonietta Robino
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Elena Bevilacqua
- Transfusion Medicine Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Luana Aldegheri
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Andrea Conti
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Valentina Bazzo
- Transfusion Medicine Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Eulalia Catamo
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
17
|
McGrail C, Sears TJ, Kudtarkar P, Carter H, Gaulton K. Genetic association and machine learning improves discovery and prediction of type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.31.24311310. [PMID: 39132494 PMCID: PMC11312647 DOI: 10.1101/2024.07.31.24311310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Type 1 diabetes (T1D) has a large genetic component, and expanded genetic studies of T1D can lead to novel biological and therapeutic discovery and improved risk prediction. In this study, we performed genetic association and fine-mapping analyses in 817,718 European ancestry samples genome-wide and 29,746 samples at the MHC locus, which identified 165 independent risk signals for T1D of which 19 were novel. We used risk variants to train a machine learning model (named T1GRS) to predict T1D, which highly differentiated T1D from non-disease and type 2 diabetes (T2D) in Europeans as well as African Americans at or beyond the level of current standards. We identified extensive non-linear interactions between risk loci in T1GRS, for example between HLA-DQB1*57 and INS, coding and non-coding HLA alleles, and DEXI, INS and other beta cell loci, that provided mechanistic insight and improved risk prediction. T1D individuals formed distinct clusters based on genetic features from T1GRS which had significant differences in age of onset, HbA1c, and renal disease severity. Finally, we provided T1GRS in formats to enhance accessibility of risk prediction to any user and computing environment. Overall, the improved genetic discovery and prediction of T1D will have wide clinical, therapeutic, and research applications.
Collapse
Affiliation(s)
- Carolyn McGrail
- Biomedical sciences graduate program, University of California San Diego, La Jolla CA
| | - Timothy J. Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla CA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California San Diego, La Jolla CA
| | - Hannah Carter
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla CA
- Moore’s Cancer Center, University of California San Diego, La Jolla CA
- Department of Medicine, University of California San Diego, La Jolla CA
| | - Kyle Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla CA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA
| |
Collapse
|
18
|
Robertson CC, Elgamal RM, Henry-Kanarek BA, Arvan P, Chen S, Dhawan S, Eizirik DL, Kaddis JS, Vahedi G, Parker SCJ, Gaulton KJ, Soleimanpour SA. Untangling the genetics of beta cell dysfunction and death in type 1 diabetes. Mol Metab 2024; 86:101973. [PMID: 38914291 PMCID: PMC11283044 DOI: 10.1016/j.molmet.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.
Collapse
Affiliation(s)
- Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ruth M Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Belle A Henry-Kanarek
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Song Z, Li S, Shang Z, Lv W, Cheng X, Meng X, Chen R, Zhang S, Zhang R. Integrating multi-omics data to analyze the potential pathogenic mechanism of CTSH gene involved in type 1 diabetes in the exocrine pancreas. Brief Funct Genomics 2024; 23:406-417. [PMID: 38050341 DOI: 10.1093/bfgp/elad052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing pancreatic islet beta cells. Despite significant advancements, the precise pathogenesis of the disease remains unknown. This work integrated data from expression quantitative trait locus (eQTL) studies with Genome wide association study (GWAS) summary data of T1D and single-cell transcriptome data to investigate the potential pathogenic mechanisms of the CTSH gene involved in T1D in exocrine pancreas. Using the summary data-based Mendelian randomization (SMR) approach, we obtained four potential causative genes associated with T1D: BTN3A2, PGAP3, SMARCE1 and CTSH. To further investigate these genes'roles in T1D development, we validated them using a scRNA-seq dataset from pancreatic tissues of both T1D patients and healthy controls. The analysis showed a significantly high expression of the CTSH gene in T1D acinar cells, whereas the other three genes showed no significant changes in the scRNA-seq data. Moreover, single-cell WGCNA analysis revealed the strongest positive correlation between the module containing CTSH and T1D. In addition, we found cellular ligand-receptor interactions between the acinar cells and different cell types, especially ductal cells. Finally, based on functional enrichment analysis, we hypothesized that the CTSH gene in the exocrine pancreas enhances the antiviral response, leading to the overexpression of pro-inflammatory cytokines and the development of an inflammatory microenvironment. This process promotes β cells injury and ultimately the development of T1D. Our findings offer insights into the underlying pathogenic mechanisms of T1D.
Collapse
Affiliation(s)
- Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Xin Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Rui Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Shuhao Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| |
Collapse
|
20
|
Formánek T, Chen D, Šumník Z, Mladá K, Hughes J, Burgess S, Wareham NJ, Murray GK, Jones PB, Perry BI. Childhood-onset type 1 diabetes and subsequent adult psychiatric disorders: a nationwide cohort and genome-wide Mendelian randomization study. NATURE. MENTAL HEALTH 2024; 2:1062-1070. [PMID: 39263363 PMCID: PMC11383797 DOI: 10.1038/s44220-024-00280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
Childhood-onset type 1 diabetes (T1D) is associated with substantial psychiatric morbidity in later life, but it remains unknown whether these associations are due to common underlying biological mechanisms or the impacts of living with the condition and its treatment. Here, using Czech national register data, we identified children with T1D aged ≤14 years between 1994 and 2007 and estimated the risk of psychiatric disorders up to 24 years later. We found that children diagnosed with T1D had an elevated risk of developing substance use, mood, anxiety and personality disorders, and behavioral syndromes. Conversely, we found that children with T1D had a lower risk of developing psychotic disorders. In Mendelian randomization analysis, we found an association with schizophrenia, which, however, did not persist following multiple testing adjustment. The combined observational and Mendelian randomization evidence suggests that T1D diagnosis in childhood predisposes to far-reaching, extensive psychiatric morbidity, which is unlikely to be explicable by common underlying biological mechanisms. The findings of this study highlight that monitoring and addressing the mental health needs of children with T1D is imperative, whereas glucose dysregulation and/or inflammation implicated in schizophrenia pathogenesis warrants future research.
Collapse
Affiliation(s)
- Tomáš Formánek
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Public Mental Health, National Institute of Mental Health, Klecany, Czechia
| | - Danni Chen
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Zdeněk Šumník
- Department of Pediatrics, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Karolína Mladá
- Department of Public Mental Health, National Institute of Mental Health, Klecany, Czechia
- Department of Psychiatry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - James Hughes
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | | | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Benjamin I Perry
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
21
|
Gomes MB, Dos Santos GC, de Sousa Azulay RS, Santos DC, Silva DA, Carvalho PRVB, Negrato CA, Porto LC. Association between HLA alleles and haplotypes with age at diagnosis of type 1 diabetes in an admixed Brazilian population: A nationwide study. HLA 2024; 104:e15574. [PMID: 38993161 DOI: 10.1111/tan.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
To investigate the potential relationship between HLA alleles and haplotypes and the age at diagnosis of type 1 diabetes (T1DAgeD) in an admixed Brazilian population. This nationwide study was conducted in public clinics across 12 Brazilian cities. We collected demographic and genetic data from 1,600 patients with T1D. DNA samples were utilised to determine genomic ancestry (GA) and perform HLA typings for DRB1, DQA1 and DQB1. We explored allele and haplotype frequencies and GA in patients grouped by T1DAgeD categories (<6 years, ≥6-<11 years, ≥11-<19 years and ≥19 years) through univariate and multivariate analyses and primary component analyses. Additionally, we considered self-reported colour-race and identified a familiar history of T1D in first-degree relatives. The homozygosity index for DRB1~DQA1~DQB1 haplotypes exhibited the highest variation among T1DAgeD groups, and the percentages of Sub-Saharan African and European ancestries showed opposite trends in principal component analysis (PCA) analyses. Regarding the association of alleles and haplotypes with T1DAgeD, risk alleles such as HLA-DQB1*03:02g, -DQA1*03:01g, -02:01g, DRB1*04:05g and -04:02g were more frequently observed in heterozygosity or homozygosity in T1D patients with an early disease onset. Conversely, alleles such as DRB1*07:01g, -13:03g, DQB1*06:02g and DQA1*02:01 were more prevalent in older T1D patients. The combination DR3/DR4.5 was significantly associated with early disease onset. However, gender, GA, familiar history of T1D and self-reported colour-race identity did not exhibit significant associations with the onset of T1D. It is worth noting that the very common risk haplotype DRB1*03:01g~DQA1*05:01g~DQB1*02:01g did not differentiate between T1DAgeD groups. In the admixed Brazilian population, the high-risk haplotype DRB1*04:05~DQA1*03:01~DQB1*03:02 was more prevalent in individuals diagnosed before 6 years of age. In contrast, the protective alleles DQA1*01:02g, DQB1*06:02g, DRB1*07:01g and DRB1*13:03g and haplotypes DRB1*13:03g~DQA1*05:01g~DQB1*03:01g and DRB1*16:02g~DQA1*01:02g~DQB1*05:02g were more frequently observed in patients diagnosed in adulthood. Notably, these associations were independent of factors such as sex, economic status, GA, familiar history of T1D and region of birth in Brazil. These alleles and haplotypes contribute to our understanding of the disease onset heterogeneity and may have implications for early interventions when detected in association with well-known genomic risk or protection factors for T1D.
