1
|
Langer S, Jagdhuhn D, Waterstradt R, Gromoll J, Müller M, Rees MG, Gloyn AL, Baltrusch S. Effects of coding variants in the glucokinase regulatory protein gene on hepatic glucose and triglyceride metabolism suggest a gene regulatory function of glucokinase. Metabolism 2025; 166:156150. [PMID: 39894388 DOI: 10.1016/j.metabol.2025.156150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Regulation of glucose metabolism after a meal is the major task of hepatic glucokinase (GCK). Inhibition and nuclear retention of glucokinase during fasting is achieved by glucokinase regulatory protein (GKRP). Compounds disrupting the GCK-GKRP interaction alter glucose but not triglyceride levels, whilst GKRP coding alleles lower glucose but elevate triglycerides. The aim of this study was to identify yet unknown functions of GKRP by examining human variants both rare (p.Q234P, p.H438Y) and common (p.P446L). METHODS Fluorescently labelled human GKRP variant and GCK proteins were expressed in hepatoma cells or primary mouse hepatocytes to investigate the subcellular localization of both proteins, cellular glucose uptake, and triglyceride levels. Mutational effects on GKRP protein structure were analyzed with PyMOL. Nuclear-to-cytoplasmic distribution of the GCK-GKRP complex was modeled in MATLAB. RESULTS Nuclear localization of the GKRP variants was decreased compared to wild-type. Only H438Y-GKRP still evoked WT-like GCK nuclear accumulation. Nuclear localization of Q234P-GKRP was most impaired and depended on the presence of GCK, which, supported by structural analyses, could stabilize its conformation. Nonetheless, inhibition of glucose uptake was least impaired with Q234P-GKRP. Triglyceride contents related to the glucose uptake of hepatoma cells were disproportionately high for cells expressing wild-type or H438Y-GKRP, the two variants that induced higher nuclear sequestration of GCK. CONCLUSIONS Our results, supported by a modeling approach, suggest that GKRP-mediated nuclear localization of GCK has a function in liver metabolism beyond GCK inhibition and sequestration. This needs further elucidation given that GKRP disruptors have been proposed for antihyperglycemic therapy.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - David Jagdhuhn
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Jessica Gromoll
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Michael Müller
- Institute for Acoustics and Dynamics, Technical University of Braunschweig, Braunschweig, Germany
| | - Matthew G Rees
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK; Department of Pediatrics & Genetics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Liebmann M, Asuaje Pfeifer M, Grupe K, Scherneck S. Estradiol (E2) Improves Glucose-Stimulated Insulin Secretion and Stabilizes GDM Progression in a Prediabetic Mouse Model. Int J Mol Sci 2022; 23:ijms23126693. [PMID: 35743136 PMCID: PMC9223537 DOI: 10.3390/ijms23126693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Female New Zealand obese (NZO) mice are an established model of preconceptional (pc.) prediabetes that progresses as gestational diabetes mellitus (GDM) during gestation. It is known that NZO mice show improvement in insulin sensitivity and glucose-stimulated insulin secretion (GSIS) during gestation in vivo. The latter is no longer detectable in ex vivo perifusion experiments in isolated islets of Langerhans, suggesting a modulation by extrapancreatic factors. Here, we demonstrated that plasma 17β-estradiol (E2) levels increased markedly in NZO mice during gestation. The aim of this work was to determine whether these increased E2 levels are responsible for the improvement in metabolism during gestation. To achieve this goal, we examined its effects in isolated islets and primary hepatocytes of both NZO and metabolically healthy NMRI mice. E2 increased GSIS in the islets of both strains significantly. Hepatic glucose production (HGP) failed to be decreased by insulin in NZO hepatocytes but was reduced by E2 in both strains. Hepatocytes of pregnant NZO mice showed significantly lower glucose uptake (HGU) compared with NMRI controls, whereby E2 stimulation diminished this difference. Hepatocytes of pregnant NZO showed reduced glycogen content, increased cyclic adenosine monophosphate (cAMP) levels, and reduced AKT activation. These differences were abolished after E2 stimulation. In conclusion, our data indicate that E2 stabilizes and prevents deterioration of the metabolic state of the prediabetic NZO mice. E2 particularly increases GSIS and improves hepatic glucose utilization to a lower extent.
Collapse
|
3
|
Asuaje Pfeifer M, Liebmann M, Beuerle T, Grupe K, Scherneck S. Role of Serotonin (5-HT) in GDM Prediction Considering Islet and Liver Interplay in Prediabetic Mice during Gestation. Int J Mol Sci 2022; 23:ijms23126434. [PMID: 35742878 PMCID: PMC9224346 DOI: 10.3390/ijms23126434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/29/2022] Open
Abstract
Gestational diabetes (GDM) is characterized by a glucose tolerance disorder. This may first appear during pregnancy or pre-exist before conception as a form of prediabetes, but there are few data on the pathogenesis of the latter subtype. Female New Zealand obese (NZO) mice serve as a model for this subpopulation of GDM. It was recently shown that GDM is associated with elevated urinary serotonin (5-hydroxytryptamine, 5-HT) levels, but the role of the biogenic amine in subpopulations with prediabetes remains unclear. 5-HT is synthesized in different tissues, including the islets of Langerhans during pregnancy. Furthermore, 5-HT receptors (HTRs) are expressed in tissues important for the regulation of glucose homeostasis, such as liver and pancreas. Interestingly, NZO mice showed elevated plasma and islet 5-HT concentrations as well as impaired glucose-stimulated 5-HT secretion. Incubation of isolated primary NZO islets with 5-HT revealed an inhibitory effect on insulin and glucagon secretion. In primary NZO hepatocytes, 5-HT aggravated hepatic glucose production (HGP), decreased glucose uptake (HGU), glycogen content, and modulated AKT activation as well as cyclic adenosine monophosphate (cAMP) increase, indicating 5-HT downstream modulation. Treatment with an HTR2B antagonist reduced this 5-HT-mediated deterioration of the metabolic state. With its strong effect on glucose metabolism, these data indicate that 5-HT is already a potential indicator of GDM before conception in mice.
Collapse
Affiliation(s)
- Melissa Asuaje Pfeifer
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
| | - Moritz Liebmann
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
| | - Till Beuerle
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany;
| | - Katharina Grupe
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
- Correspondence: ; Tel.: +49-531-391-8440
| |
Collapse
|
4
|
Targeting human Glucokinase for the treatment of type 2 diabetes: an overview of allosteric Glucokinase activators. J Diabetes Metab Disord 2022; 21:1129-1137. [PMID: 35673438 PMCID: PMC9167346 DOI: 10.1007/s40200-022-01019-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Diabetes mellitus is a worldwide impacting disorder and the ratio through which the number of diabetic patients had increased worldwide, puts medical professionals to serious stress for its effective management. Due to its polygenic origin and involvement of multiple genes to its pathophysiology, leads to understanding of this ailment more complex. It seems that current interventions, such as dietary changes, life style changes and drug therapy such as oral hypoglycaemics and insulin, are unable to halt the trend. There are various novel and emerging targets on which the researchers are paying attention to combat with this ailment successfully. Human glucokinase (GK) enzyme is one of these novel and emerging targets for management of diabetes. Its availability in the pancreas and liver cells makes this target more lucrative. GK's presence in the pancreatic and hepatic cells plays a very important function for the management of glucose homoeostasis. Small molecules that activate GK allosterically provide an alternative strategy for restoring/improving glycaemic regulation, especially in type 2 diabetic patients. Although after enduring many setbacks in the development of the GK activators, interest has been renewed especially due to introduction of novel dual acting GK activator dorzagliatin, and a novel hepato-selective GK activator, TTP399. This review article has been formulated to discuss importance of GK in glucose homeostasis, recent updates on small molecules of GK activators, clinical status of GK activators and challenges in development of GK activators.
