1
|
Connors CT, Villaca CB, Anderson-Baucum EK, Rosario SR, Rutan CD, Childress PJ, Padgett LR, Robertson MA, Mastracci TL. A Translational Regulatory Mechanism Mediated by Hypusinated Eukaryotic Initiation Factor 5A Facilitates β-Cell Identity and Function. Diabetes 2024; 73:461-473. [PMID: 38055903 PMCID: PMC10882153 DOI: 10.2337/db23-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
As professional secretory cells, β-cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic β-cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional β-cells is not well defined. In this study, we have identified a translational regulatory mechanism mediated by the specialized mRNA translation factor eukaryotic initiation factor 5A (eIF5A), which facilitates the maintenance of β-cell identity and function. The mRNA translation function of eIF5A is only active when it is posttranslationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of β-cell DHPS in mice reduces the synthesis of proteins critical to β-cell identity and function at the stage of β-cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the β-cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Craig T. Connors
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN
| | | | | | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Caleb D. Rutan
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN
| | | | | | | | - Teresa L. Mastracci
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
2
|
Ikegami H, Babaya N, Noso S. β-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes. J Diabetes Investig 2021; 12:1526-1539. [PMID: 33993642 PMCID: PMC8409822 DOI: 10.1111/jdi.13576] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus is etiologically classified into type 1, type 2 and other types of diabetes. Despite distinct etiologies and pathogenesis of these subtypes, many studies have suggested the presence of shared susceptibilities and underlying mechanisms in β-cell failure among different types of diabetes. Understanding these susceptibilities and mechanisms can help in the development of therapeutic strategies regardless of the diabetes subtype. In this review, we discuss recent evidence indicating the shared genetic susceptibilities and common molecular mechanisms between type 1, type 2 and other types of diabetes, and highlight the future prospects as well.
Collapse
Affiliation(s)
- Hiroshi Ikegami
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| | - Naru Babaya
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| |
Collapse
|
3
|
Abstract
There are now a number of different mouse models for type 1 diabetes. The best known is the nonobese diabetic (NOD) mouse which has a genetic susceptibility to autoimmune diabetes with some features that are similar to human type 1 diabetes. The mice also have a propensity to other autoimmune diatheses, including autoimmune thyroid disease and sialadenitis. In addition, it is well known that environmental factors affect the incidence of disease in these mice. While there are other rodent models, including numerous transgenic and knockout models, as well as those that express human proteins, none of these develop spontaneous diabetes over a period of time, when the natural history can be studied. We focus here on the unmanipulated NOD mouse and discuss features of the husbandry and investigation of the mice that allow for use of these long-studied mice in the pathogenesis of an autoimmune type of diabetes.
Collapse
|
4
|
Sandor AM, Jacobelli J, Friedman RS. Immune cell trafficking to the islets during type 1 diabetes. Clin Exp Immunol 2019; 198:314-325. [PMID: 31343073 PMCID: PMC6857188 DOI: 10.1111/cei.13353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/01/2023] Open
Abstract
Inhibition of immune cell trafficking to the pancreatic islets during type 1 diabetes (T1D) has therapeutic potential, since targeting of T cell and B cell trafficking has been clinically effective in other autoimmune diseases. Trafficking to the islets is characterized by redundancy in adhesion molecule and chemokine usage, which has not enabled effective targeting to date. Additionally, cognate antigen is not consistently required for T cell entry into the islets throughout the progression of disease. However, myeloid cells are required to enable T cell and B cell entry into the islets, and may serve as a convergence point in the pathways controlling this process. In this review we describe current knowledge of the factors that mediate immune cell trafficking to pancreatic islets during T1D progression.
Collapse
Affiliation(s)
- A. M. Sandor
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - J. Jacobelli
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - R. S. Friedman
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| |
Collapse
|
5
|
Chen YG, Mathews CE, Driver JP. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 2018; 9:51. [PMID: 29527189 PMCID: PMC5829040 DOI: 10.3389/fendo.2018.00051] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For more than 35 years, the NOD mouse has been the primary animal model for studying autoimmune diabetes. During this time, striking similarities to the human disease have been uncovered. In both species, unusual polymorphisms in a major histocompatibility complex (MHC) class II molecule confer the most disease risk, disease is caused by perturbations by the same genes or different genes in the same biological pathways and that diabetes onset is preceded by the presence of circulating autoreactive T cells and autoantibodies that recognize many of the same islet antigens. However, the relevance of the NOD model is frequently challenged due to past failures translating therapies from NOD mice to humans and because the appearance of insulitis in mice and some patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune diabetes research for its usefulness as a preclinical model and because it provides access to invasive procedures as well as tissues that are rarely procured from patients or controls. The current article is focused on approaches to improve the NOD mouse by addressing reasons why immune therapies have failed to translate from mice to humans. We also propose new strategies for mixing and editing the NOD genome to improve the model in ways that will better advance our understanding of human diabetes. As proof of concept, we report that diabetes is completely suppressed in a knock-in NOD strain with a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports that similar non-aspartic acid substitutions at residue 57 of variants of the human class II HLA-DQβ homolog confer diabetes risk.
Collapse
Affiliation(s)
- Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - John P. Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- *Correspondence: John P. Driver,
| |
Collapse
|
6
|
Gibson A, Faulkner L, Lichtenfels M, Ogese M, Al-Attar Z, Alfirevic A, Esser PR, Martin SF, Pirmohamed M, Park BK, Naisbitt DJ. The Effect of Inhibitory Signals on the Priming of Drug Hapten-Specific T Cells That Express Distinct Vβ Receptors. THE JOURNAL OF IMMUNOLOGY 2017; 199:1223-1237. [PMID: 28687658 DOI: 10.4049/jimmunol.1602029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/11/2017] [Indexed: 12/31/2022]
Abstract
Drug hypersensitivity involves the activation of T cells in an HLA allele-restricted manner. Because the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T cell response. Thus, we have used a T cell-priming assay and nitroso sulfamethoxazole (SMX-NO) as a model Ag to investigate the activation of specific TCR Vβ subtypes, the impact of programmed death -1 (PD-1), CTL-associated protein 4 (CTLA4), and T cell Ig and mucin domain protein-3 (TIM-3) coinhibitory signaling on activation of naive and memory T cells, and the ability of regulatory T cells (Tregs) to prevent responses. An expansion of the TCR repertoire was observed for nine Vβ subtypes, whereas spectratyping revealed that SMX-NO-specific T cell responses are controlled by public TCRs present in all individuals alongside private TCR repertoires specific to each individual. We proceeded to evaluate the extent to which the activation of these TCR Vβ-restricted Ag-specific T cell responses is governed by regulatory signals. Blockade of PD-L1/CTLA4 signaling dampened activation of SMX-NO-specific naive and memory T cells, whereas blockade of TIM-3 produced no effect. Programmed death-1, CTLA4, and TIM-3 displayed discrete expression profiles during drug-induced T cell activation, and expression of each receptor was enhanced on dividing T cells. Because these receptors are also expressed on Tregs, Treg-mediated suppression of SMX-NO-induced T cell activation was investigated. Tregs significantly dampened the priming of T cells. In conclusion, our findings demonstrate that distinct TCR Vβ subtypes, dysregulation of coinhibitory signaling pathways, and dysfunctional Tregs may influence predisposition to hypersensitivity.