Collapse
Affiliation(s)
- Marília Brito Gomes
- Department of Internal Medicine, Diabetes Unit, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos
- Laboratory of Metabolomics (LabMet), Department of Genetics, IBRAG, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Deborah Conte Santos
- Department of Internal Medicine, Diabetes Unit, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Dayse Aparecida Silva
- DNA Diagnostic Laboratory (LDD), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | | | - Luís Cristóvão Porto
- Histocompatibility and Cryopreservation Laboratory (HLA-UERJ), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Sebastiani G, Grieco GE, Bruttini M, Auddino S, Mori A, Toniolli M, Fignani D, Licata G, Aiello E, Nigi L, Formichi C, Fernandez-Tajes J, Pugliese A, Evans-Molina C, Overbergh L, Tree T, Peakman M, Mathieu C, Dotta F. A set of circulating microRNAs belonging to the 14q32 chromosome locus identifies two subgroups of individuals with recent-onset type 1 diabetes. Cell Rep Med 2024; 5:101591. [PMID: 38838677 PMCID: PMC11228666 DOI: 10.1016/j.xcrm.2024.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identification of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM individuals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes during follow-up.
Collapse
Affiliation(s)
- Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Marco Bruttini
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Stefano Auddino
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Alessia Mori
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Mattia Toniolli
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | | | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, MA, USA
| | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| |
Collapse
|
23
|
Marcovecchio ML, Hendriks AEJ, Delfin C, Battelino T, Danne T, Evans ML, Johannesen J, Kaur S, Knip M, Overbergh L, Pociot F, Todd JA, Van der Schueren B, Wicker LS, Peakman M, Mathieu C. The INNODIA Type 1 Diabetes Natural History Study: a European cohort of newly diagnosed children, adolescents and adults. Diabetologia 2024; 67:995-1008. [PMID: 38517484 PMCID: PMC11058619 DOI: 10.1007/s00125-024-06124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 03/24/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.
Collapse
Affiliation(s)
- M Loredana Marcovecchio
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
- Department of Paediatric Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - A Emile J Hendriks
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Carl Delfin
- Department of Pharmacometrics, Novo Nordisk A/S, Søborg, Denmark
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Thomas Danne
- Centre for Paediatric Endocrinology, Diabetology, and Clinical Research, Auf Der Bult Children's Hospital, Hannover, Germany
| | - Mark L Evans
- Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jesper Johannesen
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark; Institute of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark; Institute of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Lut Overbergh
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark; Institute of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - John A Todd
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Linda S Wicker
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, MA, USA
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Yamashita M, Morio T. AIOLOS-Associated Inborn Errors of Immunity. J Clin Immunol 2024; 44:128. [PMID: 38773004 PMCID: PMC11108880 DOI: 10.1007/s10875-024-01730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
AIOLOS, encoded by the IKZF3 gene, belongs to the Ikaros zinc finger transcription factor family and plays a pivotal role in regulating lymphocyte development. Recently, heterozygous missense loss-of-function variants within the DNA-binding domain of the IKZF3 gene (G159R, N160S, and G191R) have been identified in patients with inborn errors of immunity (IEI). Additionally, a missense and a truncating variant (E82K and Q402X) leading to the AIOLOS haploinsufficiency have been documented. The majority of individuals with AIOLOS-associated IEI manifest recurrent sinopulmonary infections, as well as various bacterial and viral infections. The patients carrying the AIOLOSN160S variant exhibit severe immunodeficient phenotypes. In contrast, patients harboring AIOLOS haploinsufficient variants predominantly present with clinical phenotypes associated with immune dysregulation. A varying degree of B-lymphopenia and hypoimmunoglobulinemia was noted in approximately half of the patients. Mouse models of AIOLOSG159R and AIOLOSN160S variants (AiolosG158R and AiolosN159S in mice, respectively) recapitulated most of the immune abnormalities observed in the patients. Among these models, AiolosG158R mice prominently exhibited defects in early B cell differentiation resulting from mutant Aiolos interfering with Ikaros function through heterodimer formation. In contrast, AiolosN159S mice did not manifest early B cell differentiation defects. However, they displayed a distinct immune abnormality characterized by impaired induction of CD62L expression in lymphocytes, which is likely attributable to dysfunction of Ikaros, leading to defective lymphocyte homing to lymph nodes. Considering the diverse clinical phenotypes observed in the reported cases and the distinct molecular pathogenesis associated with each variant, further studies with more patients with AIOLOS-associated IEI would contribute to a better understanding of the clinical spectrum and underlying molecular mechanisms associated with this disorder.
Collapse
Affiliation(s)
- Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan.
- Laboratory of Immunology and Molecular Medicine, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan.
| |
Collapse
|
25
|
Leslie RD. Type 1 diabetes: heterogeneity in heritability. Lancet Diabetes Endocrinol 2024; 12:287-289. [PMID: 38561012 DOI: 10.1016/s2213-8587(24)00090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
|
26
|
Wei Y, Liu S, Andersson T, Feychting M, Kuja-Halkola R, Carlsson S. Familial aggregation and heritability of childhood-onset and adult-onset type 1 diabetes: a Swedish register-based cohort study. Lancet Diabetes Endocrinol 2024; 12:320-329. [PMID: 38561011 DOI: 10.1016/s2213-8587(24)00068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Type 1 diabetes in children is known to be highly heritable, but much less is known about the heritability of adult-onset type 1 diabetes. Thus, our objective was to compare the familial aggregation and heritability of type 1 diabetes in adults and children. METHODS This Swedish nationwide register-based cohort study included individuals born from Jan 1, 1982, to Dec 31, 2010, identified through the Medical Birth Register who were linked to their parents, full siblings, half siblings, and cousins through the Multi-Generation Register (MGR). We excluded multiple births, deaths within the first month of life, individuals who could not be linked to MGR, or individuals with contradictory information on sex. Information on diagnoses of type 1 diabetes was retrieved by linkages to the National Diabetes Register and National Patient Register (1982-2020). Individuals with inconsistent records of diabetes type were excluded. We estimated the cumulative incidence and hazard ratios (HRs) of type 1 diabetes in adults (aged 19-30 years) and children (aged 0-18 years) by family history of type 1 diabetes and the heritability of adult-onset and childhood-onset type 1 diabetes based on tetrachoric correlations, using sibling pairs. FINDINGS 2 943 832 individuals were born in Sweden during the study period, 2 832 755 individuals were included in the analysis of childhood-onset type 1 diabetes and 1 805 826 individuals were included in the analysis of adult-onset type 1 diabetes. 3240 cases of adult-onset type 1 diabetes (median onset age 23·4 years [IQR 21·1-26·2]; 1936 [59·7%] male and 1304 [40·2%] female) and 17 914 cases of childhood-onset type 1 diabetes (median onset age 9·8 years [6·2-13·3]; 9819 [54·8%] male and 8095 [45·2%] female) developed during follow-up. Having a first-degree relative with type 1 diabetes conferred an HR of 7·21 (95% CI 6·28-8·28) for adult-onset type 1 diabetes and 9·92 (9·38-10·50) for childhood-onset type 1 diabetes. The HR of developing type 1 diabetes before the age 30 years was smaller if a first-degree relative developed type 1 diabetes during adulthood (6·68 [6·04-7·39]) rather than during childhood (10·54 [9·92-11·19]). Similar findings were observed for type 1 diabetes in other relatives. Heritability was lower for adult-onset type 1 diabetes (0·56 [0·45-0·66]) than childhood-onset type 1 diabetes (0·81 [0·77-0·85]). INTERPRETATION Adult-onset type 1 diabetes seems to have weaker familial aggregation and lower heritability than childhood-onset type 1 diabetes. This finding suggests a larger contribution of environmental factors to the development of type 1 diabetes in adults than in children and highlights the need to identify and intervene on such factors. FUNDING Swedish Research Council, the Swedish Research Council for Health, Working Life and Welfare, Swedish Diabetes Foundation, and the China Scholarship Council.