Collapse
|
5
|
Langer S, Waterstradt R, Hillebrand G, Santer R, Baltrusch S. The novel GCK variant p.Val455Leu associated with hyperinsulinism is susceptible to allosteric activation and is conducive to weight gain and the development of diabetes. Diabetologia 2021; 64:2687-2700. [PMID: 34532767 PMCID: PMC8563668 DOI: 10.1007/s00125-021-05553-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS The mammalian enzyme glucokinase (GK), expressed predominantly in liver and pancreas, plays an essential role in carbohydrate metabolism. Monogenic GK disorders emphasise the role of GK in determining the blood glucose set point. METHODS A family with congenital hyperinsulinism (CHI) was examined for GCK gene variants by Sanger sequencing. A combined approach, involving kinetic analysis (also using GK activators and inhibitors), intracellular translocation assays, insulin secretion measurements and structural modelling, was used to investigate the novel variant compared with known variants. RESULTS We report on the novel gain-of-function GCK variant p.Val455Leu (V455L), inherited as an autosomal dominant trait in a German family with CHI and concomitant obesity (fasting blood glucose 2.1 mmol/l, BMI 45.0 kg/m2, HOMA-IR 1.5 in an adult female family member); one male family member developed type 2 diabetes until age 35 years (with fasting glucose 2.8-3.7 mmol/l, BMI 38.9 kg/m2, HOMA-IR 4.6). Kinetic characterisation of the V455L variant revealed a significant increase in glucose affinity (glucose concentration at which reaction rate is half its maximum rate [S0.5]: mutant 2.4 ± 0.3 mmol/l vs wild-type 7.6 ± 1.0 mmol/l), accompanied by a distinct additive susceptibility to both the endogenous activator fructose 2,6-bisphosphatase and the synthetic allosteric activator RO-28-1675. The effect of RO-28-1675 was more pronounced when compared with the previously known GK variants V455M and V455E. Binding to the inhibitor glucokinase regulatory protein was unimpaired for V455L and V455E but was reduced for V455M, whereas mannoheptulose inhibited all GK variants and the wild-type enzyme. Structural analyses suggested a role for residue 455 in rearrangements between the inactive and active conformations of GK and also in allosteric activation. Comparison with V455M and V455E and an overview of activating GK variants provided a context for the novel sequence aberration in terms of altered GK enzyme characteristics caused by single amino acid changes. CONCLUSION/INTERPRETATION We provide new knowledge on the structure-function relationship of GK, with special emphasis on enzyme activation, potentially yielding fresh strategic insights into breaking the vicious circle of fluctuating blood glucose levels and the attendant risk of long-lasting metabolic changes in both CHI and type 2 diabetes.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Georg Hillebrand
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
- Department of Pediatrics, Medical Center Itzehoe, Itzehoe, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, Rostock, Germany.
| |
Collapse
|
6
|
Kading J, Finck BN, DeBosch BJ. Targeting hepatocyte carbohydrate transport to mimic fasting and calorie restriction. FEBS J 2021; 288:3784-3798. [PMID: 32654397 PMCID: PMC8662989 DOI: 10.1111/febs.15482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
The pervasion of three daily meals and snacks is a relatively new introduction to our shared experience and is coincident with an epidemic rise in obesity and cardiometabolic disorders of overnutrition. The past two decades have yielded convincing evidence regarding the adaptive, protective effects of calorie restriction (CR) and intermittent fasting (IF) against cardiometabolic, neurodegenerative, proteostatic, and inflammatory diseases. Yet, durable adherence to intensive lifestyle changes is rarely attainable. New evidence now demonstrates that restricting carbohydrate entry into the hepatocyte by itself mimics several key signaling responses and physiological outcomes of IF and CR. This discovery raises the intriguing proposition that targeting hepatocyte carbohydrate transport to mimic fasting and caloric restriction can abate cardiometabolic and perhaps other fasting-treatable diseases. Here, we review the metabolic and signaling fates of a hepatocyte carbohydrate, identify evidence to target the key mediators within these pathways, and provide rationale and data to highlight carbohydrate transport as a broad, proximal intervention to block the deleterious sequelae of hepatic glucose and fructose metabolism.
Collapse
Affiliation(s)
- Jacqueline Kading
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Vincent O, Gutierrez-Nogués A, Trejo-Herrero A, Navas MA. A novel reverse two-hybrid method for the identification of missense mutations that disrupt protein-protein binding. Sci Rep 2020; 10:21043. [PMID: 33273586 PMCID: PMC7713115 DOI: 10.1038/s41598-020-77992-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/19/2020] [Indexed: 01/26/2023] Open
Abstract
The reverse two-hybrid system is a powerful method to select mutations that disrupt the interaction between two proteins and therefore to identify the residues involved in this interaction. However, the usefulness of this technique has been limited by its relative complexity when compared to the classical two-hybrid system, since an additional selection step is required to eliminate the high background of uninformative truncation mutants. We have developed a new method that combines the classical and reverse two-hybrid systems to select loss-of-binding missense mutations in a single step. The strategy used to select against truncation mutants is based on the two-hybrid interaction between a C-terminal fusion peptide and the Tsg101 protein. We have applied this method to identify mutations in human glucokinase (GK) that disrupt glucokinase regulatory protein (GKRP) binding. Our results indicate that this method is very efficient and eliminates all the truncation mutants and false positives. The mutated residues identified in GK are involved in the GKRP binding interface or in stabilizing the super-open conformation of GK that binds GKRP. This technique offers an improvement over existing methods in terms of speed, efficiency and simplicity and can be used to study any detectable protein interaction in the two-hybrid system.
Collapse
Affiliation(s)
- Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, 28029, Madrid, Spain.
| | - Angel Gutierrez-Nogués
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Adrían Trejo-Herrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Niemann J, Zehm C, Waterstradt R, Tiedge M, Baltrusch S. Cytosolic and mitochondrial Ca 2+ concentrations in primary hepatocytes change with ageing and in consequence of an mtDNA mutation. Cell Calcium 2019; 82:102055. [PMID: 31377553 DOI: 10.1016/j.ceca.2019.102055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
Mitochondrial Ca2+ flux is crucial for the regulation of cell metabolism. Ca2+ entry to the mitochondrial matrix is mediated by VDAC1 and MCU with its regulatory molecules. We investigated hepatocytes isolated from conplastic C57BL/6NTac-mtNODLtJ mice (mtNOD) that differ from C57BL/6NTac mice (controls) by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase, resulting in functional and morphological mitochondrial adaptations. Mice of both strains up to 12 months old were compared using mitochondrial GEM-GECO1 and cytosolic CAR-GECO1 expression to gain knowledge of age-dependent alterations of Ca2+ concentrations. In controls we observed a significant increase in glucose-induced cytosolic Ca2+ concentration with ageing, but only a minor elevation in mitochondrial Ca2+ concentration. Conversely, glucose-induced mitochondrial Ca2+ concentration significantly declined with ageing in mtNOD mice, paralleled by a slight decrease in cytosolic Ca2+ concentration. This was consistent with a significant reduction of the MICU1 to MCU expression ratio and a decline in MCUR1. Our results can best be explained in terms of the adaptation of Ca2+ concentrations to the mitochondrial network structure. In the fragmented mitochondrial network of ageing controls there is a need for high cytosolic Ca2+ influx, because only some of the isolated mitochondria are in direct contact with the endoplasmic reticulum. This is not important in the hyper-fused elongated mitochondrial network found in ageing mtNOD mice which facilitates rapid Ca2+ distribution over a large mitochondrial area.
Collapse
Affiliation(s)
- Jan Niemann
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, Rostock, Germany
| | - Cindy Zehm
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, Rostock, Germany
| | - Markus Tiedge
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, Rostock, Germany.
| |
Collapse
|
9
|
Langer S, Hofmeister-Brix A, Waterstradt R, Baltrusch S. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase and small chemical activators affect enzyme activity of activating glucokinase mutants by distinct mechanisms. Biochem Pharmacol 2019; 168:149-161. [PMID: 31254492 DOI: 10.1016/j.bcp.2019.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
Glucokinase (GK), a monomeric glucose-phosphorylating enzyme characterised by high structural flexibility, acts as a glucose sensor in pancreatic beta cells and liver. Pharmaceutical efforts to control the enzyme are hampered by an incomplete understanding of GK regulation. We investigated GK characteristics of wild-type and activating S64Y and G68V mutant proteins in the presence of various combinations of the synthetic activators RO-28-1675 and compound A, the endogenous activator fructose-2,6-bisphosphatase (FBPase-2), and the inhibitor mannoheptulose. S64Y impedes formation of a turn structure that is characteristic for the inactive enzyme conformation, and complex formation with compound A induces collision with the large domain. G68V evokes close contact of connecting region I and helix α13 with RO-28-1675 and compound A. Both mutants showed higher activity than the wild-type at low glucose and were susceptible to further activation by FBPase-2 and RO-28-1675, alone and additively. G68V was less active than S64Y, but was activatable by compound A. In contrast, compound A inhibited S64Y, and this effect was even more pronounced in combination with mannoheptulose. Mutant and wild-type GK showed comparable thermal stability and intracellular lifetimes. A GK-6-phosphofructo-2-kinase (PFK-2)/FBPase-2 complex predicted by in silico protein-protein docking demonstrated possible binding of the FBPase-2 domain near the active site of GK. In summary, activating mutations within the allosteric site of GK do not preclude binding of chemical activators (GKAs), but can alter their action into inhibition. Our postulated GK-PFK-2/FBPase-2 complex represents the endogenous principle of activation by substrate channelling which permits binding of other small molecules and proteins.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany
| | - Anke Hofmeister-Brix
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany; Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany; Department Life, Light & Matter, University of Rostock, Germany.