Collapse
Affiliation(s)
- Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Lee Faulkner
- Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Maike Lichtenfels
- Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Monday Ogese
- Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, United Kingdom.,Pathology Sciences, Drug Safety and Metabolism, AstraZeneca Research and Development, Cambridge CB4 0WG, United Kingdom; and
| | - Zaid Al-Attar
- Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Ana Alfirevic
- Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Philipp R Esser
- Allergy Research Group, Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, 79104 Freiburg, Germany
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, 79104 Freiburg, Germany
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - B Kevin Park
- Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, United Kingdom;
| |
Collapse
|
7
|
Collier JJ, Sparer TE, Karlstad MD, Burke SJ. Pancreatic islet inflammation: an emerging role for chemokines. J Mol Endocrinol 2017; 59:R33-R46. [PMID: 28420714 PMCID: PMC5505180 DOI: 10.1530/jme-17-0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Both type 1 and type 2 diabetes exhibit features of inflammation associated with alterations in pancreatic islet function and mass. These immunological disruptions, if unresolved, contribute to the overall pathogenesis of disease onset. This review presents the emerging role of pancreatic islet chemokine production as a critical factor regulating immune cell entry into pancreatic tissue as well as an important facilitator of changes in tissue resident leukocyte activity. Signaling through two specific chemokine receptors (i.e., CXCR2 and CXCR3) is presented to illustrate key points regarding ligand-mediated regulation of innate and adaptive immune cell responses. The prospective roles of chemokine ligands and their corresponding chemokine receptors to influence the onset and progression of autoimmune- and obesity-associated forms of diabetes are discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Chemokines/genetics
- Chemokines/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammation
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Leukocytes/immunology
- Leukocytes/pathology
- Obesity/genetics
- Obesity/immunology
- Obesity/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Signal Transduction
Collapse
Affiliation(s)
- J Jason Collier
- Laboratory of Islet Biology and InflammationPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Tim E Sparer
- Department of MicrobiologyUniversity of Tennessee, Knoxville, Knoxville, Tennessee, USA
| | - Michael D Karlstad
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Susan J Burke
- Laboratory of ImmunogeneticsPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
8
|
Zerif E, Maalem A, Gaudreau S, Guindi C, Ramzan M, Véroneau S, Gris D, Stankova J, Rola-Pleszczynski M, Mourad W, Dupuis G, Amrani A. Constitutively active Stat5b signaling confers tolerogenic functions to dendritic cells of NOD mice and halts diabetes progression. J Autoimmun 2017; 76:63-74. [DOI: 10.1016/j.jaut.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022]
|
9
|
Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol 2016; 185:271-80. [PMID: 27271348 DOI: 10.1111/cei.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Collapse
Affiliation(s)
- D H Wagner
- Department of Medicine, Department of Neurology, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Motta VN, Markle JGM, Gulban O, Mortin-Toth S, Liao KC, Mogridge J, Steward CA, Danska JS. Identification of the inflammasome Nlrp1b as the candidate gene conferring diabetes risk at the Idd4.1 locus in the nonobese diabetic mouse. THE JOURNAL OF IMMUNOLOGY 2015; 194:5663-73. [PMID: 25964492 DOI: 10.4049/jimmunol.1400913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/13/2015] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes in the NOD mouse model has been linked to >30 insulin-dependent diabetes (Idd) susceptibility loci. Idd4 on chromosome 11 consists of two subloci, Idd4.1 and Idd4.2. Using congenic analysis of alleles in NOD and NOD-resistant (NOR) mice, we previously defined Idd4.1 as an interval containing >50 genes that controlled expression of genes in the type 1 IFN pathway. In this study, we report refined mapping of Idd4.1 to a 1.1-Mb chromosomal region and provide genomic sequence analysis and mechanistic evidence supporting its role in innate immune regulation of islet-directed autoimmunity. Genetic variation at Idd4.1 was mediated by radiation-sensitive hematopoietic cells, and type 1 diabetes protection conferred by the NOR allele was abrogated in mice treated with exogenous type 1 IFN-β. Next generation sequence analysis of the full Idd4.1 genomic interval in NOD and NOR strains supported Nlrp1b as a strong candidate gene for Idd4.1. Nlrp1b belongs to the Nod-like receptor (NLR) gene family and contributes to inflammasome assembly, caspase-1 recruitment, and release of IL-1β. The Nlrp1b of NOR was expressed as an alternative spliced isoform that skips exon 9, resulting in a premature stop codon predicted to encode a truncated protein. Functional analysis of the truncated NOR Nlrp1b protein demonstrated that it was unable to recruit caspase-1 and process IL-1β. Our data suggest that Idd4.1-dependent protection from islet autoimmunity is mediated by differences in type 1 IFN- and IL-1β-dependent immune responses resulting from genetic variation in Nlrp1b.
Collapse
Affiliation(s)
- Vinicius N Motta
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Janet G M Markle
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Omid Gulban
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Steven Mortin-Toth
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Kuo-Chien Liao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeremy Mogridge
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles A Steward
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; and
| | - Jayne S Danska
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
11
|
Bour-Jordan H, Thompson HL, Giampaolo JR, Davini D, Rosenthal W, Bluestone JA. Distinct genetic control of autoimmune neuropathy and diabetes in the non-obese diabetic background. J Autoimmun 2013; 45:58-67. [PMID: 23850635 PMCID: PMC4156399 DOI: 10.1016/j.jaut.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 02/01/2023]
Abstract
The non-obese diabetic (NOD) mouse is susceptible to the development of autoimmune diabetes but also multiple other autoimmune diseases. Over twenty susceptibility loci linked to diabetes have been identified in NOD mice and progress has been made in the definition of candidate genes at many of these loci (termed Idd for insulin-dependent diabetes). The susceptibility to multiple autoimmune diseases in the NOD background is a unique opportunity to examine susceptibility genes that confer a general propensity for autoimmunity versus susceptibility genes that control individual autoimmune diseases. We previously showed that NOD mice deficient for the costimulatory molecule B7-2 (NOD-B7-2KO mice) were protected from diabetes but spontaneously developed an autoimmune peripheral neuropathy. Here, we took advantage of multiple NOD mouse strains congenic for Idd loci to test the role of these Idd loci the development of neuropathy and determine if B6 alleles at Idd loci that are protective for diabetes will also be for neuropathy. Thus, we generated NOD-B7-2KO strains congenic at Idd loci and examined the development of neuritis and clinical neuropathy. We found that the NOD-H-2(g7) MHC region is necessary for development of neuropathy in NOD-B7-2KO mice. In contrast, other Idd loci that significantly protect from diabetes did not affect neuropathy when considered individually. However, we found potent genetic interactions of some Idd loci that provided almost complete protection from neuritis and clinical neuropathy. In addition, defective immunoregulation by Tregs could supersede protection by some, but not other, Idd loci in a tissue-specific manner in a model where neuropathy and diabetes occurred concomitantly. Thus, our study helps identify Idd loci that control tissue-specific disease or confer general susceptibility to autoimmunity, and brings insight to the Treg-dependence of autoimmune processes influenced by given Idd region in the NOD background.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- University of California in San Francisco, 513 Parnassus Avenue, Box 0400, San Francisco, CA 94143-0400, USA
| | | | | | | | | | | |
Collapse
|
12
|
Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA, Thompson JE, Dondero RS, Lewis EC, Dinarello CA, Nadler JL, Mirmira RG. The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest 2010; 120:2156-70. [PMID: 20501948 PMCID: PMC2877928 DOI: 10.1172/jci38924] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/10/2010] [Indexed: 12/15/2022] Open
Abstract
In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to beta cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent beta cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions.
Collapse
Affiliation(s)
- Bernhard Maier
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takeshi Ogihara
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anthony P. Trace
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sarah A. Tersey
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Reiesha D. Robbins
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Swarup K. Chakrabarti
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Craig S. Nunemaker
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Natalie D. Stull
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Catherine A. Taylor
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John E. Thompson
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard S. Dondero
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eli C. Lewis
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Charles A. Dinarello
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jerry L. Nadler
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghavendra G. Mirmira
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Lundholm M, Mayans S, Motta V, Löfgren-Burström A, Danska J, Holmberg D. Variation in the Cd3 zeta (Cd247) gene correlates with altered T cell activation and is associated with autoimmune diabetes. THE JOURNAL OF IMMUNOLOGY 2010; 184:5537-44. [PMID: 20400699 DOI: 10.4049/jimmunol.0904012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tuning of TCR-mediated activation was demonstrated to be critical for lineage fate in T cell development, as well as in the control of autoimmunity. In this study, we identify a novel diabetes susceptibility gene, Idd28, in the NOD mouse and provide evidence that Cd3zeta (Cd247) constitutes a prime candidate gene for this locus. Moreover, we show that the allele of the Cd3zeta gene expressed in NOD and DBA/2 mouse strains confers lower levels of T cell activation compared with the allele expressed by C57BL/6 (B6), BALB/c, and C3H/HeJ mice. These results support a model in which the development of autoimmune diabetes is dependent on a TCR signal mediated by a less-efficient NOD allele of the Cd3zeta gene.
Collapse
Affiliation(s)
- Marie Lundholm
- Department of Medical Biosciences, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Beckers J, Wurst W, de Angelis MH. Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 2010; 10:371-80. [PMID: 19434078 DOI: 10.1038/nrg2578] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mouse is the leading mammalian model organism for basic genetic research and for studying human diseases. Coordinated international projects are currently in progress to generate a comprehensive map of mouse gene functions - the first for any mammalian genome. There are still many challenges ahead to maximize the value of the mouse as a model, particularly for human disease. These involve generating mice that are better models of human diseases at the genotypic level, systemic (assessing all organ systems) and systematic (analysing all mouse lines) phenotyping of existing and new mouse mutant resources, and assessing the effects of the environment on phenotypes.
Collapse
Affiliation(s)
- Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, GmbH, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|
15
|
Abstract
T cell immunoglobulin mucin-(TIM)-3 was first identified as a molecule specifically expressed on IFN-γ-secreting CD4(+) T helper 1 (Th1) and CD8(+) T cytotoxic (Tc1) cells in both mice and humans. TIM-3 acts as a negative regulator of Th1/Tc1 cell function by triggering cell death upon interaction with its ligand, galectin-9. This negative regulatory function of TIM-3 has now been expanded to include its involvement in establishing and/or maintaining a state of T cell dysfunction or "exhaustion" observed in chronic viral diseases. In addition, it is now appreciated that TIM-3 has other ligands and is expressed on other cell types, where it may function differently. Given that an increasing body of data support an important role for TIM-3 in both autoimmune and chronic inflammatory diseases in humans, deciphering the function of TIM-3 on different cell types during different immune conditions and how these can be regulated will be critical for harnessing the therapeutic potential of TIM-3 for the treatment of disease.
