1
|
Beloqui A. Gut hormone stimulation as a therapeutic approach in oral peptide delivery. J Control Release 2024; 373:31-37. [PMID: 38971429 PMCID: PMC11413617 DOI: 10.1016/j.jconrel.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I discuss the research that we have conducted on gut hormone stimulation as a therapeutic strategy in oral peptide delivery. One of the greatest challenges in oral drug delivery involves the development of new drug delivery systems that enable the absorption of therapeutic peptides into the systemic circulation at therapeutically relevant concentrations. This scenario is especially challenging in the treatment of chronic diseases (such as type 2 diabetes mellitus), wherein daily injections are often needed. However, for certain peptides, there may be an alternative in drug delivery to meet the need for increased peptide bioavailability; this is the case for gut hormone mimetics (including glucagon-like peptide (GLP)-1 or GLP-2). One plausible alternative for improved oral delivery of these peptides is the co-stimulation of the endogenous secretion of the hormone to reach therapeutic levels of the peptide. This oration will be focused on studies conducted on the stimulation of gut hormones secreted from enteroendocrine L cells in the treatment of gastrointestinal disorders, including a critical discussion of the limitations and future perspectives of implementing this approach in the clinical setting.
Collapse
Affiliation(s)
- Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
2
|
Yoon J, Lee DG, Song H, Hong D, Park JS, Hong C, An KM, Lee JW, Park JT, Yoon H, Tak J, Kim SG. Xelaglifam, a novel GPR40/FFAR1 agonist, exhibits enhanced β-arrestin recruitment and sustained glycemic control for type 2 diabetes. Biomed Pharmacother 2024; 177:117044. [PMID: 38941892 DOI: 10.1016/j.biopha.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Xelaglifam, developed as a GPR40/FFAR1 agonist, induces glucose-dependent insulin secretion and reduces circulating glucose levels for Type 2 diabetes treatment. This study investigated the effects of Xelaglifam in comparison with Fasiglifam on the in vitro/in vivo anti-diabetic efficacy and selectivity, and the mechanistic basis. In vitro studies on downstream targets of Xelaglifam were performed in GPR40-expressing cells. Xelaglifam treatment exhibited dose-dependent effects, increasing inositol phosphate-1, Ca2+ mobilization, and β-arrestin recruitment (EC50: 0.76 nM, 20 nM, 68 nM), supporting its role in Gq protein-dependent and G-protein-independent mechanisms. Despite a lack of change in the cAMP pathway, the Xelaglifam-treated group demonstrated increased insulin secretion compared to Fasiglifam in HIT-T15 β cells under high glucose conditions. High doses of Xelaglifam (<30 mg/kg) did not induce hypoglycemia in Sprague-Dawley rats. In addition, Xelaglifam lowered glucose and increased insulin levels in diabetic rat models (GK, ZDF, OLETF). In GK rats, 1 mg/kg of Xelaglifam improved glucose tolerance (33.4 % and 15.6 % for the 1 and 5 h) after consecutive glucose challenges. Moreover, repeated dosing in ZDF and OLETF rats resulted in superior glucose tolerance (34 % and 35.1 % in ZDF and OLETF), reducing fasting hyperglycemia (18.3 % and 30 % in ZDF and OLETF) at lower doses; Xelaglifam demonstrated a longer-lasting effect with a greater effect on β-cells including 3.8-fold enhanced insulin secretion. Co-treatment of Xelaglifam with SGLT-2 inhibitors showed additive or synergistic effects. Collectively, these results demonstrate the therapeutic efficacy and selectivity of Xelaglifam on GPR40, supportive of its potential for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Jongmin Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Don-Gil Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Haengjin Song
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dahae Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Soo Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Changhee Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Kyung Mi An
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jung Woo Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Joon-Tae Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Hongchul Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
3
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
4
|
Prabhakar PK, Batiha GES. Potential Therapeutic Targets for the Management of Diabetes Mellitus Type 2. Curr Med Chem 2024; 31:3167-3181. [PMID: 37125833 DOI: 10.2174/0929867330666230501172557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 05/02/2023]
Abstract
Diabetes is one of the lifelong chronic metabolic diseases which is prevalent globally. There is a continuous rise in the number of people suffering from this disease with time. It is characterized by hyperglycemia, which leads to severe damage to the body's system, such as blood vessels and nerves. Diabetes occurs due to the dysfunction of pancreatic β -cell which leads to the reduction in the production of insulin or body cells unable to use insulin produce efficiently. As per the data shared International diabetes federation (IDF), there are around 415 million affected by this disease worldwide. There are a number of hit targets available that can be focused on treating diabetes. There are many drugs available and still under development for the treatment of type 2 diabetes. Inhibition of gluconeogenesis, lipolysis, fatty acid oxidation, and glucokinase activator is emerging targets for type 2 diabetes treatment. Diabetes management can be supplemented with drug intervention for obesity. The antidiabetic drug sale is the second-largest in the world, trailing only that of cancer. The future of managing diabetes will be guided by research on various novel targets and the development of various therapeutic leads, such as GLP-1 agonists, DPP-IV inhibitors, and SGLT2 inhibitors that have recently completed their different phases of clinical trials. Among these therapeutic targets associated with type 2 diabetes, this review focused on some common therapeutic targets for developing novel drug candidates of the newer generation with better safety and efficacy.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Division of Research and Development, Lovely Professional University, Phagwara (Punjab) 144411, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
5
|
Zhao X, Ahn D, Nam G, Kwon J, Song S, Kang MJ, Ahn H, Chung SJ. Identification of Crocetin as a Dual Agonist of GPR40 and GPR120 Responsible for the Antidiabetic Effect of Saffron. Nutrients 2023; 15:4774. [PMID: 38004168 PMCID: PMC10675071 DOI: 10.3390/nu15224774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Crocin, a glycoside of crocetin, has been known as the principal component responsible for saffron's antidiabetic, anticancer, and anti-inflammatory effects. Crocetin, originating from the hydrolytic cleavage of crocin in biological systems, was subjected to ligand-based virtual screening in this investigation. Subsequent biochemical analysis unveiled crocetin, not crocin, as a novel dual GPR40 and GPR120 agonist, demonstrating a marked preference for GPR40 and GPR120 over peroxisome proliferator-activated receptors (PPAR)γ. This compound notably enhanced insulin and GLP-1 secretion from pancreatic β-cells and intestinal neuroendocrine cells, respectively, presenting a dual mechanism of action in glucose-lowering effects. Docking simulations showed that crocetin emulates the binding characteristics of natural ligands through hydrogen bonds and hydrophobic interactions, whereas crocin's hindered fit within the binding pocket is attributed to steric constraints. Collectively, for the first time, this study unveils crocetin as the true active component of saffron, functioning as a GPR40/120 agonist with potential implications in antidiabetic interventions.
Collapse
Affiliation(s)
- Xiaodi Zhao
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Gibeom Nam
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Jihee Kwon
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Songyi Song
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Min Ji Kang
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Hyejin Ahn
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Sang J. Chung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
6
|
Pon'kina DA, Kuranov SO, Marenina MK, Meshkova YV, Zhukova NA, Khvostov MV, Luzina OA, Tolstikova TG, Salakhutdinov NF. Bornyl-Containing Derivatives of Benzyloxyphenylpropanoic Acid as FFAR1 Agonists: In Vitro and In Vivo Studies. Pharmaceutics 2023; 15:1670. [PMID: 37376118 DOI: 10.3390/pharmaceutics15061670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases worldwide. Several classes of hypoglycemic drugs are used to treat it, but various side effects limit their clinical use. Consequently, the search for new anti-diabetic agents remains an urgent task for modern pharmacology. In this investigation, we examined the hypoglycemic effects of bornyl-containing benzyloxyphenylpropanoic acid derivatives (QS-528 and QS-619) in a diet-induced model of T2DM. Animals were given the tested compounds per os at a dose of 30 mg/kg for 4 weeks. At the end of the experiment, compound QS-619 demonstrated a hypoglycemic effect, while QS-528 showed hepatoprotection. In addition, we performed a number of in vitro and in vivo experiments to study the presumed mechanism of action of the tested agents. Compound QS-619 was determined to activate the free fatty acid receptor-1 (FFAR1) similarly to the reference agonist GW9508 and its structural analogue QS-528. Both agents also increased insulin and glucose-dependent insulinotropic polypeptide concentrations in CD-1 mice. Our results indicate that QS-619 and QS-528 are probably full FFAR1 agonists.
Collapse
Affiliation(s)
- Darya A Pon'kina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Sergey O Kuranov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Mariya K Marenina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Yulia V Meshkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nataliya A Zhukova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Mikhail V Khvostov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga A Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Tatiana G Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Dallatana A, Cremonesi L, Trombetta M, Fracasso G, Nocini R, Giacomello L, Innamorati G. G Protein-Coupled Receptors and the Rise of Type 2 Diabetes in Children. Biomedicines 2023; 11:1576. [PMID: 37371671 DOI: 10.3390/biomedicines11061576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The human genome counts hundreds of GPCRs specialized to sense thousands of different extracellular cues, including light, odorants and nutrients in addition to hormones. Primordial GPCRs were likely glucose transporters that became sensors to monitor the abundance of nutrients and direct the cell to switch from aerobic metabolism to fermentation. Human β cells express multiple GPCRs that contribute to regulate glucose homeostasis, cooperating with many others expressed by a variety of cell types and tissues. These GPCRs are intensely studied as pharmacological targets to treat type 2 diabetes in adults. The dramatic rise of type 2 diabetes incidence in pediatric age is likely correlated to the rapidly evolving lifestyle of children and adolescents of the new century. Current pharmacological treatments are based on therapies designed for adults, while youth and puberty are characterized by a different hormonal balance related to glucose metabolism. This review focuses on GPCRs functional traits that are relevant for β cells function, with an emphasis on aspects that could help to differentiate new treatments specifically addressed to young type 2 diabetes patients.