Collapse
Affiliation(s)
- Yuxia Wei
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Shengxin Liu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Honardoost MA, Adinatha A, Schmidt F, Ranjan B, Ghaeidamini M, Arul Rayan N, Gek Liang Lim M, Joanito I, Xiao Xuan Lin Q, Rajagopalan D, Qi Mok S, Hwang YY, Larbi A, Khor CC, Foo R, Boehm BO, Prabhakar S. Systematic immune cell dysregulation and molecular subtypes revealed by single-cell RNA-seq of subjects with type 1 diabetes. Genome Med 2024; 16:45. [PMID: 38539228 PMCID: PMC10976681 DOI: 10.1186/s13073-024-01300-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/30/2024] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is a prototypic endocrine autoimmune disease resulting from an immune-mediated destruction of pancreatic insulin-secreting β cells. A comprehensive immune cell phenotype evaluation in T1DM has not been performed thus far at the single-cell level. METHODS In this cross-sectional analysis, we generated a single-cell transcriptomic dataset of peripheral blood mononuclear cells (PBMCs) from 46 manifest T1DM (stage 3) cases and 31 matched controls. RESULTS We surprisingly detected profound alterations in circulatory immune cells (1784 dysregulated genes in 13 immune cell types), far exceeding the count in the comparator systemic autoimmune disease SLE. Genes upregulated in T1DM were involved in WNT signaling, interferon signaling and migration of T/NK cells, antigen presentation by B cells, and monocyte activation. A significant fraction of these differentially expressed genes were also altered in T1DM pancreatic islets. We used the single-cell data to construct a T1DM metagene z-score (TMZ score) that distinguished cases and controls and classified patients into molecular subtypes. This score correlated with known prognostic immune markers of T1DM, as well as with drug response in clinical trials. CONCLUSIONS Our study reveals a surprisingly strong systemic dimension at the level of immune cell network in T1DM, defines disease-relevant molecular subtypes, and has the potential to guide non-invasive test development and patient stratification.
Collapse
Affiliation(s)
- Mohammad Amin Honardoost
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
- Cardiovascular Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Andreas Adinatha
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Florian Schmidt
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Bobby Ranjan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Maryam Ghaeidamini
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Nirmala Arul Rayan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Michelle Gek Liang Lim
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Ignasius Joanito
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Quy Xiao Xuan Lin
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Deepa Rajagopalan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Shi Qi Mok
- Integrated genomics platform, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, 138648, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, 138648, Singapore
| | - Chiea Chuen Khor
- Integrated genomics platform, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Roger Foo
- Cardiovascular Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Bernhard Otto Boehm
- Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK.
| | - Shyam Prabhakar
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
28
|
Minniakhmetov I, Yalaev B, Khusainova R, Bondarenko E, Melnichenko G, Dedov I, Mokrysheva N. Genetic and Epigenetic Aspects of Type 1 Diabetes Mellitus: Modern View on the Problem. Biomedicines 2024; 12:399. [PMID: 38398001 PMCID: PMC10886892 DOI: 10.3390/biomedicines12020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Omics technologies accumulated an enormous amount of data that advanced knowledge about the molecular pathogenesis of type 1 diabetes mellitus and identified a number of fundamental problems focused on the transition to personalized diabetology in the future. Among them, the most significant are the following: (1) clinical and genetic heterogeneity of type 1 diabetes mellitus; (2) the prognostic significance of DNA markers beyond the HLA genes; (3) assessment of the contribution of a large number of DNA markers to the polygenic risk of disease progress; (4) the existence of ethnic population differences in the distribution of frequencies of risk alleles and genotypes; (5) the infancy of epigenetic research into type 1 diabetes mellitus. Disclosure of these issues is one of the priorities of fundamental diabetology and practical healthcare. The purpose of this review is the systemization of the results of modern molecular genetic, transcriptomic, and epigenetic investigations of type 1 diabetes mellitus in general, as well as its individual forms. The paper summarizes data on the role of risk HLA haplotypes and a number of other candidate genes and loci, identified through genome-wide association studies, in the development of this disease and in alterations in T cell signaling. In addition, this review assesses the contribution of differential DNA methylation and the role of microRNAs in the formation of the molecular pathogenesis of type 1 diabetes mellitus, as well as discusses the most currently central trends in the context of early diagnosis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | - Bulat Yalaev
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | | | | | | | | | | |
Collapse
|
29
|
Mittal R, Camick N, Lemos JRN, Hirani K. Gene-environment interaction in the pathophysiology of type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1335435. [PMID: 38344660 PMCID: PMC10858453 DOI: 10.3389/fendo.2024.1335435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Type 1 diabetes (T1D) is a complex metabolic autoimmune disorder that affects millions of individuals worldwide and often leads to significant comorbidities. However, the precise trigger of autoimmunity and disease onset remain incompletely elucidated. This integrative perspective article synthesizes the cumulative role of gene-environment interaction in the pathophysiology of T1D. Genetics plays a significant role in T1D susceptibility, particularly at the major histocompatibility complex (MHC) locus and cathepsin H (CTSH) locus. In addition to genetics, environmental factors such as viral infections, pesticide exposure, and changes in the gut microbiome have been associated with the development of T1D. Alterations in the gut microbiome impact mucosal integrity and immune tolerance, increasing gut permeability through molecular mimicry and modulation of the gut immune system, thereby increasing the risk of T1D potentially through the induction of autoimmunity. HLA class II haplotypes with known effects on T1D incidence may directly correlate to changes in the gut microbiome, but precisely how the genes influence changes in the gut microbiome, and how these changes provoke T1D, requires further investigations. These gene-environment interactions are hypothesized to increase susceptibility to T1D through epigenetic changes such as DNA methylation and histone modification, which in turn modify gene expression. There is a need to determine the efficacy of new interventions that target these epigenetic modifications such as "epidrugs", which will provide novel avenues for the effective management of T1D leading to improved quality of life of affected individuals and their families/caregivers.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nathanael Camick
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
30
|
Morgan NG. Insulitis in human type 1 diabetes: lessons from an enigmatic lesion. Eur J Endocrinol 2024; 190:R1-R9. [PMID: 38231086 PMCID: PMC10824273 DOI: 10.1093/ejendo/lvae002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Type 1 diabetes is caused by a deficiency of insulin secretion which has been considered traditionally as the outcome of a precipitous decline in the viability of β-cells in the islets of Langerhans, brought about by autoimmune-mediated attack. Consistent with this, various classes of lymphocyte, as well as cells of the innate immune system have been found in association with islets during disease progression. However, analysis of human pancreas from subjects with type 1 diabetes has revealed that insulitis is often less intense than in equivalent animal models of the disease and can affect many fewer islets than expected, at disease onset. This is especially true in subjects developing type 1 diabetes in, or beyond, their teenage years. Such studies imply that both the phenotype and the number of immune cells present within insulitic lesions can vary among individuals in an age-dependent manner. Additionally, the influent lymphocytes are often mainly arrayed peripherally around islets rather than gaining direct access to the endocrine cell core. Thus, insulitis remains an enigmatic phenomenon in human pancreas and this review seeks to explore the current understanding of its likely role in the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Noel G Morgan
- Department of Clinical and Biomedical Science, Islet Biology Exeter (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter EX2 5DW, United Kingdom
| |
Collapse
|
31
|
Caramalho I, Matoso P, Ligeiro D, Paixão T, Sobral D, Fitas AL, Limbert C, Demengeot J, Penha-Gonçalves C. The rare DRB1*04:08-DQ8 haplotype is the main HLA class II genetic driver and discriminative factor of Early-onset Type 1 diabetes in the Portuguese population. Front Immunol 2024; 14:1299609. [PMID: 38318503 PMCID: PMC10839680 DOI: 10.3389/fimmu.2023.1299609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Early-onset Type 1 diabetes (EOT1D) is considered a disease subtype with distinctive immunological and clinical features. While both Human Leukocyte Antigen (HLA) and non-HLA variants contribute to age at T1D diagnosis, detailed analyses of EOT1D-specific genetic determinants are still lacking. This study scrutinized the involvement of the HLA class II locus in EOT1D genetic control. Methods We conducted genetic association and regularized logistic regression analyses to evaluate genotypic, haplotypic and allelic variants in DRB1, DQA1 and DQB1 genes in children with EOT1D (diagnosed at ≤5 years of age; n=97), individuals with later-onset disease (LaOT1D; diagnosed 8-30 years of age; n=96) and nondiabetic control subjects (n=169), in the Portuguese population. Results Allelic association analysis of EOT1D and LaOT1D unrelated patients in comparison with controls, revealed that the rare DRB1*04:08 allele is a distinctive EOT1D susceptibility factor (corrected p-value=7.0x10-7). Conversely, the classical T1D risk allele DRB1*04:05 was absent in EOT1D children while was associated with LaOT1D (corrected p-value=1.4x10-2). In corroboration, HLA class II haplotype analysis showed that the rare DRB1*04:08-DQ8 haplotype is specifically associated with EOT1D (corrected p-value=1.4x10-5) and represents the major HLA class II genetic driver and discriminative factor in the development of early onset disease. Discussion This study uncovered that EOT1D holds a distinctive spectrum of HLA class II susceptibility loci, which includes risk factors overlapping with LaOT1D and discriminative genetic configurations. These findings warrant replication studies in larger multicentric settings encompassing other ethnicities and may impact target screening strategies and follow-up of young children with high T1D genetic risk as well as personalized therapeutic approaches.