Collapse
|
16
|
Esensten JH, Lee MR, Glimcher LH, Bluestone JA. T-bet-deficient NOD mice are protected from diabetes due to defects in both T cell and innate immune system function. THE JOURNAL OF IMMUNOLOGY 2009; 183:75-82. [PMID: 19535634 DOI: 10.4049/jimmunol.0804154] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The transcription factor T-bet (Tbx21) is critical for Th1 polarization of CD4(+) T cells. Genetic deletion of Tbx21 can cause either exacerbation or attenuation of different autoimmune diseases in animal models. In the nonobese diabetic (NOD) mouse, genetic deletion of the Ifng or the Il12b (IL-12p40) genes, which are both critical Th1 cytokines, does not reduce the incidence of autoimmune diabetes. These results suggest that autoimmune diabetes in the NOD may not be a Th1-driven disease. However, we report that Tbx21 deficiency in the NOD mouse completely blocks insulitis and diabetes due to defects both in the initiation of the anti-islet immune response and in the function of CD4(+) effector T cells. We find defective priming of naive islet-reactive T cells by the innate immune system in Tbx21(-/-) animals. By contrast to naive cells, activated islet-reactive BDC2.5 TCR-transgenic T cells do not require Tbx21 in recipient animals for efficient adoptive transfer of diabetes. However, when these BDC2.5 TCR-transgenic effector cells lack Tbx21, they are less effective at entering the pancreas and promoting diabetes than Tbx21(+/+) cells. Tbx21(-/-) regulatory T cells function normally in vitro and diabetes can be restored in Tbx21(-/-) mice by reducing regulatory T cell numbers. Thus, the absence of diabetes in the NOD.Tbx21(-/-) is due to intrinsic defects in both T cells and cells of the innate immune system paired with the relative preservation of regulatory T cell function.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Diabetes Center and the Department of Medicine, University of California, San Francisco, 94143, USA
| | | | | | | |
Collapse
|
17
|
Sgouroudis E, Piccirillo CA. Control of type 1 diabetes by CD4+Foxp3+ regulatory T cells: lessons from mouse models and implications for human disease. Diabetes Metab Res Rev 2009; 25:208-18. [PMID: 19214972 DOI: 10.1002/dmrr.945] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, there has been a revival of the concept of CD4(+) regulatory T (T(reg)) cells as being a central control point in various immune responses, including autoimmune responses and immunity to transplants, allergens, tumours and infectious microbes. The current literature suggests that T(reg) cells are diverse in their phenotype and mechanism(s) of action, and as such, may constitute a myriad of naturally occurring and induced T cell precursors with variable degrees of regulatory potential. In this review, we summarize research from various laboratories, including our own, showing that CD4(+)Foxp3(+) T(reg) cells are critical in the control of type 1 diabetes (T1D) in mouse models and humans. In this review, we also discuss cellular and molecular determinants that impact CD4(+)Foxp3(+) T(reg) cell development and function and consequential resistance to organ-specific autoimmune disease. Recent advances in the use of CD4(+)Foxp3(+) T(reg) cellular therapy to promote immunological tolerance in the absence of long-term generalized immunosuppression are also presented.
Collapse
Affiliation(s)
- Evridiki Sgouroudis
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada, H3A 2B4
| | | |
Collapse
|
18
|
|
19
|
McDuffie M, Maybee NA, Keller SR, Stevens BK, Garmey JC, Morris MA, Kropf E, Rival C, Ma K, Carter JD, Tersey SA, Nunemaker CS, Nadler JL. Nonobese diabetic (NOD) mice congenic for a targeted deletion of 12/15-lipoxygenase are protected from autoimmune diabetes. Diabetes 2008; 57:199-208. [PMID: 17940120 PMCID: PMC2993320 DOI: 10.2337/db07-0830] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE 12/15-lipoxygenase (12/15-LO), one of a family of fatty acid oxidoreductase enzymes, reacts with polyenoic fatty acids to produce proinflammatory lipids. 12/15-LO is expressed in macrophages and pancreatic beta-cells. It enhances interleukin 12 production by macrophages, and several of its products induce apoptosis of beta-cells at nanomolar concentrations in vitro. We had previously demonstrated a role for 12/15-LO in beta-cell damage in the streptozotocin model of diabetes. Since the gene encoding 12/15-LO (gene designation Alox15) lies within the Idd4 diabetes susceptibility interval in NOD mice, we hypothesized that 12/15-LO is also a key regulator of diabetes susceptibility in the NOD mouse. RESEARCH DESIGN AND METHODS We developed NOD mice carrying an inactivated 12/15-LO locus (NOD-Alox15(null)) using a "speed congenic" protocol, and the mice were monitored for development of insulitis and diabetes. RESULTS NOD mice deficient in 12/15-LO develop diabetes at a markedly reduced rate compared with NOD mice (2.5 vs. >60% in females by 30 weeks). Nondiabetic female NOD-Alox15(null) mice demonstrate improved glucose tolerance, as well as significantly reduced severity of insulitis and improved beta-cell mass, when compared with age-matched nondiabetic NOD females. Disease resistance is associated with decreased numbers of islet-infiltrating activated macrophages at 4 weeks of age in NOD-Alox15(null) mice, preceding the development of insulitis. Subsequently, islet-associated infiltrates are characterized by decreased numbers of CD4(+) T cells and increased Foxp3(+) cells. CONCLUSIONS These results suggest an important role for 12/15-LO in conferring susceptibility to autoimmune diabetes in NOD mice through its effects on macrophage recruitment or activation.
Collapse
Affiliation(s)
- Marcia McDuffie
- University of Virginia, P.O. Box 801405, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Overbergh L, Gysemans C, Mathieu C. Quantification of chemokines by real-time reverse transcriptase PCR: applications in type 1 diabetes. Expert Rev Mol Diagn 2007; 6:51-64. [PMID: 16359267 DOI: 10.1586/14737159.6.1.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type 1 diabetes is a T-cell mediated autoimmune disease, characterized by the destruction of insulin-producing pancreatic beta-cells. This review will discuss the role of chemokines in the recruitment of immune cells leading to the pathology of this disease. There will be a focus on the quantification of chemokines and chemokine receptors by the recently developed real-time reverse transcriptase PCR technique. Today, this technique is in widespread use for analysis of chemokines in cells, tissues and tissue biopsies. The minute amount of tissue needed for analysis, as well as the very high sensitivity of this method, make it the method of choice for analysis of chemokines, which are often expressed at very low levels in target tissues. However, validation and optimization of the technique is of crucial importance for obtaining reliable results.
Collapse
Affiliation(s)
- Lut Overbergh
- Laboratory for Experimental Medicine & Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
21
|
Duarte N, Lundholm M, Holmberg D. The Idd6.2 diabetes susceptibility region controls defective expression of the Lrmp gene in nonobese diabetic (NOD) mice. Immunogenetics 2007; 59:407-16. [PMID: 17353998 DOI: 10.1007/s00251-007-0194-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 01/11/2007] [Indexed: 01/27/2023]
Abstract
The identification of genes mediating susceptibility to type 1 diabetes (T1D) remains a challenging task. Using a positional cloning approach based on the analysis of nonobese diabetic (NOD) mice congenic over the Idd6 diabetes susceptibility region, we found that the NOD allele at this locus mediates lower mRNA expression levels of the lymphoid restricted membrane protein gene (Lrmp/Jaw1). Analysis of thymic populations indicates that Lrmp is expressed mainly in immature thymocytes. The Lrmp gene encodes a type 1 transmembrane protein that localizes to the ER membrane and has homology to the inositol 1,4,5-triphosphate receptor-associated cGMP kinase substrate gene, which negatively regulates intracellular calcium levels. We hypothesize that the observed decrease in expression of the Lrmp gene in NOD mice may constitute a T1D susceptibility factor in the Idd6 region.