| |
Collapse
|
10
|
Seckinger KM, Rao VP, Snell NE, Mancini AE, Markwardt ML, Rizzo MA. Nitric Oxide Activates β-Cell Glucokinase by Promoting Formation of the "Glucose-Activated" State. Biochemistry 2018; 57:5136-5144. [PMID: 30053375 PMCID: PMC6338087 DOI: 10.1021/acs.biochem.8b00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The release of insulin from the pancreas is tightly controlled by glucokinase (GCK) activity that couples β-cell metabolism to changes in blood sugar. Despite having only a single glucose-binding site, GCK displays positive glucose cooperativity. Ex vivo structural studies have identified several potential protein conformations with varying levels of enzymatic activity, yet it is unclear how living cells regulate GCK cooperativity. To better understand the cellular regulation of GCK activation, we developed a homotransfer Förster resonance energy transfer (FRET) GCK biosensor and used polarization microscopy to eliminate fluorescence crosstalk from FRET quantification and improve the signal-to-noise ratio. This approach enhanced sensor contrast compared to that seen with the heterotransfer FRET GCK reporter and allowed observation of individual GCK states using an automated method to analyze FRET data at the pixel level. Mutations known to activate and inhibit GCK activity produced distinct anisotropy distributions, suggesting that at least two conformational states exist in living cells. A high glucose level activated the biosensor in a manner consistent with GCK's enzymology. Interestingly, glucose-free conditions did not affect GCK biosensor FRET, indicating that there is a single low-activity state, which is counter to proposed structural models of GCK cooperativity. Under low-glucose conditions, application of chemical NO donors efficiently shifted GCK to the more active conformation. Notably, GCK activation by mutation, a high glucose level, a pharmacological GCK activator, or S-nitrosylation all shared the same FRET distribution. These data suggest a simplified model for GCK activation in living cells, where post-translational modification of GCK by S-nitrosylation facilitates a single conformational transition that enhances GCK enzymatic activity.
Collapse
Affiliation(s)
- Kendra M. Seckinger
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Vishnu P. Rao
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Nicole E. Snell
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Allison E. Mancini
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Michele L. Markwardt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - M. A. Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
11
|
Gutierrez-Nogués A, García-Herrero CM, Oriola J, Vincent O, Navas MA. Functional characterization of MODY2 mutations in the nuclear export signal of glucokinase. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2385-2394. [PMID: 29704611 DOI: 10.1016/j.bbadis.2018.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022]
Abstract
Glucokinase (GCK) plays a key role in glucose homeostasis. Heterozygous inactivating mutations in the GCK gene cause the familial, mild fasting hyperglycaemia named MODY2. Besides its particular kinetic characteristics, glucokinase is regulated by subcellular compartmentation in hepatocytes. Glucokinase regulatory protein (GKRP) binds to GCK, leading to enzyme inhibition and import into the nucleus at fasting. When glucose concentration increases, GCK-GKRP dissociates and GCK is exported to the cytosol due to a nuclear export signal (NES). With the aim to characterize the GCK-NES, we have functionally analysed nine MODY2 mutations located within the NES sequence. Recombinant GCK mutants showed reduced catalytic activity and, in most cases, protein instability. Most of the mutants interact normally with GKRP, although mutations L306R and L309P impair GCK nuclear import in cotransfected cells. We demonstrated that GCK-NES function depends on exportin 1. We further showed that none of the mutations fully inactivate the NES, with the exception of mutation L304P, which likely destabilizes its α-helicoidal structure. Finally, we found that residue Glu300 negatively modulates the NES activity, whereas other residues have the opposite effect, thus suggesting that some of the NES spacer residues contribute to the low affinity of the NES for exportin 1, which is required for its proper functioning. In conclusion, our results have provided functional and structural insights regarding the GCK-NES and contributed to a better knowledge of the molecular mechanisms involved in the nucleo-cytoplasmic shuttling of glucokinase. Impairment of this regulatory mechanism by some MODY2 mutations might contribute to the hyperglycaemia in the patients.
Collapse
Affiliation(s)
- Angel Gutierrez-Nogués
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen-María García-Herrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Josep Oriola
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic, Departamento de Ciencias Fisiológicas I, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), www.ciberdem.net, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
12
|
Niemann J, Johne C, Schröder S, Koch F, Ibrahim SM, Schultz J, Tiedge M, Baltrusch S. An mtDNA mutation accelerates liver aging by interfering with the ROS response and mitochondrial life cycle. Free Radic Biol Med 2017; 102:174-187. [PMID: 27890640 DOI: 10.1016/j.freeradbiomed.2016.11.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022]
Abstract
Mitochondrial dysfunction affects liver metabolism, but it remains unclear whether this interferes with normal liver aging. We investigated several mitochondrial pathways in hepatocytes and liver tissue from a conplastic mouse strain compared with the control C57BL/6NTac strain over 18 months of life. The C57BL/6NTac-mtNODLtJ mice differed from C57BL/6NTac mice by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase. Young C57BL/6NTac-mtNODLtJ mice showed reduced mitochondrial metabolism but similar reactive oxygen species (ROS) production to C57BL/6NTac mice. Whereas ROS increased almost equally up to 9 months in both strains, different mitochondrial adaptation strategies resulted in decreasing ROS in advanced age in C57BL/6NTac mice, but persistent ROS production in C57BL/6NTac-mtNODLtJ mice. Only the conplastic strain developed elongated mitochondrial networks with artificial loop structures, depressed autophagy, high mitochondrial respiration and up-regulated antioxidative response. Our results indicate that mtDNA mutations accelerate liver ballooning degeneration and carry a serious risk of premature organ aging.
Collapse
Affiliation(s)
- Jan Niemann
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Cindy Johne
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Susanne Schröder
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Franziska Koch
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany; Institute of Nutritional Physiology "Oskar Kellner","Oskar Kellner", Leibnitz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Saleh M Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Julia Schultz
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Markus Tiedge
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany.
| |
Collapse
|
13
|
Haliloglu B, Hysenaj G, Atay Z, Guran T, Abalı S, Turan S, Bereket A, Ellard S. GCK gene mutations are a common cause of childhood-onset MODY (maturity-onset diabetes of the young) in Turkey. Clin Endocrinol (Oxf) 2016; 85:393-9. [PMID: 27256595 PMCID: PMC4988380 DOI: 10.1111/cen.13121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/03/2016] [Accepted: 05/31/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Inactivating heterozygous mutations in the GCK gene are a common cause of MODY and result in mild fasting hyperglycaemia, which does not require treatment. We aimed to identify the frequency, clinical and molecular features of GCK mutations in a Turkish paediatric cohort. DESIGN AND PATIENTS Fifty-four unrelated probands were selected based on the following criteria: age of diagnosis ≤17 years, family history of diabetes in at least two generations, anti-GAD/ICA negative, BMI<95.p and follow-up with diet, oral antidiabetic drug or low-dose insulin treatment (≤0·5U/kg/d). A MODY probability score (www.diabetesgenes.org) was calculated and 21 patients with a score ≥75%, HbA1c levels ≤7·5% (58·5 mmol/mol) and fasting blood glucose (FBG) levels 99-145 mg/dl (5·5-8·0 mmol/l) were selected for Sanger sequencing of the GCK gene. Targeted next-generation sequencing for all known monogenic diabetes genes was undertaken for any patient without a GCK gene mutation. RESULTS GCK gene mutations (pathogenic or likely pathogenic variants) and a novel intronic variant of uncertain significance (c.208 + 3A>T) were identified in 13/54 probands (24%). Twelve of these patients had a MODY probability score ≥75%. FBG level and 2-h glucose level in OGTT were 123 ± 14 mg/dl (6·8 ± 0·7 mmol/l) (107-157 mg/dl) and 181 ± 30 mg/dl (10·1 ± 1·6 mmol/l) (136-247 mg/dl), respectively. Average of glucose increment in OGTT was 58 ± 27 mg/dl (3·2 ± 1·5 mmol/l) (19-120 mg/dl), and mean HbA1c level was 6·5 ± 0·5% (47·5 ± 5·5 mmol/mol) (5·9-7·6%). Five novel missense mutations were identified (p.F123S, p.L58P, p.G246A, p.F419C, and p.S151C). Two patients treated with low-dose insulin before the molecular analysis were able to stop treatment. CONCLUSIONS Approximately 1 in 4 MODY cases in this Turkish paediatric cohort have a GCK mutation. Selection of patients for GCK gene analysis using the MODY probability score was an effective way of identifying most (11/12) patients with a GCK mutation.
