1
|
Hassan FE, Aboulhoda BE, Mehesen MN, El Din PM, Abdallah HA, Bendas ER, Ahmed Rashed L, Mostafa A, Amer MF, Abdel-Rahman M, Alghamdi MA, Shams Eldeen AM. Combination therapy of systemic and local metformin improves imiquimod-induced psoriasis-like lesions with type 2 diabetes: the role of AMPK/KGF/STAT3 axis. Arch Physiol Biochem 2025; 131:252-264. [PMID: 39446079 DOI: 10.1080/13813455.2024.2407547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
CONTEXT Insulin resistance and a disturbed lipid profile are common associations with type 2 diabetes mellitus (T2DM) and different skin diseases, particularly psoriasis (PsO). OBJECTIVES We investigated potential therapeutic mechanisms of metformin in a murine animal model of psoriasiform lesions in T2DM. MATERIALS AND METHODS Forty-two rats were randomly divided into control, PsO, and type II DM (T2DM) groups. After confirmation of DM, the type II diabetic rats were allocated into T2DM+ PsO, T2DM+ PsO+ systemic metformin (S. met), T2DM+ PsO+ topical metformin (T. met)), and T2DM+ PsO + combined metformin (C. met). PsO was induced by topical imiquimod. RESULTS Systemic administration of the cornerstone antidiabetic drug, metformin, was able to improve insulin resistance and lipid profile. At molecular levels, both topical and systemic metformin significantly increased AMP-activated protein kinase (AMPK), and lowered keratinocyte growth factor (KGF) / "Signal transducer and activator of transcription" (STAT)3 protein levels, and the IL-17RA and IL-17RC gene expression. CONCLUSION Although its glucose-controlling effect was not optimum, T.met gel served anti-psoriatic and anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Nagi Mehesen
- Department of Pharmacology, Faculty of Medicine, Cairo University, Egypt
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | | | - Hend Ahmed Abdallah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | - Ehab R Bendas
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Abeer Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Fathy Amer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | | | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
2
|
Liu Z, Lu J, Sha W, Lei T. Comprehensive treatment of diabetic endothelial dysfunction based on pathophysiological mechanism. Front Med (Lausanne) 2025; 12:1509884. [PMID: 40093018 PMCID: PMC11906411 DOI: 10.3389/fmed.2025.1509884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Vascular endothelium is integral to the regulation of vascular homeostasis and maintenance of normal arterial function in healthy individuals. Endothelial dysfunction is a significant contributor to the advancement of atherosclerosis, which can precipitate cardiovascular complications. A notable correlation exists between diabetes and endothelial dysfunction, wherein chronic hyperglycemia and acute fluctuations in glucose levels exacerbate oxidative stress. This results in diminished nitric oxide synthesis and heightened production of endothelin-1, ultimately leading to endothelial impairment. In clinical settings, it is imperative to implement appropriate therapeutic strategies aimed at enhancing endothelial function to prevent and manage diabetes-associated vascular complications. Various antidiabetic agents, including insulin, GLP-1 receptor agonists, sulfonylureas, DPP-4 inhibitors, SGLT2 inhibitors, α-glucosidase inhibitors, thiazolidinediones (TZDs), and metformin, are effective in mitigating blood glucose variability and improving insulin sensitivity by lowering postprandial glucose levels. Additionally, traditional Chinese medicinal compounds, such as turmeric extract, resveratrol, matrine alkaloids, tanshinone, puerarin, tanshinol, paeonol, astragaloside, berberine, and quercetin, exhibit hypoglycemic properties and enhance vascular function through diverse mechanisms. Consequently, larger randomized controlled trials involving both pharmacological and herbal interventions are essential to elucidate their impact on endothelial dysfunction in patients with diabetes. This article aims to explore a comprehensive approach to the treatment of diabetic endothelial dysfunction based on an understanding of its pathophysiology.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Sha
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Cifuentes M, Verdejo HE, Castro PF, Corvalan AH, Ferreccio C, Quest AFG, Kogan MJ, Lavandero S. Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology (Bethesda) 2025; 40:0. [PMID: 39078396 DOI: 10.1152/physiol.00021.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, the persistence of the harmful trigger or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated with the development of several increasingly prevalent and serious chronic conditions, such as obesity, cancer, and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms, and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases, and cancer. We examine the state of the art in selected aspects of the topic and propose future directions and approaches for the field.