Collapse
Affiliation(s)
- Nádia Duarte
- Department of Medical Biosciences, Division of Medical and Clinical Genetics, Umeå University, 901 85, Umeå, Sweden
| | | | | |
Collapse
|
22
|
Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, Tsui H, Tang L, Tsai S, Santamaria P, Driver JP, Serreze D, Salter MW, Dosch HM. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 2007; 127:1123-35. [PMID: 17174891 DOI: 10.1016/j.cell.2006.10.038] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/22/2006] [Accepted: 10/03/2006] [Indexed: 11/26/2022]
Abstract
In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despite systemic persistence of pathogenic T cell pools. Insulin resistance and beta cell stress of prediabetic NOD mice are prevented when TRPV1(+) neurons are eliminated. TRPV1(NOD), localized to the Idd4.1 diabetes-risk locus, is a hypofunctional mutant, mediating depressed neurogenic inflammation. Delivering the neuropeptide substance P by intra-arterial injection into the NOD pancreas reverses abnormal insulin resistance, insulitis, and diabetes for weeks. Concordantly, insulin sensitivity is enhanced in trpv1(-/-) mice, whereas insulitis/diabetes-resistant NODxB6Idd4-congenic mice, carrying wild-type TRPV1, show restored TRPV1 function and insulin sensitivity. Our data uncover a fundamental role for insulin-responsive TRPV1(+) sensory neurons in beta cell function and diabetes pathoetiology.
Collapse
Affiliation(s)
- Rozita Razavi
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Research Institute, University of Toronto, Toronto, ON, Canada, M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Giarratana N, Penna G, Adorini L. Animal models of spontaneous autoimmune disease: type 1 diabetes in the nonobese diabetic mouse. Methods Mol Biol 2007; 380:285-311. [PMID: 17876100 DOI: 10.1007/978-1-59745-395-0_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The nonobese diabetic (NOD) mouse represents probably the best spontaneous model for a human autoimmune disease. It has provided not only essential information on type 1 diabetes (T1D) pathogenesis, but also valuable insights into mechanisms of immunoregulation and tolerance. Importantly, it allows testing of immunointervention strategies potentially applicable to man. The fact that T1D incidence in the NOD mouse is sensitive to environmental conditions, and responds, sometimes dramatically, to immunomanipulation, does not represent a limit of the model, but is likely to render it even more similar to its human counterpart. In both cases, macrophages, dendritic cells, CD4+, CD8+, and B cells are present in the diseased islets. T1D is a polygenic disease, but, both in human and in NOD mouse T1D, the primary susceptibility gene is located within the MHC. On the other hand, T1D incidence is significantly higher in NOD females, although insulitis is similar in both sexes, whereas in humans, T1D occurs with about equal frequency in males and females. In addition, NOD mice have a more widespread autoimmune disorder, which is not the case in the majority of human T1D cases. Despite these differences, the NOD mouse remains the most representative model of human T1D, with similarities also in the putative target autoantigens, including glutamic acid decarboxylase IA-2, and insulin.
Collapse
|
24
|
Ivakine EA, Mortin-Toth SM, Gulban OM, Valova A, Canty A, Scott C, Danska JS. The idd4 locus displays sex-specific epistatic effects on type 1 diabetes susceptibility in nonobese diabetic mice. Diabetes 2006; 55:3611-9. [PMID: 17130511 DOI: 10.2337/db06-0758] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nonobese diabetic (NOD) mouse recapitulates many aspects of the pathogenesis of type 1 diabetes in humans, including inheritance as a complex trait. More than 20 Idd loci have been linked to type 1 diabetes susceptibility in NOD mice. Previously, we used linkage analysis of NOD crossed to the nonobese diabetes-resistant (NOR) strain and NOD congenic strains to map susceptibility to both spontaneous and cyclophosphamide-accelerated type 1 diabetes to the Idd4 locus on chromosome 11 that displayed a sex-specific effect on diabetes susceptibility. Here, we elucidate the complex genetic architecture of Idd4 by analysis of congenic strains on the NOD and NOR backgrounds. We previously refined Idd4.1 to 1.4 Mb and demonstrated an impact of this interval on type 1 interferon pathways in antigen-presenting cells. Here, we identify a second subregion, the 0.92 Mb Idd4.2 locus located telomeric to Idd4.1. Strikingly, Idd4.2 displayed a sex-specific, epistatic interaction with Idd4.1 in NOR.NOD congenic females that was not observed in syngenic males. Idd4.2 contains 29 genes, and promising candidates for the Idd4.2 effect on type 1 diabetes are described. These data demonstrate sex-dependent interaction effects on type 1 diabetes susceptibility and provide a framework for functional analysis of Idd4.2 candidate genes.
Collapse
Affiliation(s)
- Evgueni A Ivakine
- Program in Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Anderson AC, Anderson DE. TIM-3 in autoimmunity. Curr Opin Immunol 2006; 18:665-9. [PMID: 17011764 DOI: 10.1016/j.coi.2006.09.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/19/2006] [Indexed: 01/12/2023]
Abstract
T cell immunoglobulin and mucin domain (TIM)-3 is a molecule expressed on terminally differentiated murine Th1 cells but not on Th2 cells. Identification of galectin-9 as a ligand for TIM-3 has now firmly established the TIM-3-galectin-9 pathway as an important regulator of Th1 immunity and tolerance induction. TIM-3 is similarly expressed on human Th1 cells and not on Th2 cells, which suggests that TIM-3 might also contribute to Th1 regulation in humans. In addition, genetic data associate the TIM locus and specific TIM-3 polymorphisms with various immune-mediated diseases. Most importantly, recent data suggest a novel paradigm in which dysregulation of the TIM-3-galectin-9 pathway could underlie chronic autoimmune disease states, such as multiple sclerosis.
Collapse
Affiliation(s)
- Ana C Anderson
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
26
|
Mi QS, Zhou L, Grattan M, Wang ZZ, Sivilotti M, She JX, Delovitch TL. Characterization of PAF-AH Ib1 in NOD Mice: PAF-AH May Not Be a Candidate Gene of the Diabetes Susceptibility Idd4.1 Locus. Ann N Y Acad Sci 2006; 1079:147-52. [PMID: 17130546 DOI: 10.1196/annals.1375.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We recently mapped Idd4 to a 5.2 cM interval on chromosome 11 with two subloci, Idd4.1 and Idd4.2, in nonobese diabetic (NOD) mice. Based on the localization of platelet-activating factor acetylhydrolase Ib1 (PAF-AHIb1) and the decreased activity of PAF-AH in type 1 diabetes (T1D) patients, we hypothesized that PAF-AHIb1 in Idd4.1 is a candidate gene. The PAF-AHIb1 gene in NOD mice was cloned and sequenced, and its expression and function were studied. No polymorphisms were detected in PAF-AHIb1 cDNA between NOD and B6 mice. The expression of PAF-AH Ib1 at the mRNA and protein levels was found to be similar in different tissues between NOD and B6 mice. PAF-AH activity does not differ in the pancreatic islets or spleen between NOD and B6 mice. Our findings suggest that PAF-AH Ib1 may not be a diabetes-susceptibility gene in the Idd4.1 sublocus.
Collapse
Affiliation(s)
- Qing-Sheng Mi
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gould KA, Strecker TE, Hansen KK, Bynoté KK, Peterson KA, Shull JD. Genetic mapping of loci controlling diethylstilbestrol-induced thymic atrophy in the Brown Norway rat. Mamm Genome 2006; 17:451-64. [PMID: 16688534 DOI: 10.1007/s00335-005-0183-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 02/01/2006] [Indexed: 11/28/2022]
Abstract
Chronic estrogen administration can lead to thymic atrophy in rodents. In this article we report that the Brown Norway (BN) rat is sensitive to thymic atrophy induced by the estrogen diethylstilbestrol (DES). By contrast, DES does not induce significant thymic atrophy in the August x Copenhagen-Irish (ACI) strain. The sensitivity of the BN rat to DES-induced thymic atrophy appears to segregate as an incompletely dominant trait in crosses between the BN and ACI strains. In a (BN x ACI)F(2) population, we find strong evidence for three major genetic determinants of sensitivity to DES-induced thymic atrophy on rat Chromosome (RNO) 10 and RNO2. Genotypes at these loci, termed Esta1, 2, and 3, do not have a significant impact on the ability of DES to induce pituitary tumorigenesis or inhibit growth of these F(2) rats. These data indicate that the genetic factors that control DES-induced thymic atrophy are distinct from those that control the effects of DES on pituitary mass and body mass. The Esta intervals on RNO10 and RNO2 overlap with loci that control sensitivity to radiation-induced thymocyte apoptosis, as well as susceptibility to a variety of allergic and autoimmune pathologies, including allergic encephalitis, arthritis, and glomerulonephritis in rodents. These observations suggest that common genetic determinants may control sensitivity to estrogen-induced thymic atrophy, maintenance of thymocyte homeostasis, and immune function.