Collapse
Affiliation(s)
- Alessia Dallatana
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Linda Cremonesi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Maddalena Trombetta
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, 37124 Verona, Italy
| | - Giulio Fracasso
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Luca Giacomello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| |
Collapse
|
8
|
Mu-U-Min RBA, Diane A, Allouch A, Al-Siddiqi HH. Ca 2+-Mediated Signaling Pathways: A Promising Target for the Successful Generation of Mature and Functional Stem Cell-Derived Pancreatic Beta Cells In Vitro. Biomedicines 2023; 11:1577. [PMID: 37371672 DOI: 10.3390/biomedicines11061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is a chronic disease affecting over 500 million adults globally and is mainly categorized as type 1 diabetes mellitus (T1DM), where pancreatic beta cells are destroyed, and type 2 diabetes mellitus (T2DM), characterized by beta cell dysfunction. This review highlights the importance of the divalent cation calcium (Ca2+) and its associated signaling pathways in the proper functioning of beta cells and underlines the effects of Ca2+ dysfunction on beta cell function and its implications for the onset of diabetes. Great interest and promise are held by human pluripotent stem cell (hPSC) technology to generate functional pancreatic beta cells from diabetic patient-derived stem cells to replace the dysfunctional cells, thereby compensating for insulin deficiency and reducing the comorbidities of the disease and its associated financial and social burden on the patient and society. Beta-like cells generated by most current differentiation protocols have blunted functionality compared to their adult human counterparts. The Ca2+ dynamics in stem cell-derived beta-like cells and adult beta cells are summarized in this review, revealing the importance of proper Ca2+ homeostasis in beta-cell function. Consequently, the importance of targeting Ca2+ function in differentiation protocols is suggested to improve current strategies to use hPSCs to generate mature and functional beta-like cells with a comparable glucose-stimulated insulin secretion (GSIS) profile to adult beta cells.
Collapse
Affiliation(s)
- Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Asma Allouch
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Heba H Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
9
|
Wang X, Li X, Wei S, Wang M, Xu Y, Hu W, Gao Z, Liu R, Wang S, Ji G. Discovery of Novel and Selective G-Protein Coupled Receptor 120 (GPR120) Agonists for the Treatment of Type 2 Diabetes Mellitus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249018. [PMID: 36558150 PMCID: PMC9781217 DOI: 10.3390/molecules27249018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM), a chronic metabolic disorder characterized by high blood glucose, not only poses a serious threat to human life and health, but also places an economic burden on society. Currently available antidiabetic pharmacological agents have some adverse effects, which have stimulated researchers to explore novel antidiabetic agents with different mechanisms of action. G-protein Coupled Receptor 120 (GPR120), also known as free fatty acid receptor 4 (FFAR4), which is activated by medium-chain and long-chain fatty acids, has emerged as an interesting potential target for the treatment of metabolic disorders. Herein, we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which is susceptible to β-oxidation and loses its GPR120 agonistic activity in vivo. Among the designed compounds, 14d showed excellent agonistic activity and selectivity and could improve glucose tolerance in normal mice in a dose-dependent manner. In addition, the compound 14d displayed good antidiabetic effects in diet-induced obese (DIO) mice and elevated insulin levels. Molecular simulations illustrated that compound 14d could enter the active site of GPR120 and interact with ARG99, which plays an important role in GPR120 activation. Based on these observations, compound 14d may be a promising lead compound deserving of further biological evaluation and structural modifications.
Collapse
Affiliation(s)
- Xuekun Wang
- Correspondence: (X.W.); (S.W.); (G.J.); Tel.: +86-0635-823-9087 (X.W.)
| | | | | | | | | | | | | | | | - Shiben Wang
- Correspondence: (X.W.); (S.W.); (G.J.); Tel.: +86-0635-823-9087 (X.W.)
| | - Guoxia Ji
- Correspondence: (X.W.); (S.W.); (G.J.); Tel.: +86-0635-823-9087 (X.W.)
| |
Collapse
|
10
|
Guan HP, Xiong Y. Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders. Front Pharmacol 2022; 13:1043828. [PMID: 36386134 PMCID: PMC9640913 DOI: 10.3389/fphar.2022.1043828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
GPR40 is a class A G-protein coupled receptor (GPCR) mainly expressed in pancreas, intestine, and brain. Its endogenous ligand is long-chain fatty acids, which activate GPR40 after meal ingestion to induce secretion of incretins in the gut, including GLP-1, GIP, and PYY, the latter control appetite and glucose metabolism. For its involvement in satiety regulation and metabolic homeostasis, partial and AgoPAM (Positive Allosteric Modulation agonist) GPR40 agonists had been developed for type 2 diabetes (T2D) by many pharmaceutical companies. The proof-of-concept of GPR40 for control of hyperglycemia was achieved by clinical trials of partial GPR40 agonist, TAK-875, demonstrating a robust decrease in HbA1c (-1.12%) after chronic treatment in T2D. The development of TAK-875, however, was terminated due to liver toxicity in 2.7% patients with more than 3-fold increase of ALT in phase II and III clinical trials. Different mechanisms had since been proposed to explain the drug-induced liver injury, including acyl glucuronidation, inhibition of mitochondrial respiration and hepatobiliary transporters, ROS generation, etc. In addition, activation of GPR40 by AgoPAM agonists in pancreas was also linked to β-cell damage in rats. Notwithstanding the multiple safety concerns on the development of small-molecule GPR40 agonists for T2D, some partial and AgoPAM GPR40 agonists are still under clinical development. Here we review the most recent progress of GPR40 agonists development and the possible mechanisms of the side effects in different organs, and discuss the possibility of developing novel strategies that retain the robust efficacy of GPR40 agonists for metabolic disorders while avoid toxicities caused by off-target and on-target mechanisms.
Collapse
|
11
|
Red‐Shifted Water‐Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew Chem Int Ed Engl 2022; 61:e202205855. [DOI: 10.1002/anie.202205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/07/2022]
|
12
|
Katsouri IP, Vandervelpen EVG, Gattor AO, Engelbeen S, El Sayed A, Seitaj K, Becerra EDM, Vanderheyden PML. Complex FFA1 receptor (in)dependent modulation of calcium signaling by free fatty acids. Biochem Pharmacol 2022; 202:115150. [PMID: 35724691 DOI: 10.1016/j.bcp.2022.115150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
The expression of free fatty acid 1 receptors (FFA1R), activated by long chain fatty acids in human pancreatic β-cells and enhancing glucose-stimulated insulin secretion are an attractive target to treat type 2 diabetes. Yet several clinical studies with synthetic FFA1R agonists had to be discontinued due to cytotoxicity and/or so-called "liver concerns". It is not clear whether these obstructions are FFA1R dependent. In this context we used CHO-AEQ cells expressing the bioluminescent calcium-sensitive protein aequorin to investigate calcium signaling elicited by FFA1 receptor ligands α-linolenic acid (ALA), oleic acid (OLA) and myristic acid (MYA). This study revealed complex modulation of intracellular calcium signaling by these fatty acids. First these compounds elicited a typical transient increase of intracellular calcium via binding to FFA1 receptors. Secondly slightly higher concentrations of ALA substantially reduced ATP mediated calcium responses in CHO-AEQ cells and Angiotensin II responses in CHO-AEQ cells expressing human AT1 receptors. This effect was less pronounced with MYA and OLA and was not linked to FFA1 receptor activation nor to acute cytotoxicity as a result of plasma membrane perturbation. Yet it can be hypothesized that, in line with previous studies, unsaturated long chain fatty acids such as ALA and OLA are capable of inactivating the G-proteins involved in purinergic and Angiotensin AT1 receptor calcium signaling. Alternatively the ability of fatty acids to deplete intracellular calcium stores might underly the observed cross-inhibition of these receptor responses in the same cells.
Collapse
Affiliation(s)
- Ilektra Petrina Katsouri
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ebert Vinciane G Vandervelpen
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Albert Owusu Gattor
- Lehrstuhl für Pharmazeutische und Medizinische Chemie II, Universität Regensburg, Regensburg, Germany
| | - Sarah Engelbeen
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Abdulrahman El Sayed
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Klejdia Seitaj
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eduardo Daniel Morales Becerra
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrick M L Vanderheyden
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
13
|
Poryvai A, Galkin M, Shvadchak V, Slanina T. Red‐Shifted Water‐Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Poryvai
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Redox Photochemistry CZECH REPUBLIC
| | - Maksym Galkin
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Chemical Biology CZECH REPUBLIC
| | - Volodymyr Shvadchak
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Chemical biology CZECH REPUBLIC
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Redox Photochemistry Flemingovo nám. 2 16000 Prague CZECH REPUBLIC
| |
Collapse
|
14
|
Plin5, a New Target in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2122856. [PMID: 35509833 PMCID: PMC9060988 DOI: 10.1155/2022/2122856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Abnormal lipid accumulation is commonly observed in diabetic cardiomyopathy (DC), which can create a lipotoxic microenvironment and damage cardiomyocytes. Lipid toxicity is an important pathogenic factor due to abnormal lipid accumulation in DC. As a lipid droplet (LD) decomposition barrier, Plin5 can protect LDs from lipase decomposition and regulate lipid metabolism, which is involved in the occurrence and development of cardiovascular diseases. In recent years, studies have shown that Plin5 expression is involved in the pathogenesis of DC lipid toxicity, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and insulin resistance (IR) and has become a key target of DC research. Therefore, understanding the relationship between Plin5 and DC progression as well as the mechanism of this process is crucial for developing new therapeutic approaches and exploring new therapeutic targets. This review is aimed at exploring the latest findings and roles of Plin5 in lipid metabolism and DC-related pathogenesis, to explore possible clinical intervention approaches.