Collapse
Affiliation(s)
- Belma Haliloglu
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | - Gerald Hysenaj
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | - Zeynep Atay
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Tulay Guran
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Saygın Abalı
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Serap Turan
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Abdullah Bereket
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Sian Ellard
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
14
|
Langer S, Platz C, Waterstradt R, Baltrusch S. Characterization of two MODY2 mutations with different susceptibility to activation. Biochem Biophys Res Commun 2015. [PMID: 26208450 DOI: 10.1016/j.bbrc.2015.07.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glucokinase plays a key role in glucose sensing in pancreatic beta cells and in liver metabolism. Heterozygous inactivating glucokinase mutations cause the autosomal dominantly inherited MODY2 subtype of maturity-onset diabetes of the young. The goal of this study was to elucidate the pathogenicity of the recently described glucokinase mutants L304P and L315H, located in an alpha-helix and connecting region, respectively, at the outer region of the large domain of glucokinase. Both mutants showed wild-type-like cytosolic localization, but faster protein degradation in insulin-secreting MIN6 cells. However, strongly reduced nuclear/cytoplasmic localization of the mutants was observed in primary hepatocytes suggesting reduced interaction with the liver specific glucokinase regulatory protein. Both mutants displayed a significantly lowered glucokinase activity compared to the wild-type protein. Even though the L315H protein showed the lowest enzymatic activity, this mutant was very sensitive to allosteric activation. The endogenous activator fructose-2,6-bisphosphatase evoked an increase in glucokinase activity for both mutants, but much stronger for L315H compared to L304P. The synthetic activator RO281675 was ineffective against the L304P mutant. Expression of the mutant proteins evoked loss of glucose-induced insulin secretion in MIN6 cells. Administration of RO281675 increased insulin secretion, however, only for the L315H mutant. Thus, a glucokinase activator drug therapy may help MODY2 patients not in general, but seems to be a useful strategy for carriers of the L315H glucokinase mutation.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany
| | - Christian Platz
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany.
| |
Collapse
|
15
|
Raimondo A, Rees MG, Gloyn AL. Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism. Curr Opin Lipidol 2015; 26:88-95. [PMID: 25692341 PMCID: PMC4422901 DOI: 10.1097/mol.0000000000000155] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW Glucokinase regulator (GCKR) encodes glucokinase regulatory protein (GKRP), a hepatocyte-specific inhibitor of the glucose-metabolizing enzyme glucokinase (GCK). Genome-wide association studies have identified a common coding variant within GCKR associated with multiple metabolic traits. This review focuses on recent insights into the critical role of GKRP in hepatic glucose metabolism that have stemmed from the study of human genetics. This knowledge has improved our understanding of glucose and lipid physiology and informed the development of targeted molecular therapeutics for diabetes. RECENT FINDINGS Rare GCKR variants have effects on GKRP expression, localization, and activity. These variants are collectively associated with hypertriglyceridaemia but are not causal. Crystal structures of GKRP and the GCK-GKRP complex have been solved, providing greater insight into the molecular interactions between these proteins. Finally, small molecules have been identified that directly bind GKRP and reduce blood glucose levels in rodent models of diabetes. SUMMARY GCKR variants across the allelic spectrum have effects on glucose and lipid homeostasis. Functional analysis has highlighted numerous molecular mechanisms for GKRP dysfunction. Hepatocyte-specific GCK activation via small molecule GKRP inhibition may be a new avenue for type 2 diabetes treatment, particularly considering evidence indicating GKRP loss-of-function alone does not cause hypertriglyceridaemia.
Collapse
Affiliation(s)
- Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Matthew G. Rees
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Broad Institute, Cambridge, Massachusetts, USA
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, ORH Trust, OCDEM, Churchill Hospital, Oxford, UK
| |
Collapse
|
16
|
Rees MG, Raimondo A, Wang J, Ban MR, Davis MI, Barrett A, Ranft J, Jagdhuhn D, Waterstradt R, Baltrusch S, Simeonov A, Collins FS, Hegele RA, Gloyn AL. Inheritance of rare functional GCKR variants and their contribution to triglyceride levels in families. Hum Mol Genet 2014; 23:5570-8. [PMID: 24879641 PMCID: PMC4168830 DOI: 10.1093/hmg/ddu269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/11/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Abstract
Significant resources have been invested in sequencing studies to investigate the role of rare variants in complex disease etiology. However, the diagnostic interpretation of individual rare variants remains a major challenge, and may require accurate variant functional classification and the collection of large numbers of variant carriers. Utilizing sequence data from 458 individuals with hypertriglyceridemia and 333 controls with normal plasma triglyceride levels, we investigated these issues using GCKR, encoding glucokinase regulatory protein. Eighteen rare non-synonymous GCKR variants identified in these 791 individuals were comprehensively characterized by a range of biochemical and cell biological assays, including a novel high-throughput-screening-based approach capable of measuring all variant proteins simultaneously. Functionally deleterious variants were collectively associated with hypertriglyceridemia, but a range of in silico prediction algorithms showed little consistency between algorithms and poor agreement with functional data. We extended our study by obtaining sequence data on family members; however, functional variants did not co-segregate with triglyceride levels. Therefore, despite evidence for their collective functional and clinical relevance, our results emphasize the low predictive value of rare GCKR variants in individuals and the complex heritability of lipid traits.
Collapse
Affiliation(s)
- Matthew G Rees
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Jian Wang
- Departments of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, ON N6A 3K6, Canada
| | - Matthew R Ban
- Departments of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, ON N6A 3K6, Canada
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Jessica Ranft
- Institute for Medical Biochemistry & Molecular Biology, University of Rostock, Rostock 18057, Germany and
| | - David Jagdhuhn
- Institute for Medical Biochemistry & Molecular Biology, University of Rostock, Rostock 18057, Germany and
| | - Rica Waterstradt
- Institute for Medical Biochemistry & Molecular Biology, University of Rostock, Rostock 18057, Germany and
| | - Simone Baltrusch
- Institute for Medical Biochemistry & Molecular Biology, University of Rostock, Rostock 18057, Germany and
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Hegele
- Departments of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, ON N6A 3K6, Canada
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK, NIHR Oxford Biomedical Research Centre, ORH Trust, OCDEM, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
17
|
Lindbloom-Hawley S, LeCluyse M, Vandersande V, Lushington GH, Schermerhorn T. Cloning and characterization of feline islet glucokinase. BMC Vet Res 2014; 10:130. [PMID: 24917242 PMCID: PMC4066705 DOI: 10.1186/1746-6148-10-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucokinase (GK) is a metabolic enzyme encoded by the GCK gene and expressed in glucose-sensitive tissues, principally pancreatic islets cell and hepatocytes. The GK protein acts in pancreatic islets as a "glucose sensor" that couples fluctuations in the blood glucose concentration to changes in cellular function and insulin secretion. GCK and GK have proposed importance in the development and progression of diabetes mellitus and are potential therapeutic targets for diabetes treatment. The study was undertaken to determine the nucleotide sequence of feline pancreatic GK cDNA, predict the amino acid sequence and structure of the feline GK protein, and perform comparative bioinformatic analysis of feline cDNA and protein. Routine PCR techniques were used with cDNA from feline pancreas. Clones were assembled to obtain the full length cDNA. Protein prediction and modeling were performed using bioinformatic tools. RESULTS Full-length feline pancreatic GK cDNA contains a 1398 nucleotide coding sequence with high identity to other pancreatic GK cDNAs. The deduced 465 amino acid feline protein has 15 amino acid substitutions not found in other mammalian GK proteins but maintains high structural homology with human GK. Feline pancreatic GK is highly conserved at nucleotide and protein levels. Residues crucial for substrate binding and catalysis are completely conserved in the feline protein. CONCLUSION Molecular analysis predicts that feline pancreatic GK functions similarly to other mammalian GK proteins.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Schermerhorn
- College of Veterinary Medicine, Department of Clinical Sciences, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506-5606, USA.
| |
Collapse
|
18
|
Abstract
The glucokinase (GK) enzyme (EC 2.7.1.1.) is essential for the use of dietary glucose because it is the first enzyme to phosphorylate glucose in excess in different key tissues such as the pancreas and liver. The objective of the present review is not to fully describe the biochemical characteristics and the genetics of this enzyme but to detail its nutritional regulation in different vertebrates from fish to human. Indeed, the present review will describe the existence of the GK enzyme in different animal species that have naturally different levels of carbohydrate in their diets. Thus, some studies have been performed to analyse the nutritional regulation of the GK enzyme in humans and rodents (having high levels of dietary carbohydrates in their diets), in the chicken (moderate level of carbohydrates in its diet) and rainbow trout (no carbohydrate intake in its diet). All these data illustrate the nutritional importance of the GK enzyme irrespective of feeding habits, even in animals known to poorly use dietary carbohydrates (carnivorous species).