Collapse
Affiliation(s)
- Iris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Paula Matoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Dário Ligeiro
- Centro de Sangue e Transplantação de Lisboa, Instituto Português do Sangue e Transplantação, Unidade de Imunocirurgia e Imunoterapia, Fundação Champalimaud, Lisboa, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ana Laura Fitas
- Pediatric Endocrinology Unit, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC)/Nova Medical School, Lisbon, Portugal
| | - Catarina Limbert
- Pediatric Endocrinology Unit, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC)/Nova Medical School, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
32
|
McGrail C, Chiou J, Elgamal R, Luckett AM, Oram RA, Benaglio P, Gaulton KJ. Genetic discovery and risk prediction for type 1 diabetes in individuals without high-risk HLA-DR3/DR4 haplotypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.11.23298405. [PMID: 37986756 PMCID: PMC10659516 DOI: 10.1101/2023.11.11.23298405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Over 10% of type 1 diabetes (T1D) cases do not have high-risk HLA-DR3 or DR4 haplotypes with distinct clinical features such as later onset and reduced insulin dependence. To identify genetic drivers of T1D in the absence of DR3/DR4, we performed association and fine-mapping analyses in 12,316 non-DR3/DR4 samples. Risk variants at the MHC and other loci genome-wide had heterogeneity in effects on T1D dependent on DR3/DR4, and non-DR3/DR4 T1D had evidence for a greater polygenic burden. T1D-assocated variants in non-DR3/DR4 were more enriched for loci, regulatory elements, and pathways for antigen presentation, innate immunity, and beta cells, and depleted in T cells, compared to DR3/DR4. Non-DR3/DR4 T1D cases were poorly classified based on an existing genetic risk score GRS2, and we created a new GRS which highly discriminated non-DR3/DR4 T1D from both non-diabetes and T2D. In total we identified heterogeneity in T1D genetic risk and disease mechanisms dependent on high-risk HLA haplotype and which enabled accurate classification of T1D across HLA background.
Collapse
Affiliation(s)
- Carolyn McGrail
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA
| | - Ruth Elgamal
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA
| | - Amber M Luckett
- University of Exeter College of Medicine and Health, Exeter, UK
| | - Richard A Oram
- University of Exeter College of Medicine and Health, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | | | | |
Collapse
|
33
|
Pollé OG, Delfosse A, Michoux N, Peeters F, Duchêne G, Louis J, Van Nieuwenhuyse B, Clapuyt P, Lysy PA. Pancreas Imaging of Children with Type 1 Diabetes Reveals New Patterns and Correlations with Pancreatic Functions. Pediatr Diabetes 2023; 2023:3295812. [PMID: 40303255 PMCID: PMC12017098 DOI: 10.1155/2023/3295812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 05/02/2025] Open
Abstract
Objective To perform a longitudinal characterization of the pancreas in patients with new-onset T1D and investigate the correlations between magnetic resonance imaging (MRI) parameters and pancreatic functions during the first year postdiagnosis. Methods Thirty-one pediatric patients with new-onset T1D and 29 retrospective age-, body mass index-, and sex-matched controls were included in the study. Following hypotheses were investigated: (H1) the value of pancreas volume (PV) parameters in T1D and in controls, (H2) the association between MRI parameters and markers of pancreatic functions, (H3) the ability of MRI parameters to predict glucose homeostasis, (H4) the longitudinal evolution of MRI parameters and glucose homeostasis, per-organ (whole pancreas) and per-subregion (head, body, and tail). Results Patients with new-onset T1D demonstrated a significant decrease of PV at diagnosis compared to controls (-45%), with prepubertal patients having increased pancreas atrophy (+25%) (H1). PV parameters were correlated with C-peptide, and trypsinogen (PVTail and PVHead, respectively). Biparametric regression models including MRI parameters predicted pancreas functions during the first year postdiagnosis (H3). Longitudinal evolution of PV parameters at 1 year postdiagnosis was correlated with PV at diagnosis (R = -0.72) but not with markers of glucose homeostasis (H4). Conclusion Our study shows that longitudinal analysis of pancreases of children with T1D using multiparametric MRI improve the understanding of T1D heterogeneity both in the context of its onset and its evolution.
Collapse
Affiliation(s)
- Olivier G. Pollé
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Antoine Delfosse
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nicolas Michoux
- Department of Radiology, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Frank Peeters
- Department of Radiology, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Gaetan Duchêne
- Department of Radiology, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
- MR Applications, General Electric Healthcare, Diegem, Belgium
| | - Jacques Louis
- Division of Pediatric Endocrinology, Department of Pediatrics, Grand Hôpital de Charleroi, Charleroi, Belgium
| | | | - Philippe Clapuyt
- Department of Radiology, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Philippe A. Lysy
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
34
|
Shapiro MR, Dong X, Perry DJ, McNichols JM, Thirawatananond P, Posgai AL, Peters LD, Motwani K, Musca RS, Muir A, Concannon P, Jacobsen LM, Mathews CE, Wasserfall CH, Haller MJ, Schatz DA, Atkinson MA, Brusko MA, Bacher R, Brusko TM. Human immune phenotyping reveals accelerated aging in type 1 diabetes. JCI Insight 2023; 8:e170767. [PMID: 37498686 PMCID: PMC10544250 DOI: 10.1172/jci.insight.170767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The proportions and phenotypes of immune cell subsets in peripheral blood undergo continual and dramatic remodeling throughout the human life span, which complicates efforts to identify disease-associated immune signatures in type 1 diabetes (T1D). We conducted cross-sectional flow cytometric immune profiling on peripheral blood from 826 individuals (stage 3 T1D, their first-degree relatives, those with ≥2 islet autoantibodies, and autoantibody-negative unaffected controls). We constructed an immune age predictive model in unaffected participants and observed accelerated immune aging in T1D. We used generalized additive models for location, shape, and scale to obtain age-corrected data for flow cytometry and complete blood count readouts, which can be visualized in our interactive portal (ImmScape); 46 parameters were significantly associated with age only, 25 with T1D only, and 23 with both age and T1D. Phenotypes associated with accelerated immunological aging in T1D included increased CXCR3+ and programmed cell death 1-positive (PD-1+) frequencies in naive and memory T cell subsets, despite reduced PD-1 expression levels on memory T cells. Phenotypes associated with T1D after age correction were predictive of T1D status. Our findings demonstrate advanced immune aging in T1D and highlight disease-associated phenotypes for biomarker monitoring and therapeutic interventions.
