1
|
Germanos M, Yau B, Taper M, Yeoman C, Wilson A, An Y, Cattin-Ortolá J, Masler D, Tong J, Naghiloo S, Needham EJ, van der Kraan AG, Sun K, Loudovaris T, Diaz-Vegas A, Larance M, Thomas H, von Blume J, Thorn P, Ailion M, Asensio C, Kebede MA. Cab45G trafficking through the insulin secretory pathway is altered in human type 2 diabetes. iScience 2025; 28:111719. [PMID: 39898024 PMCID: PMC11787600 DOI: 10.1016/j.isci.2024.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/29/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
In type 2 diabetes (T2D), the rate of insulin secretory granule biogenesis can limit insulin secretion from pancreatic β-cells. Using rat insulinoma INS1 β-cells, we show that the soluble Ca2+-binding/trafficking protein, Cab45G, serves as a non-essential chaperone for insulin granule biogenesis. In β-cells, Cab45G is stored within a cis-Golgi reservoir. Cab45G deletion dysregulates Ca2+ homeostasis and leads to secretory abnormality, but insulin granule biogenesis remains intact. Increasing Cab45G biosynthesis leads to anterograde trafficking into insulin granules, stimulating their production. Using human donor islets, we identify increased anterograde Cab45G trafficking in obese humans with and without T2D, consistent with the heightened demand for granule biogenesis. However, humans with T2D demonstrate decreased Golgi Cab45G localization and increased granule Cab45G localization compared to those without T2D. Our study provides the first insight into Cab45G function in specialized secretory cells and opens avenues of investigation into mechanisms associated with β-cell compensation and failure.
Collapse
Affiliation(s)
- Mark Germanos
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Belinda Yau
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Matthew Taper
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Cara Yeoman
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Amy Wilson
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Yousun An
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | - Drew Masler
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Jason Tong
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Sheyda Naghiloo
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Elise J Needham
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - A Gabrielle van der Kraan
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Kitty Sun
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent’s Institute, Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Mark Larance
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Helen Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter Thorn
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cedric Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Melkam Alamerew Kebede
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
2
|
Fu A. Reconsidering lactate disallowance in pancreatic β cells. Trends Endocrinol Metab 2024; 35:1023-1025. [PMID: 38969600 DOI: 10.1016/j.tem.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Lactate synthesis via lactate dehydrogenase A (LDHA), traditionally considered to be a 'disallowed' function in pancreatic β cells, is redefined by Cuozzo et al. who find that lactate produced by β cells regulates fasting insulin secretion via LDHB. The metabolic sources, fates, and relevance of β cell lactate are further examined.
Collapse
Affiliation(s)
- Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts, Worcester, MA, USA.
| |
Collapse
|
3
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
4
|
Gelbach PE, Zheng D, Fraser SE, White KL, Graham NA, Finley SD. Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion. PLoS Comput Biol 2022; 18:e1010555. [PMID: 36251711 PMCID: PMC9612825 DOI: 10.1371/journal.pcbi.1010555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell's fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure in vitro. In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Department of Biomedical Engineering, USC, Los Angeles, California, United States of America
| | - Dongqing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, USC, Los Angeles, California, United States of America
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, California, United States of America
| | - Kate L. White
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center, USC, Los Angeles, California, United States of America
| | - Nicholas A. Graham
- Mork Family Department of Chemical Engineering and Materials Science, USC, Los Angeles, California, United States of America
| | - Stacey D. Finley
- Department of Biomedical Engineering, USC, Los Angeles, California, United States of America
- Mork Family Department of Chemical Engineering and Materials Science, USC, Los Angeles, California, United States of America
- Department of Quantitative and Computational Biology, USC, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Liu Y, He S, Zhou R, Zhang X, Yang S, Deng D, Zhang C, Yu X, Chen Y, Su Z. Nuclear Factor-Y in Mouse Pancreatic β-Cells Plays a Crucial Role in Glucose Homeostasis by Regulating β-Cell Mass and Insulin Secretion. Diabetes 2021; 70:1703-1716. [PMID: 33980692 DOI: 10.2337/db20-1238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The current study was undertaken in a conditional knockout of Nf-ya specifically in pancreatic β-cells (Nf-ya βKO) to define the essential physiological role of NF-Y in β-cells. Nf-ya βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca2+ influx in response to glucose, which was associated with an inefficient glucose uptake into β-cells due to a decreased expression of GLUT2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islet homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.
Collapse
Affiliation(s)
- Yin Liu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Siyuan He
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruixue Zhou
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xueping Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dan Deng
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Caixia Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yulong Chen
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Abulizi A, Cardone RL, Stark R, Lewandowski SL, Zhao X, Hillion J, Ma L, Sehgal R, Alves TC, Thomas C, Kung C, Wang B, Siebel S, Andrews ZB, Mason GF, Rinehart J, Merrins MJ, Kibbey RG. Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health. Cell Metab 2020; 32:751-766.e11. [PMID: 33147485 PMCID: PMC7679013 DOI: 10.1016/j.cmet.2020.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2-/- mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.
Collapse
Affiliation(s)
| | - Rebecca L Cardone
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Romana Stark
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Sophie L Lewandowski
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Xiaojian Zhao
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Joelle Hillion
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Lingjun Ma
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Raghav Sehgal
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Tiago C Alves
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Craig Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, and Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Bei Wang
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Stephan Siebel
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Zane B Andrews
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Graeme F Mason
- Department of Diagnostic Radiology and Psychiatry, Yale University, New Haven, CT 06520, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Saha S. Association between the membrane transporter proteins and type 2 diabetes mellitus. Expert Rev Clin Pharmacol 2020; 13:287-297. [PMID: 32066279 DOI: 10.1080/17512433.2020.1729125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The prevalence rate of diabetes is increasing day by day and the current scenario of the available agents for its treatment has given rise to stimulation in the search for new therapeutic targets and agents. Therefore the present review will examine the role of membrane composition in the pathophysiology of Type 2 Diabetes and the possible therapeutic approaches for this.Areas covered: Glucose transporter proteins (GLUTs) are integral membrane proteins which are responsible for facilitated glucose transport over the plasma membrane into cells. Thus, this chapter is an attempt to interpret the co-relation between membrane transporter proteins and lipid molecules of cell membrane and their implications in type 2 diabetes mellitus. The relationship between the composition controlled flexibility of the membrane in the insertion of GLUTs into cell membrane as well as its fusion with the membrane is the focus of this chapter.Expert opinion: There is increasing data on the central role of phospholipid composition toward T2DM. Plasma membrane lipid composition plays a key role in maintaining the machinery for insulin-independent GLUT insertion into the membrane as well as insulin-dependent GLUT4 containing vesicles. As a therapeutic option, the designing of new chemical entities should be aimed to decrease saturated fatty acids of lipid bilayer phospholipids to target type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
8
|
Guo C, Sun X, Wang X, Guo Q, Chen D. Network Meta-Analysis Comparing the Efficacy of Therapeutic Treatments for Bronchiolitis in Children. JPEN J Parenter Enteral Nutr 2018; 42:186-195. [PMID: 29388676 PMCID: PMC7166391 DOI: 10.1002/jpen.1030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/30/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND This study aims to compare placebo (PBO) and 7 therapeutic regimens-namely, bronchodilator agents (BAs), hypertonic saline (HS), BA ± HS, corticosteroids (CS), epinephrine (EP), EP ± CS, and EP ± HS-to determine the optimal bronchiolitis treatment. METHODS We plotted networks using the curative outcome of several studies and specified the relations among the experiments by using mean difference, standardized mean difference, and corresponding 95% credible interval. The surface under the cumulative ranking curve (SUCRA) was used to separately rank each therapy on clinical severity score (CSS) and length of hospital stay (LHS). RESULTS This network meta-analysis included 40 articles from 1995 to 2016 concerning the treatment of bronchiolitis in children. All 7 therapeutic regimens displayed no significant difference to PBO with regard to CSS in our study. Among the 7 therapies, BA performed better than CS. As for LHS, EP and EP ± HS had an advantage over PBO. Moreover, EP and EP ± HS were also more efficient than BA. The SUCRA results showed that EP ± CS is most effective, and EP ± HS is second most effective with regard to CSS. With regard to LHS, EP ± HS ranked first, EP ± CS ranked second, and EP ranked third. CONCLUSIONS We recommend EP ± CS and EP ± HS as the first choice for bronchiolitis treatment in children because of their outstanding performance with regard to CSS and LHS.