Collapse
|
19
|
Salgado M, Tarifeño-Saldivia E, Ordenes P, Millán C, Yañez MJ, Llanos P, Villagra M, Elizondo-Vega R, Martínez F, Nualart F, Uribe E, de los Angeles García-Robles M. Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes. PLoS One 2014; 9:e94035. [PMID: 24739934 PMCID: PMC3989220 DOI: 10.1371/journal.pone.0094035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022] Open
Abstract
Glucokinase (GK), the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose.
Collapse
Affiliation(s)
- Magdiel Salgado
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Estefanía Tarifeño-Saldivia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carola Millán
- Facultad de Artes Liberales, Universidad Adolfo Ibañez, Viña del Mar, Chile
| | - María José Yañez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paula Llanos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcos Villagra
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fernando Martínez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
20
|
Lenzen S. A fresh view of glycolysis and glucokinase regulation: history and current status. J Biol Chem 2014; 289:12189-94. [PMID: 24637025 DOI: 10.1074/jbc.r114.557314] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This minireview looks back at a century of glycolysis research with a focus on the mechanisms of flux regulation. Traditionally, glycolysis is regarded as a feeder pathway that prepares glucose for further catabolism and energy production. However, glycolysis is much more than that, in particular in those tissues that express the low affinity glucose-phosphorylating enzyme glucokinase. This enzyme equips the glycolytic pathway with a special steering function for the regulation of intermediary metabolism. In beta cells, glycolysis acts as a transducer for triggering and amplifying physiological glucose-induced insulin secretion. On the basis of these considerations, I have defined a glycolytic flux regulatory unit composed of the two fructose ester steps of this pathway with various enzymes and metabolites that regulate glycolysis.
Collapse
Affiliation(s)
- Sigurd Lenzen
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
21
|
Kaminski MT, Schultz J, Waterstradt R, Tiedge M, Lenzen S, Baltrusch S. Glucose-induced dissociation of glucokinase from its regulatory protein in the nucleus of hepatocytes prior to nuclear export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:554-64. [DOI: 10.1016/j.bbamcr.2013.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/18/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
|
22
|
Naujok O, Bandou Y, Shikama Y, Funaki M, Lenzen S. Effect of substrate rigidity in tissue culture on the function of insulin-secreting INS-1E cells. J Tissue Eng Regen Med 2014; 11:58-65. [DOI: 10.1002/term.1857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/05/2013] [Accepted: 11/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- O. Naujok
- Institute of Clinical Biochemistry; Hannover Medical School; Germany
| | - Y. Bandou
- Clinical Research Centre for Diabetes; Tokushima University Hospital; Japan
| | - Y. Shikama
- Clinical Research Centre for Diabetes; Tokushima University Hospital; Japan
| | - M. Funaki
- Clinical Research Centre for Diabetes; Tokushima University Hospital; Japan
| | - S. Lenzen
- Institute of Clinical Biochemistry; Hannover Medical School; Germany
| |
Collapse
|
23
|
The ubiquitin-proteasome system regulates the stability and activity of the glucose sensor glucokinase in pancreatic β-cells. Biochem J 2014; 456:173-84. [PMID: 24028089 DOI: 10.1042/bj20130262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system is important to maintain pancreatic β-cell function. Inhibition of the proteasome significantly reduced glucose-induced insulin secretion. Key regulators of the stimulus/secretion cascade seem to be affected by protein misfolding if the proteasome is down-regulated as recently reported in humans with Type 2 diabetes. It remains unknown, however, whether the glucose sensor enzyme glucokinase is involved in this process. A direct interaction between glucokinase and ubiquitin could be shown in vivo by FRET, suggesting regulation of glucokinase by the proteasome. After proteasome inhibition glucokinase activity was significantly reduced in MIN6 cells, whereas the protein content was increased, indicating protein misfolding. Enhancing the availability of chaperones by cyclohexamide could induce refolding and restored glucokinase activity. Glucokinase aggregation due to proteasome blocking with MG132, bortezomib, epoxomicin or lactacystin could be detected in MIN6 cells, primary β-cells and hepatocytes using fluorescence-based assays. Glucokinase aggresome formation proceeded microtubule-assisted and was avoided by cyclohexamide. Thus the results of the present study provide support for glucokinase misfolding and aggregation in case of a diminished capacity of the ubiquitin-proteasome system in pancreatic β-cells. In the Type 2 diabetic situation this could contribute to reduced glucose-induced insulin secretion.
Collapse
|
24
|
Hofmeister-Brix A, Kollmann K, Langer S, Schultz J, Lenzen S, Baltrusch S. Identification of the ubiquitin-like domain of midnolin as a new glucokinase interaction partner. J Biol Chem 2013; 288:35824-39. [PMID: 24187134 DOI: 10.1074/jbc.m113.526632] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase acts as a glucose sensor in pancreatic beta cells. Its posttranslational regulation is important but not yet fully understood. Therefore, a pancreatic islet yeast two-hybrid library was produced and searched for glucokinase-binding proteins. A protein sequence containing a full-length ubiquitin-like domain was identified to interact with glucokinase. Mammalian two-hybrid and fluorescence resonance energy transfer analyses confirmed the interaction between glucokinase and the ubiquitin-like domain in insulin-secreting MIN6 cells and revealed the highest binding affinity at low glucose. Overexpression of parkin, an ubiquitin E3 ligase exhibiting an ubiquitin-like domain with high homology to the identified, diminished insulin secretion in MIN6 cells but had only some effect on glucokinase activity. Overexpression of the elucidated ubiquitin-like domain or midnolin, containing exactly this ubiquitin-like domain, significantly reduced both intrinsic glucokinase activity and glucose-induced insulin secretion. Midnolin has been to date classified as a nucleolar protein regulating mouse development. However, we could not confirm localization of midnolin in nucleoli. Fluorescence microscopy analyses revealed localization of midnolin in nucleus and cytoplasm and co-localization with glucokinase in pancreatic beta cells. In addition we could show that midnolin gene expression in pancreatic islets is up-regulated at low glucose and that the midnolin protein is highly expressed in pancreatic beta cells and also in liver, muscle, and brain of the adult mouse and cell lines of human and rat origin. Thus, the results of our study suggest that midnolin plays a role in cellular signaling of adult tissues and regulates glucokinase enzyme activity in pancreatic beta cells.
Collapse
Affiliation(s)
- Anke Hofmeister-Brix
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany and
| | | | | | | | | | | |
Collapse
|
25
|
Kaminski MT, Lenzen S, Baltrusch S. Real-time analysis of intracellular glucose and calcium in pancreatic beta cells by fluorescence microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1697-707. [PMID: 22732296 DOI: 10.1016/j.bbamcr.2012.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 12/29/2022]
Abstract
Glucose is the physiological stimulus for insulin secretion in pancreatic beta cells. The uptake and phosphorylation of glucose initiate and control downstream pathways, resulting in insulin secretion. However, the temporal coordination of these events in beta cells is not fully understood. The recent development of the FLII(12)Pglu-700μ-δ6 glucose nanosensor facilitates real-time analysis of intracellular glucose within a broad concentration range. Using this fluorescence-based technique, we show the shift in intracellular glucose concentration upon external supply and removal in primary mouse beta cells with high resolution. Glucose influx, efflux, and metabolism rates were calculated from the time-dependent plots. Comparison of insulin-producing cells with different expression levels of glucose transporters and phosphorylating enzymes showed that a high glucose influx rate correlated with GLUT2 expression, but was largely also sustainable by high GLUT1 expression. In contrast, in cells not expressing the glucose sensor enzyme glucokinase glucose metabolism was slow. We found no evidence of oscillations of the intracellular glucose concentration in beta cells. Concomitant real-time analysis of glucose and calcium dynamics using FLII(12)Pglu-700μ-δ6 and fura-2-acetoxymethyl-ester determined a glucose threshold of 4mM for the [Ca(2+)](i) increase in beta cells. Indeed, a glucose concentration of 7mM had to be reached to evoke large amplitude [Ca(2+)](i) oscillations. The K(ATP) channel closing agent glibenclamide was not able to induce large amplitude [Ca(2+)](i) oscillations in the absence of glucose. Our findings suggest that glucose has to reach a threshold to evoke the [Ca(2+)](i) increase and subsequently initiate [Ca(2+)](i) oscillations in a K(ATP) channel independent manner.