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Xiaoru Dong
- Diabetes Institute and
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - James M. McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Puchong Thirawatananond
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Leeana D. Peters
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Keshav Motwani
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Richard S. Musca
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Patrick Concannon
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Genetics Institute and
| | - Laura M. Jacobsen
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Clive H. Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Michael J. Haller
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Desmond A. Schatz
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Maigan A. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Rhonda Bacher
- Diabetes Institute and
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
Luckett AM, Weedon MN, Hawkes G, Leslie RD, Oram RA, Grant SFA. Utility of genetic risk scores in type 1 diabetes. Diabetologia 2023; 66:1589-1600. [PMID: 37439792 PMCID: PMC10390619 DOI: 10.1007/s00125-023-05955-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Iterative advances in understanding of the genetics of type 1 diabetes have identified >70 genetic regions associated with risk of the disease, including strong associations across the HLA class II region that account for >50% of heritability. The increased availability of genetic data combined with the decreased costs of generating these data, have facilitated the development of polygenic scores that aggregate risk variants from associated loci into a single number: either a genetic risk score (GRS) or a polygenic risk score (PRS). PRSs incorporate the risk of many possibly correlated variants from across the genome, even if they do not reach genome-wide significance, whereas GRSs estimate the cumulative contribution of a smaller subset of genetic variants that reach genome-wide significance. Type 1 diabetes GRSs have utility in diabetes classification, aiding discrimination between type 1 diabetes, type 2 diabetes and MODY. Type 1 diabetes GRSs are also being used in newborn screening studies to identify infants at risk of future presentation of the disease. Most early studies of type 1 diabetes genetics have been conducted in European ancestry populations, but, to develop accurate GRSs across diverse ancestries, large case-control cohorts from non-European populations are still needed. The current barriers to GRS implementation within healthcare are mainly related to a lack of guidance and knowledge on integration with other biomarkers and clinical variables. Once these limitations are addressed, there is huge potential for 'test and treat' approaches to be used to tailor care for individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Amber M Luckett
- University of Exeter College of Medicine and Health, Exeter, UK
| | | | - Gareth Hawkes
- University of Exeter College of Medicine and Health, Exeter, UK
| | - R David Leslie
- Blizard Institute, Queen Mary University of London, London, UK.
| | - Richard A Oram
- University of Exeter College of Medicine and Health, Exeter, UK.
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK.
| | - Struan F A Grant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Torabi F, Vadakekolathu J, Wyatt R, Leete P, Tombs MA, Richardson CC, Boocock DJ, Turner MD, Morgan NG, Richardson SJ, Christie MR. Differential expression of genes controlling lymphocyte differentiation and migration in two distinct endotypes of type 1 diabetes. Diabet Med 2023; 40:e15155. [PMID: 37246834 DOI: 10.1111/dme.15155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
AIMS Morphological studies of pancreas samples obtained from young people with recent-onset type 1 diabetes have revealed distinct patterns of immune cell infiltration of the pancreatic islets suggestive of two age-associated type 1 diabetes endotypes that differ by inflammatory responses and rates of disease progression. The objective of this study was to investigate whether these proposed disease endotypes are associated with pathological differences in immune cell activation and cytokine secretion by applying multiplexed gene expression analysis to pancreatic tissue from recent-onset type 1 diabetes cases. METHODS RNA was extracted from samples of fixed, paraffin-embedded pancreas tissue from type 1 diabetes cases characterised by endotype and from controls without diabetes. Expression levels of 750 genes associated with autoimmune inflammation were determined by hybridisation to a panel of capture and reporter probes and these were counted as a measure of gene expression. Normalised counts were analysed for differences in expression between 29 type 1 diabetes cases and 7 controls without diabetes, and between the two type 1 diabetes endotypes. RESULTS Ten inflammation-associated genes, including INS, were significantly under-expressed in both endotypes and 48 genes were more highly expressed. A different set of 13 genes associated with the development, activation and migration of lymphocytes was uniquely overexpressed in the pancreas of people developing diabetes at younger age. CONCLUSIONS The results provide evidence that histologically defined type 1 diabetes endotypes differ in their immunopathology and identify inflammatory pathways specifically involved in disease developing at a young age, essential for a better understanding of disease heterogeneity.
Collapse
Affiliation(s)
- Forough Torabi
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | | | - Rebecca Wyatt
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Pia Leete
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | | | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Mark D Turner
- Centre for Diabetes, Chronic Diseases and Ageing, Nottingham Trent University, Nottingham, UK
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | |
Collapse
|
37
|
Abstract
Despite major advances over the past decade, prevention and treatment of type 1 diabetes mellitus (T1DM) remain suboptimal, with large and unexplained variations in individual responses to interventions. The current classification schema for diabetes mellitus does not capture the complexity of this disease or guide clinical management effectively. One of the approaches to achieve the goal of applying precision medicine in diabetes mellitus is to identify endotypes (that is, well-defined subtypes) of the disease each of which has a distinct aetiopathogenesis that might be amenable to specific interventions. Here, we describe epidemiological, clinical, genetic, immunological, histological and metabolic differences within T1DM that, together, suggest heterogeneity in its aetiology and pathogenesis. We then present the emerging endotypes and their impact on T1DM prediction, prevention and treatment.
Collapse
Affiliation(s)
- Maria J Redondo
- Paediatric Diabetes & Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical and Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
38
|
Harsunen M, Haukka J, Harjutsalo V, Mars N, Syreeni A, Härkönen T, Käräjämäki A, Ilonen J, Knip M, Sandholm N, Miettinen PJ, Groop PH, Tuomi T. Residual insulin secretion in individuals with type 1 diabetes in Finland: longitudinal and cross-sectional analyses. Lancet Diabetes Endocrinol 2023; 11:465-473. [PMID: 37290465 DOI: 10.1016/s2213-8587(23)00123-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Contrary to the presumption that type 1 diabetes leads to an absolute insulin deficiency, many individuals with type 1 diabetes have circulating C-peptide years after the diagnosis. We studied factors affecting random serum C-peptide concentration in individuals with type 1 diabetes and the association with diabetic complications. METHODS Our longitudinal analysis included individuals newly diagnosed with type 1 diabetes from Helsinki University Hospital (Helsinki, Finland) with repeated random serum C-peptide and concomitant glucose measurements from within 3 months of diagnosis and at least once later. The long-term cross-sectional analysis included data from participants from 57 centres in Finland who had type 1 diabetes diagnosed after 5 years of age, initiation of insulin treatment within 1 year from diagnosis, and a C-peptide concentration of less than 1·0 nmol/L (FinnDiane study) and patients with type 1 diabetes from the DIREVA study. We tested the association of random serum C-peptide concentrations and polygenic risk scores with one-way ANOVA, and association of random serum C-peptide concentrations, polygenic risk scores, and clinical factors with logistic regression. FINDINGS The longitudinal analysis included 847 participants younger than 16 years and 110 aged 16 years or older. In the longitudinal analysis, age at diagnosis strongly correlated with the decline in C-peptide secretion. The cross-sectional analysis included 3984 participants from FinnDiane and 645 from DIREVA. In the cross-sectional analysis, at a median duration of 21·6 years (IQR 12·5-31·2), 776 (19·4%) of 3984 FinnDiane participants had residual random serum C-peptide secretion (>0·02 nmol/L), which was associated with lower type 1 diabetes polygenic risk compared with participants without random serum C-peptide (p<0·0001). Random serum C-peptide was inversely associated with hypertension, HbA1c, and cholesterol, but also independently with microvascular complications (adjusted OR 0·61 [95% CI 0·38-0·96], p=0·033, for nephropathy; 0·55 [0·34-0·89], p=0·014, for retinopathy). INTERPRETATION Although children with multiple autoantibodies and HLA risk genotypes progressed to absolute insulin deficiency rapidly, many adolescents and adults had residual random serum C-peptide decades after the diagnosis. Polygenic risk of type 1 and type 2 diabetes affected residual random serum C-peptide. Even low residual random serum C-peptide concentrations seemed to be associated with a beneficial complications profile. FUNDING Folkhälsan Research Foundation; Academy of Finland; University of Helsinki and Helsinki University Hospital; Medical Society of Finland; the Sigrid Juselius Foundation; the "Liv and Hälsa" Society; Novo Nordisk Foundation; and State Research Funding via the Helsinki University Hospital, the Vasa Hospital District, Turku University Hospital, Vasa Central Hospital, Jakobstadsnejdens Heart Foundation, and the Medical Foundation of Vaasa.