Collapse
Affiliation(s)
- Caili Guo
- Department of RespiratoryChildren's Hospital of Zhengzhou CityZhengzhouHenanChina
| | - Xiaomin Sun
- Department of RespiratoryChildren's Hospital of Zhengzhou CityZhengzhouHenanChina
| | - Xiaowen Wang
- Department of RespiratoryChildren's Hospital of Zhengzhou CityZhengzhouHenanChina
| | - Qing Guo
- Department of RespiratoryChildren's Hospital of Zhengzhou CityZhengzhouHenanChina
| | - Dan Chen
- Department of RespiratoryChildren's Hospital of Zhengzhou CityZhengzhouHenanChina
| |
Collapse
|
9
|
Miller GD. Appetite Regulation: Hormones, Peptides, and Neurotransmitters and Their Role in Obesity. Am J Lifestyle Med 2017; 13:586-601. [PMID: 31662725 DOI: 10.1177/1559827617716376] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
Understanding body weight regulation will aid in the development of new strategies to combat obesity. This review examines energy homeostasis and food intake behaviors, specifically with regards to hormones, peptides, and neurotransmitters in the periphery and central nervous system, and their potential role in obesity. Dysfunction in feeding signals by the brain is a factor in obesity. The hypothalamic (arcuate nucleus) and brainstem (nucleus tractus solitaris) areas integrate behavioral, endocrine, and autonomic responses via afferent and efferent pathways from and to the brainstem and peripheral organs. Neurons present in the arcuate nucleus express pro-opiomelanocortin, Neuropeptide Y, and Agouti Related Peptide, with the former involved in lowering food intake, and the latter two acutely increasing feeding behaviors. Action of peripheral hormones from the gut, pancreas, adipose, and liver are also involved in energy homeostasis. Vagal afferent neurons are also important in regulating energy homeostasis. Peripheral signals respond to the level of stored and currently available fuel. By studying their actions, new agents maybe developed that disable orexigenic responses and enhance anorexigenic signals. Although there are relatively few medications currently available for obesity treatment, a number of agents are in development that work through these pathways.
Collapse
Affiliation(s)
- Gary D Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
10
|
Fu J, Cui Q, Yang B, Hou Y, Wang H, Xu Y, Wang D, Zhang Q, Pi J. The impairment of glucose-stimulated insulin secretion in pancreatic β-cells caused by prolonged glucotoxicity and lipotoxicity is associated with elevated adaptive antioxidant response. Food Chem Toxicol 2016; 100:161-167. [PMID: 28027979 DOI: 10.1016/j.fct.2016.12.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D) is a progressive disease characterized by sustained hyperglycemia and is frequently accompanied by hyperlipidemia. Deterioration of β-cell function in T2D patients may be caused, in part, by long-term exposure to high concentrations of glucose and/or lipids. We developed systems to study how chronic glucotoxicity and lipotoxicity might be linked to the impairment of glucose-stimulated insulin secretion (GSIS) machinery in pancreatic β-cells. INS-1 (832/13) were exposed to glucose and/or palmitate for up to 10 weeks. Chronic high glucose and/or palmitate exposure resulted in impaired GSIS accompanied by a dramatic increase in oxidative stress, as determined by basal intracellular peroxide levels. In addition, the GSIS-associated reactive oxygen species (ROS) signals, assessed as glucose-stimulated peroxide accumulation positively correlated with GSIS in glucose- and/or palmitate-exposed cells, as well as glucose-stimulated reductions in GSH/GSSG ratios. Furthermore, the impairment of GSIS caused by chronic high glucose and/or palmitate exposures were attributed to the induction of adaptive antioxidant response and mitochondrial uncoupling, which negatively regulates glucose-derived ROS generation. Taken together, persistent glucotoxicity- and/or lipotoxicity-mediated oxidative stress and subsequent adaptive antioxidant response impair glucose-derived ROS signaling and GSIS in pancreatic β-cells.
Collapse
Affiliation(s)
- Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Qi Cui
- Program of Environmental Toxicology, School of Public Health, China Medical University No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Bei Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Difei Wang
- The First Affiliated Hospital, China Medical University, 155 Nanjingbei Street, Heping District, Shenyang, Liaoning, 110001, PR China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
11
|
Abstract
While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation.
Collapse
Affiliation(s)
- Maya E Kotas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT USA.
| |
Collapse
|
12
|
Huang M, Joseph JW. Assessment of the metabolic pathways associated with glucose-stimulated biphasic insulin secretion. Endocrinology 2014; 155:1653-66. [PMID: 24564396 DOI: 10.1210/en.2013-1805] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biphasic glucose-stimulated insulin secretion involves a rapid first phase followed by a prolonged second phase of insulin secretion. The biochemical pathways that control these 2 phases of insulin secretion are poorly defined. In this study, we used a gas chromatography mass spectroscopy-based metabolomics approach to perform a global analysis of cellular metabolism during biphasic insulin secretion. A time course metabolomic analysis of the clonal β-cell line 832/13 cells showed that glycolytic, tricarboxylic acid, pentose phosphate pathway, and several amino acids were strongly correlated to biphasic insulin secretion. Interestingly, first-phase insulin secretion was negatively associated with L-valine, trans-4-hydroxy-L-proline, trans-3-hydroxy-L-proline, DL-3-aminoisobutyric acid, L-glutamine, sarcosine, L-lysine, and thymine and positively with L-glutamic acid, flavin adenine dinucleotide, caprylic acid, uridine 5'-monophosphate, phosphoglycerate, myristic acid, capric acid, oleic acid, linoleic acid, and palmitoleic acid. Tricarboxylic acid cycle intermediates pyruvate, α-ketoglutarate, and succinate were positively associated with second-phase insulin secretion. Other metabolites such as myo-inositol, cholesterol, DL-3-aminobutyric acid, and L-norleucine were negatively associated metabolites with the second-phase of insulin secretion. These studies provide a detailed analysis of key metabolites that are either negatively or positively associated with biphasic insulin secretion. The insights provided by these data set create a framework for planning future studies in the assessment of the metabolic regulation of biphasic insulin secretion.
Collapse
Affiliation(s)
- Mei Huang
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, N2G 1C5, Canada
| | | |
Collapse
|
13
|
Stark R, Kibbey RG. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked? BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:1313-30. [PMID: 24177027 PMCID: PMC3943549 DOI: 10.1016/j.bbagen.2013.10.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/13/2013] [Accepted: 10/18/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis. SCOPE OF REVIEW A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways. MAJOR CONCLUSIONS PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis. GENERAL SIGNIFICANCE The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Romana Stark
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| |
Collapse
|
14
|
Liu J, Guo L, Yin F, Zhang Y, Liu Z, Wang Y. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells. PLoS One 2013; 8:e78315. [PMID: 24167617 PMCID: PMC3805567 DOI: 10.1371/journal.pone.0078315] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/11/2013] [Indexed: 12/26/2022] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM). Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.
Collapse
Affiliation(s)
- Jianhui Liu
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, China
- Chongqing Key Laboratory of Natural Medicine Research, Chongqing Technology and Business University, Chongqing, China
- Aquatic and Crop Resource Development, National Research Council of Canada, Charlottetown, Prince Edward Island, Canada
- * E-mail:
| | - Lixia Guo
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, China
- Chongqing Key Laboratory of Natural Medicine Research, Chongqing Technology and Business University, Chongqing, China
| | - Fei Yin
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, China
- Chongqing Key Laboratory of Natural Medicine Research, Chongqing Technology and Business University, Chongqing, China
- Aquatic and Crop Resource Development, National Research Council of Canada, Charlottetown, Prince Edward Island, Canada
| | - Yonglan Zhang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, China
- Chongqing Key Laboratory of Natural Medicine Research, Chongqing Technology and Business University, Chongqing, China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Zixuan Liu
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, China
- Chongqing Key Laboratory of Natural Medicine Research, Chongqing Technology and Business University, Chongqing, China
| | - Yanwen Wang
- Aquatic and Crop Resource Development, National Research Council of Canada, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
15
|
Baerenwald DA, Bonnefond A, Bouatia-Naji N, Flemming BP, Umunakwe OC, Oeser JK, Pound LD, Conley NL, Cauchi S, Lobbens S, Eury E, Balkau B, Lantieri O, Dadi PK, Jacobson DA, Froguel P, O’Brien RM. Multiple functional polymorphisms in the G6PC2 gene contribute to the association with higher fasting plasma glucose levels. Diabetologia 2013; 56:1306-16. [PMID: 23508304 PMCID: PMC4106008 DOI: 10.1007/s00125-013-2875-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/28/2013] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS We previously identified the G6PC2 locus as a strong determinant of fasting plasma glucose (FPG) and showed that a common G6PC2 intronic single nucleotide polymorphism (SNP) (rs560887) and two common G6PC2 promoter SNPs (rs573225 and rs13431652) are highly associated with FPG. However, these promoter SNPs have complex effects on G6PC2 fusion gene expression, and our data suggested that only rs13431652 is a potentially causative SNP. Here we examine the effect of rs560887 on G6PC2 pre-mRNA splicing and the contribution of an additional common G6PC2 promoter SNP, rs2232316, to the association signal. METHODS Minigene analyses were used to characterise the effect of rs560887 on G6PC2 pre-mRNA splicing. Fusion gene and gel retardation analyses characterised the effect of rs2232316 on G6PC2 promoter activity and transcription factor binding. The genetic association of rs2232316 with FPG variation was assessed using regression adjusted for age, sex and BMI in 4,220 Europeans with normal FPG. RESULTS The rs560887-G allele was shown to enhance G6PC2 pre-mRNA splicing, whereas the rs2232316-A allele enhanced G6PC2 transcription by promoting Foxa2 binding. Genetic analyses provide evidence for association of the rs2232316-A allele with increased FPG (β = 0.04 mmol/l; p = 4.3 × 10(-3)) as part of the same signal as rs560887, rs573225 and rs13431652. CONCLUSIONS/INTERPRETATION As with rs13431652, the in situ functional data with rs560887 and rs2232316 are in accord with the putative function of G6PC2 in pancreatic islets, and suggest that all three are potentially causative SNPs that contribute to the association between G6PC2 and FPG.