Collapse
Affiliation(s)
- Karen A Gould
- Department of Genetics, Cell Biology and Anatomy, 985805, University of Nebraska Medical Center, Omaha, Nebraska 68198-5805, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Armstrong NJ, Brodnicki TC, Speed TP. Mind the gap: analysis of marker-assisted breeding strategies for inbred mouse strains. Mamm Genome 2006; 17:273-87. [PMID: 16596449 DOI: 10.1007/s00335-005-0123-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 12/14/2005] [Indexed: 10/24/2022]
Abstract
The development of congenic mouse strains is the principal approach for confirming and fine mapping quantitative trait loci, as well as for comparing the phenotypic effect of a transgene or gene-targeted disruption between different inbred mouse strains. The traditional breeding scheme calls for at least nine consecutive backcrosses before establishing a congenic mouse strain. Recent availability of genome sequence and high-throughput genotyping now permit the use of polymorphic DNA markers to reduce this number of backcrosses, and empirical data suggest that marker-assisted breeding may require as few as four backcrosses. We used simulation studies to investigate the efficiency of different marker-assisted breeding schemes by examining the trade-off between the number of backcrosses, the number of mice produced per generation, and the number of genotypes per mouse required to achieve a quality congenic mouse strain. An established model of crossover interference was also incorporated into these simulations. The quality of the strain produced was assessed by the probability of an undetected region of heterozygosity (i.e., "gaps") in the recipient genetic background, while maintaining the desired donor-derived interval. Somewhat surprisingly, we found that there is a relatively high probability for undetected gaps in potential breeders for establishing a congenic mouse strain. Marker-assisted breeding may decrease the number of backcross generations required to generate a congenic strain, but only additional backcrossing will guarantee a reduction in the number and length of undetected gaps harboring contaminating donor alleles.
Collapse
Affiliation(s)
- Nicola J Armstrong
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| | | | | |
Collapse
|
29
|
Ivakine EA, Gulban OM, Mortin-Toth SM, Wankiewicz E, Scott C, Spurrell D, Canty A, Danska JS. Molecular Genetic Analysis of the Idd4 Locus Implicates the IFN Response in Type 1 Diabetes Susceptibility in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:2976-90. [PMID: 16493056 DOI: 10.4049/jimmunol.176.5.2976] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-resolution mapping and identification of the genes responsible for type 1 diabetes (T1D) has proved difficult because of the multigenic etiology and low penetrance of the disease phenotype in linkage studies. Mouse congenic strains have been useful in refining Idd susceptibility loci in the NOD mouse model and providing a framework for identification of genes underlying complex autoimmune syndromes. Previously, we used NOD and a nonobese diabetes-resistant strain to map the susceptibility to T1D to the Idd4 locus on chromosome 11. Here, we report high-resolution mapping of this locus to 1.4 megabases. The NOD Idd4 locus was fully sequenced, permitting a detailed comparison with C57BL/6 and DBA/2J strains, the progenitors of T1D resistance alleles found in the nonobese diabetes-resistant strain. Gene expression arrays and quantitative real-time PCR were used to prioritize Idd4 candidate genes by comparing macrophages/dendritic cells from congenic strains where allelic variation was confined to the Idd4 interval. The differentially expressed genes either were mapped to Idd4 or were components of the IFN response pathway regulated in trans by Idd4. Reflecting central roles of Idd4 genes in Ag presentation, arachidonic acid metabolism and inflammation, phagocytosis, and lymphocyte trafficking, our combined analyses identified Alox15, Alox12e, Psmb6, Pld2, and Cxcl16 as excellent candidate genes for the effects of the Idd4 locus.
Collapse
Affiliation(s)
- Evgueni A Ivakine
- Program in Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Brodnicki TC, Fletcher AL, Pellicci DG, Berzins SP, McClive P, Quirk F, Webster KE, Scott HS, Boyd RL, Godfrey DI, Morahan G. Localization of Idd11 is not associated with thymus and nkt cell abnormalities in NOD mice. Diabetes 2005; 54:3453-7. [PMID: 16306361 DOI: 10.2337/diabetes.54.12.3453] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenic mouse strains provide a unique resource for genetic dissection and biological characterization of chromosomal regions associated with diabetes progression in the nonobese diabetic (NOD) mouse. Idd11, a mouse diabetes susceptibility locus, was previously localized to a region on chromosome 4. Comparison of a panel of subcongenic NOD mouse strains with different intervals derived from the nondiabetic C57BL/6 (B6) strain now maps Idd11 to an approximately 8-Mb interval. B6-derived intervals protected congenic NOD mice from diabetes onset, even though lymphocytic infiltration of pancreatic islets was similar to that found in NOD mice. In addition, neither thymic structural irregularities nor NKT cell deficiencies were ameliorated in diabetes-resistant congenic NOD mice, indicating that Idd11 does not contribute to these abnormalities, which do not need to be corrected to prevent disease.
Collapse
Affiliation(s)
- Thomas C Brodnicki
- Genetics and Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050 Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Maier LM, Wicker LS. Genetic susceptibility to type 1 diabetes. Curr Opin Immunol 2005; 17:601-8. [PMID: 16226440 DOI: 10.1016/j.coi.2005.09.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/20/2005] [Indexed: 11/17/2022]
Abstract
The recent discovery of PTPN22 as a novel susceptibility gene in human type 1 diabetes and continued progress in defining genes in animal models of the disease mark a fruitful period in the field of type 1 diabetes genetics. In addition, the similarities of the genetic and functional aspects across species have been substantiated. Future genome-wide association studies will reveal more loci, each providing a piece to the genetic puzzle of autoimmune disease.
Collapse
Affiliation(s)
- Lisa M Maier
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, University of Cambridge, Cambridge, CB2 2XY, UK
| | | |
Collapse
|
32
|
Litherland SA, Grebe KM, Belkin NS, Paek E, Elf J, Atkinson M, Morel L, Clare-Salzler MJ, McDuffie M. Nonobese diabetic mouse congenic analysis reveals chromosome 11 locus contributing to diabetes susceptibility, macrophage STAT5 dysfunction, and granulocyte-macrophage colony-stimulating factor overproduction. THE JOURNAL OF IMMUNOLOGY 2005; 175:4561-5. [PMID: 16177100 PMCID: PMC2605964 DOI: 10.4049/jimmunol.175.7.4561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unstimulated monocytes of at-risk/type 1 diabetic humans and macrophages of the NOD mouse have markedly elevated autocrine GM-CSF production and persistent STAT5 phosphorylation. We analyzed the relationship between GM-CSF production and persistent STAT5 phosphorylation in NOD macrophages using reciprocal congenic mouse strains containing either diabetes-susceptible NOD (B6.NODC11), or diabetes-resistant C57L (NOD.LC11) loci on chromosome 11. These intervals contain the gene for GM-CSF (Csf2; 53.8 Mb) and those for STAT3, STAT5A, and STAT5B (Stat3, Stat5a, and Stat5b; 100.4-100.6 Mb). High GM-CSF production and persistent STAT5 phosphorylation in unactivated NOD macrophages can be linked to a region (44.9-55.7 Mb) containing the Csf2 gene, but not the Stat3/5a/5b genes. This locus, provisionally called Idd4.3, is upstream of the previously described Idd4.1 and Idd4.2 loci. Idd4.3 encodes an abundance of cytokine genes that use STAT5 in their macrophage activation signaling and contributes approximately 50% of the NOD.LC11 resistance to diabetes.
Collapse
Affiliation(s)
- Sally A Litherland
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wicker LS, Clark J, Fraser HI, Garner VES, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL, Smink LJ, Todd JA, Peterson LB. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 2005; 25 Suppl:29-33. [PMID: 16257508 DOI: 10.1016/j.jaut.2005.09.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 07/05/2005] [Accepted: 09/07/2005] [Indexed: 01/15/2023]
Abstract
The identification of causative genes for the autoimmune disease type 1 diabetes (T1D) in humans and candidate genes in the NOD mouse has made significant progress in recent years. In addition to sharing structural aspects of the MHC class II molecules that confer susceptibility or resistance to T1D, genes and pathways contributing to autoimmune pathogenesis are held in common by the two species. There are data demonstrating a similar need to establish central tolerance to insulin. Gene variants for the interacting molecules IL2 and CD25, members of a pathway that is essential for immune homeostasis, are present in mice and humans, respectively. Variation of two molecules that negatively regulate T cells, CTLA-4 and the tyrosine phosphatase LYP/PEP, are associated with susceptibility to human and NOD T1D. These observations underscore the value of the NOD mouse model for mechanistic studies on human T1D-associated molecular and cellular pathways.