Collapse
|
15
|
Nath V, Paul RK, Kumar N, Kumar V. Identification of behenic acid as medicinal food for the diabetes mellitus: structure-based computational approach and molecular dynamics simulation studies. J Mol Model 2022; 28:73. [DOI: 10.1007/s00894-022-05060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022]
|
16
|
Patti AM, Giglio RV, Papanas N, Serban D, Stoian AP, Pafili K, Al Rasadi K, Rajagopalan K, Rizvi AA, Ciaccio M, Rizzo M. Experimental and Emerging Free Fatty Acid Receptor Agonists for the Treatment of Type 2 Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:109. [PMID: 35056417 PMCID: PMC8779029 DOI: 10.3390/medicina58010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 04/11/2023]
Abstract
The current management of Type 2 Diabetes Mellitus (T2DM) includes incretin-based treatments able to enhance insulin secretion and peripheral insulin sensitivity as well as improve body mass, inflammation, plasma lipids, blood pressure, and cardiovascular outcomes. Dietary Free Fatty Acids (FFA) regulate metabolic and anti-inflammatory processes through their action on incretins. Selective synthetic ligands for FFA1-4 receptors have been developed as potential treatments for T2DM. To comprehensively review the available evidence for the potential role of FFA receptor agonists in the treatment of T2DM, we performed an electronic database search assessing the association between FFAs, T2DM, inflammation, and incretins. Evidence indicates that FFA1-4 agonism increases insulin sensitivity, induces body mass loss, reduces inflammation, and has beneficial metabolic effects. There is a strong inter-relationship between FFAs and incretins. FFA receptor agonism represents a potential target for the treatment of T2DM and may provide an avenue for the management of cardiometabolic risk in susceptible individuals. Further research promises to shed more light on this emerging topic.
Collapse
Affiliation(s)
- Angelo Maria Patti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133 Palermo, Italy; (A.M.P.); (M.R.)
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (R.V.G.); (M.C.)
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68132 Alexandroupolis, Greece; (N.P.); (K.P.)
| | - Dragos Serban
- Forth Surgery Department, Faculty of Medicine, Carol Davila University, 050098 Bucharest, Romania;
| | - Anca Pantea Stoian
- Department of Diabetes, Faculty of Medicine, Nutrition and Metabolic Diseases, Carol Davila University, 050474 Bucharest, Romania;
| | - Kalliopi Pafili
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68132 Alexandroupolis, Greece; (N.P.); (K.P.)
| | - Khalid Al Rasadi
- Medical Research Center, Sultan Qaboos University, Muscat 123, Oman;
| | - Kanya Rajagopalan
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
| | - Ali A. Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University Hospital, 90127 Palermo, Italy
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133 Palermo, Italy; (A.M.P.); (M.R.)
- Department of Diabetes, Faculty of Medicine, Nutrition and Metabolic Diseases, Carol Davila University, 050474 Bucharest, Romania;
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
17
|
Palamarchuk IV, Shulgau ZT, Dautov AY, Sergazy SD, Kulakov IV. Design, synthesis, spectroscopic characterization, computational analysis, and in vitro α-amylase and α-glucosidase evaluation of 3-aminopyridin-2(1 H)-one based novel monothiooxamides and 1,3,4-thiadiazoles. Org Biomol Chem 2022; 20:8962-8976. [DOI: 10.1039/d2ob01772e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
On the basis of biologically active 3-aminopyridin-2(1H)-ones, chemical modification of derivatives of the corresponding monothiooxamides, thiohydrazides, and conjugated 1,3,4-thiadiazole derivatives has been carried out for the first time.
Collapse
Affiliation(s)
- Irina V. Palamarchuk
- Tyumen State University, Institute of Chemistry, 15a Perekopskaya St., Tyumen 625003, Russia
| | - Zarina T. Shulgau
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan, 010000, Kazakhstan
| | - Adilet Y. Dautov
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan, 010000, Kazakhstan
| | - Shynggys D. Sergazy
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan, 010000, Kazakhstan
| | - Ivan V. Kulakov
- Tyumen State University, Institute of Chemistry, 15a Perekopskaya St., Tyumen 625003, Russia
| |
Collapse
|
18
|
Park J, Lee MY, Seo YS, Kang B, Lim SC, Kang KW. GPR40 agonist inhibits NLRP3 inflammasome activation via modulation of nuclear factor-κB and sarco/endoplasmic reticulum Ca 2+-ATPase. Life Sci 2021; 287:120127. [PMID: 34774873 DOI: 10.1016/j.lfs.2021.120127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a multi-protein intracellular complex that activates proinflammatory cytokines, including interleukin (IL)-1β and IL-18. Inflammasome activation is related to metabolic inflammation, such as the progression of non-alcoholic steatohepatitis. Fasiglifam (TAK875), a selective G-protein coupled receptor 40 (GPR40) agonist with high affinity, significantly improves glucose-dependent insulin secretion and weight gain without hypoglycemia. Interestingly, we found that two GPR40 agonists, TAK875 and AMG1638, suppressed activation of the NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). TAK875 inhibited inflammasome activation by blocking formation of apoptosis-associated speck-like protein containing a CARD (ASC), an inflammasome component. TAK875 also suppressed NLRP3 inflammasome-induced pyroptosis of BMDMs. Moreover, nuclear factor-kappa B (NF-κB)-dependent priming of the NLRP3 inflammasome was partially inhibited by TAK875 and AMG1638. The intracellular Ca2+ increase caused by ATP, nigericin (pore-forming toxin), or endoplasmic reticulum stress activates the NLRP3 inflammasome. Pre-exposure of BMDMs to TAK875 suppressed the ATP-induced intracellular Ca2+ increase, which was reversed by thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor. Oral administration of mice with TAK875 suppressed the increase in serum IL-1β in mice treated with lipopolysaccharide/D-galactosamine in vivo. These findings indicate that the free fatty acid-sensing GPR40 plays a key role in the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Yoon-Seok Seo
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - ByeongSeok Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Ding W, Liu H, Qin Z, Liu M, Zheng M, Cai D, Liu J. Dietary Antioxidant Anthocyanins Mitigate Type II Diabetes through Improving the Disorder of Glycometabolism and Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13350-13363. [PMID: 34730960 DOI: 10.1021/acs.jafc.1c05630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insulin resistance (IR) is one of the pathological reasons for type II diabetes mellitus (T2DM). Therefore, it is important to prevent the body from developing T2DM by improving IR and maintaining glucose homeostasis. Anthocyanins (ACNs) are water-soluble pigments and are widely distributed in natural products. This article summarizes research on the bioavailability and metabolism of ACNs. Moreover, we further elaborate on how ACNs reduce IR and hyperglycemia during the development of T2DM based on studies over the past 20 years. Many studies have demonstrated that ACNs are small molecules that target the pancreatic, liver, muscle, and adipose tissues, preventing IR and hyperglycemia. However, the molecular mechanisms are still unclear. Therefore, we envision whether the molecular mechanism of reducing T2DM by ACNs could be more deeply investigated.
Collapse
Affiliation(s)
- Wei Ding
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Ziqi Qin
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| |
Collapse
|
20
|
An X, Bai Q, Bing Z, Liu H, Yao X. Insights into the molecular mechanism of positive cooperativity between partial agonist MK-8666 and full allosteric agonist AP8 of hGPR40 by Gaussian accelerated molecular dynamics (GaMD) simulations. Comput Struct Biotechnol J 2021; 19:3978-3989. [PMID: 34377364 PMCID: PMC8313488 DOI: 10.1016/j.csbj.2021.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/29/2022] Open
Abstract
Activation of human free fatty acid receptor 1 (FFAR1, also called hGPR40) enhances insulin secretion in a glucose-dependent manner. Hence, the development of selective agonist targeting hGPR40 has been proposed as a therapeutic strategy of type 2 diabetes mellitus. Some agonists targeting hGPR40 were reported. The radioligand-binding studies and the crystal structures reveal that there are multiple sites on GPR40, and there exists positive binding cooperativity between the partial agonist MK-8666 and full allosteric agonist (AgoPAM) AP8. In this work, we carried out long-time Gaussian accelerated molecular dynamics (GaMD) simulations on hGPR40 to shed light on the mechanism of the cooperativity between the two agonists at different sites. Our results reveal that the induced-fit conformational coupling is bidirectional between the two sites. The movements and rotations of TM3, TM4, TM5 and TM6 due to their inherent flexibility are crucial in coupling the conformational changes of the two agonists binding sites. These helices adopt similar conformational states upon alternative ligand or both ligands binding. The Leu1384.57, Leu1865.42 and Leu1905.46 play roles in coordinating the rearrangements of residues in the two pockets, which makes the movements of residues in the two sites like gear movements. These results provide detailed information at the atomic level about the conformational coupling between different sites of GPR40, and also provide the structural information for further design of new agonists of GPR40. In addition, these results suggest that it is necessary by considering the effect of other site bound in structure-based ligands discovery.