Collapse
Affiliation(s)
- D. A. Baerenwald
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - A. Bonnefond
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
| | - N. Bouatia-Naji
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
- INSERM U970, Paris Cardiovascular Research Center PARCC, 56 rue Leblanc, F-75015 Paris, France
| | - B. P. Flemming
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - O. C. Umunakwe
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - J. K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - L. D. Pound
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - N. L. Conley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - S. Cauchi
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
| | - S. Lobbens
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
| | - E. Eury
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
| | - B. Balkau
- INSERM, Centre for research in Epidemiology and Population Health (CESP), U1018, Epidemiology of diabetes, obesity and chronic renal disease over the lifecourse, F-94807, Villejuif, France
- Université Paris-Sud 11, UMRS 1018, F-94807 Villejuif, France
| | - O. Lantieri
- Institut inter-régional pour la santé (IRSA), F-37521 La Riche, France
| | - MAGIC Investigators
- Meta-Analysis of Glucose and Insulin related traits Consortium Investigators (http://www.magicinvestigators.org/)
| | - P. K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - D. A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - P. Froguel
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, W12 0NN London, UK
| | - R. M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| |
Collapse
|
16
|
SAD-A potentiates glucose-stimulated insulin secretion as a mediator of glucagon-like peptide 1 response in pancreatic β cells. Mol Cell Biol 2013; 33:2527-34. [PMID: 23629625 DOI: 10.1128/mcb.00285-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type 2 diabetes is characterized by defective glucose-stimulated insulin secretion (GSIS) from pancreatic β cells, which can be restored by glucagon-like peptide 1 (GLP-1), an incretin hormone commonly used for the treatment of type 2 diabetes. However, molecular mechanisms by which GLP-1 affects glucose responsiveness in islet β cells remain poorly understood. Here we investigated a role of SAD-A, an AMP-activated protein kinase (AMPK)-related kinase, in regulating GSIS in mice with conditional SAD-A deletion. We show that selective deletion of SAD-A in pancreas impaired incretin's effect on GSIS, leading to glucose intolerance. Conversely, overexpression of SAD-A significantly enhanced GSIS and further potentiated GLP-1's effect on GSIS from isolated mouse islets. In support of SAD-A as a mediator of incretin response, SAD-A is expressed exclusively in pancreas and brain, the primary targeting tissues of GLP-1 action. Additionally, SAD-A kinase is activated in response to stimulation by GLP-1 through cyclic AMP (cAMP)/Ca(2+)-dependent signaling pathways in islet β cells. Furthermore, we identified Thr443 as a key autoinhibitory phosphorylation site which mediates SAD-A's effect on incretin response in islet β cells. Consequently, ablation of Thr443 significantly enhanced GLP-1's effect on GSIS from isolated mouse islets. Together, these findings identified SAD-A kinase as a pancreas-specific mediator of incretin response in islet β cells.
Collapse
|
17
|
Divergent effects of sulforaphane on basal and glucose-stimulated insulin secretion in β-cells: role of reactive oxygen species and induction of endogenous antioxidants. Pharm Res 2013; 30:2248-59. [PMID: 23468051 DOI: 10.1007/s11095-013-1013-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/15/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE Oxidative stress is implicated in pancreatic β-cell dysfunction, yet clinical outcomes of antioxidant therapies on diabetes are inconclusive. Since reactive oxygen species (ROS) can function as signaling intermediates for glucose-stimulated insulin secretion (GSIS), we hypothesize that exogenously boosting cellular antioxidant capacity dampens signaling ROS and GSIS. METHODS To test the hypothesis, we formulated a mathematical model of redox homeostatic control circuit comprising known feedback and feedforward loops and validated model predictions with plant-derived antioxidant sulforaphane (SFN). RESULTS SFN acutely (30-min treatment) stimulated basal insulin secretion in INS-1(832/13) cells and cultured mouse islets, which could be attributed to SFN-elicited ROS as N-acetylcysteine or glutathione ethyl ester suppressed SFN-stimulated insulin secretion. The mathematical model predicted an adapted redox state characteristic of strong induction of endogenous antioxidants but marginally increased ROS under prolonged SFN exposure, a state that attenuates rather than facilitates glucose-stimulated ROS and GSIS. We validated the prediction by demonstrating that although 24-h treatment of INS-1(832/13) cells with low, non-cytotoxic concentrations of SFN (2-10 μM) protected the cells from cytotoxicity by oxidative insult, it markedly suppressed insulin secretion stimulated by 20 mM glucose. CONCLUSIONS Our study indicates that adaptive induction of endogenous antioxidants by exogenous antioxidants, albeit cytoprotective, inhibits GSIS in β-cells.
Collapse
|
18
|
Zhang T, Li C. Mechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism. Acta Biochim Biophys Sin (Shanghai) 2013; 45:36-43. [PMID: 23212075 DOI: 10.1093/abbs/gms107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of amino acids in the regulation of insulin secretion in pancreatic beta-cells is highlighted in three forms of congenital hyperinsulinism (HI), namely gain-of-function mutations of glutamate dehydrogenase (GDH), loss-of-function mutations of ATP-dependent potassium channels, and a deficiency of short-chain 3-hydroxyacyl-CoA dehydrogenase. Studies on disease mouse models of HI suggest that amino acid oxidation and signaling effects are the major mechanisms of amino acid-stimulated insulin secretion. Amino acid oxidation via GDH produces ATP and triggers insulin secretion. The signaling effect of amino acids amplifies insulin release after beta-cell depolarization and elevation of cytosolic calcium.
Collapse
Affiliation(s)
- Tingting Zhang
- Division of Endocrinology, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
19
|
Syed I, Kyathanahalli CN, Jayaram B, Govind S, Rhodes CJ, Kowluru RA, Kowluru A. Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes 2011; 60:2843-52. [PMID: 21911753 PMCID: PMC3198065 DOI: 10.2337/db11-0809] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To determine the subunit expression and functional activation of phagocyte-like NADPH oxidase (Nox), reactive oxygen species (ROS) generation and caspase-3 activation in the Zucker diabetic fatty (ZDF) rat and diabetic human islets. RESEARCH DESIGN AND METHODS Expression of core components of Nox was quantitated by Western blotting and densitometry. ROS levels were quantitated by the 2',7'-dichlorofluorescein diacetate method. Rac1 activation was quantitated using the gold-labeled immunosorbent assay kit. RESULTS Levels of phosphorylated p47(phox), active Rac1, Nox activity, ROS generation, Jun NH(2)-terminal kinase (JNK) 1/2 phosphorylation, and caspase-3 activity were significantly higher in the ZDF islets than the lean control rat islets. Chronic exposure of INS 832/13 cells to glucolipotoxic conditions resulted in increased JNK1/2 phosphorylation and caspase-3 activity; such effects were largely reversed by SP600125, a selective inhibitor of JNK. Incubation of normal human islets with high glucose also increased the activation of Rac1 and Nox. Lastly, in a manner akin to the ZDF diabetic rat islets, Rac1 expression, JNK1/2, and caspase-3 activation were also significantly increased in diabetic human islets. CONCLUSIONS We provide the first in vitro and in vivo evidence in support of an accelerated Rac1-Nox-ROS-JNK1/2 signaling pathway in the islet β-cell leading to the onset of mitochondrial dysregulation in diabetes.
Collapse
Affiliation(s)
- Ismail Syed
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | | | - Bhavaani Jayaram
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Sudha Govind
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Christopher J. Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois
| | - Renu A. Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan
| | - Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
- β-Cell Biochemistry Laboratory, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Corresponding author: Anjaneyulu Kowluru,
| |
Collapse
|
20
|
Nagrath D, Caneba C, Karedath T, Bellance N. Metabolomics for mitochondrial and cancer studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:650-63. [DOI: 10.1016/j.bbabio.2011.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/18/2011] [Accepted: 03/14/2011] [Indexed: 01/29/2023]
|
21
|
MacDonald MJ, Longacre MJ, Stoker SW, Kendrick M, Thonpho A, Brown LJ, Hasan NM, Jitrapakdee S, Fukao T, Hanson MS, Fernandez LA, Odorico J. Differences between human and rodent pancreatic islets: low pyruvate carboxylase, atp citrate lyase, and pyruvate carboxylation and high glucose-stimulated acetoacetate in human pancreatic islets. J Biol Chem 2011; 286:18383-96. [PMID: 21454710 DOI: 10.1074/jbc.m111.241182] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80-90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60-75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20-30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. β-Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.