Collapse
Affiliation(s)
- Minna Harsunen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jani Haukka
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Annemari Käräjämäki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Diabetes unit of Ostrobothnia, Wellbeing Services County of Ostrobothnia, Vaasa, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Johanna Miettinen
- Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Diabetes, Central Medical School, Monash University, Melbourne, VIC, Australia
| | - Tiinamaija Tuomi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
39
|
Wang Y, Zhao J, Gu Y, Wang H, Jiang M, Zhao S, Qing H, Ni J. Cathepsin H: molecular characteristics and clues to function and mechanism. Biochem Pharmacol 2023; 212:115585. [PMID: 37148981 DOI: 10.1016/j.bcp.2023.115585] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Cathepsin H (CatH) is a lysosomal cysteine protease with a unique aminopeptidase activity that is extensively expressed in the lung, pancreas, thymus, kidney, liver, skin, and brain. Owing to its specific enzymatic activity, CatH has critical effects on the regulation of biological behaviours of cancer cells and pathological processes in brain diseases. Moreover, a neutral pH level is optimal for CatH activity, so it is expected to be active in the extra-lysosomal and extracellular space. In the present review, we describe the expression, maturation, and enzymatic properties of CatH, and summarize the available experimental evidence that mechanistically links CatH to various physiological and pathological processes. Finally, we discuss the challenges and potentials of CatH inhibitors in CatH-induced disease therapy.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Juan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China; Aerospace Medical Center, Aerospace Center Hospital, Beijing, 100081, China
| | - Yebo Gu
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Haiping Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, China
| | - Muzhou Jiang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
40
|
Incorporating genetics in identifying peanut allergy risk and tailoring allergen immunotherapy: A perspective on the genetic findings from the LEAP trial. J Allergy Clin Immunol 2023; 151:841-847. [PMID: 36732171 DOI: 10.1016/j.jaci.2022.12.819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023]
Abstract
Examining the genetics of peanut allergy (PA) in the context of clinical trial interventions and outcomes provides an opportunity to not only understand gene-environment interactions for PA risk but to also understand the benefit of allergen immunotherapy. A consistent theme in the genetics of food allergy is that in keeping with the dual allergen exposure hypothesis, barrier- and immune-related genes are most commonly implicated in food allergy and tolerance. With a focus on PA, we review how genetic risk factors across 3 genes (FLG, MALT1, and HLA-DQA1) have helped delineate distinct allergic characteristics and outcomes in the context of environmental interventions in the Learning Early about Peanut Allergy (LEAP) study and other clinical trials. We specifically consider and present a framework for genetic risk prediction for the development of PA and discuss how genetics, age, and oral consumption intertwine to predict PA outcome. Although there is some promise in this proposed framework, a better understanding of the mechanistic pathways by which PA develops and persists is needed to develop targeted therapeutics for established disease. Only by understanding the mechanisms by which PA develops, persists, and resolves can we identify adjuvants to oral immunotherapy to make older children and adults immunologically similar to their younger, more malleable counterparts and thus more likely to achieve long-term tolerance.
Collapse
|
41
|
Kanchan K, Shankar G, Huffaker MF, Bahnson HT, Chinthrajah RS, Sanda S, Manohar M, Ling H, Paschall JE, Toit GD, Ruczinski I, Togias A, Lack G, Nadeau KC, Jones SM, Nepom GT, Mathias RA. HLA-associated outcomes in peanut oral immunotherapy trials identify mechanistic and clinical determinants of therapeutic success. Front Immunol 2022; 13:941839. [PMID: 36466872 PMCID: PMC9717393 DOI: 10.3389/fimmu.2022.941839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Rationale Previous studies identified an interaction between HLA and oral peanut exposure. HLA-DQA1*01:02 had a protective role with the induction of Ara h 2 epitope-specific IgG4 associated with peanut consumption during the LEAP clinical trial for prevention of peanut allergy, while it was a risk allele for peanut allergy in the peanut avoidance group. We have now evaluated this gene-environment interaction in two subsequent peanut oral immunotherapy (OIT) trials - IMPACT and POISED - to better understand the potential for the HLA-DQA1*01:02 allele as an indicator of higher likelihood of desensitization, sustained unresponsiveness, and peanut allergy remission. Methods We determined HLA-DQA1*01:02 carrier status using genome sequencing from POISED (N=118, age: 7-55yr) and IMPACT (N=126, age: 12-<48mo). We tested for association with remission, sustained unresponsiveness (SU), and desensitization in the OIT groups, as well as peanut component specific IgG4 (psIgG4) using generalized linear models and adjusting for relevant covariates and ancestry. Results While not quite statistically significant, a higher proportion of HLA-DQA1*01:02 carriers receiving OIT in IMPACT were desensitized (93%) compared to non-carriers (78%); odds ratio (OR)=5.74 (p=0.06). In this sample we also observed that a higher proportion of carriers achieved remission (35%) compared to non-carriers (22%); OR=1.26 (p=0.80). In POISED, carriers more frequently attained continued desensitization (80% versus 61% among non-carriers; OR=1.28, p=0.86) and achieved SU (52% versus 31%; OR=2.32, p=0.19). psIgG4 associations with HLA-DQA1*01:02 in the OIT arm of IMPACT which included younger study subjects recapitulated patterns noted in LEAP, but no associations of note were observed in the older POISED study subjects. Conclusions Findings across three clinical trials show a pattern of a gene environment interaction between HLA and oral peanut exposure. Age, and prior sensitization contribute additional determinants of outcomes, consistent with a mechanism of restricted antigen recognition fundamental to driving protective immune responses to OIT.
Collapse
Affiliation(s)
- Kanika Kanchan
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Gautam Shankar
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | | | - Henry T. Bahnson
- The Immune Tolerance Network, Seattle, WA, United States,Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - R Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, United States
| | - Srinath Sanda
- The Immune Tolerance Network, San Francisco, CA, United States
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, United States
| | - Hua Ling
- Institute of Genetic Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Justin E. Paschall
- Institute of Genetic Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - George Du Toit
- The Department of Pediatric Allergy, Division of Asthma, Allergy and Lung Biology, King’s College London, and Guy’s and St Thomas’ National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Gideon Lack
- The Department of Pediatric Allergy, Division of Asthma, Allergy and Lung Biology, King’s College London, and Guy’s and St Thomas’ National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, United States
| | - Stacie M. Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, AR, United States
| | - Gerald T. Nepom
- The Immune Tolerance Network, Seattle, WA, United States,Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Rasika A. Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Rasika Mathias,
| |
Collapse
|
42
|
Makam AA, Biswas A, Kothegala L, Gandasi NR. Setting the Stage for Insulin Granule Dysfunction during Type-1-Diabetes: Is ER Stress the Culprit? Biomedicines 2022; 10:2695. [PMID: 36359215 PMCID: PMC9687317 DOI: 10.3390/biomedicines10112695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 02/06/2025] Open
Abstract
Type-1-diabetes (T1D) is a multifactorial disorder with a global incidence of about 8.4 million individuals in 2021. It is primarily classified as an autoimmune disorder, where the pancreatic β-cells are unable to secrete sufficient insulin. This leads to elevated blood glucose levels (hyperglycemia). The development of T1D is an intricate interplay between various risk factors, such as genetic, environmental, and cellular elements. In this review, we focus on the cellular elements, such as ER (endoplasmic reticulum) stress and its consequences for T1D pathogenesis. One of the major repercussions of ER stress is defective protein processing. A well-studied example is that of islet amyloid polypeptide (IAPP), which is known to form cytotoxic amyloid plaques when misfolded. This review discusses the possible association between ER stress, IAPP, and amyloid formation in β-cells and its consequences in T1D. Additionally, ER stress also leads to autoantigen generation. This is driven by the loss of Ca++ ion homeostasis. Imbalanced Ca++ levels lead to abnormal activation of enzymes, causing post-translational modification of β-cell proteins. These modified proteins act as autoantigens and trigger the autoimmune response seen in T1D islets. Several of these autoantigens are also crucial for insulin granule biogenesis, processing, and release. Here, we explore the possible associations between ER stress leading to defects in insulin secretion and ultimately β-cell destruction.