Collapse
Affiliation(s)
- Xiaoli An
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qifeng Bai
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Zhitong Bing
- Institute of Modern Physics of Chinese Academy of Sciences, Gansu Province, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
21
|
Hidalgo MA, Carretta MD, Burgos RA. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol 2021; 12:668330. [PMID: 34276398 PMCID: PMC8280355 DOI: 10.3389/fphys.2021.668330] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain fatty acids are molecules that act as metabolic intermediates and constituents of membranes; however, their novel role as signaling molecules in immune function has also been demonstrated. The presence of free fatty acid (FFA) receptors on immune cells has contributed to the understanding of this new role of long-chain fatty acids (LCFAs) in immune function, showing their role as anti-inflammatory or pro-inflammatory molecules and elucidating their intracellular mechanisms. The FFA1 and FFA4 receptors, also known as GPR40 and GPR120, respectively, have been described in macrophages and neutrophils, two key cells mediating innate immune response. Ligands of the FFA1 and FFA4 receptors induce the release of a myriad of cytokines through well-defined intracellular signaling pathways. In this review, we discuss the cellular responses and intracellular mechanisms activated by LCFAs, such as oleic acid, linoleic acid, palmitic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in T-cells, macrophages, and neutrophils, as well as the role of the FFA1 and FFA4 receptors in immune cells.
Collapse
Affiliation(s)
- Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
22
|
Rani L, Grewal AS, Sharma N, Singh S. Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2021; 21:426-470. [PMID: 33100202 DOI: 10.2174/1389557520666201023141326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global incidence of type 2 diabetes mellitus (T2DM) has enthused the development of new antidiabetic targets with low toxicity and long-term stability. In this respect, free fatty acid receptor 1 (FFAR1), which is also recognized as a G protein-coupled receptor 40 (GPR40), is a novel target for the treatment of T2DM. FFAR1/GPR40 has a high level of expression in β-cells of the pancreas, and the requirement of glucose for stimulating insulin release results in immense stimulation to utilise this target in the medication of T2DM. METHODS The data used for this review is based on the search of several scienctific databases as well as various patent databases. The main search terms used were free fatty acid receptor 1, FFAR1, FFAR1 agonists, diabetes mellitus, G protein-coupled receptor 40 (GPR40), GPR40 agonists, GPR40 ligands, type 2 diabetes mellitus and T2DM. RESULTS The present review article gives a brief overview of FFAR1, its role in T2DM, recent developments in small molecule FFAR1 (GPR40) agonists reported till now, compounds of natural/plant origin, recent patents published in the last few years, mechanism of FFAR1 activation by the agonists, and clinical status of the FFAR1/GPR40 agonists. CONCLUSION The agonists of FFAR1/GRP40 showed considerable potential for the therapeutic control of T2DM. Most of the small molecule FFAR1/GPR40 agonists developed were aryl alkanoic acid derivatives (such as phenylpropionic acids, phenylacetic acids, phenoxyacetic acids, and benzofuran acetic acid derivatives) and thiazolidinediones. Some natural/plant-derived compounds, including fatty acids, sesquiterpenes, phenolic compounds, anthocyanins, isoquinoline, and indole alkaloids, were also reported as potent FFAR1 agonists. The clinical investigations of the FFAR1 agonists demonstrated their probable role in the improvement of glucose control. Though, there are some problems still to be resolved in this field as some FFAR1 agonists terminated in the late phase of clinical studies due to "hepatotoxicity." Currently, PBI-4050 is under clinical investigation by Prometic. Further investigation of pharmacophore scaffolds for FFAR1 full agonists as well as multitargeted modulators and corresponding clinical investigations will be anticipated, which can open up new directions in this area.
Collapse
Affiliation(s)
- Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
23
|
Hwang M, Kim HS, Jin SM, Hur KY, Kim JH, Lee MK. Thiazolidinediones (TZDs) enhance insulin secretory response via GPR40 and adenylate cyclase (AC). J Cell Physiol 2021; 236:8137-8147. [PMID: 34133753 PMCID: PMC9290135 DOI: 10.1002/jcp.30467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Thiazolidinediones are synthetic PPARγ ligands that enhance insulin sensitivity, and that could increase insulin secretion from β‐cells. However, the functional role and mechanism(s) of action in pancreatic β‐cells have not been investigated in detail.
Collapse
Affiliation(s)
- Mina Hwang
- Division of Endocrinology and Metabolism, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyo-Sup Kim
- Division of Endocrinology and Metabolism, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Hyeon Kim
- Division of Endocrinology and Metabolism, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eulji University Hospital, Uijeongbu Medical Center, Eulji University, Uijeongbu, Korea
| |
Collapse
|
24
|
Zhao X, Yoon DO, Yoo J, Park HJ. Structure-Activity Relationship Study and Biological Evaluation of 2-(Disubstituted phenyl)-indole-5-propanoic Acid Derivatives as GPR40 Full Agonists. J Med Chem 2021; 64:4130-4149. [PMID: 33769827 DOI: 10.1021/acs.jmedchem.1c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G-protein-coupled receptor 40 (GPR40) is considered as an attractive drug target for treating type 2 diabetes, owing to its role in the free fatty acid-mediated increase in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. To identify a new chemotype of GPR40 agonist, a series of 2-aryl-substituted indole-5-propanoic acid derivatives were designed and synthesized. We identified two GPR40 agonist lead compounds-4k (3-[2-(4-fluoro-2-methylphenyl)-1H-indol-5-yl]propanoic acid) and 4o (3-[2-(2,5-dimethylphenyl)-1H-indol-5-yl]propanoic acid), having GSIS and glucagon-like peptide 1 secretory effects. Unlike previously reported GPR40 partial agonists that only activate the Gq pathway, 4k and 4o activated both the Gq and Gs signaling pathways and were characterized as GPR40 full agonists. In in vivo efficacy studies, 4o significantly improved glycemic control in both C57BL/6J and db/db mice and increased plasma-active GLP-1 in C57BL/6J mice. Thus, 4o represents a promising lead for further development as a novel GPR40 full agonist against type 2 diabetes.
Collapse
Affiliation(s)
- Xiaodi Zhao
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dong-Oh Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jaeho Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
25
|
Richards P, Thornberry NA, Pinto S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol Metab 2021; 46:101175. [PMID: 33548501 PMCID: PMC8085592 DOI: 10.1016/j.molmet.2021.101175] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut-brain axis, which mediates bidirectional communication between the gastrointestinal system and central nervous system (CNS), plays a fundamental role in multiple areas of physiology including regulating appetite, metabolism, and gastrointestinal function. The biology of the gut-brain axis is central to the efficacy of glucagon-like peptide-1 (GLP-1)-based therapies, which are now leading treatments for type 2 diabetes (T2DM) and obesity. This success and research to suggest a much broader role of gut-brain circuits in physiology and disease has led to increasing interest in targeting such circuits to discover new therapeutics. However, our current knowledge of this biology is limited, largely because the scientific tools have not been available to enable a detailed mechanistic understanding of gut-brain communication. SCOPE OF REVIEW In this review, we provide an overview of the current understanding of how sensory information from the gastrointestinal system is communicated to the central nervous system, with an emphasis on circuits involved in regulating feeding and metabolism. We then describe how recent technologies are enabling a better understanding of this system at a molecular level and how this information is leading to novel insights into gut-brain communication. We also discuss current therapeutic approaches that leverage the gut-brain axis to treat diabetes, obesity, and related disorders and describe potential novel approaches that have been enabled by recent advances in the field. MAJOR CONCLUSIONS The gut-brain axis is intimately involved in regulating glucose homeostasis and appetite, and this system plays a key role in mediating the efficacy of therapeutics that have had a major impact on treating T2DM and obesity. Research into the gut-brain axis has historically largely focused on studying individual components in this system, but new technologies are now enabling a better understanding of how signals from these components are orchestrated to regulate metabolism. While this work reveals a complexity of signaling even greater than previously appreciated, new insights are already being leveraged to explore fundamentally new approaches to treating metabolic diseases.
Collapse
Affiliation(s)
- Paul Richards
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| | | | - Shirly Pinto
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| |
Collapse
|
26
|
Kurtz R, Anderman MF, Shepard BD. GPCRs get fatty: the role of G protein-coupled receptor signaling in the development and progression of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2021; 320:G304-G318. [PMID: 33205999 PMCID: PMC8202238 DOI: 10.1152/ajpgi.00275.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by the abnormal deposition of lipids within the liver not due to alcohol consumption, is a growing epidemic affecting over 30% of the United States population. Both simple fatty liver and its more severe counterpart, nonalcoholic steatohepatitis, represent one of the most common forms of liver disease. Recently, several G protein-coupled receptors have emerged as targets for therapeutic intervention for these disorders. These include those with known hepatic function as well as those involved in global metabolic regulation. In this review, we highlight these emerging therapeutic targets, focusing on several common themes including their activation by microbial metabolites, stimulatory effect on insulin and incretin secretion, and contribution to glucose tolerance. The overlap in ligands, localization, and downstream effects of activation indicate the interdependent nature of these receptors and highlight the importance of this signaling family in the development and prevention of NAFLD.