Collapse
Affiliation(s)
- Michael J MacDonald
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Syed I, Kyathanahalli CN, Kowluru A. Phagocyte-like NADPH oxidase generates ROS in INS 832/13 cells and rat islets: role of protein prenylation. Am J Physiol Regul Integr Comp Physiol 2011; 300:R756-62. [PMID: 21228337 DOI: 10.1152/ajpregu.00786.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that an acute increase in the generation of phagocyte-like NADPH-oxidase (Nox)-mediated reactive oxygen species (ROS) may be necessary for glucose-stimulated insulin secretion. Using rat islets and INS 832/13 cells, we tested the hypothesis that activation of specific G proteins is necessary for nutrient-mediated intracellular generation of ROS. Stimulation of β-cells with glucose or a mixture of mitochondrial fuels (mono-methylsuccinate plus α-ketoisocaproic acid) markedly elevated intracellular accumulation of ROS, which was attenuated by selective inhibitors of Nox (e.g., apocynin or diphenyleneiodonium chloride) or short interfering RNA-mediated knockdown of p47(phox), one of the subunits of Nox. Selective inhibitors of protein prenylation (FTI-277 or GGTI-2147) markedly inhibited nutrient-induced ROS generation, suggesting that activation of one (or more) prenylated small G proteins and/or γ-subunits of trimeric G proteins is involved in this signaling axis. Depletion of endogenous GTP levels with mycophenolic acid significantly reduced glucose-induced activation of Rac1 and ROS generation in these cells. Other immunosuppressants, like cyclosporine A or rapamycin, which do not deplete endogenous GTP levels, failed to affect glucose-induced ROS generation, suggesting that endogenous GTP is necessary for glucose-induced Nox activation and ROS generation. Treatment of INS 832/13 cells or rat islets with pertussis toxin (Ptx), which ADP ribosylates and inhibits inhibitory class of trimeric G proteins (i.e., G(i) or G(o)), significantly attenuated glucose-induced ROS generation in these cells, implicating activation of a Ptx-sensitive G protein in these signaling cascade. Together, our findings suggest a prenylated Ptx-sensitive signaling step couples Rac1 activation in the signaling steps necessary for glucose-mediated generation of ROS in the pancreatic β-cells.
Collapse
Affiliation(s)
- Ismail Syed
- Dept. of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State Univ., Detroit, MI 48201, USA
| | | | | |
Collapse
|
23
|
Pillai R, Huypens P, Huang M, Schaefer S, Sheinin T, Wettig SD, Joseph JW. Aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor-1{beta} plays a critical role in maintaining glucose-stimulated anaplerosis and insulin release from pancreatic {beta}-cells. J Biol Chem 2010; 286:1014-24. [PMID: 21059654 DOI: 10.1074/jbc.m110.149062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The metabolic pathways that are involved in regulating insulin secretion from pancreatic β-cells are still incompletely understood. One potential regulator of the metabolic phenotype of β-cells is the transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia-inducible factor (HIF)-1β. ARNT/HIF-1β levels are profoundly reduced in islets obtained from type 2 diabetic patients. However, no study to date has investigated key pathways involved in regulating insulin release in β-cells that lack ARNT/HIF-1β. In this study, we confirm that siRNA-mediated knockdown of ARNT/HIF-1β inhibits glucose-stimulated insulin secretion. We next investigated the metabolic consequence of the loss of ARNT/HIF-1β knockdown. We demonstrate that β-cells with reduced ARNT/HIF-1β expression levels exhibit a 31% reduction in glycolytic flux without significant changes in glucose oxidation or the ATP:ADP ratio. Metabolic profiling of β-cells treated with siRNAs against the ARNT/HIF-1β gene revealed that glycolysis, anaplerosis, and glucose-induced fatty acid production were down-regulated, and all are key events involved in glucose-stimulated insulin secretion. In addition, both first and second phase insulin secretion in islets were significantly reduced after ARNT/HIF-1β knockdown. Together, our data suggest an important role for ARNT/HIF-1β in anaplerosis, and it may play a critical role in maintaining normal secretion competence of β-cells.
Collapse
Affiliation(s)
- Renjitha Pillai
- School of Pharmacy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Bouatia-Naji N, Bonnefond A, Baerenwald DA, Marchand M, Bugliani M, Marchetti P, Pattou F, Printz RL, Flemming BP, Umunakwe OC, Conley NL, Vaxillaire M, Lantieri O, Balkau B, Marre M, Lévy-Marchal C, Elliott P, Jarvelin MR, Meyre D, Dina C, Oeser JK, Froguel P, O'Brien RM. Genetic and functional assessment of the role of the rs13431652-A and rs573225-A alleles in the G6PC2 promoter that are strongly associated with elevated fasting glucose levels. Diabetes 2010; 59:2662-71. [PMID: 20622168 PMCID: PMC3279535 DOI: 10.2337/db10-0389] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Genome-wide association studies have identified a single nucleotide polymorphism (SNP), rs560887, located in a G6PC2 intron that is highly correlated with variations in fasting plasma glucose (FPG). G6PC2 encodes an islet-specific glucose-6-phosphatase catalytic subunit. This study examines the contribution of two G6PC2 promoter SNPs, rs13431652 and rs573225, to the association signal. RESEARCH DESIGN AND METHODS We genotyped 9,532 normal FPG participants (FPG <6.1 mmol/l) for three G6PC2 SNPs, rs13431652 (distal promoter), rs573225 (proximal promoter), rs560887 (3rd intron). We used regression analyses adjusted for age, sex, and BMI to assess the association with FPG and haplotype analyses to assess comparative SNP contributions. Fusion gene and gel retardation analyses characterized the effect of rs13431652 and rs573225 on G6PC2 promoter activity and transcription factor binding. RESULTS Genetic analyses provide evidence for a strong contribution of the promoter SNPs to FPG variability at the G6PC2 locus (rs13431652: β = 0.075, P = 3.6 × 10(-35); rs573225 β = 0.073 P = 3.6 × 10(-34)), in addition to rs560887 (β = 0.071, P = 1.2 × 10(-31)). The rs13431652-A and rs573225-A alleles promote increased NF-Y and Foxa2 binding, respectively. The rs13431652-A allele is associated with increased FPG and elevated promoter activity, consistent with the function of G6PC2 in pancreatic islets. In contrast, the rs573225-A allele is associated with elevated FPG but reduced promoter activity. CONCLUSIONS Genetic and in situ functional data support a potential role for rs13431652, but not rs573225, as a causative SNP linking G6PC2 to variations in FPG, though a causative role for rs573225 in vivo cannot be ruled out.
Collapse
Affiliation(s)
- Nabila Bouatia-Naji
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Amélie Bonnefond
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Devin A. Baerenwald
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marion Marchand
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Marco Bugliani
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - François Pattou
- INSERM U859, Université de Lille-Nord de France, Centre Hospitalier Regional et Universitaire de Lille, Lille, France
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brian P. Flemming
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Obi C. Umunakwe
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nicholas L. Conley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Martine Vaxillaire
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | | | | | - Michel Marre
- Department of Endocrinology, Diabetology and Nutrition, Bichat-Claude Bernard University Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France; INSERM U695, Université Paris 7, Paris, France
| | - Claire Lévy-Marchal
- INSERM U690, Robert Debré Hospital, Paris; Paris Diderot University, Paris, France
| | - Paul Elliott
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
- Institute of Health Sciences, University of Oulu, Department of Child and Adolescent Health, National Public Health Institute, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - David Meyre
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Christian Dina
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Philippe Froguel
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, U.K
| | - Richard M. O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Corresponding author: Richard M. O'Brien,
| |
Collapse
|
25
|
Tam CHT, Ho JSK, Wang Y, Lee HM, Lam VKL, Germer S, Martin M, So WY, Ma RCW, Chan JCN, Ng MCY. Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS One 2010; 5:e11428. [PMID: 20628598 PMCID: PMC2900202 DOI: 10.1371/journal.pone.0011428] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 06/09/2010] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies identified melatonin receptor 1B (MTNR1B), islet-specific glucose 6 phosphatase catalytic subunit-related protein (G6PC2), glucokinase (GCK) and glucokinase regulatory protein (GCKR) as candidate genes for type 2 diabetes (T2D) acting through elevated fasting plasma glucose (FPG). We examined the associations of the reported common variants of these genes with T2D and glucose homeostasis in three independent Chinese cohorts. Methodology/Principal Findings Five single nucleotide polymorphisms (SNPs), MTNR1B rs10830963, G6PC2 rs16856187 and rs478333, GCK rs1799884 and GCKR rs780094, were genotyped in 1644 controls (583 adults and 1061 adolescents) and 1342 T2D patients. The G-allele of MTNR1B rs10830963 and the C-alleles of both G6PC2 rs16856187 and rs478333 were associated with higher FPG (0.0034<P<6.6×10−5) in healthy controls. In addition to our previous report for association with FPG, the A-allele of GCK rs1799884 was also associated with reduced homeostasis model assessment of beta-cell function (HOMA-B) (P = 0.0015). Together with GCKR rs780094, the risk alleles of these SNPs exhibited dosage effect in their associations with increased FPG (P = 2.9×10−9) and reduced HOMA-B (P = 1.1×10−3). Meta-analyses strongly supported additive effects of MTNR1B rs10830963 and G6PC2 rs16856187 on FPG. Conclusions/Significance Common variants of MTNR1B, G6PC2 and GCK are associated with elevated FPG and impaired insulin secretion, both individually and jointly, suggesting that these risk alleles may precipitate or perpetuate hyperglycemia in predisposed individuals.