Collapse
Affiliation(s)
- Aishwarya A. Makam
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Anusmita Biswas
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Lakshmi Kothegala
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
- Unit of Metabolic Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nikhil R. Gandasi
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
- Unit of Metabolic Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Medical Cell Biology, Uppsala University, BMC 571, 751 23 Uppsala, Sweden
| |
Collapse
|
43
|
Chen J, Li R, Knapp S, Zhu G, Whitener RL, Leiter EH, Mathews CE. Intergenomic and epistatic interactions control free radical mediated pancreatic β-cell damage. Front Genet 2022; 13:994501. [PMID: 36276935 PMCID: PMC9585181 DOI: 10.3389/fgene.2022.994501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Alloxan (AL)-generated Reactive Oxygen Species (ROS) selectively destroy insulin-producing pancreatic β-cells. A previous genome-wide scan (GWS) using a cohort of 296 F2 hybrids between NOD (AL-sensitive) and ALR (AL-resistant) mice identified linkages contributing to β-cell susceptibility or resistance to AL-induced diabetes on Chromosomes (Chr) 2, 3, 8, and a single nucleotide polymorphism in mt-Nd2 of the mitochondrial genome (mtDNA). AL treatment of congenic and consomic NOD mouse stocks confirmed resistance linked to both the mtDNA and the Chr 8 locus from ALR [NOD.mtALR.ALR-(D8Mit293-D8Mit137)]. To identify possible epistatic interactions, the GWS analysis was expanded to 678 F2 mice. ALR-derived diabetes-resistance linkages on Chr 8 as well as the mt-Nd2 a allele were confirmed and novel additional linkages on Chr 4, 5, 6, 7, and 13 were identified. Epistasis was observed between the linkages on Chr 8 and 2 and Chr 8 and 6. Furthermore, the mt-Nd2 genotype affected the epistatic interactions between Chr 8 and 2. These results demonstrate that a combination of nuclear-cytoplasmic genome interactions regulates β-cell sensitivity to ROS-mediated ALD.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Renhua Li
- Henry M Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
| | - Sarah Knapp
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Guizhi Zhu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Robert L. Whitener
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | | | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
44
|
Perdas E, Gadzalska K, Hrytsiuk I, Borowiec M, Fendler W, Młynarski W. Case report: Neonatal diabetes mellitus with congenital hypothyroidism as a result of biallelic heterozygous mutations in GLIS3 gene. Pediatr Diabetes 2022; 23:668-674. [PMID: 35394098 DOI: 10.1111/pedi.13341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Neonatal diabetes mellitus with congenital hypothyroidism (NDH) syndrome (MIM# 610199) is a rare disease caused by autosomal recessive mutations in the GLIS3 gene. GLIS3 is an important transcription factor that might acts as both a repressor and activator of transcription. To date, 22 cases of NDH syndrome from 16 families and 11 countries have been described. Herein, we report a child who developed diabetes during the first week of age. Additionally, she suffered from congenital hypothyroidism, cardiac abnormalities, and polycystic kidney disease. Genetic analysis revealed that patient is a carrier of two novel heterozygous mutations, p.Pro444fsdelG (c.1330delC) and p.His647Arg (c.1940A > G) in the GLIS3 gene. Each was inherited from clinically healthy father and mother, respectively. Bioinformatic tools (SIFT, PolyPhen2, PROVEAN and SWISS-MODEL) declared that the p.His647Arg (c.1940A > G) variant has strong detrimental effect and disturbs Kruppel-like zinc finger domain. All but one so far described cases of NDH syndrome have been caused by homozygous of GLIS3, making the described case the second case of pathogenic, compound heterozygosity of GLIS3 worldwide posing substantial clinical novelty and detailing an interesting interplay between the observed variants and GLIS3 expression, which seems to be autoregulated. Hence, the damaging missense mutation may further reduce the expression of any remaining functional alleles. This case report expands our understanding of the clinical phenotype, treatment approaches, and outcome of infants with GLIS3 mutations and indicates the need for further research to deepen our understanding of the role of GLIS3.
Collapse
Affiliation(s)
- Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Karolina Gadzalska
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ihor Hrytsiuk
- Western Ukrainian Specialised Children's Medical Centre, Lviv, Ukraine
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
45
|
Sandholm N, Rubio García A, Pekalski ML, Inshaw JRJ, Cutler AJ, Todd JA. Thymocyte regulatory variant alters transcription factor binding and protects from type 1 diabetes in infants. Sci Rep 2022; 12:14137. [PMID: 35986039 PMCID: PMC9391468 DOI: 10.1038/s41598-022-18296-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
We recently mapped a genetic susceptibility locus on chromosome 6q22.33 for type 1 diabetes (T1D) diagnosed below the age of 7 years between the PTPRK and thymocyte-selection-associated (THEMIS) genes. As the thymus plays a central role in shaping the T cell repertoire, we aimed to identify the most likely causal genetic factors behind this association using thymocyte genomic data. In four thymocyte populations, we identified 253 DNA sequence motifs underlying histone modifications. The G insertion allele of rs138300818, associated with protection from diabetes, created thymocyte motifs for multiple histone modifications and thymocyte types. In a parallel approach to identifying variants that alter transcription factor binding motifs, the same variant disrupted a predicted motif for Rfx7, which is abundantly expressed in the thymus. Chromatin state and RNA sequencing data suggested strong transcription overlapping rs138300818 in fetal thymus, while expression quantitative trait locus and chromatin conformation data associate the insertion with lower THEMIS expression. Extending the analysis to other T1D loci further highlighted rs66733041 affecting the GATA3 transcription factor binding in the AFF3 locus. Taken together, our results support a role for thymic THEMIS gene expression and the rs138300818 variant in promoting the development of early-onset T1D.
Collapse
Affiliation(s)
- Niina Sandholm
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
- Folkhälsan Research Center, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Arcadio Rubio García
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Marcin L Pekalski
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jamie R J Inshaw
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Antony J Cutler
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Redondo MJ, Gignoux CR, Dabelea D, Hagopian WA, Onengut-Gumuscu S, Oram RA, Rich SS. Type 1 diabetes in diverse ancestries and the use of genetic risk scores. Lancet Diabetes Endocrinol 2022; 10:597-608. [PMID: 35724677 PMCID: PMC10024251 DOI: 10.1016/s2213-8587(22)00159-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023]
Abstract
Over 75 genetic loci within and outside of the HLA region influence type 1 diabetes risk. Genetic risk scores (GRS), which facilitate the integration of complex genetic information, have been developed in type 1 diabetes and incorporated into models and algorithms for classification, prognosis, and prediction of disease and response to preventive and therapeutic interventions. However, the development and validation of GRS across different ancestries is still emerging, as is knowledge on type 1 diabetes genetics in populations of diverse genetic ancestries. In this Review, we provide a summary of the current evidence on the evolutionary genetic variation in type 1 diabetes and the racial and ethnic differences in type 1 diabetes epidemiology, clinical characteristics, and preclinical course. We also discuss the influence of genetics on type 1 diabetes with differences across ancestries and the development and validation of GRS in various populations.