Collapse
Affiliation(s)
- Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Meghan F. Anderman
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D. Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
27
|
Taylor SI, Yazdi ZS, Beitelshees AL. Pharmacological treatment of hyperglycemia in type 2 diabetes. J Clin Invest 2021; 131:142243. [PMID: 33463546 PMCID: PMC7810496 DOI: 10.1172/jci142243] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a major public health problem, affecting about 10% of the population. Pharmacotherapy aims to protect against microvascular complications, including blindness, end-stage kidney disease, and amputations. Landmark clinical trials have demonstrated that intensive glycemic control slows progression of microvascular complications (retinopathy, nephropathy, and neuropathy). Long-term follow-up has demonstrated that intensive glycemic control also decreases risk of macrovascular disease, albeit rigorous evidence of macrovascular benefit did not emerge for over a decade. The US FDA's recent requirement for dedicated cardiovascular outcome trials ushered in a golden age for understanding the clinical profiles of new type 2 diabetes drugs. Some clinical trials with sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP1) receptor agonists reported data demonstrating cardiovascular benefit (decreased risk of major adverse cardiovascular events and hospitalization for heart failure) and slower progression of diabetic kidney disease. This Review discusses current guidelines for use of the 12 classes of drugs approved to promote glycemic control in patients with type 2 diabetes. The Review also anticipates future developments with potential to improve the standard of care: availability of generic dipeptidylpeptidase-4 (DPP4) inhibitors and SGLT2 inhibitors; precision medicine to identify the best drugs for individual patients; and new therapies to protect against chronic complications of diabetes.
Collapse
|
28
|
Doerfler H, Botesteanu DA, Blech S, Laux R. Untargeted Metabolomic Analysis Combined With Multivariate Statistics Reveal Distinct Metabolic Changes in GPR40 Agonist-Treated Animals Related to Bile Acid Metabolism. Front Mol Biosci 2021; 7:598369. [PMID: 33521051 PMCID: PMC7843463 DOI: 10.3389/fmolb.2020.598369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolomics has been increasingly applied to biomarker discovery, as untargeted metabolic profiling represents a powerful exploratory tool for identifying causal links between biomarkers and disease phenotypes. In the present work, we used untargeted metabolomics to investigate plasma specimens of rats, dogs, and mice treated with small-molecule drugs designed for improved glycemic control of type 2 diabetes mellitus patients via activation of GPR40. The in vivo pharmacology of GPR40 is not yet fully understood. Compounds targeting this receptor have been found to induce drug-induced liver injury (DILI). Metabolomic analysis facilitating an integrated UPLC-TWIMS-HRMS platform was used to detect metabolic differences between treated and non-treated animals within two 4-week toxicity studies in rat and dog, and one 2-week toxicity study in mouse. Multivariate statistics of untargeted metabolomics data subsequently revealed the presence of several significantly upregulated endogenous compounds in the treated animals whose plasma level is known to be affected during DILI. A specific bile acid metabolite useful as endogenous probe for drug-drug interaction studies was identified (chenodeoxycholic acid-24 glucuronide), as well as a metabolic precursor indicative of acidic bile acid biosynthesis (7α-hydroxy-3-oxo-4-cholestenoic acid). These results correlate with typical liver toxicity parameters on the individual level.
Collapse
Affiliation(s)
- Hannes Doerfler
- Department of Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dana-Adriana Botesteanu
- Department of Drug Discovery Sciences, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Stefan Blech
- Department of Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ralf Laux
- Department of Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
29
|
Effect of omega-3 fatty acids on glucose homeostasis: role of free fatty acid receptor 1. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1797-1808. [PMID: 32388601 DOI: 10.1007/s00210-020-01883-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a worldwide health problem. This study investigated the acute effects of eicosapentanoic acid (EPA) on glucose homeostasis focusing on the role of free fatty acid receptor 1 (FFAR1) and the chronic effects of fish oil omega-3 fatty acids on insulin resistance. Insulin resistance was induced by feeding mice high-fructose, high-fat diet (HFrHFD) for 16 weeks. In the first part, the acute effects of EPA alone and in combination with GW1100 and DC260126 (FFAR1 blockers) on glucose homeostasis and hepatic phosphatidyl-inositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) were investigated in standard chow diet (SCD)- and HFrHFD-fed mice. In the second part, mice were treated with fish oil omega-3 fatty acids for 4 weeks starting at the week 13 of feeding HFrHFD. Changes in the blood- and liver tissue-insulin resistance markers and FFAR1 downstream signals were recorded at the end of experiment. Results showed that EPA increased 0 and 30 min blood glucose levels after glucose load in SCD-fed mice but improved glucose tolerance in HFrHFD-fed mice. Moreover, FFAR1 blockers reduced EPA effects on glucose tolerance and hepatic PIP2 and DAG levels. On the other hand, chronic use of fish oil omega-3 fatty acids increased FBG levels and decreased serum insulin and triglycerides levels without improving the index of insulin resistance. Also, they increased hepatic β-arrestin-2, PIP2, and pS473 Akt levels but decreased DAG levels. In conclusion, EPA acutely improved glucose homeostasis in HFrHFD-fed mice by modulating the activity of FFAR1. However, the chronic use of fish oil omega-3 fatty acids did not improve the insulin resistance.
Collapse
|
30
|
Xu Y, Van Hul M, Suriano F, Préat V, Cani PD, Beloqui A. Novel strategy for oral peptide delivery in incretin-based diabetes treatment. Gut 2020; 69:911-919. [PMID: 31401561 PMCID: PMC7229891 DOI: 10.1136/gutjnl-2019-319146] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To fulfil an unmet therapeutic need for treating type 2 diabetes by developing an innovative oral drug delivery nanosystem increasing the production of glucagon-like peptide-1 (GLP-1) and the absorption of peptides into the circulation. DESIGN We developed a nanocarrier for the oral delivery of peptides using lipid-based nanocapsules. We encapsulated the GLP-1 analogue exenatide within nanocapsules and investigated in vitro in human L-cells (NCl-H716) and murine L-cells (GLUTag cells) the ability of the nanosystem to trigger GLP-1 secretion. The therapeutic relevance of the nanosystem in vivo was tested in high-fat diet (HFD)-induced diabetic mice following acute (one administration) or chronic treatment (5 weeks) in obese and diabetic mice. RESULTS We demonstrated that this innovative nanosystem triggers GLP-1 secretion in both human and murine cells as well as in vivo in mice. This strategy increases the endogenous secretion of GLP-1 and the oral bioavailability of the GLP-1 analogue exenatide (4% bioavailability with our nanosystem).The nanosystem synergizes its own biological effect with the encapsulated GLP-1 analogue leading to a marked improvement of glucose tolerance and insulin resistance (acute and chronic). The chronic treatment decreased diet-induced obesity, fat mass, hepatic steatosis, together with lower infiltration and recruitment of immune cell populations and inflammation. CONCLUSION We developed a novel nanosystem compatible with human use that synergizes its own biological effect with the effects of increasing the bioavailability of a GLP-1 analogue. The effects of the formulation were comparable to the results observed for the marketed subcutaneous formulation. This nanocarrier-based strategy represents a novel promising approach for oral peptide delivery in incretin-based diabetes treatment.
Collapse
Affiliation(s)
- Yining Xu
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium,WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Brussels, Belgium
| | - Francesco Suriano
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium,WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Brussels, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium .,WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Brussels, Belgium
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
31
|
Teng D, Chen J, Li D, Wu Z, Li W, Tang Y, Liu G. Computational Insights into Molecular Activation and Positive Cooperative Mechanisms of FFAR1 Modulators. J Chem Inf Model 2020; 60:3214-3230. [DOI: 10.1021/acs.jcim.0c00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhui Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dongping Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
32
|
Marafie SK, Al-Shawaf EM, Abubaker J, Arefanian H. Palmitic acid-induced lipotoxicity promotes a novel interplay between Akt-mTOR, IRS-1, and FFAR1 signaling in pancreatic β-cells. Biol Res 2019; 52:44. [PMID: 31426858 PMCID: PMC6699284 DOI: 10.1186/s40659-019-0253-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
Background Free fatty acid receptor 1 (FFAR1) is G-protein coupled receptor predominantly expressed in pancreatic β-cells that is activated by a variety of free fatty acids (FFAs). Once activated, it promotes glucose-stimulated insulin secretion (GSIS). However, increased levels of FFAs lead to lipotoxicity, inducing loss of β-cell function. FFAR1 plays a key role in the development of type 2 diabetes (T2D), and previous studies have indicated the importance of developing anti-diabetic therapies against FFAR1, although its role in the regulation of β-cell function remains unclear. The present study investigated the role of FFAR1 under lipotoxic conditions using palmitic acid (PA). The rat insulinoma 1 clone 832/13 (INS-1 832/13) cell line was used as a model as it physiologically resembles native pancreatic β-cells. Key players of the insulin signaling pathway, such as mTOR, Akt, IRS-1, and the insulin receptor (INSR1β), were selected as candidates to be analyzed under lipotoxic conditions. Results We revealed that PA-induced lipotoxicity affected GSIS in INS-1 cells and negatively modulated the activity of both IRS-1 and Akt. Reduced phosphorylation of both IRS-1 S636/639 and Akt S473 was observed, in addition to decreased expression of both INSR1β and FFAR1. Moreover, transient knockdown of FFAR1 led to a reduction in IRS-1 mRNA expression and an increase in INSR1β mRNA. Finally, PA affected localization of FFAR1 from the cytoplasm to the perinucleus. Conclusions In conclusion, our study suggests a novel regulatory involvement of FFAR1 in crosstalk with mTOR–Akt and IRS-1 signaling in β-cells under lipotoxic conditions.