Collapse
Affiliation(s)
- Claudia Ha Ting Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Janice Sin Ka Ho
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Ying Wang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Vincent Kwok Lim Lam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Soren Germer
- Roche Pharmaceuticals, Nutley, New Jersey, United States of America
| | - Mitchell Martin
- Roche Pharmaceuticals, Nutley, New Jersey, United States of America
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
- * E-mail:
| | - Juliana Chung Ngor Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Maggie Chor Yin Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| |
Collapse
|
26
|
Fu J, Woods CG, Yehuda-Shnaidman E, Zhang Q, Wong V, Collins S, Sun G, Andersen ME, Pi J. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:864-70. [PMID: 20100676 PMCID: PMC2898865 DOI: 10.1289/ehp.0901608] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/25/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND Chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with incidence of type 2 diabetes (T2D). A key driver in the pathogenesis of T2D is impairment of pancreatic beta-cell function, with the hallmark of beta-cell function being glucose-stimulated insulin secretion (GSIS). Reactive oxygen species (ROS) derived from glucose metabolism serve as one of the metabolic signals for GSIS. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. OBJECTIVES We tested the hypothesis that activation of Nrf2 and induction of antioxidant enzymes in response to arsenic exposure impedes glucose-triggered ROS signaling and thus GSIS. METHODS AND RESULTS Exposure of INS-1(832/13) cells to low levels of arsenite led to decreased GSIS in a dose- and time-dependent fashion. Consistent with our hypothesis, a significantly enhanced Nrf2 activity, determined by its nuclear accumulation and induction of its target genes, was observed in arsenite-exposed cells. In keeping with the activation of Nrf2-mediated antioxidant response, intracellular glutathione and intracellular hydrogen peroxide-scavenging activity was dose dependently increased by arsenite exposure. Although the basal cellular peroxide level was significantly enhanced, the net percentage increase in glucose-stimulated intracellular peroxide production was markedly inhibited in arsenite-exposed cells. In contrast, insulin synthesis and the consensus GSIS pathway, including glucose transport and metabolism, were not significantly reduced by arsenite exposure. CONCLUSIONS Our studies suggest that low levels of arsenic provoke a cellular adaptive oxidative stress response that increases antioxidant levels, dampens ROS signaling involved in GSIS, and thus disturbs beta-cell function.
Collapse
Affiliation(s)
- Jingqi Fu
- Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
- School of Public Health, China Medical University, Shenyang, China
| | | | - Einav Yehuda-Shnaidman
- Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Victoria Wong
- Flow Cytometry and Confocal Core, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| | - Sheila Collins
- Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| | - Guifan Sun
- School of Public Health, China Medical University, Shenyang, China
| | | | - Jingbo Pi
- Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
- Address correspondence to J. Pi, Division of Translational Biology, The Hamner Institutes for Health Sciences, 6 Davis Dr., Research Triangle Park, NC 27709 USA. Telephone: (919) 558-1395. Fax: (919) 558-1305. E-mail:
| |
Collapse
|
27
|
Abstract
Glucose-stimulated insulin secretion from the islet beta-cell involves a sequence of metabolic events and an interplay between a wide range of signaling pathways leading to the generation of second messengers (e.g., cyclic nucleotides, adenine and guanine nucleotides, soluble lipid messengers) and mobilization of calcium ions. Consequent to the generation of necessary signals, the insulin-laden secretory granules are transported from distal sites to the plasma membrane for fusion and release of their cargo into the circulation. The secretory granule transport underlies precise changes in cytoskeletal architecture involving a well-coordinated cross-talk between various signaling proteins, including small molecular mass GTP-binding proteins (G proteins) and their respective effector proteins. The purpose of this article is to provide an overview of current understanding of the identity of small G proteins (e.g., Cdc42, Rac1, and ARF-6) and their corresponding regulatory factors (e.g., GDP/GTP-exchange factors, GDP-dissociation inhibitors) in the pancreatic beta-cell. Plausible mechanisms underlying regulation of these signaling proteins by insulin secretagogues are also discussed. In addition to their positive modulatory roles, certain small G proteins also contribute to the metabolic dysfunction and demise of the islet beta-cell seen in in vitro and in vivo models of impaired insulin secretion and diabetes. Emerging evidence also suggests significant insulin secretory abnormalities in small G protein knockout animals, further emphasizing vital roles for these proteins in normal health and function of the islet beta-cell. Potential significance of these experimental observations from multiple laboratories and possible avenues for future research in this area of islet research are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48202-3489, USA.
| |
Collapse
|
28
|
Stark R, Pasquel F, Turcu A, Pongratz RL, Roden M, Cline GW, Shulman GI, Kibbey RG. Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. J Biol Chem 2009; 284:26578-90. [PMID: 19635791 PMCID: PMC2785346 DOI: 10.1074/jbc.m109.011775] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/15/2009] [Indexed: 11/13/2022] Open
Abstract
Pancreatic beta-cells couple the oxidation of glucose to the secretion of insulin. Apart from the canonical K(ATP)-dependent glucose-stimulated insulin secretion (GSIS), there are important K(ATP)-independent mechanisms involving both anaplerosis and mitochondrial GTP (mtGTP). How mtGTP that is trapped within the mitochondrial matrix regulates the cytosolic calcium increases that drive GSIS remains a mystery. Here we have investigated whether the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) is the GTPase linking hydrolysis of mtGTP made by succinyl-CoA synthetase (SCS-GTP) to an anaplerotic pathway producing phosphoenolpyruvate (PEP). Although cytosolic PEPCK (PEPCK-C) is absent, PEPCK-M message and protein were detected in INS-1 832/13 cells, rat islets, and mouse islets. PEPCK enzymatic activity is half that of primary hepatocytes and is localized exclusively to the mitochondria. Novel (13)C-labeling strategies in INS-1 832/13 cells and islets measured substantial contribution of PEPCK-M to the synthesis of PEP. As high as 30% of PEP in INS-1 832/13 cells and 41% of PEP in rat islets came from PEPCK-M. The contribution of PEPCK-M to overall PEP synthesis more than tripled with glucose stimulation. Silencing the PEPCK-M gene completely inhibited GSIS underscoring its central role in mitochondrial metabolism-mediated insulin secretion. Given that mtGTP synthesized by SCS-GTP is an indicator of TCA flux that is crucial for GSIS, PEPCK-M is a strong candidate to link mtGTP synthesis with insulin release through anaplerotic PEP cycling.
Collapse
Affiliation(s)
| | | | - Adina Turcu
- From the Departments of Internal Medicine and
| | | | - Michael Roden
- the Institute for Clinical Diabetology, German Diabetes Center, 40225 Düsseldorf, Germany
| | | | - Gerald I. Shulman
- From the Departments of Internal Medicine and
- Cellular and Molecular Physiology and
- the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Richard G. Kibbey
- From the Departments of Internal Medicine and
- Cellular and Molecular Physiology and
| |
Collapse
|
29
|
Hou JC, Williams D, Vicogne J, Pessin JE. The glucose transporter 2 undergoes plasma membrane endocytosis and lysosomal degradation in a secretagogue-dependent manner. Endocrinology 2009; 150:4056-64. [PMID: 19477941 PMCID: PMC2736072 DOI: 10.1210/en.2008-1685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In beta-cells of the pancreas, the glucose transporter (GLUT)-2 facilitative glucose transporter protein is localized to the plasma membrane and functions as part of the glucose sensing mechanism for the stimulation of insulin secretion. We observed that expressed GLUT2 protein in the cultured Min6B1 cell line undergoes enhanced endocytosis at high extracellular glucose concentrations that stimulate insulin secretion. Moreover, the internalized GLUT2 protein undergoes rapid degradation induced by chronic high-glucose or arginine stimulation but does not undergo plasma membrane recycling or accumulation in any microscopically apparent intracellular membrane compartment. The rapid degradation of GLUT2 was prevented by lysosomal inhibition (chloroquine) concomitant with the accumulation of GLUT2 in endomembrane structures. In contrast, neither endocytosis nor the lack of internal membrane localized GLUT2 remained completely unaffected by proteosomal inhibition (lactacystin) or an heat shock protein-90 inhibitor (geldanamycin). Moreover, the endocytosis and degradation of GLUT2 was specific for beta-cells because expression of GLUT2 in 3T3L1 adipocytes remained cell surface localized and did not display a rapid rate of degradation. Together, these data demonstrate that hyperglycemia directly affects beta-cell function and activates a trafficking pathway that results in the rapid endocytosis and degradation of the cell surface GLUT2 glucose transporter.