Collapse
|
26
|
Baltrusch S, Schmitt H, Brix A, Langer S, Lenzen S. Additive activation of glucokinase by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and the chemical activator LY2121260. Biochem Pharmacol 2012; 83:1300-6. [DOI: 10.1016/j.bcp.2012.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
|
27
|
Abstract
GK (glucokinase) is activated by glucose binding to its substrate site, is inhibited by GKRP (GK regulatory protein) and stimulated by GKAs (GK activator drugs). To explore further the mechanisms of these processes we studied pure recombinant human GK (normal enzyme and a selection of 31 mutants) using steady-state kinetics of the enzyme and TF (tryptophan fluorescence). TF studies of the normal binary GK-glucose complex corroborate recent crystallography studies showing that it exists in a closed conformation greatly different from the open conformation of the ligand-free structure, but indistinguishable from the ternary GK-glucose-GKA complex. GKAs did activate and GKRP did inhibit normal GK, whereas its TF was doubled by glucose saturation. However, the enzyme kinetics, GKRP inhibition, TF enhancement by glucose and responsiveness to GKA of the selected mutants varied greatly. Two predominant response patterns were identified accounting for nearly all mutants: (i) GK mutants with a normal or close to normal response to GKA, normally low basal TF (indicating an open conformation), some variability of kinetic parameters (k(cat), glucose S(0.5), h and ATP K(m)), but usually strong GKRP inhibition (13/31); and (ii) GK mutants that are refractory to GKAs, exhibit relatively high basal TF (indicating structural compaction and partial closure), usually show strongly enhanced catalytic activity primarily due to lowering of the glucose S(0.5), but with reduced or no GKRP inhibition in most cases (14/31). These results and those of previous studies are best explained by envisioning a common allosteric regulator region with spatially non-overlapping GKRP- and GKA-binding sites.
Collapse
|
28
|
Rees MG, Wincovitch S, Schultz J, Waterstradt R, Beer NL, Baltrusch S, Collins FS, Gloyn AL. Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia 2012; 55:114-22. [PMID: 22038520 PMCID: PMC3276843 DOI: 10.1007/s00125-011-2348-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Translation of genetic association signals into molecular mechanisms for diabetes has been slow. The glucokinase regulatory protein (GKRP; gene symbol GCKR) P446L variant, associated with inverse modulation of glucose- and lipid-related traits, has been shown to alter the kinetics of glucokinase (GCK) inhibition. As GCK inhibition is associated with nuclear sequestration, we aimed to determine whether this variant also alters the direct interaction between GKRP and GCK and their intracellular localisation. METHODS Fluorescently tagged rat and human wild-type (WT)- or P446L-GCKR and GCK were transiently transfected into HeLa cells and mouse primary hepatocytes. Whole-cell and nuclear fluorescence was quantified in individual cells exposed to low- or high-glucose conditions (5.5 or 25 mmol/l glucose, respectively). Interaction between GCK and GKRP was measured by sensitised emission-based fluorescence resonance energy transfer (FRET) efficiency. RESULTS P446L-GKRP had a decreased degree of nuclear localisation, ability to sequester GCK and direct interaction with GCK as measured by FRET compared with WT-GKRP. Decreased interaction was observed between WT-GKRP and GCK at high compared with low glucose, but not between P446L-GKRP and GCK. Rat WT-GKRP and P446L-GKRP behaved quite differently: both variants responded to high glucose by diminished sequestration of GCK but showed no effect of the P446L variant on nuclear localisation or GCK sequestration. CONCLUSIONS/INTERPRETATION Our study suggests the common human P446L-GKRP variant protein results in elevated hepatic glucose uptake and disposal by increasing active cytosolic GCK. This would increase hepatic lipid biosynthesis but decrease fasting plasma glucose concentrations and provides a potential mechanism for the protective effect of this allele on type 2 diabetes risk.
Collapse
Affiliation(s)
- M. G. Rees
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, OX3 7LJ UK
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - S. Wincovitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - J. Schultz
- Institute for Medical Biochemistry & Molecular Biology, University of Rostock, Rostock, Germany
| | - R. Waterstradt
- Institute for Medical Biochemistry & Molecular Biology, University of Rostock, Rostock, Germany
| | - N. L. Beer
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, OX3 7LJ UK
| | - S. Baltrusch
- Institute for Medical Biochemistry & Molecular Biology, University of Rostock, Rostock, Germany
| | - F. S. Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - A. L. Gloyn
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, OX3 7LJ UK
| |
Collapse
|
29
|
Beer NL, van de Bunt M, Colclough K, Lukacs C, Arundel P, Chik CL, Grimsby J, Ellard S, Gloyn AL. Discovery of a novel site regulating glucokinase activity following characterization of a new mutation causing hyperinsulinemic hypoglycemia in humans. J Biol Chem 2011; 286:19118-26. [PMID: 21454522 DOI: 10.1074/jbc.m111.223362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes is a global problem, and current ineffective therapeutic strategies pave the way for novel treatments like small molecular activators targeting glucokinase (GCK). GCK activity is fundamental to beta cell and hepatocyte glucose metabolism, and heterozygous activating and inactivating GCK mutations cause hyperinsulinemic hypoglycemia (HH) and maturity onset diabetes of the young (MODY) respectively. Over 600 naturally occurring inactivating mutations have been reported, whereas only 13 activating mutations are documented to date. We report two novel GCK HH mutations (V389L and T103S) at residues where MODY mutations also occur (V389D and T103I). Using recombinant proteins with in vitro assays, we demonstrated that both HH mutants had a greater relative activity index than wild type (6.0 for V389L, 8.4 for T103S, and 1.0 for wild type). This was driven by an increased affinity for glucose (S(0.5), 3.3 ± 0.1 and 3.5 ± 0.1 mm, respectively) versus wild type (7.5 ± 0.1 mm). Correspondingly, the V389D and T103I MODY mutants had markedly reduced relative activity indexes (<0.1). T103I had an altered affinity for glucose (S(0.5), 24.9 ± 0.6 mm), whereas V389D also exhibited a reduced affinity for ATP and decreased catalysis rate (S(0.5), 78.6 ± 4.5 mm; ATP(K(m)), 1.5 ± 0.1 mm; K(cat), 10.3 ± 1.1s(-1)) compared with wild type (ATP(K(m)), 0.4 ± <0.1; K(cat), 62.9 ± 1.2). Both Thr-103 mutants showed reduced inhibition by the endogenous hepatic inhibitor glucokinase regulatory protein. Molecular modeling demonstrated that Thr-103 maps to the allosteric activator site, whereas Val-389 is located remotely to this position and all other previously reported activating mutations, highlighting α-helix 11 as a novel region regulating GCK activity. Our data suggest that pharmacological manipulation of GCK activity at locations distal from the allosteric activator site is possible.
Collapse
Affiliation(s)
- Nicola L Beer
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Massa ML, Gagliardino JJ, Francini F. Liver glucokinase: An overview on the regulatory mechanisms of its activity. IUBMB Life 2011; 63:1-6. [PMID: 21280170 DOI: 10.1002/iub.411] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/29/2010] [Indexed: 11/09/2022]
Abstract
Blood glucose is the primary cellular substrate and in vivo must be tightly maintained. The liver plays a key role in glucose homeostasis increasing or decreasing glucose output and uptake during fasting and feeding. Glucokinase (GCK) is central to this process. Its activity is modulated in a coordinated manner via a complex set of mechanisms: in the postprandial period, the simultaneous rise in glucose and insulin increases GCK activity by enhanced gene expression, changes in cellular location, and interaction with regulatory proteins. Conversely, in the fasting state, the combined decrease in glucose and insulin concentrations and increase in glucagon concentrations, halt GCK activity. Herein we summarize the current knowledge regarding the regulation of hepatic GCK activity.