Collapse
Affiliation(s)
- Maria J Redondo
- Division of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Christopher R Gignoux
- Department of Medicine and Colorado Center for Personalized Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William A Hagopian
- Division of Diabetes Programs, Pacific Northwest Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, UK; The Academic Kidney Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Stephen S Rich
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
47
|
Parviainen A, Härkönen T, Ilonen J, But A, Knip M. Heterogeneity of Type 1 Diabetes at Diagnosis Supports Existence of Age-Related Endotypes. Diabetes Care 2022; 45:871-879. [PMID: 35147706 DOI: 10.2337/dc21-1251] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/19/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Previous findings suggest that there are age-related endotypes of type 1 diabetes with different underlying etiopathological mechanisms in those diagnosed at age <7 years compared with those diagnosed at age ≥13 years. We set out to explore whether variation in demographic, clinical, autoimmune, and genetic characteristics of children and adolescents with newly diagnosed type 1 diabetes support the existence of these proposed endotypes. RESEARCH DESIGN AND METHODS We used data from the Finnish Pediatric Diabetes Register to analyze characteristics of 6,015 children and adolescents diagnosed with type 1 diabetes between 2003 and 2019. We described and compared demographic data, clinical characteristics at diagnosis, autoantibody profiles, and HLA class II-associated disease risk between three groups formed based on age at diagnosis: <7, 7-12, and ≥13 years. RESULTS We found significant age-related differences in most of the characteristics analyzed. Children diagnosed at age <7 years were characterized by a higher prevalence of affected first-degree relatives, stronger HLA-conferred disease susceptibility, and higher number of autoantibodies at diagnosis, in particular a higher frequency of insulin autoantibodies, when compared with older children. Those diagnosed at age ≥13 years had a considerably higher male preponderance, higher frequency of glutamic acid decarboxylase autoantibodies, longer duration of symptoms before diagnosis, and more severe metabolic decompensation, reflected, for example, by a higher frequency of diabetic ketoacidosis. CONCLUSIONS Our findings suggest that the heterogeneity of type 1 diabetes is associated with the underlying disease process and support the existence of distinct endotypes of type 1 diabetes related to age at diagnosis.
Collapse
Affiliation(s)
- Anna Parviainen
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anna But
- Biostatistics Consulting, Department of Public Health, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
48
|
Personalized Immunotherapies for Type 1 Diabetes: Who, What, When, and How? J Pers Med 2022; 12:jpm12040542. [PMID: 35455658 PMCID: PMC9031881 DOI: 10.3390/jpm12040542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the immunopathological features of type 1 diabetes (T1D) has greatly improved over the past two decades and has shed light on disease heterogeneity dictated by multiple immune, metabolic, and clinical parameters. This may explain the limited effects of immunotherapies tested so far to durably revert or prevent T1D, for which life-long insulin replacement remains the only therapeutic option. In the era of omics and precision medicine, offering personalized treatment could contribute to turning this tide. Here, we discuss how to structure the selection of the right patient at the right time for the right treatment. This individualized therapeutic approach involves enrolling patients at a defined disease stage depending on the target and mode of action of the selected drug, and better stratifying patients based on their T1D endotype, reflecting intrinsic disease aggressiveness and immune context. To this end, biomarker screening will be critical, not only to help stratify patients and disease stage, but also to select the best predicted responders ahead of treatment and at early time points during clinical trials. This strategy could contribute to increase therapeutic efficacy, notably through the selection of drugs with complementary effects, and to further develop precision multi-hit medicine.
Collapse
|
49
|
Sudhir PR, Lin TD, Zhang Q. HLA Allele-Specific Quantitative Profiling of Type 1 Diabetic B Lymphocyte Immunopeptidome. J Proteome Res 2022; 21:250-264. [PMID: 34932366 PMCID: PMC8742597 DOI: 10.1021/acs.jproteome.1c00842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peptide ligands presented by human leukocyte antigen (HLA) molecules on the cell surface represent the immunopeptidome that could be utilized for identification of antigenic peptides for immunotherapy and prevention of autoimmune diseases. Although T-cells are well-known key players in the destruction of pancreatic beta-cells in type 1 diabetes (T1D), increasing evidence points toward a role for B-cells in disease pathogenesis. However, as antigen presenting cells, little is known about the comprehensive immunopeptidome of B cells and their changes in the context of T1D. We performed HLA allele-specific quantitative immunopeptidomics using B lymphocytes derived from T1D patients and healthy controls. Hundreds of HLA-I and HLA-II immunopeptides were identified as differentially regulated in T1D per HLA allele for B cells sharing identical HLA alleles. The results were further validated using additional T1D and healthy B cells with partially overlapped HLA alleles. Differentially expressed immunopeptides were confirmed with targeted proteomics and for reactivity using known T-cell assays in the immune epitope database. Considering samples with identical HLA alleles are difficult to obtain for T1D and other similar HLA-restricted diseases, our work represents a viable approach to better understand HLA allele-specific antigen presentation and may facilitate identification of immunopeptides for therapeutic applications in autoimmune diseases. Data are available via ProteomeXchange with identifier PXD026184.
Collapse
Affiliation(s)
- Putty-Reddy Sudhir
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Tai-Du Lin
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA,Corresponding author: Qibin Zhang ()
| |
Collapse
|
50
|
Osman AE, Brema I, AlQurashi A, Al-Jurayyan A, Bradley B, Hamza MA. Single nucleotide polymorphism rs 2070874 at Interleukin-4 is associated with increased risk of type 1 diabetes mellitus independently of human leukocyte antigens. Int J Immunopathol Pharmacol 2022; 36:3946320221090330. [PMID: 35404688 PMCID: PMC9006359 DOI: 10.1177/03946320221090330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction Type 1 diabetes mellitus (T1DM) is characterized by autoimmune destruction of insulin-producing pancreatic beta (β-) cells. Previous studies suggested an imbalance between and pro- and anti-inflammatory cytokines exacerbates T1DM development. Objectives We aimed to test the hypothesis that patients with T1DM carry a higher frequency of regulatory genes associated with low levels of the anti-inflammatory cytokines interleukin-4 (IL-4), its receptor (IL-4R), and interleukin-10 (IL-10). Methods Accordingly, we compared frequencies of five different single nucleotide polymorphisms (SNPs) in T1DM patients and healthy controls who had been typed for HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes. Results The frequencies of rs2070874 (IL-4) alleles C and T differed between T1DM patients and controls (cp = 0.0065), as did their codominant (cp = 0.026) and recessive (cp = 0.015) models. Increased frequencies were observed in T1DM patients for HLA alleles: DRB1*03 (pc < 0.0013), DRB1*04 (cp = 0.0169), DQA1*03 (cp = 0.0222), DQA1*05 (cp < 0.0006), DQB1*02 (cp = 0.0005), and DQB1*06 (cp < 0.0005). And lower frequencies were observed for: DRB1*07 (cp = 0.0078), DRB1*11 (cp = 0.0013), DRB1*13 (cp < 0.0364), DRB1*15 (cp < 0.0013), DQA1*01 (cp < 0.0006), and DQA1*02 (cp = 0.0348). Certain DRB1: DQA1: DQB1 haplotypes showed greater frequencies, including, 03:05:02 (p < 0.0001) and 04:03:03 (p = 0.0017), whereas others showed lower frequencies, including, 07:02:02 (p = 0.0032), 11:05:03 (p = 0.0007), and 15:01:06 (p = 0.0002). Stratification for the above HLA haplotypes with rs2070874 C/C exhibited no significant differences between T1DM patients overall and controls. However, when stratified for the vulnerable HLA haplotype (03:05:02/04:03:03), young patients in whom T1DM began at ≤13 years had a higher frequency of the SNP (rs2070874 C/C); a gene associated with low IL-4 production (p < 0.024). Conclusion This study suggests that possession of the rs2070874 C/C genotype, which is associated with low production of IL-4, increases the risk of T1DM in young individuals carrying vulnerable HLA alleles/haplotypes.
Collapse
Affiliation(s)
- Awad E Osman
- Pathology and Clinical Laboratory Management Department, 37849King Fahad Medical City, Riyadh, Saudi Arabia
| | - Imad Brema
- Obesity, Endocrine and Metabolism Center, 37849King Fahad Medical City, Riyadh, Saudi Arabia
| | - Alaa AlQurashi
- Research Center, 37849King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdullah Al-Jurayyan
- Pathology and Clinical Laboratory Management Department, 37849King Fahad Medical City, Riyadh, Saudi Arabia
| | - Benjamin Bradley
- National Centre for Biomedical Engineering Science, 175150National University of Ireland, Galway, Ireland
| | - Muaawia A Hamza
- Research Center, 37849King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|