Collapse
Affiliation(s)
- Sulaiman K Marafie
- Biochemistry & Molecular Biology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait.
| | - Eman M Al-Shawaf
- Biochemistry & Molecular Biology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait
| | - Jehad Abubaker
- Biochemistry & Molecular Biology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait
| | - Hossein Arefanian
- Microbiology & Immunology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
33
|
Diastereoselective Opening of Bridged Anhydrides by Amidoximes Providing Access to 1,2,4-Oxadiazole/Norborna(e)ne Hybrids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Ammazzalorso A, Maccallini C, Amoia P, Amoroso R. Multitarget PPARγ agonists as innovative modulators of the metabolic syndrome. Eur J Med Chem 2019; 173:261-273. [DOI: 10.1016/j.ejmech.2019.04.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023]
|
35
|
Ackerson T, Amberg A, Atzrodt J, Arabeyre C, Defossa E, Dorau M, Dudda A, Dwyer J, Holla W, Kissner T, Kohlmann M, Kürzel U, Pánczél J, Rajanna S, Riedel J, Schmidt F, Wäse K, Weitz D, Derdau V. Mechanistic investigations of the liver toxicity of the free fatty acid receptor 1 agonist fasiglifam (TAK875) and its primary metabolites. J Biochem Mol Toxicol 2019; 33:e22345. [DOI: 10.1002/jbt.22345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/23/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Jens Atzrodt
- Integrated Drug Discovery, Sanofi Frankfurt Germany
| | | | | | | | - Angela Dudda
- Global Project Management Unit, DCV, Sanofi Frankfurt Germany
| | | | | | | | - Markus Kohlmann
- Global Project Management Unit, DCV, Sanofi Frankfurt Germany
| | - Ulrich Kürzel
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | - József Pánczél
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | | | - Jens Riedel
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | | | | | - Dietmar Weitz
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | | |
Collapse
|
36
|
Sabatini PV, Speckmann T, Lynn FC. Friend and foe: β-cell Ca 2+ signaling and the development of diabetes. Mol Metab 2019; 21:1-12. [PMID: 30630689 PMCID: PMC6407368 DOI: 10.1016/j.molmet.2018.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The divalent cation Calcium (Ca2+) regulates a wide range of processes in disparate cell types. Within insulin-producing β-cells, increases in cytosolic Ca2+ directly stimulate insulin vesicle exocytosis, but also initiate multiple signaling pathways. Mediated through activation of downstream kinases and transcription factors, Ca2+-regulated signaling pathways leverage substantial influence on a number of critical cellular processes within the β-cell. Additionally, there is evidence that prolonged activation of these same pathways is detrimental to β-cell health and may contribute to Type 2 Diabetes pathogenesis. SCOPE OF REVIEW This review aims to briefly highlight canonical Ca2+ signaling pathways in β-cells and how β-cells regulate the movement of Ca2+ across numerous organelles and microdomains. As a main focus, this review synthesizes experimental data from in vitro and in vivo models on both the beneficial and detrimental effects of Ca2+ signaling pathways for β-cell function and health. MAJOR CONCLUSIONS Acute increases in intracellular Ca2+ stimulate a number of signaling cascades, resulting in (de-)phosphorylation events and activation of downstream transcription factors. The short-term stimulation of these Ca2+ signaling pathways promotes numerous cellular processes critical to β-cell function, including increased viability, replication, and insulin production and secretion. Conversely, chronic stimulation of Ca2+ signaling pathways increases β-cell ER stress and results in the loss of β-cell differentiation status. Together, decades of study demonstrate that Ca2+ movement is tightly regulated within the β-cell, which is at least partially due to its dual roles as a potent signaling molecule.
Collapse
Affiliation(s)
- Paul V Sabatini
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thilo Speckmann
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
37
|
Kunkalkar RA, Fernandes RA. Lewis acid-catalyzed annulative partial dimerization of 3-aryloxyacrylates to 4-arylchroman-2-ones: synthesis of analogues of tolterodine, RORγ inhibitors and a GPR40 agonist. Chem Commun (Camb) 2019; 55:2313-2316. [PMID: 30720025 DOI: 10.1039/c8cc09785b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A beguiling annulative partial dimerization of 3-aryloxyacrylates to 4-arylchroman-2-ones catalyzed by Lewis acid (BF3·OEt2) has been developed. The reaction involves two molecules of 3-aryloxyacrylate, resulting in the loss of one propiolate molecule to furnish 4-arylchroman-2-one, an important structural motif found in many natural products. This methodology has been elaborated to synthesize analogues of tolterodine, RORγ inhibitors and a GPR40 agonist.
Collapse
Affiliation(s)
- Rupesh A Kunkalkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | | |
Collapse
|
38
|
Gaur P, Kucherak OA, Ermakova YG, Shvadchak VV, Yushchenko DA. Nitrobenzyl-based fluorescent photocages for spatial and temporal control of signalling lipids in cells. Chem Commun (Camb) 2019; 55:12288-12291. [DOI: 10.1039/c9cc05602e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we present a set of fluorescent cages prepared by tethering fluorescent dyes to a photolabile group.
Collapse
Affiliation(s)
- Pankaj Gaur
- Laboratory of Chemical Biology
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 16610 Prague 6
- Czech Republic
| | - Oleksandr A. Kucherak
- Laboratory of Chemical Biology
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 16610 Prague 6
- Czech Republic
| | - Yulia G. Ermakova
- Cell Biology & Biophysics Unit
- European Molecular Biology Laboratory (EMBL)
- 69117 Heidelberg
- Germany
| | - Volodymyr V. Shvadchak
- Laboratory of Chemical Biology
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 16610 Prague 6
- Czech Republic
| | - Dmytro A. Yushchenko
- Laboratory of Chemical Biology
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 16610 Prague 6
- Czech Republic
- Group of Bioconjugation Chemistry
| |
Collapse
|
39
|
Jiang XW, Jiang BE, Liu H, Liu ZT, Hu LL, Liu M, Lu W, Zhang HK. Design, synthesis, and biological evaluations of phenylpropiolic acid derivatives as novel GPR40 agonists. Eur J Med Chem 2018; 158:123-133. [DOI: 10.1016/j.ejmech.2018.08.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022]
|
40
|
Sona C, Kumar A, Dogra S, Kumar BA, Umrao D, Yadav PN. Docosahexaenoic acid modulates brain-derived neurotrophic factor via GPR40 in the brain and alleviates diabesity-associated learning and memory deficits in mice. Neurobiol Dis 2018; 118:94-107. [DOI: 10.1016/j.nbd.2018.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
|
41
|
Targeting AgRP neurons to maintain energy balance: Lessons from animal models. Biochem Pharmacol 2018; 155:224-232. [PMID: 30012460 DOI: 10.1016/j.bcp.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/12/2018] [Indexed: 01/19/2023]
Abstract
The current obesity epidemic is a major worldwide health and economic burden. In the modern environment, an increase in the intake of high-fat and high-sugar foods plays a crucial role in the development of obesity by disrupting the mechanisms governing food intake and energy balance. Food intake and whole-body energy balance are regulated by the central nervous system through a sophisticated neuronal network located mostly in the hypothalamus. In particular, the hypothalamic arcuate nucleus (ARC) is a fundamental center that senses hormonal and nutrient-related signals informing about the energy state of the organism. The ARC contains two small, defined populations of neurons with opposite functions: anorexigenic proopiomelanocortin (POMC)-expressing neurons and orexigenic Agouti-related protein (AgRP)-expressing neurons. AgRP neurons, which also co-produce neuropeptide Y (NPY) and γ-Aminobutyric acid (GABA), are involved in an increase in hunger and a decrease in energy expenditure. In this review, we summarize the key findings from the most common animal models targeting AgRP neurons and the tools used to discern the role of this specific neuronal population in the control of peripheral metabolism, appetite, feeding-related behavior, and other complex behaviors. We also discuss how knowledge gained from these studies has revealed new pathways and key proteins that could be potential therapeutic targets to reduce appetite and food addictions in obesity and other diseases.
Collapse
|
42
|
Alarcon P, Manosalva C, Carretta MD, Hidalgo AI, Figueroa CD, Taubert A, Hermosilla C, Hidalgo MA, Burgos RA. Fatty and hydroxycarboxylic acid receptors: The missing link of immune response and metabolism in cattle. Vet Immunol Immunopathol 2018; 201:77-87. [PMID: 29914687 DOI: 10.1016/j.vetimm.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 01/14/2023]
Abstract
Fatty and hydroxycarboxylic acids are one of the main intermediates of energy metabolism in ruminants and critical in the milk production of cattle. High production demands on a dairy farm can induce nutritional imbalances and metabolism disorders, which have been widely associated with the onset of sterile inflammatory processes and increased susceptibility to infections. The literature suggests that short-chain fatty acids (SCFA), long-chain fatty acids (LCFA) and hydroxycarboxylic acids are relevant modulators of the host innate inflammatory response. For instance, increased SCFA and lactate levels are associated with subacute ruminal acidosis (SARA) and the activation of pro-inflammatory processes mediated by diverse leukocyte and vascular endothelial cells. As such, free LCFA and the ketone body β-hydroxybutyrate are significantly increased in the plasma 1-2 weeks postpartum, coinciding with the time period in which cows are more susceptible to acquiring infectious diseases that the host innate immune system should actively oppose. Today, many of these pro-inflammatory responses can be related to the activation of specific G protein-coupled receptors, including GPR41/FFA3 and GPR43/FFA2 for SCFA; GPR40/FFA1 and GPR120/FFA4 for LCFA, GPR109A/HCA2 for ketone body β-hydroxybutyrate, and GPR81/HCA1 for lactate, all expressed in different bovine tissues. The activation of these receptors modulates the release of intracellular granules [e.g., metalloproteinase-9 (MMP-9) and lactoferrin], radical oxygen species (ROS) production, chemotaxis, and the production of relevant pro-inflammatory mediators. The article aimed to review the role of natural ligands and receptors and the resulting impact on the host innate immune reaction of cattle and, further, to address the most recent evidence supporting a potential connection to metabolic disorders.