Collapse
Affiliation(s)
- Linda S Wicker
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 2XY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang CLT, Kuo HK, Chang SL, Chiang YM, Lee TH, Wu WM, Shyur LF, Yang WC. The distinct effects of a butanol fraction of Bidens pilosa plant extract on the development of Th1-mediated diabetes and Th2-mediated airway inflammation in mice. J Biomed Sci 2005; 12:79-89. [PMID: 15864741 DOI: 10.1007/s11373-004-8172-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 11/05/2004] [Indexed: 11/26/2022] Open
Abstract
Bidens pilosa is claimed to be useful for immune or anti-inflammatory disorders; however, little scientific evidence has been published concerning its function. In this paper, immune disease mouse models were used to study the function of a butanol fraction of B.pilosa. We demonstrated treatment with the butanol fraction of B.pilosa ameliorated Th1 cell-mediated autoimmune diabetes in nonobese diabetic (NOD) mice but caused deterioration of Th2 cell-mediated airway inflammation induced by ovalbumin (OVA) in BALB/c mice. We next showed that Th2 cytokines (IL-4 and/or IL-5) increased but Th1 cytokine (IFN-gamma) decreased following injections with the butanol fraction of B.pilosa in both mouse strains. Accordingly, Th2 cytokine-regulated IgE production in mouse serum increased following treatment with this fraction. Finally, we found that the butanol fraction of B.pilosa inhibited Th1 cell differentiation but promoted Th2 cell differentiation. Taken together, the butanol fraction of B.pilosa has a dichotomous effect on helper T cell-mediated immune disorders, plausibly via modulation of T cell differentiation.
Collapse
|
35
|
Reifsnyder PC, Li R, Silveira PA, Churchill G, Serreze DV, Leiter EH. Conditioning the genome identifies additional diabetes resistance loci in Type I diabetes resistant NOR/Lt mice. Genes Immun 2005; 6:528-38. [PMID: 16015371 DOI: 10.1038/sj.gene.6364241] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While sharing the H2g7 MHC and many other important Type I diabetes susceptibility (Idd) genes with NOD mice, the NOR strain remains disease free due to resistance alleles within the approximately 12% portion of their genome that is of C57BLKS/J origin. Previous F2 segregation analyses indicated multiple genes within the 'Idd13' locus on Chromosome 2 provide the primary component of NOR diabetes resistance. However, it was clear other genes also contribute to NOR diabetes resistance, but were difficult to detect in the original segregation analyses because they were relatively weak compared to the strong Idd13 protection component. To identify these further genetic components of diabetes resistance, we performed a new F2 segregation analyses in which NOD mice were outcrossed to a 'genome-conditioned' NOR stock in which a large component of Idd13-mediated resistance was replaced with NOD alleles. These F2 segregation studies combined with subsequent congenic analyses confirmed the presence of additional NOR resistance genes on Chr. 1 and Chr. 4, and also potentially on Chr. 11. These findings emphasize the value for diabetes gene discovery of stratifying not only MHC loci conferring the highest relative risk but also as many as possible of the non-MHC loci presumed to contribute significantly.
Collapse
|
36
|
Hollis-Moffatt JE, Hook SM, Merriman TR. Colocalization of mouse autoimmune diabetes loci Idd21.1 and Idd21.2 with IDDM6 (human) and Iddm3 (rat). Diabetes 2005; 54:2820-5. [PMID: 16123376 DOI: 10.2337/diabetes.54.9.2820] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Comparative mapping between the human and rodent genomes is one approach for positional cloning of complex disease loci. The human type 1 diabetes susceptibility locus IDDM6 has orthology with distal rodent chromosome 18, to which Iddm3 has been mapped in rat. Previously, we mapped Idd21 to mouse chromosome 18. Here, the primary aim was to determine whether Idd21 mapped to distal mouse chromosome 18. We constructed novel congenic strains from the consomic NOD-Chr 18(ABH) strain and mapped two loci (Idd21.1 and Idd21.2) to the distal 29.3-Mb portion of mouse chromosome 18, orthologous to IDDM6 (human) and Iddm3 (rat). Idd21.3 was mapped to proximal mouse chromosome 18 (0-21.9 Mb). Although Idd21.1 did not influence beta-islet inflammation, splenocytes from pre-diabetic Idd21.1-congenic mice were less efficient at transferring diabetes to immunodeficient NOD-scid mice. This suggests that Idd21.1 may act by reducing the pathogenicity of islet-infiltrating immune cells. For the first time, the presence of a non-major histocompatibility complex autoimmune diabetes locus colocalizing in three species has been demonstrated; IDDM6 (human), Iddm3 (rat), and now Idd21.1-21.2 in mouse. Further genetic localization of Idd21.1 and Idd21.2 could expedite characterization of the human IDDM6 region.
Collapse
|
37
|
Ivakine EA, Fox CJ, Paterson AD, Mortin-Toth SM, Canty A, Walton DS, Aleksa K, Ito S, Danska JS. Sex-Specific Effect of Insulin-Dependent Diabetes 4 on Regulation of Diabetes Pathogenesis in the Nonobese Diabetic Mouse. THE JOURNAL OF IMMUNOLOGY 2005; 174:7129-40. [PMID: 15905556 DOI: 10.4049/jimmunol.174.11.7129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many human autoimmune diseases are more frequent in females than males, and their clinical severity is affected by sex hormone levels. A strong female bias is also observed in the NOD mouse model of type I diabetes (T1D). In both NOD mice and humans, T1D displays complex polygenic inheritance and T cell-mediated autoimmune pathogenesis. The identities of many of the insulin-dependent diabetes (Idd) loci, their influence on specific stages of autoimmune pathogenesis, and sex-specific effects of Idd loci in the NOD model are not well understood. To address these questions, we analyzed cyclophosphamide-accelerated T1D (CY-T1D) that causes disease with high and similar frequencies in male and female NOD mice, but not in diabetes-resistant animals, including the nonobese diabetes-resistant (NOR) strain. In this study we show by genetic linkage analysis of (NOD x NOR) x NOD backcross mice that progression to severe islet inflammation after CY treatment was controlled by the Idd4 and Idd9 loci. Congenic strains on both the NOD and NOR backgrounds confirmed the roles of Idd4 and Idd9 in CY-T1D susceptibility and revealed the contribution of a third locus, Idd5. Importantly, we show that the three loci acted at distinct stages of islet inflammation and disease progression. Among these three loci, Idd4 alleles alone displayed striking sex-specific behavior in CY-accelerated disease. Additional studies will be required to address the question of whether a sex-specific effect of Idd4, observed in this study, is also present in the spontaneous model of the disease with striking female bias.
Collapse
Affiliation(s)
- Evgueni A Ivakine
- Program in Developmental Biology, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The nonobese diabetic mouse spontaneously develops an autoimmune, T-cell-mediated type 1 diabetes (T1D). Common and rare alleles both within a diabetogenic major histocompatibility complex (MHC) and multiple non-MHC genes combine to impair normal communication between the innate and acquired immune system, leading to loss of immune tolerance. An understanding of how variable collections of genes interact with each other and with environmental cues offers important insights as to the complexities of T1D inheritance in humans.
Collapse
Affiliation(s)
- Edward H Leiter
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
39
|
Babaya N, Ikegami H, Fujisawa T, Nojima K, Itoi-Babaya M, Inoue K, Ohno T, Shibata M, Ogihara T. Susceptibility to streptozotocin-induced diabetes is mapped to mouse chromosome 11. Biochem Biophys Res Commun 2005; 328:158-64. [PMID: 15670764 DOI: 10.1016/j.bbrc.2004.12.149] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Indexed: 10/26/2022]
Abstract
To study the contribution of beta-cell vulnerability to susceptibility to diabetes, we studied beta-cell vulnerability to a single high dose of streptozotocin (STZ) in an animal model of type 2 diabetes, the NSY mouse, a sister strain of the STZ-sensitive NOD mouse, in comparison with the STZ-resistant C3H mouse. NSY mice were found to be extremely sensitive to STZ. Introgression of a single Chr 11, where STZ-sensitivity was mapped in the NOD mouse, from NSY mice converted STZ-resistant C3H mice to STZ-sensitive. Two nucleotide substitutions were identified in the nucleoredoxin gene, a positional and functional candidate gene for STZ-induced diabetes on Chr 11. These data, together with the co-localization of type 1 (Idd4) and type 2 (Nidd1n) susceptibility genes on Chr 11, suggest that the intrinsic vulnerability of pancreatic beta cells is determined by a gene or genes on Chr 11, which may also contribute to susceptibility to spontaneous diabetes.
Collapse
Affiliation(s)
- Naru Babaya
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Somatostatin (SST) peptide is produced by various SST-secreting cells throughout the body and acts as a neurotransmitter or paracrine/autocrine regulator in response to ions, nutrients, peptides hormones and neurotransmitters. SST is also widely distributed in the periphery to regulate the inflammatory and immune cells in response to hormones, growth factors, cytokines and other secretive molecules. SST peptides are considered the most important physiologic regulator of the islet cell, gastrointestinal cell and immune cell functions, and the importance of SST production levels has been implicated in several diseases including diabetes. The expression of SST receptors has also been found in T lymphocytes and primary immunologic organs. Interaction of SST and its receptors is also involved in T-cell proliferation and thymocyte selection. SSTR gene-ablated mice developed diabetes with morphologic, physiologic and immunologic alterations in the endocrine pancreas. Increased levels of mononuclear cell infiltration of the islets are associated with the increased levels of antigen-presenting cells located in the islets and peripancreatic lymph nodes. Increased levels of SST were also found in antigen-presenting cells and are associated with a significant increase of CD8 expression levels on CD4(+)/CD8(+) immature thymocytes. These findings highlight the crucial role of this neuroendocrine peptide and its receptors in regulating autoimmune functions.