Collapse
Affiliation(s)
- María L Massa
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | | | | |
Collapse
|
31
|
Langer S, Kaminski MT, Lenzen S, Baltrusch S. Endogenous activation of glucokinase by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is glucose dependent. Mol Endocrinol 2010; 24:1988-97. [PMID: 20702580 DOI: 10.1210/me.2010-0115] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucokinase (GK) plays a crucial role as glucose sensor in glucose-induced insulin secretion in pancreatic β-cells. The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) acts as an endogenous GK activator. Therefore, the goal of this study was the analysis of GK-PFK-2/FBPase-2 complex formation and its effect on metabolic stimulus-secretion coupling in β-cells in dependence upon glucose. The interaction between GK and PFK-2/FBPase-2 was analyzed in insulin-secreting MIN6 cells with a new fluorescence-based mammalian two-hybrid system. In contrast to the commonly used mammalian two-hybrid systems that require sampling before detection, the system used allows monitoring of the effects of environmental changes on protein-protein interactions on the single-cell level. Increasing the glucose concentration in the cell culture medium from 3 to 10 and 25 mmol/liter amplified the interaction between the enzymes stepwise. Importantly, in line with these results, overexpression of PFK-2/FBPase-2 in MIN6 cells evoked only at 10 and 25 mmol/liter, an increase in insulin secretion. Furthermore, a PFK-2/FBPase-2 mutant with an abolished GK-binding motif neither showed a glucose-dependent GK binding nor was able to increase insulin secretion. The results obtained with the mammalian two-hybrid system could be confirmed by fluorescence resonance energy transfer experiments in COS cells. Furthermore, the established interaction between GK and the liver GRP served in all experiments as a control. Thus, this study clearly showed that binding and activation of GK by PFK-2/FBPase-2 in β-cells is promoted by glucose, resulting in an enhancement of insulin secretion at stimulatory glucose concentrations, without affecting basal insulin secretion.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
32
|
Francini F, Castro MC, Gagliardino JJ, Massa ML. Regulation of liver glucokinase activity in rats with fructose-induced insulin resistance and impaired glucose and lipid metabolism. Can J Physiol Pharmacol 2009; 87:702-10. [DOI: 10.1139/y09-064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We evaluated the relative role of different regulatory mechanisms, particularly 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFK2/FBPase-2), in liver glucokinase (GK) activity in intact animals with fructose-induced insulin resistance and impaired glucose and lipid metabolism. We measured blood glucose, triglyceride and insulin concentration, glucose tolerance, liver triglyceride content, GK activity, and GK and PFK2 protein and gene expression in fructose-rich diet (FRD) and control rats. After 3 weeks, FRD rats had significantly higher blood glucose, insulin and triglyceride levels, and liver triglyceride content, insulin resistance, and impaired glucose tolerance. FRD rats also had significantly higher GK activity in the cytosolic fraction (18.3 ± 0.35 vs. 11.27 ± 0.34 mU/mg protein). Differences in GK protein concentration (116% and 100%) were not significant, suggesting a potentially impaired GK translocation in FRD rats. Although GK transcription level was similar, PFK2 gene expression and protein concentration were 4- and 5-fold higher in the cytosolic fraction of FRD animals. PFK2 immunological blockage significantly decreased GK activity in control and FRD rats; in the latter, this blockage decreased GK activity to control levels. Results suggest that increased liver GK activity might participate in the adaptative response to fructose overload to maintain glucose/triglyceride homeostasis in intact animals. Under these conditions, PFK2 increase would be the main enhancer of GK activity.
Collapse
Affiliation(s)
- Flavio Francini
- CENEXA / Center for Experimental and Applied Endocrinology (UNLP-CONICET, PAHO/WHO Collaborating Center for Diabetes), National University of La Plata, School of Medicine, 1900 La Plata, Argentina
| | - María C. Castro
- CENEXA / Center for Experimental and Applied Endocrinology (UNLP-CONICET, PAHO/WHO Collaborating Center for Diabetes), National University of La Plata, School of Medicine, 1900 La Plata, Argentina
| | - Juan J. Gagliardino
- CENEXA / Center for Experimental and Applied Endocrinology (UNLP-CONICET, PAHO/WHO Collaborating Center for Diabetes), National University of La Plata, School of Medicine, 1900 La Plata, Argentina
| | - María L. Massa
- CENEXA / Center for Experimental and Applied Endocrinology (UNLP-CONICET, PAHO/WHO Collaborating Center for Diabetes), National University of La Plata, School of Medicine, 1900 La Plata, Argentina
| |
Collapse
|
33
|
Solera J, Arias P, Amiñoso C, González-Casado I, Garre P, Herranz L, Villarroel A, Cruz M, Jáñez M, Pallardo LF, Gracia R. Identification of eight new mutations in the GCK gene by DHPLC screening in a Spanish population. Diabetes Res Clin Pract 2009; 85:20-3. [PMID: 19410318 DOI: 10.1016/j.diabres.2009.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/20/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
Maturity onset diabetes of the young (MODY) is a genetically heterogeneous disorder characterized by autosomal dominant inheritance, altered function of pancreatic beta cells and early onset diabetes mellitus, usually before 25 years old. The prevalence of specific mutations of MODY genes differs considerably among different countries. In this study we analyzed 53 index cases from unrelated MODY families who are potential carriers of mutations in GCK gene. In addition, 122 relatives were also studied. We have identified eight new mutations in the GCK gene. One of them is a non-frameshift deletion involving Lysine 143. This amino acid is part of the conserved stretch of basic residues (KHKKL) which spans from residue 140 to 144. The non-frameshift deletion might implicate the affinity of GCK for GCKRP, and potentially the abnormal nuclear localization of GCK. Additional studies should be performed to confirm this possibility.
Collapse
Affiliation(s)
- Jesús Solera
- Servicio de Bioquímica, Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, CIBERER, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Conversion of glucose into glycogen is a major pathway that contributes to the removal of glucose from the portal vein by the liver in the postprandial state. It is regulated in part by the increase in blood-glucose concentration in the portal vein, which activates glucokinase, the first enzyme in the pathway, causing an increase in the concentration of glucose 6-P (glucose 6-phosphate), which modulates the phosphorylation state of downstream enzymes by acting synergistically with other allosteric effectors. Glucokinase is regulated by a hierarchy of transcriptional and post-transcriptional mechanisms that are only partially understood. In the fasted state, glucokinase is in part sequestered in the nucleus in an inactive state, complexed to a specific regulatory protein, GKRP (glucokinase regulatory protein). This reserve pool is rapidly mobilized to the cytoplasm in the postprandial state in response to an elevated concentration of glucose. The translocation of glucokinase between the nucleus and cytoplasm is modulated by various metabolic and hormonal conditions. The elevated glucose 6-P concentration, consequent to glucokinase activation, has a synergistic effect with glucose in promoting dephosphorylation (inactivation) of glycogen phosphorylase and inducing dephosphorylation (activation) of glycogen synthase. The latter involves both a direct ligand-induced conformational change and depletion of the phosphorylated form of glycogen phosphorylase, which is a potent allosteric inhibitor of glycogen synthase phosphatase activity associated with the glycogen-targeting protein, GL [hepatic glycogen-targeting subunit of PP-1 (protein phosphatase-1) encoded by PPP1R3B]. Defects in both the activation of glucokinase and in the dephosphorylation of glycogen phosphorylase are potential contributing factors to the dysregulation of hepatic glucose metabolism in Type 2 diabetes.
Collapse
|
35
|
Baltrusch S, Lenzen S. Monitoring of glucose-regulated single insulin secretory granule movement by selective photoactivation. Diabetologia 2008; 51:989-96. [PMID: 18389213 DOI: 10.1007/s00125-008-0979-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Fluorescence microscopy opens new perspectives for the analysis of insulin secretory granule movement. In this study, we examined whether recently developed photoactivatable/photoconvertible proteins are a useful tool for studying this process at the single granule level in insulin-secreting cells after glucose stimulation. METHODS Plasmids were generated for expression of fusion proteins of the granule membrane phosphatase phogrin or the granule cargo protein neuropeptide Y (NPY) with the photoactivatable green fluorescent protein mutant A206K (PA-GFP-A206K), the photoconvertible protein Dendra2 and the fluorescent protein mCherry. Transfected insulin-secreting MIN6 cells were analysed by fluorescence microscopy. RESULTS Point-resolved 405 nm light exposure during image acquisition of MIN6 cells transiently transfected with Phogrin-PA-GFP-A206K or NPY-PA-GFP-A206K as well as of stable MIN6-Phogrin-Dendra2 cells resulted in selective visualisation of few granules by green or red fluorescence, respectively. Movement of these granules was analysed by an automated tracking method from confocal 3D image series. The high spatiotemporal resolution facilitated an elongated tracking of single granules. Interestingly, the track speed and track displacement of granules after 1 h starvation and subsequent glucose stimulation was lower in cells pre-cultured for 48 h at 3 mmol/l glucose than in cells pre-cultured at 25 mmol/l glucose. CONCLUSIONS/INTERPRETATION Targeting of the granule membrane or its cargo with a photoactivatable/photoconvertible protein allows in-depth visualisation and tracking of single insulin granules in dependence upon glucose. This technique may also open the way to elucidating the regulation of granule movement velocity within the pancreatic beta cell with respect to secretory defects in type 2 diabetes.