Collapse
Affiliation(s)
- P Alarcon
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - C Manosalva
- Pharmacy Institute, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - M D Carretta
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - A I Hidalgo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - C D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Universidad Austral de Chile, Valdivia, Chile
| | - A Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - C Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M A Hidalgo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - R A Burgos
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
43
|
Abstract
Diabetes is a major risk factor for the development of heart failure. One of the hallmarks of diabetes is insulin resistance associated with hyperinsulinemia. The literature shows that insulin and adrenergic signaling is intimately linked to each other; however, whether and how insulin may modulate cardiac adrenergic signaling and cardiac function remains unknown. Notably, recent studies have revealed that insulin receptor and β2 adrenergic receptor (β2AR) forms a membrane complex in animal hearts, bringing together the direct contact between 2 receptor signaling systems, and forming an integrated and dynamic network. Moreover, insulin can drive cardiac adrenergic desensitization via protein kinase A and G protein-receptor kinases phosphorylation of the β2AR, which compromises adrenergic regulation of cardiac contractile function. In this review, we will explore the current state of knowledge linking insulin and G protein-coupled receptor signaling, especially β-adrenergic receptor signaling in the heart, with emphasis on molecular insights regarding its role in diabetic cardiomyopathy.
Collapse
|
44
|
Riddy DM, Delerive P, Summers RJ, Sexton PM, Langmead CJ. G Protein-Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharmacol Rev 2018; 70:39-67. [PMID: 29233848 DOI: 10.1124/pr.117.014373] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 03/21/2025] Open
Abstract
G protein-coupled receptors (GPCRs) continue to be important discovery targets for the treatment of type 2 diabetes mellitus (T2DM). Many GPCRs are directly involved in the development of insulin resistance and β-cell dysfunction, and in the etiology of inflammation that can lead to obesity-induced T2DM. This review summarizes the current literature describing a number of well-validated GPCR targets, but also outlines several new and promising targets for drug discovery. We highlight the importance of understanding the role of these receptors in the disease pathology, and their basic pharmacology, which will pave the way to the development of novel pharmacological probes that will enable these targets to fulfill their promise for the treatment of these metabolic disorders.
Collapse
Affiliation(s)
- Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| | - Philippe Delerive
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| |
Collapse
|
45
|
Pachanski MJ, Kirkland ME, Kosinski DT, Mane J, Cheewatrakoolpong B, Xue J, Szeto D, Forrest G, Miller C, Bunzel M, Plummer CW, Chobanian HR, Miller MW, Souza S, Thomas-Fowlkes BS, Ogawa AM, Weinglass AB, Di Salvo J, Li X, Feng Y, Tatosian DA, Howard AD, Colletti SL, Trujillo ME. GPR40 partial agonists and AgoPAMs: Differentiating effects on glucose and hormonal secretions in the rodent. PLoS One 2017; 12:e0186033. [PMID: 29053717 PMCID: PMC5650142 DOI: 10.1371/journal.pone.0186033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/23/2017] [Indexed: 01/14/2023] Open
Abstract
GPR40 agonists are effective antidiabetic agents believed to lower glucose through direct effects on the beta cell to increase glucose stimulated insulin secretion. However, not all GPR40 agonists are the same. Partial agonists lower glucose through direct effects on the pancreas, whereas GPR40 AgoPAMs may incorporate additional therapeutic effects through increases in insulinotrophic incretins secreted by the gut. Here we describe how GPR40 AgoPAMs stimulate both insulin and incretin secretion in vivo over time in diabetic GK rats. We also describe effects of AgoPAMs in vivo to lower glucose and body weight beyond what is seen with partial GPR40 agonists in both the acute and chronic setting. Further comparisons of the glucose lowering profile of AgoPAMs suggest these compounds may possess greater glucose control even in the presence of elevated glucagon secretion, an unexpected feature observed with both acute and chronic treatment with AgoPAMs. Together these studies highlight the complexity of GPR40 pharmacology and the potential additional benefits AgoPAMs may possess above partial agonists for the diabetic patient.
Collapse
Affiliation(s)
- Michele J. Pachanski
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Melissa E. Kirkland
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Daniel T. Kosinski
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Joel Mane
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | | | - Jiyan Xue
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Daphne Szeto
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Gail Forrest
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Corin Miller
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Michelle Bunzel
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Christopher W. Plummer
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Harry R. Chobanian
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Michael W. Miller
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Sarah Souza
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | | | - Aimie M. Ogawa
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Adam B. Weinglass
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jerry Di Salvo
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Xiaoyan Li
- Department of Cardio Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Yue Feng
- Department of Cardio Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Daniel A. Tatosian
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Andrew D. Howard
- Department of Cardio Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Steven L. Colletti
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Maria E. Trujillo
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
46
|
Kim M, Furuzono T, Yamakuni K, Li Y, Kim YI, Takahashi H, Ohue-Kitano R, Jheng HF, Takahashi N, Kano Y, Yu R, Kishino S, Ogawa J, Uchida K, Yamazaki J, Tominaga M, Kawada T, Goto T. 10-oxo-12( Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J 2017; 31:5036-5048. [PMID: 28754711 DOI: 10.1096/fj.201700151r] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/17/2017] [Indexed: 11/11/2022]
Abstract
Gut microbiota can regulate the host energy metabolism; however, the underlying mechanisms that could involve gut microbiota-derived compounds remain to be understood. Therefore, in this study, we investigated the effects of KetoA [10-oxo-12(Z)-octadecenoic acid]-a linoleic acid metabolite produced by gut lactic acid bacteria-on whole-body energy metabolism and found that dietary intake of KetoA could enhance energy expenditure in mice, thereby protecting mice from diet-induced obesity. By using Ca2+ imaging and whole-cell patch-clamp methods, KetoA was noted to potently activate transient receptor potential vanilloid 1 (TRPV1) and enhance noradrenalin turnover in adipose tissues. In addition, KetoA up-regulated genes that are related to brown adipocyte functions, including uncoupling protein 1 (UCP1) in white adipose tissue (WAT), which was later diminished in the presence of a β-adrenoreceptor blocker. By using obese and diabetic model KK-Ay mice, we further show that KetoA intake ameliorated obesity-associated metabolic disorders. In the absence of any observed KetoA-induced antiobesity effect or UCP1 up-regulation in TRPV1-deficient mice, we prove that the antiobesity effect of KetoA was caused by TRPV1 activation-mediated browning in WAT. KetoA produced in the gut could therefore be involved in the regulation of host energy metabolism.-Kim, M., Furuzono, T., Yamakuni, K., Li, Y., Kim, Y.-I., Takahashi, H., Ohue-Kitano, R., Jheng, H.-F., Takahashi, N., Kano, Y., Yu, R., Kishino, S., Ogawa, J., Uchida, K., Yamazaki, J., Tominaga, M., Kawada, T., Goto, T. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1.