Collapse
Affiliation(s)
- Xaio-Ping Wang
- The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
41
|
Yang Z, Chen M, Ellett JD, Fialkow LB, Carter JD, McDuffie M, Nadler JL. Autoimmune diabetes is blocked in Stat4-deficient mice. J Autoimmun 2004; 22:191-200. [PMID: 15041039 DOI: 10.1016/j.jaut.2003.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2003] [Revised: 07/31/2003] [Accepted: 08/01/2003] [Indexed: 12/01/2022]
Abstract
Signal transducers and activators of transcription (STAT) proteins are activated in response to many cytokines, growth factors and hormones. STAT4 mediates IL-12 signaling and regulates T helper 1 (Th1) cell differentiation. Both IL-12 and Th1 cell activation participate in the development of autoimmune diabetes. In this study, we investigated the role of STAT4 in autoimmune diabetes. We crossbred Stat4 deficient (Stat4-/-) mice with nonobese diabetic (NOD) mice to generate the Stat4-/- NOD model. In Stat4-/- NOD mice, serum levels of both IFN-gamma and IL-2 were significantly reduced as compared to the controls. Insulin secretion in pancreatic islets was preserved in Stat4-/- NOD mice. Significantly, disruption of Stat4 activation completely prevented the development of spontaneous diabetes in NOD mice. This study reveals the important role of STAT4 in autoimmune diabetes pathogenesis.
Collapse
Affiliation(s)
- Zandong Yang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Virginia, P.O. Box 801413, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The sequencing of the human and the mouse genomes has shown that the chromosomes of these two species contain approximately 30,000 genes. The biological systems that can be studied in an individual or in a tissue result from complex interactions within this multitude of genes. Before describing these interactions, it is necessary to understand the function of each gene. In the mouse, congenic strains are developed to introduce a chromosomal segment in a given inbred genetic background. One can then compare the biological effects of different alleles at the same locus in the same genetic background or the effect of a given allele in different genetic backgrounds. One can also introduce into different congenic strains with the same genetic background genes which control a complex genetic trait, then combine these genes by appropriate crosses to study their interactions. Although the chromosomal segment transferred into a congenic strain usually contains up to several hundreds of genes, molecular markers can be used to reduce this number as well as the number of crosses required for the development of congenic strains.
Collapse
Affiliation(s)
- Xavier Montagutelli
- Unité de Génétique des mammifères, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris 15, France.
| | | |
Collapse
|
43
|
Giarratana N, Penna G, Amuchastegui S, Mariani R, Daniel KC, Adorini L. A vitamin D analog down-regulates proinflammatory chemokine production by pancreatic islets inhibiting T cell recruitment and type 1 diabetes development. THE JOURNAL OF IMMUNOLOGY 2004; 173:2280-7. [PMID: 15294940 DOI: 10.4049/jimmunol.173.4.2280] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by leukocyte infiltration into the pancreatic islets, and we have previously shown that treatment of adult NOD mice with a vitamin D analog arrests the progression of insulitis, blocks Th1 cell infiltration into the pancreas, and markedly reduces T1D development, suggesting inhibition of chemokine production by islet cells. In this study, we show that all TLRs are expressed by mouse and human islet cells, and their engagement by pathogen-derived ligands markedly enhances proinflammatory chemokine production. The vitamin D analog significantly down-regulates in vitro and in vivo proinflammatory chemokine production by islet cells, inhibiting T cell recruitment into the pancreatic islets and T1D development. The inhibition of islet chemokine production in vivo persists after restimulation with TLR ligands and is associated with up-regulation of IkappaBalpha transcription, an inhibitor of NF-kappaB and with arrest of NF-kappaBp65 nuclear translocation, highlighting a novel mechanism of action exerted by vitamin D receptor ligands potentially relevant for the treatment of T1D and other autoimmune diseases.
Collapse
|
44
|
Yang W, Hussain S, Mi QS, Santamaria P, Delovitch TL. Perturbed Homeostasis of Peripheral T Cells Elicits Decreased Susceptibility to Anti-CD3-Induced Apoptosis in Prediabetic Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:4407-16. [PMID: 15383571 DOI: 10.4049/jimmunol.173.7.4407] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation-induced cell death (AICD) plays a key role in the homeostasis of the immune system. Autoreactive T cells are eliminated through AICD both from the thymus and periphery. In this study, we show that NOD peripheral T cells, especially CD8(+) T cells, display a decreased susceptibility to anti-CD3-induced AICD in vivo compared with T cells from diabetes-resistant B6, nonobese diabetes-resistant, and NOD.B6Idd4 mice. The susceptibility of NOD CD8(+) T cells to AICD varies in an age- and dose-dependent manner upon stimulation in vivo with either a mitogenic or nonmitogenic anti-CD3. NOD T cells preactivated by anti-CD3 in vivo are less susceptible than B6 T cells to TCR-induced AICD. Treatment of NOD mice with a mitogenic anti-CD3 depletes CD4(+)CD25(-)CD62L(+) but not CD4(+)CD25(+)CD62L(+) T cells, thereby resulting in an increase of the latter subset in the spleen. Treatment with a nonmitogenic anti-CD3 mAb delays the onset of T1D in 8.3 TCR transgenic NOD mice. These results demonstrate that the capacity of anti-CD3 to protect NOD mice from T1D correlates with its ability to perturb T cell homeostasis by inducing CD8(+) T cell AICD and increasing the number of CD4(+)CD25(+)CD62L(+) T cells in the periphery.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Apoptosis/genetics
- Apoptosis/immunology
- CD3 Complex/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Death/genetics
- Cell Death/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Genetic Predisposition to Disease
- Homeostasis/genetics
- Homeostasis/immunology
- Humans
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/metabolism
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/metabolism
- Interleukin-4/antagonists & inhibitors
- Interleukin-4/metabolism
- L-Selectin/biosynthesis
- Lymphocyte Activation/genetics
- Lymphocyte Depletion
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Prediabetic State/genetics
- Prediabetic State/immunology
- Prediabetic State/pathology
- Prediabetic State/prevention & control
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin-2/biosynthesis
- Spleen/cytology
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Wen Yang
- Autoimmunity/Diabetes Group, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
45
|
Hussain S, Salojin KV, Delovitch TL. Hyperresponsiveness, resistance to B-cell receptor-dependent activation-induced cell death, and accumulation of hyperactivated B-cells in islets is associated with the onset of insulitis but not type 1 diabetes. Diabetes 2004; 53:2003-11. [PMID: 15277379 DOI: 10.2337/diabetes.53.8.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cells proliferate after B-cell receptor (BCR) stimulation and are deleted by activation-induced cell death (AICD) during negative selection. We report that B-cells from type 1 diabetes-susceptible NOD and type 1 diabetes-resistant but insulitis-prone congenic NOD.B6Idd4B and NOR mice, relative to B-cells from nonautoimmune disease-prone C57BL/6 and BALB/c mice, display a hyperproliferative response to BCR stimulation and lower activation threshold in the absence or presence of interleukin 4 (IL-4). This hyperproliferation is associated with an increased proportion of NOD and NOR B-cells that enter into the S phase of the cell cycle and undergo cell division. The relative resistance to BCR-induced AICD of B-cells from NOD, NOR, and NOD.B6Idd4B mice, all of which develop insulitis, correlates with the presence of a higher percentage of hyperactivated B-cells in the spleen and islets of these mice than in nonautoimmune disease-prone C57BL/6 and BALB/c mice. The NOD islet-infiltrated activated B-cells are more responsive to further stimulation by IL-4 than activated spleen B-cells. Our results suggest that resistance to AICD and accumulation of hyperactivated B-cells in islets is associated with the onset of an inflammatory insulitis, but not type 1 diabetes.