Collapse
|
30
|
Martin CC, Flemming BP, Wang Y, Oeser JK, O’Brien RM. Foxa2 and MafA regulate islet-specific glucose-6-phosphatase catalytic subunit-related protein gene expression. J Mol Endocrinol 2008; 41:315-28. [PMID: 18753309 PMCID: PMC2614309 DOI: 10.1677/jme-08-0062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP/G6PC2) is a major autoantigen in both mouse and human type 1 diabetes. IGRP is selectively expressed in islet beta cells and polymorphisms in the IGRP gene have recently been associated with variations in fasting blood glucose levels and cardiovascular-associated mortality in humans. Chromatin immunoprecipitation (ChIP) assays have shown that the IGRP promoter binds the islet-enriched transcription factors Pax-6 and BETA2. We show here, again using ChIP assays, that the IGRP promoter also binds the islet-enriched transcription factors MafA and Foxa2. Single binding sites for these factors were identified in the proximal IGRP promoter, mutation of which resulted in decreased IGRP fusion gene expression in betaTC-3, Hamster insulinoma tumor (HIT), and Min6 cells. ChiP assays have shown that the islet-enriched transcription factor Pdx-1 also binds the IGRP promoter, but mutational analysis of four Pdx-1 binding sites in the proximal IGRP promoter revealed surprisingly little effect of Pdx-1 binding on IGRP fusion gene expression in betaTC-3 cells. In contrast, in both HIT and Min6 cells mutation of these four Pdx-1 binding sites resulted in a approximately 50% reduction in fusion gene expression. These data suggest that the same group of islet-enriched transcription factors, namely Pdx-1, Pax-6, MafA, BETA2, and Foxa2, directly or indirectly regulate expression of the two major autoantigens in type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Richard M. O’Brien
- To whom correspondence should be addressed: Department of Molecular Physiology and Biophysics, 8415 MRB IV, 2213 Garland Ave, Vanderbilt University Medical School, Nashville, TN 37232-0615, Telephone (615) 936-1503; Facsimile (615) 322-7236, E-mail:
| |
Collapse
|
31
|
Affiliation(s)
- Rebecca J Brown
- Clinical Endocrinology Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
32
|
Li C, Nissim I, Chen P, Buettger C, Najafi H, Daikhin Y, Nissim I, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM. Elimination of KATP channels in mouse islets results in elevated [U-13C]glucose metabolism, glutaminolysis, and pyruvate cycling but a decreased gamma-aminobutyric acid shunt. J Biol Chem 2008; 283:17238-49. [PMID: 18445600 DOI: 10.1074/jbc.m709235200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1(-/-)) and control mouse islets with d-[U-(13)C]glucose as substrate and related the results to insulin secretion. The levels and isotope labeling of alanine, aspartate, glutamate, glutamine, and gamma-aminobutyric acid (GABA) served as indicators of intermediary metabolism. We found that the GABA shunt of SUR1(-/-) islets is blocked by about 75% and showed that this defect is due to decreased glutamate decarboxylase synthesis, probably caused by elevated free intracellular calcium. Glutaminolysis stimulated by the leucine analogue d,l-beta-2-amino-2-norbornane-carboxylic acid was, however, enhanced in SUR1(-/-) and glyburide-treated SUR1(+/+) islets. Glucose oxidation and pyruvate cycling was increased in SUR1(-/-) islets at low glucose but was the same as in controls at high glucose. Malic enzyme isoforms 1, 2, and 3, involved in pyruvate cycling, were all expressed in islets. High glucose lowered aspartate and stimulated glutamine synthesis similarly in controls and SUR1(-/-) islets. The data suggest that the interruption of the GABA shunt and the lack of glucose regulation of pyruvate cycling may cause the glucose insensitivity of the SUR1(-/-) islets but that enhanced basal pyruvate cycling, lowered GABA shunt flux, and enhanced glutaminolytic capacity may sensitize the beta cells to amino acid stimulation.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kowluru A. Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet beta-cell. J Cell Mol Med 2008; 12:1885-908. [PMID: 18400053 PMCID: PMC4506158 DOI: 10.1111/j.1582-4934.2008.00330.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein phosphorylation represents one of the key regulatory events in physiological insulin secretion from the islet β-cell. In this context, several classes of protein kinases (e.g. calcium-, cyclic nucleotide- and phospholipid-dependent protein kinases and tyrosine kinases) have been characterized in the β-cell. The majority of phosphorylated amino acids identified include phosphoserine, phosphothreonine and phosphotyrosine. Protein histidine phosphorylation has been implicated in the prokaryotic and eukaryotic cellular signal transduction. Most notably, phoshohistidine accounts for 6% of total protein phosphorylation in eukaryotes, which makes it nearly 100-fold more abundant than phosphotyrosine, but less abundant than phosphoserine and phosphothreonine. However, very little is known about the number of proteins with phosphohistidines, since they are highly labile and are rapidly lost during phosphoamino acid identification under standard experimental conditions. The overall objectives of this review are to: (i) summarize the existing evidence indicating the subcellular distribution and characterization of various histidine kinases in the islet β-cell, (ii) describe evidence for functional regulation of these kinases by agonists of insulin secretion, (iii) present a working model to implicate novel regulatory roles for histidine kinases in the receptor-independent activation, by glucose, of G-proteins endogenous to the β-cell, (iv) summarize evidence supporting the localization of protein histidine phosphatases in the islet β-cell and (v) highlight experimental evidence suggesting potential defects in the histidine kinase signalling cascade in islets derived from the Goto-Kakizaki (GK) rat, a model for type 2 diabetes. Potential avenues for future research to further decipher regulatory roles for protein histidine phosphorylation in physiological insulin secretion are also discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
34
|
Weizhen Wu, Jin Shang, Yue Feng, Thompson CM, Horwitz S, Thompson JR, Macintyre ED, Thornberry NA, Chapman K, Zhou YP, Howard AD, Jing Li. Identification of Glucose-Dependent Insulin Secretion Targets in Pancreatic β Cells by Combining Defined-Mechanism Compound Library Screening and siRNA Gene Silencing. ACTA ACUST UNITED AC 2008; 13:128-34. [DOI: 10.1177/1087057107313763] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identification and validation of novel drug targets continues to be a major bottleneck in drug development, particularly for polygenic complex diseases such as type 2 diabetes. Here, the authors describe an approach that allows researchers to rapidly identify and validate potential drug targets by combining chemical tools and RNA interference technology. As a proof-of-concept study, the known mechanism Sigma LOPAC library was used to screen for glucose-dependent insulin secretion (GDIS) in INS-1 832/13 cells. In addition to several mechanisms that are known to regulate GDIS (such as cyclic adenosine monophosphate—specific phosphodiesterases, adrenoceptors, and Ca2+ channels), the authors find that several of the dopamine receptor ( DRD) antagonists significantly enhance GDIS, whereas DRD agonists profoundly inhibit GDIS. Subsequent siRNA studies in the same cell line indicate that knockdown of DRD2 enhanced GDIS. Furthermore, selective DRD2 antagonists and agonists also enhance or suppress, respectively, GDIS in isolated rat islets. The data support that the approach described here offers a rapid and effective way for target identification and validation. ( Journal of Biomolecular Screening 2008;128-134)
Collapse
Affiliation(s)
| | - Jin Shang
- Merck Research Laboratories, Rahway, NJ
| | - Yue Feng
- Merck Research Laboratories, Rahway, NJ
| | | | | | | | | | | | | | | | | | - Jing Li
- Merck Research Laboratories, Rahway, NJ,
| |
Collapse
|
35
|
Wang Y, Flemming BP, Martin CC, Allen SR, Walters J, Oeser JK, Hutton JC, O'Brien RM. Long-range enhancers are required to maintain expression of the autoantigen islet-specific glucose-6-phosphatase catalytic subunit-related protein in adult mouse islets in vivo. Diabetes 2008; 57:133-41. [PMID: 17942825 DOI: 10.2337/db07-0092] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) is selectively expressed in islet beta-cells and is a major autoantigen in both mouse and human type 1 diabetes. This study describes the use of a combination of transgenic and transfection approaches to characterize the gene regions that confer the islet-specific expression of IGRP. RESEARCH DESIGN AND METHODS Transgenic mice were generated containing the IGRP promoter sequence from -306, -911, or -3911 to +3 ligated to a LacZ reporter gene. Transgene expression was monitored by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining of pancreatic tissue. RESULTS In all the transgenic mice, robust LacZ expression was detected in newborn mouse islets, but expression became mosaic as animals aged, suggesting that additional elements are required for the maintenance of IGRP gene expression. VISTA analyses identified two conserved regions in the distal IGRP promoter and one in the third intron. Transfection experiments demonstrated that all three regions confer enhanced luciferase reporter gene expression in beta TC-3 cells when ligated to a minimal IGRP promoter. A transgene containing all three conserved regions was generated by using a bacterial recombination strategy to insert a LacZ cassette into exon 5 of the IGRP gene. Transgenic mice containing a 15-kbp fragment of the IGRP gene were then generated. This transgene conferred LacZ expression in newborn mouse islets; however, expression was still suppressed as animals aged. CONCLUSIONS The data suggest that long-range enhancers 5' or 3' of the IGRP gene are required for the maintenance of IGRP gene expression in adult mice.
Collapse
Affiliation(s)
- Yingda Wang
- Department of Molecular Physiology and Biophysics, 761 PRB, Vanderbilt University Medical School, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE, Collins S. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 2007; 56:1783-91. [PMID: 17400930 DOI: 10.2337/db06-1601] [Citation(s) in RCA: 399] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.