Collapse
Affiliation(s)
- Minji Kim
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoya Furuzono
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kanae Yamakuni
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yongjia Li
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Young-Il Kim
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Yuriko Kano
- Laboratory of Nutrition Chemistry, Faculty of Home Economics, Kobe Women's University, Kobe, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
| | - Shigenobu Kishino
- Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan.,Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; .,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Qian J, Gu Y, Wu C, Yu F, Chen Y, Zhu J, Yao X, Bei C, Zhu Q. Agonist-induced activation of human FFA1 receptor signals to extracellular signal-regulated kinase 1 and 2 through Gq- and Gi-coupled signaling cascades. Cell Mol Biol Lett 2017; 22:13. [PMID: 28747926 PMCID: PMC5522598 DOI: 10.1186/s11658-017-0043-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background FFA1 is abundantly expressed in the liver, skeletal muscle, monocytes and nervous system, but is particularly abundant in pancreatic β cells. It is widely believed that FFA1 exerts its regulatory roles in a variety of physiological and pathological functions. In response to oleic acid, FFA1 has been shown to induce the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) through a mechanism involving EGFR transactivation in a breast cancer cell line. However, the underlying molecular mechanism for ERK1/2 activation mediated by n-6 free fatty acid (LA) in HEK293 cells remains to be further elucidated. Methods A FLAG-FFA1 vector was stably expressed in HEK293 cells. Western blot analysis was applied to investigate the change in LA-induced ERK1/2 phosphorylation change in response to kinase inhibitors. Arrestin-2/3-specific siRNA was used to analyze the effect of arrestin-2/3 knockdown on FFA1-mediated ERK1/2 activation. Results We proved that activation of ERK1/2 by LA was rapid, peaking at 5 min. Further experiments proved that FFA1 couples to a Gq protein and activates PI-PLC, which induces the IP3/Ca2+ and DAG/PKC signal pathways, both of which are involved in ERK1/2 activation. We also showed that there is no EGFR transactivation, arrestin-2/3 or Gβγ pathway participation in ERK1/2 phosphorylation. Treating cells with PTX abolished ERK1/2 activation at a late time point (≥20 min), indicating a critical role for Gi subunits in FFA1-mediated ERK1/2 activation. Conclusions Our study provides a detailed delineation of the LA-mediated activation of ERK1/2 in HEK293 cells that are stably transfected with human FFA1. We also present evidence of Gi/Gq-induced synergism in the regulation of ERK1/2 phosphorylation. These observations may provide new insights into the pharmacological effects of FFA1 and the physiological functions modulated by FFA1-mediated activation of ERK1/2. Electronic supplementary material The online version of this article (doi:10.1186/s11658-017-0043-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Qian
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Yuyang Gu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Chun Wu
- Institute of Biochemistry, College of Life Science, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Feng Yu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Yuqi Chen
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Jingmei Zhu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Xingyi Yao
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Chen Bei
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Qingqing Zhu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| |
Collapse
|
48
|
Krug AW, Vaddady P, Railkar RA, Musser BJ, Cote J, Ederveen A, Krefetz DG, DeNoia E, Free AL, Morrow L, Chakravarthy MV, Kauh E, Tatosian DA, Kothare PA. Leveraging a Clinical Phase Ib Proof-of-Concept Study for the GPR40 Agonist MK-8666 in Patients With Type 2 Diabetes for Model-Informed Phase II Dose Selection. Clin Transl Sci 2017; 10:404-411. [PMID: 28727908 PMCID: PMC5593169 DOI: 10.1111/cts.12479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
GPR40 mediates free fatty acid–induced insulin secretion in beta cells. We investigated the safety, pharmacokinetics, and glucose response of MK‐8666, a partial GPR40 agonist, after once‐daily multiple dosing in type 2 diabetes patients. This double‐blind, multisite, parallel‐group study randomized 63 patients (placebo, n = 18; 50 mg, n = 9; 150 mg, n = 18; 500 mg, n = 18) for 14‐day treatment. The results showed no serious adverse effects or treatment‐related hypoglycemia. One patient (150‐mg group) showed mild‐to‐moderate transaminitis at the end of dosing. Median MK‐8666 Tmax was 2.0–2.5 h and mean apparent terminal half‐life was 22–32 h. On Day 15, MK‐8666 reduced fasting plasma glucose by 54.1 mg/dL (500 mg), 36.0 mg/dL (150 mg), and 30.8 mg/dL (50 mg) more than placebo, consistent with translational pharmacokinetic/pharmacodynamic model predictions. Maximal efficacy for longer‐term assessment is projected at 500 mg based on exposure–response analysis. In conclusion, MK‐8666 was generally well tolerated with robust glucose‐lowering efficacy.
Collapse
Affiliation(s)
- A W Krug
- Merck & Co., Inc., Kenilworth, New Jersesy, USA
| | - P Vaddady
- Merck & Co., Inc., Kenilworth, New Jersesy, USA
| | - R A Railkar
- Merck & Co., Inc., Kenilworth, New Jersesy, USA
| | - B J Musser
- Merck & Co., Inc., Kenilworth, New Jersesy, USA
| | - J Cote
- Merck & Co., Inc., Kenilworth, New Jersesy, USA
| | | | - D G Krefetz
- PRA Health Sciences, Marlton, New Jersey, USA
| | - E DeNoia
- ICON Development Solutions, San Antonio, Texas, USA
| | - A L Free
- Pinnacle Research Group, Anniston, Alabama, USA
| | - L Morrow
- Profil Institute for Clinical Research, Chula Vista, California, USA
| | - M V Chakravarthy
- Merck & Co., Inc., Kenilworth, New Jersesy, USA.,Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - E Kauh
- Merck & Co., Inc., Kenilworth, New Jersesy, USA
| | | | - P A Kothare
- Merck & Co., Inc., Kenilworth, New Jersesy, USA
| |
Collapse
|
49
|
Miller C, Pachanski MJ, Kirkland ME, Kosinski DT, Mane J, Bunzel M, Cao J, Souza S, Thomas-Fowlkes B, Di Salvo J, Weinglass AB, Li X, Myers RW, Knagge K, Carrington PE, Hagmann WK, Trujillo ME. GPR40 partial agonist MK-2305 lower fasting glucose in the Goto Kakizaki rat via suppression of endogenous glucose production. PLoS One 2017; 12:e0176182. [PMID: 28542610 PMCID: PMC5441580 DOI: 10.1371/journal.pone.0176182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/06/2017] [Indexed: 11/19/2022] Open
Abstract
GPR40 (FFA1) is a fatty acid receptor whose activation results in potent glucose lowering and insulinotropic effects in vivo. Several reports illustrate that GPR40 agonists exert glucose lowering in diabetic humans. To assess the mechanisms by which GPR40 partial agonists improve glucose homeostasis, we evaluated the effects of MK-2305, a potent and selective partial GPR40 agonist, in diabetic Goto Kakizaki rats. MK-2305 decreased fasting glucose after acute and chronic treatment. MK-2305-mediated changes in glucose were coupled with increases in plasma insulin during hyperglycemia and glucose challenges but not during fasting, when glucose was normalized. To determine the mechanism(s) mediating these changes in glucose metabolism, we measured the absolute contribution of precursors to glucose production in the presence or absence of MK-2305. MK-2305 treatment resulted in decreased endogenous glucose production (EGP) driven primarily through changes in gluconeogenesis from substrates entering at the TCA cycle. The decrease in EGP was not likely due to a direct effect on the liver, as isolated perfused liver studies showed no effect of MK-2305 ex vivo and GPR40 is not expressed in the liver. Taken together, our results suggest MK-2305 treatment increases glucose stimulated insulin secretion (GSIS), resulting in changes to hepatic substrate handling that improve glucose homeostasis in the diabetic state. Importantly, these data extend our understanding of the underlying mechanisms by which GPR40 partial agonists reduce hyperglycemia.
Collapse
Affiliation(s)
- Corin Miller
- Departments of Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Michele J. Pachanski
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Melissa E. Kirkland
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Daniel T. Kosinski
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Joel Mane
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Michelle Bunzel
- Departments of Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jin Cao
- Departments of Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Sarah Souza
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Brande Thomas-Fowlkes
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jerry Di Salvo
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Adam B. Weinglass
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Xiaoyan Li
- Cardio-Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Robert W. Myers
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Kevin Knagge
- David H Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Paul E. Carrington
- Cardio-Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - William K. Hagmann
- Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Maria E. Trujillo
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
50
|
Dragano NRV, Solon C, Ramalho AF, de Moura RF, Razolli DS, Christiansen E, Azevedo C, Ulven T, Velloso LA. Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation. J Neuroinflammation 2017; 14:91. [PMID: 28446241 PMCID: PMC5405534 DOI: 10.1186/s12974-017-0869-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The consumption of large amounts of dietary fats is one of the most important environmental factors contributing to the development of obesity and metabolic disorders. GPR120 and GPR40 are polyunsaturated fatty acid receptors that exert a number of systemic effects that are beneficial for metabolic and inflammatory diseases. Here, we evaluate the expression and potential role of hypothalamic GPR120 and GPR40 as targets for the treatment of obesity. METHODS Male Swiss (6-weeks old), were fed with a high fat diet (HFD, 60% of kcal from fat) for 4 weeks. Next, mice underwent stereotaxic surgery to place an indwelling cannula into the right lateral ventricle. intracerebroventricular (icv)-cannulated mice were treated twice a day for 6 days with 2.0 μL saline or GPR40 and GPR120 agonists: GW9508, TUG1197, or TUG905 (2.0 μL, 1.0 mM). Food intake and body mass were measured during the treatment period. At the end of the experiment, the hypothalamus was collected for real-time PCR analysis. RESULTS We show that both receptors are expressed in the hypothalamus; GPR120 is primarily present in microglia, whereas GPR40 is expressed in neurons. Upon intracerebroventricular treatment, GW9508, a non-specific agonist for both receptors, reduced energy efficiency and the expression of inflammatory genes in the hypothalamus. Reducing GPR120 hypothalamic expression using a lentivirus-based approach resulted in the loss of the anti-inflammatory effect of GW9508 and increased energy efficiency. Intracerebroventricular treatment with the GPR120- and GPR40-specific agonists TUG1197 and TUG905, respectively, resulted in milder effects than those produced by GW9508. CONCLUSIONS GPR120 and GPR40 act in concert in the hypothalamus to reduce energy efficiency and regulate the inflammation associated with obesity. The combined activation of both receptors in the hypothalamus results in better metabolic outcomes than the isolated activation of either receptor alone.
Collapse
Affiliation(s)
- Nathalia R. V. Dragano
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP 13084-970 Brazil
| | - Carina Solon
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP 13084-970 Brazil
| | - Albina F. Ramalho
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP 13084-970 Brazil
| | - Rodrigo F. de Moura
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP 13084-970 Brazil
| | - Daniela S. Razolli
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP 13084-970 Brazil
| | - Elisabeth Christiansen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Carlos Azevedo
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Licio A. Velloso
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP 13084-970 Brazil
- Laboratory of Cell Signaling, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária, Campinas, SP 13083-877 Brazil
| |
Collapse
|