Collapse
Affiliation(s)
- Shabbir Hussain
- Autoimmunity/Diabetes Group, Robarts Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
46
|
Jagodic M, Becanovic K, Sheng JR, Wu X, Bäckdahl L, Lorentzen JC, Wallström E, Olsson T. An Advanced Intercross Line Resolves Eae18 into Two Narrow Quantitative Trait Loci Syntenic to Multiple Sclerosis Candidate Loci. THE JOURNAL OF IMMUNOLOGY 2004; 173:1366-73. [PMID: 15240732 DOI: 10.4049/jimmunol.173.2.1366] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Identification of polymorphic genes regulating inflammatory diseases may unravel crucial pathogenic mechanisms. Initial steps to map such genes using linkage analysis in F(2) intercross or backcross populations, however, result in broad quantitative trait loci (QTLs) containing hundreds of genes. In this study, an advanced intercross line in combination with congenic strains, was used to fine-map Eae18 on rat chromosome 10 in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE). Myelin oligodendrocyte glycoprotein-induced EAE is a chronic relapsing disease that closely mimics key features of multiple sclerosis. Congenic DA.ACI rat strains localized Eae18 to an approximately 30-Mb large region. Fine-mapping was then performed in an advanced intercross line consisting of a (DA x PVG.1AV1)F(7) intercross, resulting in two adjacent EAE-regulating QTLs designated Eae18a and Eae18b. The two QTLs span 5.5 and 3 Mb, respectively, and the 3-Mb Eae18b contains as few as 10 genes, including a cluster of chemokine genes (CCL1, CCL2, CCL7, and CCL11). Eae18a and Eae18b are syntenic to human chromosome 17p13 and 17q11, respectively, which both display linkage to multiple sclerosis. Thus, Eae18 consists of at least two EAE-regulating genes, providing additional evidence that clustering of disease-regulating genes in QTLs is an important phenomenon. The overlap between Eae18a and Eae18b with previously identified QTLs in humans and mice further supports the notion that susceptibility alleles in inflammatory disease are evolutionary conserved between species.
Collapse
Affiliation(s)
- Maja Jagodic
- Department of Clinical Neuroscience, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Simpson PB, Mistry MS, Maki RA, Yang W, Schwarz DA, Johnson EB, Lio FM, Alleva DG. Cuttine edge: diabetes-associated quantitative trait locus, Idd4, is responsible for the IL-12p40 overexpression defect in nonobese diabetic (NOD) mice. THE JOURNAL OF IMMUNOLOGY 2004; 171:3333-7. [PMID: 14500624 DOI: 10.4049/jimmunol.171.7.3333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
APCs of the nonobese diabetic (NOD) mouse have a genetically programmed capacity to overexpress IL-12p40, a cytokine critical for development of pathogenic autoreactive Th1 cells. To determine whether a diabetes-associated NOD chromosomal locus (i.e., Idd) was responsible for this defect, LPS-stimulated macrophages from several recombinant congenic inbred mice with Idd loci on a C57BL/6 background or with different combinations of NOD and CBA genomic segments were screened for IL-12p40 production. Only macrophages from the congenic strains containing the Idd4 locus showed IL-12p40 overproduction/expression. Moreover, analysis of IL-12p40 sequence polymorphisms demonstrated that the Idd4 intervals in these strains contained the IL-12p40 allele of the NOD, although further analysis is required to determine whether the IL-12p40 allele itself is responsible for its overexpression. Thus, the non-MHC-associated Idd4 locus appears responsible for IL-12p40 overexpression, which may be a predisposing factor for type 1 diabetes in NOD mice.
Collapse
MESH Headings
- Alleles
- Animals
- Cells, Cultured
- Chromosome Mapping
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Gene Expression Regulation/immunology
- Genetic Markers
- Genetic Predisposition to Disease
- Genome
- Interleukin-12/biosynthesis
- Interleukin-12/deficiency
- Interleukin-12/genetics
- Interleukin-12/physiology
- Interleukin-12 Subunit p40
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Congenic
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred NOD/genetics
- Mice, Inbred NOD/immunology
- Protein Subunits/biosynthesis
- Protein Subunits/deficiency
- Protein Subunits/genetics
- Protein Subunits/physiology
- Quantitative Trait Loci/immunology
- RNA, Messenger/biosynthesis
Collapse
|
48
|
Ikegami H, Fujisawa T, Ogihara T. Mouse Models of Type 1 and Type 2 Diabetes Derived from the Same Closed Colony: Genetic Susceptibility Shared Between Two Types of Diabetes. ILAR J 2004; 45:268-77. [PMID: 15229374 DOI: 10.1093/ilar.45.3.268] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Except for rare subtypes of diabetes, both type 1 and type 2 diabetes are multifactorial diseases in which genetic factors consisting of multiple susceptibility genes and environmental factors contribute to the disease development. Due to complex interaction among multiple susceptibility genes and between genetic and environmental factors, genetic analysis of multifactorial diseases is difficult in humans. Inbred animal models, in which the genetic background is homogeneous and environmental factors can be controlled, are therefore valuable in genetic dissection of multifactorial diseases. We are fortunate to have excellent animal models for both type 1 and type 2 diabetes--the nonobese diabetic (NOD) mouse and the Nagoya-Shibata-Yasuda (NSY) mouse, respectively. Congenic mapping of susceptibility genes for type 1 diabetes in the NOD mouse has revealed that susceptibility initially mapped as a single locus often consists of multiple components on the same chromosome, indicating the importance of congenic mapping in defining genes responsible for polygenic diseases. The NSY mouse is an inbred animal model of type 2 diabetes established from Jcl:ICR, from which the NOD mouse was also derived. We have recently mapped three major loci contributing to type 2 diabetes in the NSY mouse. Interestingly, support intervals where type 2 diabetes susceptibility genes were mapped in the NSY mouse overlapped the regions where type 1 diabetes susceptibility genes have been mapped in the NOD mouse. Although additional evidence is needed, it may be possible that some of the genes predisposing to diabetes are derived from a common ancestor contained in the original closed colony, contributing to type 1 diabetes in the NOD mouse and type 2 diabetes in the NSY mouse. Such genes, if they exist, will provide valuable information on etiological pathways common to both forms of diabetes, for the establishment of effective methods for prediction, prevention, and intervention in both type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Hiroshi Ikegami
- Department of Geriatric Medicine, Osaka University, Graduate School of Medicine, Osaka, Japan
| | | | | |
Collapse
|
49
|
Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A, Naidenko OV, Sidobre S, Godfrey DI, Baxter AG. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2873-8. [PMID: 12960309 DOI: 10.4049/jimmunol.171.6.2873] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Natural killer T cells are an immunoregulatory population of lymphocytes that plays a critical role in controlling the adaptive immune system and contributes to the regulation of autoimmune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the nonobese diabetic (NOD) mouse strain, a well-validated model of type 1 diabetes and systemic lupus erythematosus. In this study, we report the results of a genetic linkage analysis of the genes controlling NKT cell numbers in a first backcross (BC1) from C57BL/6 to NOD.Nkrp1(b) mice. The numbers of thymic NKT cells of 320 BC1 mice were determined by fluorescence-activated cell analysis using anti-TCR Ab and CD1/alpha-galactosylceramide tetramer. Tail DNA of 138 female BC1 mice was analyzed for PCR product length polymorphisms at 181 simple sequence repeats, providing greater than 90% coverage of the autosomal genome with an average marker separation of 8 cM. Two loci exhibiting significant linkage to NKT cell numbers were identified; the most significant (Nkt1) was on distal chromosome 1, in the same region as the NOD mouse lupus susceptibility gene Babs2/Bana3. The second most significant locus (Nkt2) mapped to the same region as Idd13, a NOD-derived diabetes susceptibility gene on chromosome 2.
Collapse
MESH Headings
- Alleles
- Animals
- Cells, Cultured
- Chromosome Mapping/methods
- Crosses, Genetic
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Female
- Genetic Linkage/immunology
- Genetic Markers/immunology
- Genetic Predisposition to Disease
- Genotype
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Phenotype
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Luis M Esteban
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bergman ML, Duarte N, Campino S, Lundholm M, Motta V, Lejon K, Penha-Gonçalves C, Holmberg D. Diabetes protection and restoration of thymocyte apoptosis in NOD Idd6 congenic strains. Diabetes 2003; 52:1677-82. [PMID: 12829632 DOI: 10.2337/diabetes.52.7.1677] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes in the nonobese diabetic (NOD) mouse is a multifactorial and polygenic disease. The NOD-derived genetic factors that contribute to type 1 diabetes are named Idd (insulin-dependent diabetes) loci. To date, the biological functions of the majority of the Idd loci remain unknown. We have previously reported that resistance of NOD immature thymocytes to depletion by dexamethazone (Dxm) maps to the Idd6 locus. Herein, we refine this phenotype using a time-course experiment of apoptosis induction upon Dxm treatment. We confirm that the Idd6 region controls apoptosis resistance in immature thymocytes. Moreover, we establish reciprocal Idd6 congenic NOD and B6 strains to formally demonstrate that the Idd6 congenic region mediates restoration of the apoptosis resistance phenotype. Analysis of the Idd6 congenic strains indicates that a 3-cM chromosomal region located within the distal part of the Idd6 region controls apoptosis resistance in NOD immature thymocytes. Together, these data support the hypothesis that resistance to Dxm-induced apoptosis in NOD immature thymocytes is controlled by a genetic factor within the region that also contributes to type 1 diabetes pathogenesis. We propose that the diabetogenic effect of the Idd6 locus is exerted at the level of the thymic selection process.
Collapse
|