Collapse
Affiliation(s)
- Jingbo Pi
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, 6 Davis Dr., Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stiernet P, Nenquin M, Moulin P, Jonas JC, Henquin JC. Glucose-induced cytosolic pH changes in beta-cells and insulin secretion are not causally related: studies in islets lacking the Na+/H+ exchangeR NHE1. J Biol Chem 2007; 282:24538-46. [PMID: 17599909 DOI: 10.1074/jbc.m702862200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The contribution of Na(+)/H(+) exchange (achieved by NHE proteins) to the regulation of beta-cell cytosolic pH(c), and the role of pH(c) changes in glucose-induced insulin secretion are disputed and were examined here. Using real-time PCR, we identified plasmalemmal NHE1 and intracellular NHE7 as the two most abundant NHE isoforms in mouse islets. We, therefore, compared insulin secretion, cytosolic free Ca(2+) ([Ca(2+)](c)) and pH(c) in islets from normal mice and mice bearing an inactivating mutation of NHE1 (Slc9A1-swe/swe). The experiments were performed in HCO(-)(3)/CO(2) or HEPES/NaOH buffers. PCR and functional approaches showed that NHE1 mutant islets do not express compensatory pH-regulating mechanisms. NHE1 played a greater role than HCO(-)(3)-dependent mechanisms in the correction of an acidification imposed by a pulse of NH(4)Cl. In contrast, basal pH(c) (in low glucose) and the alkalinization produced by high glucose were independent of NHE1. Dimethylamiloride, a classic blocker of Na(+)/H(+) exchange, did not affect pH(c) but increased insulin secretion in NHE1 mutant islets, indicating unspecific effects. In control islets, glucose similarly increased [Ca(2+)](c) and insulin secretion in HCO(-)(3) and HEPES buffer, although pH(c) changed in opposite directions. The amplification of insulin secretion that glucose produces when [Ca(2+)](c) is clamped at an elevated level by KCl was also unrelated to pH(c) and pH(c) changes. All effects of glucose on [Ca(2+)](c) and insulin secretion proved independent of NHE1. In conclusion, NHE1 protects beta-cells against strong acidification, but has no role in stimulus-secretion coupling. The changes in pH(c) produced by glucose involve HCO(-)(3)-dependent mechanisms. Variations in beta-cell pH(c) are not causally related to changes in insulin secretion.
Collapse
Affiliation(s)
- Patrick Stiernet
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
38
|
Jiang N, Cox RD, Hancock JM. A kinetic core model of the glucose-stimulated insulin secretion network of pancreatic beta cells. Mamm Genome 2007; 18:508-20. [PMID: 17514510 PMCID: PMC1998884 DOI: 10.1007/s00335-007-9011-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 03/02/2007] [Indexed: 11/26/2022]
Abstract
The construction and characterization of a core kinetic model of the glucose-stimulated insulin secretion system (GSIS) in pancreatic beta cells is described. The model consists of 44 enzymatic reactions, 59 metabolic state variables, and 272 parameters. It integrates five subsystems: glycolysis, the TCA cycle, the respiratory chain, NADH shuttles, and the pyruvate cycle. It also takes into account compartmentalization of the reactions in the cytoplasm and mitochondrial matrix. The model shows expected behavior in its outputs, including the response of ATP production to starting glucose concentration and the induction of oscillations of metabolite concentrations in the glycolytic pathway and in ATP and ADP concentrations. Identification of choke points and parameter sensitivity analysis indicate that the glycolytic pathway, and to a lesser extent the TCA cycle, are critical to the proper behavior of the system, while parameters in other components such as the respiratory chain are less critical. Notably, however, sensitivity analysis identifies the first reactions of nonglycolytic pathways as being important for the behavior of the system. The model is robust to deletion of malic enzyme activity, which is absent in mouse pancreatic beta cells. The model represents a step toward the construction of a model with species-specific parameters that can be used to understand mouse models of diabetes and the relationship of these mouse models to the human disease state.
Collapse
Affiliation(s)
- Nan Jiang
- Bioinformatics Group, MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD UK
| | - Roger D. Cox
- Type 2 Diabetes Group, MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD UK
| | - John M. Hancock
- Bioinformatics Group, MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD UK
| |
Collapse
|
39
|
|
40
|
Ronnebaum SM, Ilkayeva O, Burgess SC, Joseph JW, Lu D, Stevens RD, Becker TC, Sherry AD, Newgard CB, Jensen MV. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem 2006; 281:30593-602. [PMID: 16912049 DOI: 10.1074/jbc.m511908200] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic islet beta-cells is central to control of mammalian fuel homeostasis. Glucose metabolism mediates GSIS in part via ATP-regulated K+ (KATP) channels, but multiple lines of evidence suggest participation of other signals. Here we investigated the role of cytosolic NADP-dependent isocitrate dehydrogenase (ICDc) in control of GSIS in beta-cells. Delivery of small interfering RNAs specific for ICDc caused impairment of GSIS in two independent robustly glucose-responsive rat insulinoma (INS-1-derived) cell lines and in primary rat islets. Suppression of ICDc also attenuated the glucose-induced increments in pyruvate cycling activity and in NADPH levels, a predicted by-product of pyruvate cycling pathways, as well as the total cellular NADP(H) content. Metabolic profiling of eight organic acids in cell extracts revealed that suppression of ICDc caused increases in lactate production in both INS-1-derived cell lines and primary islets, consistent with the attenuation of pyruvate cycling, with no significant changes in other intermediates. Based on these studies, we propose that a pyruvate cycling pathway involving ICDc plays an important role in control of GSIS.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27704, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cunningham GA, McClenaghan NH, Flatt PR, Newsholme P. L-Alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic β-cell line and protects from pro-inflammatory cytokine-induced apoptosis. Clin Sci (Lond) 2005; 109:447-55. [PMID: 16045439 DOI: 10.1042/cs20050149] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acute effects of nutrient stimuli on pancreatic β-cell function are widely reported; however, the chronic effects of insulinotropic amino acids, such as L-alanine, on pancreatic β-cell function and integrity are unknown. In the present study, the effects of prolonged exposure (24 h) to the amino acid L-alanine on insulin secretory function, gene expression and pro-inflammatory cytokine-induced apoptosis were studied using clonal BRIN-BD11 cells. Expression profiling of BRIN-BD11 cells chronically exposed to L-alanine was performed using oligonucleotide microarray analysis. The effect of alanine, the iNOS (inducible nitric oxide synthase) inhibitor NMA (NG-methyl-L-arginine acetate) or the iNOS and NADPH oxidase inhibitor DPI (diphenylene iodonium) on apoptosis induced by a pro-inflammatory cytokine mix [IL-1β (interleukin-1β), TNF-α (tumour necrosis factor-α) and IFN-γ (interferon-γ)] was additionally assessed by flow cytometry. Culture for 24 h with 10 mM L-alanine resulted in desensitization to the subsequent acute insulin stimulatory effects of L-alanine. This was accompanied by substantial changes in gene expression of BRIN-BD11 cells. Sixty-six genes were up-regulated >1.8-fold, including many involved in cellular signalling, metabolism, gene regulation, protein synthesis, apoptosis and the cellular stress response. Subsequent functional experiments confirmed that L-alanine provided protection of BRIN-BD11 cells from pro-inflammatory cytokine-induced apoptosis. Protection from apoptosis was mimicked by NMA or DPI suggesting L-alanine enhances intracellular antioxidant generation. These observations indicate important long-term effects of L-alanine in regulating gene expression, secretory function and the integrity of insulin-secreting cells. Specific amino acids may therefore play a key role in β-cell function in vivo.
Collapse
Affiliation(s)
- Grainne A Cunningham
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
42
|
Roche E, Reig JA, Campos A, Paredes B, Isaac JR, Lim S, Calne RY, Soria B. Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes. Transpl Immunol 2005; 15:113-29. [PMID: 16412956 DOI: 10.1016/j.trim.2005.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 09/09/2005] [Indexed: 01/10/2023]
Abstract
Diabetes is a degenerative disease that results from the selective destruction of pancreatic beta-cells. These cells are responsible for insulin production and secretion in response to increases in circulating concentrations of nutrients, such as glucose, fatty acids and amino acids. This degenerative disease can be treated by the transplantation of differentiated islets obtained from cadaveric donors, according to a new surgical intervention developed as Edmonton protocol. Compared to the classical double transplant kidney-pancreas, this new protocol presents several advantages, concerning to the nature of the implant, immunosuppressive drug regime and the surgical procedure itself. However, the main problem to face in any islet transplantation program is the scarcity of donor pancreases and the low yield of islets isolated (very often around 50%) from each pancreas. Nevertheless, transplanted patients presented no adverse effects and no progression of diabetic complications. In the search of new cell sources for replacement trials, stem cells from embryonic and adult origins represent a key alternative. In order to become a realistic clinical issue transplantation of insulin-producing cells derived from stem cells, it needs to overcome multiple experimental obstacles. The first one is to develop a protocol that may allow obtaining a pure population of functional insulin-secreting cells as close as possible to the pancreatic beta-cell. The second problem should concern to the transplantation itself, considering issues related to immune rejection, tumour formation, site for implant, implant survival, and biosafety mechanisms. Although transplantation of bioengineered cells is still far in time, experience accumulated in islet transplantation protocols and in experiments with appropriate animal models will give more likely the clues to address this question in the future.