Collapse
Affiliation(s)
- S Baltrusch
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany.
| | | |
Collapse
|
36
|
Baltrusch S, Lenzen S. Novel insights into the regulation of the bound and diffusible glucokinase in MIN6 beta-cells. Diabetes 2007; 56:1305-15. [PMID: 17287461 DOI: 10.2337/db06-0894] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A stable MIN6 beta-cell clone overexpressing glucokinase as an enhanced cyan fluorescent protein (ECFP) fusion construct was generated for analysis of glucokinase regulation in these glucose-responsive insulin-secreting cells. A higher glucokinase enzyme activity accompanied by an improved glucose-induced insulin secretion indicated the integration of ECFP-glucokinase into the functional pool of glucokinase protein in MIN6-ECFP-glucokinase cells. Fluorescence recovery after photobleaching experiments of MIN6-ECFP-glucokinase cells and photoactivation of a transiently transfected photoswitchable cyan fluorescent protein (PS-CFP)-glucokinase construct in MIN6 cells indicate a higher motility of the diffusible glucokinase fraction at high glucose concentrations. In agreement with previous studies, we observed significant binding of ECFP-glucokinase to insulin secretory granules. Using fluorescence lifetime imaging, we obtained evidence for an association between glucokinase and alpha-tubulin in MIN6-ECFP-glucokinase cells. Furthermore, immunohistochemistry and fluorescence resonance energy transfer analysis by acceptor photobleaching showed distinct association between endogenous glucokinase and alpha-tubulin as well as beta-tubulin in MIN6 cells. Interestingly, glucokinase was also colocalized with kinesin, a motor protein involved in insulin secretory granule movement. Therefore, we suggest a role of a bound glucokinase protein fraction in the regulation of insulin granule movement along tubulin filaments.
Collapse
Affiliation(s)
- Simone Baltrusch
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
37
|
Shin JS, Torres TP, Catlin RL, Donahue EP, Shiota M. A defect in glucose-induced dissociation of glucokinase from the regulatory protein in Zucker diabetic fatty rats in the early stage of diabetes. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1381-90. [PMID: 17204595 DOI: 10.1152/ajpregu.00260.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effect of stimulation of glucokinase (GK) export from the nucleus by small amounts of sorbitol on hepatic glucose flux in response to elevated plasma glucose was examined in 6-h fasted Zucker diabetic fatty rats at 10 wk of age. Under basal conditions, plasma glucose, insulin, and glucagon were ∼8 mM, 2,000 pmol/l, and 60 ng/l, respectively. Endogenous glucose production (EGP) was 44 ± 4 μmol·kg−1·min−1. When plasma glucose was raised to ∼17 mM, GK was still predominantly localized with its inhibitory protein in the nucleus. EGP was not suppressed. When sorbitol was infused at 5.6 and 16.7 μmol·kg−1·min−1, along with the increase in plasma glucose, GK was exported to the cytoplasm. EGP (23 ± 19 and 12 ± 5 μmol·kg−1·min−1) was suppressed without a decrease in glucose 6-phosphatase flux (145 ± 23 and 126 ± 16 vs. 122 ± 10 μmol·kg−1·min−1without sorbitol) but increased in glucose phosphorylation as indicated by increases in glucose recycling (122 ± 17 and 114 ± 19 vs. 71 ± 11 μmol·kg−1·min−1), glucose-6-phosphate content (254 ± 32 and 260 ± 35 vs. 188 ± 20 nmol/g liver), fractional contribution of plasma glucose to uridine 5′-diphosphate-glucose flux (43 ± 8 and 42 ± 8 vs. 27 ± 6%), and glycogen synthesis from plasma glucose (20 ± 4 and 22 ± 5 vs. 9 ± 4 μmol glucose/g liver). The decreased glucose effectiveness to suppress EGP and stimulate hepatic glucose uptake may result from failure of the sugar to activate GK by stimulating the translocation of the enzyme.
Collapse
Affiliation(s)
- Jun-Seop Shin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
38
|
García-Herrero CM, Galán M, Vincent O, Flández B, Gargallo M, Delgado-Alvarez E, Blázquez E, Navas MA. Functional analysis of human glucokinase gene mutations causing MODY2: exploring the regulatory mechanisms of glucokinase activity. Diabetologia 2007; 50:325-33. [PMID: 17186219 DOI: 10.1007/s00125-006-0542-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 10/21/2006] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Glucokinase (GCK) acts as a glucose sensor in the pancreatic beta cell and regulates insulin secretion. In the gene encoding GCK the heterozygous mutations that result in enzyme inactivation cause MODY2. Functional studies of naturally occurring GCK mutations associated with hyperglycaemia provide further insight into the biochemical basis of glucose sensor regulation. MATERIALS AND METHODS Identification of GCK mutations in selected MODY patients was performed by single-strand conformation polymorphism and direct sequencing. The kinetic parameters and thermal stability of recombinant mutant human GCK were determined, and in pull-down assays the effect of these mutations on the association of GCK with glucokinase (hexokinase 4) regulator (GCKR, also known as glucokinase regulatory protein [GKRP]) and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB1, also known as PFK2) was tested. RESULTS We identified three novel GCK mutations: the insertion of an asparagine residue at position 161 (inserN161) and two missense mutations (M235V and R308W). We also identified a fourth mutation (R397L) reported in a previous work. Functional characterisation of these mutations revealed that insertion of asparagine residue N161 fully inactivates GCK, whereas the M235V and R308W mutations only partially impair enzymatic activity. In contrast, GCK kinetics was almost unaffected by the R397L mutation. Although none of these mutations affected the interaction of GCK with PFKFB1, we found that the R308W mutation caused protein instability and increased the strength of interaction with GCKR. CONCLUSIONS/INTERPRETATION Our results show that different MODY2 mutations impair GCK function through different mechanisms such as enzymatic activity, protein stability and increased interaction with GCKR, helping further elucidate the regulation of GCK activity.
Collapse
Affiliation(s)
- C M García-Herrero
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Baltrusch S, Langer S, Massa L, Tiedge M, Lenzen S. Improved metabolic stimulus for glucose-induced insulin secretion through GK and PFK-2/FBPase-2 coexpression in insulin-producing RINm5F cells. Endocrinology 2006; 147:5768-76. [PMID: 16980436 DOI: 10.1210/en.2006-0694] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucose sensor enzyme glucokinase plays a pivotal role in the regulation of glucose-induced insulin secretion in pancreatic beta-cells. Activation of glucokinase represents a promising concept for the treatment of type 2 diabetes. Therefore, we analyzed the glucokinase activation through its physiological interaction partner, the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) and the resulting effect on glucose metabolism in insulin-producing cells. In RINm5F-GK-PFK-2/FBPase-2 cells stably overexpressing glucokinase plus islet PFK-2/FBPase-2, colocalization between both enzymes as well as elevation of glucokinase activity were significantly increased at a stimulatory glucose concentration of 10 mmol/liter. RINm5F-GK-PFK-2/FBPase-2 cells showed under this culture condition a significant increase in glucose utilization and in the ATP/ADP ratio compared with RINm5F-GK cells, which only overexpress glucokinase. Also glucose-induced insulin secretion was elevated in RINm5F-GK-PFK-2/FBPase-2 cells in comparison to RINm5F-GK cells. Furthermore, pyruvate accumulation and lactate production in RINm5F-GK-PFK-2/FBPase-2 cells were significantly lower at both 10 and 30 mmol/liter glucose than in RINm5F-GK and RINm5F cells. The significant improvement of glucose metabolism after PFK-2/FBPase-2 overexpression is apparently not exclusively the result of high glucokinase enzyme activity. Stabilization of the closed glucokinase conformation by PFK-2/FBPase-2 may not only activate the enzyme but also improve metabolic channeling in beta-cells.
Collapse
Affiliation(s)
- Simone Baltrusch
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany.
| | | | | | | | | |
Collapse
|