Collapse
Affiliation(s)
- Enrique Roche
- Institute of Bioengineering, University Miguel Hernández, San Juan, Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Seeley RJ, York DA. Fuel sensing and the central nervous system (CNS): implications for the regulation of energy balance and the treatment for obesity. Obes Rev 2005; 6:259-65. [PMID: 16045641 DOI: 10.1111/j.1467-789x.2005.00193.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This review describes the product of the 3-day International Association for the Study of Obesity (IASO) Stock Conference held in March 2004 and sponsored by Abbott Laboratories. The conference was focused on how the mechanisms by which individual cells sense their own fuel status might influence the energy balance of the entire organism. Whether you are a single-celled organism or a sophisticated mammal with a large cerebral cortex, it is critical that cellular activity be matched to the available fuel necessary for that activity. Rapid progress has been made in the last decade in our understanding of the critical metabolic events that cells monitor to accomplish this critical task. More recent developments have begun to apply this understanding to how critical populations of neurones may monitor similar events to control both food intake and energy expenditure. The picture that emerges is that numerous peripheral fuel sensors communicate to the central nervous system (CNS) via neural and humoral routes. Moreover, it has been known for decades that specific populations of neurones sense changes in ambient glucose levels and adjust their firing rate in response and changes in neuronal glucose metabolism can influence energy balance. The CNS, however, does not just sense glucose but rather appears to be sensitive to a wide range of metabolic perturbations associated with fuel availability. This information is used to adjust both caloric intake and the disposition of fuels in the periphery. Increased understanding of these CNS fuel-sensing mechanisms may lead to novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- R J Seeley
- Department of Psychiatry and Genome Research Institute, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | |
Collapse
|
44
|
Leibowitz G, Khaldi MZ, Shauer A, Parnes M, Oprescu AI, Cerasi E, Jonas JC, Kaiser N. Mitochondrial regulation of insulin production in rat pancreatic islets. Diabetologia 2005; 48:1549-59. [PMID: 15986240 DOI: 10.1007/s00125-005-1811-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The study was designed to identify the key metabolic signals of glucose-stimulated proinsulin gene transcription and translation, focusing on the mechanism of succinate stimulation of insulin production. METHODS Wistar rat islets were incubated in 3.3 mmol/l glucose with and without esters of different mitochondrial metabolites or with 16.7 mmol/l glucose. Proinsulin biosynthesis was analysed by tritiated leucine incorporation into newly synthesised proinsulin. Preproinsulin gene transcription was evaluated following transduction with adenoviral vectors expressing the luciferase reporter gene under the control of the rat I preproinsulin promoter. Steady-state preproinsulin mRNA was determined using relative quantitative PCR. The mitochondrial membrane potential was measured by microspectrofluorimetry using rhodamine-123. RESULTS Succinic acid monomethyl ester, but not other mitochondrial metabolites, stimulated preproinsulin gene transcription and translation. Similarly to glucose, succinate increased specific preproinsulin gene transcription and biosynthesis. The inhibitor of succinate dehydrogenase (SDH), 3-nitropropionate, abolished glucose- and succinate-stimulated mitochondrial membrane hyperpolarisation and proinsulin biosynthesis, indicating that stimulation of proinsulin translation depends on SDH activity. Partial inhibition of SDH activity by exposure to fumaric acid monomethyl ester abolished the stimulation of preproinsulin gene transcription, but only partially inhibited the stimulation of proinsulin biosynthesis by glucose and succinate, suggesting that SDH activity is particularly important for the transcriptional response to glucose. CONCLUSIONS/INTERPRETATION Succinate is a key metabolic mediator of glucose-stimulated preproinsulin gene transcription and translation. Moreover, succinate stimulation of insulin production depends on its metabolism via SDH. The differential effect of fumarate on preproinsulin gene transcription and translation suggests that these processes have different sensitivities to metabolic signals.
Collapse
Affiliation(s)
- G Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lehtihet M, Webb DL, Honkanen RE, Sjöholm A. Glutamate inhibits protein phosphatases and promotes insulin exocytosis in pancreatic β-cells. Biochem Biophys Res Commun 2005; 328:601-7. [PMID: 15694391 DOI: 10.1016/j.bbrc.2005.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Indexed: 11/24/2022]
Abstract
In human type 2 diabetes mellitus, loss of glucose-sensitive insulin secretion from the pancreatic beta-cell is an early pathogenetic event, but the mechanisms involved in glucose sensing are poorly understood. A messenger role has been postulated for L-glutamate in linking glucose stimulation to sustained insulin exocytosis in the beta-cell, but the precise nature by which L-glutamate controls insulin secretion remains elusive. Effects of L-glutamate on the activities of ser/thr protein phosphatases (PPase) and Ca(2+)-regulated insulin exocytosis in INS-1E cells were investigated. Glucose increases L-glutamate contents and promotes insulin secretion from INS-1E cells. L-glutamate also dose-dependently inhibits PPase enzyme activities analogous to the specific PPase inhibitor, okadaic acid. L-glutamate and okadaic acid directly and non-additively promote insulin exocytosis from permeabilized INS-1E cells in a Ca(2+)-independent manner. Thus, an increase in phosphorylation state, through inhibition of protein dephosphorylation by glucose-derived L-glutamate, may be a novel regulatory mechanism linking glucose sensing to sustained insulin exocytosis.
Collapse
Affiliation(s)
- Mikael Lehtihet
- Karolinska Institutet, Department of Internal Medicine, Stockholm South Hospital, SE-118 83 Stockholm, Sweden
| | | | | | | |
Collapse
|
46
|
Song Z, Routh VH. Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 2005; 54:15-22. [PMID: 15616006 DOI: 10.2337/diabetes.54.1.15] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose directly alters the action potential frequency of glucosensing neurons in the ventromedial hypothalamic nucleus (VMN). Glucose-excited neurons increase, and glucose-inhibited neurons decrease, their action potential frequency as glucose increases from 0.1 to 2.5 mmol/l. Glucose-excited neurons utilize the ATP-sensitive K(+) channel (K(ATP) channel) to sense glucose, whereas glucose opens a chloride channel in glucose-inhibited neurons. We tested the hypothesis that lactate, an alternate energy substrate, also regulates the action potential frequency of VMN glucose-excited and -inhibited but not nonglucosensing neurons. As expected, lactate reversed the inhibitory effects of decreased glucose on VMN glucose-excited neurons via closure of the K(ATP) channel. Although increasing glucose from 2.5 to 5 mmol/l did not affect the activity of glucose-excited neurons, the addition of 0.5 mmol/l lactate or the K(ATP) channel blocker tolbutamide increased their action potential frequency. In contrast to the glucose-excited neurons, lactate did not reverse the effects of decreased glucose on VMN glucose-inhibited neurons. In fact, it increased their action potential frequency in both low and 2.5 mmol/l glucose. This effect was mediated by both K(ATP) and chloride channels. Nonglucosensing neurons were not affected by lactate. Thus, glucose and lactate have similar effects on VMN glucose-excited neurons, but they have opposing effects on VMN glucose-inhibited neurons.
Collapse
Affiliation(s)
- Z Song
- Department of Pharmacology and Physiology, New Jersey Medical School, P.O. Box 1709, Newark, NJ 07101-1709, USA
| | | |
Collapse
|
47
|
Lehtihet M, Honkanen RE, Sjöholm A. Inositol hexakisphosphate and sulfonylureas regulate β-cell protein phosphatases. Biochem Biophys Res Commun 2004; 316:893-7. [PMID: 15033485 DOI: 10.1016/j.bbrc.2004.02.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 10/26/2022]
Abstract
In human type 2 diabetes, loss of glucose-stimulated insulin exocytosis from the pancreatic beta-cell is an early pathogenetic event. Mechanisms controlling insulin exocytosis are, however, not fully understood. We show here that inositol hexakisphosphate (InsP(6)), whose concentration transiently increases upon glucose stimulation, dose-dependently and differentially inhibits enzyme activities of ser/thr protein phosphatases in physiologically relevant concentrations. None of the hypoglycemic sulfonylureas tested affected protein phosphatase-1 or -2A activity at clinically relevant concentrations in these cells. Thus, an increase in cellular phosphorylation state, through inhibition of protein dephosphorylation by InsP(6), may be a novel regulatory mechanism linking glucose-stimulated polyphosphoinositide formation to insulin exocytosis in insulin-secreting cells.
Collapse
Affiliation(s)
- Mikael Lehtihet
- Karolinska Institutet, Department of Internal Medicine, Stockholm South Hospital, SE-118 83 Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Abstract
The field of metabolic engineering encompasses a powerful set of tools that can be divided into (a) methods to model complex metabolic pathways and (b) techniques to manipulate these pathways for a desired metabolic outcome. These tools have recently seen increased utility in the medical arena, and this paper aims to review significant accomplishments made using these approaches. The modeling of metabolic pathways has been applied to better understand disease-state physiology in a variety of cellar, subcellular, and organ systems, including the liver, heart, mitochondria, and cancerous cells. Metabolic pathway engineering has been used to generate cells with novel biochemical functions for therapeutic use, and specific examples are provided in the areas of glycosylation engineering and dopamine-replacement therapy. In order to document the potential of applying both metabolic modeling and pathway manipulation, we describe pertinent advances in the field of diabetes research. Undoubtedly, as the field of metabolic engineering matures and is applied to a wider array of problems, new advances and therapeutic strategies will follow.
Collapse
Affiliation(s)
- Martin L Yarmush
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Shriners Burns Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
49
|
Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci 2003; 4:901-9. [PMID: 14595401 DOI: 10.1038/nrn1245] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Randy J Seeley
- Department of Psychiatry and Obesity Research Center, University of Cincinnati, Cincinnati, Ohio 45267-0559, USA.
| | | |
Collapse
|