Collapse
Affiliation(s)
- Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- OMEGA Laboratory, Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Hematology and Oncology, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Public Health, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Department of Pharmacological & Toxicological Chemistry, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
- Department of Biochemistry & Molecular Biology, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
4
|
Lim JH, Kim Y, Kim MY, Kim EN, Kim TW, Choi BS, Kim WU, Kim HW, Park JY, Park CW. Placental growth factor deficiency initiates obesity- and aging-associated metabolic syndrome. Metabolism 2024; 161:156002. [PMID: 39173826 DOI: 10.1016/j.metabol.2024.156002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Obesity often leads to inadequate angiogenesis in expanding adipose tissue, resulting in inflammation and insulin resistance. We explored the role of placental growth factor (PlGF) in metabolic syndrome (MS) using mice models of type 2 diabetes, high-fat diet, or aging. Reduced serum PlGF levels were associated with decreased insulin sensitivity and development of MS features. PlGF was localized within endothelial cells and pericytes of adipose tissue. In vitro, low PlGF levels in hypoxic conditions worsened oxidative stress, apoptosis, and reduced autophagy. This was associated with a reduction in expression of vascular endothelial growth factor (VEGF)-A/VEGF-R1/-R2, which was influenced by a decrease and increase in PlGF/pAMPK/PI3K-pAkt/PLCγ1-iCa++/eNOS and PTEN/GSK3β axes, respectively. PlGF-knockout mice exhibited MS traits through alterations in the same signaling pathways, and these changes were mitigated by recombinant PlGF and metformin. These enhanced angiogenesis and lipid metabolism, underscoring PlGF's role in age-related MS and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Nim Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae Woo Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Won Kim
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Ji Yong Park
- Department of Psychology, Korea University, Seoul, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Katlan B. Methylene Blue in Metformin Intoxication: Not Just Rescue But Also Initial Treatment. Pediatr Emerg Care 2024; 40:818-821. [PMID: 38471766 DOI: 10.1097/pec.0000000000003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
ABSTRACT Metformin (MTF) is a widely used oral antidiabetic medication. Regardless the reason, high doses of MTF cause lactic acidosis as a result of its effects on mitochondrial ATP production and no-mediated vascular smooth muscle relaxation. Metformin-associated lactic acidosis can be life-threatening despite all treatments. Methylene blue (MB) has the potential to reverse the toxic effects of MTF through its effects on both the mitochondrial respiratory chain and nitric oxide production. The use of MB in MTF intoxication has only been reported in a limited number of cases. Herein, we present a 16-year-old female patient who attempted suicide by ingesting high doses of MTF. Supportive treatments, such as vasopressor, inotropic treatments, and sodium bicarbonate, were started in the patient who developed fluid-resistant hypotension after pediatric intensive care unit admission. Because of rising lactate levels, Continuous renal replacement therapy (CRRT) was started immediately. Despite all treatments, hypotension and hyperlactatemia persisted; MB was given as a rescue therapy. Noticeable hemodynamic improvement was observed within 30 minutes of initiating MB infusion, allowing a gradual decrease in the doses of inotropic infusions within the first hour of therapy. Patient's cardiovascular support was discontinued on the second day, and she was discharged on the fifth day. We speculate that, considering the mechanisms of MTF toxicity and the mechanisms of action of MB, it is suggested that early administration of MB, not only as a rescue treatment but as the initial approach to MTF poisoning in combination with other treatments, may result in improved outcomes.
Collapse
Affiliation(s)
- Banu Katlan
- From the Departmant of Intensive Care Medicine, Mersin City Training and Research Center, Mersini Turkey
| |
Collapse
|
6
|
Ling SKH, Chung KW, Ma HY. A case of metformin-associated lactic acidosis with cardiogenic and vasoplegic shock supported by ECPella. Perfusion 2024; 39:1265-1269. [PMID: 37272660 DOI: 10.1177/02676591231181851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metfomin-associated lactic acidosis (MALA) is a rare but life-threatening complication of metformin use. We present a case of MALA with concurrent cardiogenic and vasoplegic shock which was successfully supported by ECPella (concurrent use of VA-ECMO and Impella). Early recognition, aggressive hemodynamic support with ECPella and early hemodialysis can be life-saving. Monitoring of both lactate and SvO2 trends can help understand the response to treatment.
Collapse
Affiliation(s)
| | - Kit Wang Chung
- Department of Intensive Care, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Hei Yee Ma
- Department of Intensive Care, Tuen Mun Hospital, Tuen Mun, Hong Kong
| |
Collapse
|
7
|
Zhou C, Zhou Y, Vong CT, Khan H, Cheang WS. 3,3',4,5'-Tetramethoxy-trans-stilbene and 3,4',5-trimethoxy-trans-stilbene prevent oxygen-glucose deprivation-induced injury in brain endothelial cell. J Cell Mol Med 2024; 28:e70008. [PMID: 39153195 PMCID: PMC11330235 DOI: 10.1111/jcmm.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Blood-brain barrier (BBB) disruption is a major pathophysiological event of ischemic stroke. Brain microvascular endothelial cells are critical to maintain homeostasis between central nervous system and periphery. Resveratrol protects against ischemic stroke. 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) are resveratrol derivatives with addition of methoxy groups, showing better pharmacokinetic performance. We aimed to explore their protective effects and underlying mechanisms. Oxygen-glucose deprivation (OGD) model was applied in bEnd.3 cell line, mouse brain microvascular endothelium to mimic ischemia. The cells were pre-treated with 3,3',4,5'-TMS or 3,4',5-TMS (1 and 5 μM, 24 h) and then subjected to 2-h OGD injury. Cell viability, levels of proinflammatory cytokines and reactive oxygen species (ROS), and protein expressions were measured by molecular assays and fluorescence staining. OGD injury triggered cell death, inflammatory responses, ROS production and nuclear factor-kappa B (NF-κB) signalling pathway. These impairments were remarkably attenuated by the two stilbenes, 3,3',4,5'-TMS and 3,4',5-TMS. They also alleviated endothelial barrier injuries through upregulating the expression of tight junction proteins. Moreover, 3,3',4,5'-TMS and 3,4',5-TMS activated 5' adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Overall, 3,3',4,5'-TMS and 3,4',5-TMS exert protective effects against OGD damage through suppressing cell death, inflammatory responses, oxidative stress, as well as BBB disruption on bEnd.3 cells.
Collapse
Affiliation(s)
- Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| | - Yan Zhou
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
- Macau Centre for Research and Development in Chinese MedicineUniversity of MacauMacau SARChina
| | - Haroon Khan
- Department of PharmacyAbdul Wali Khan University MardanMardanPakistan
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| |
Collapse
|
8
|
Tokumasu M, Nishida M, Zhao W, Chao R, Imano N, Yamashita N, Hida K, Naito H, Udono H. Metformin synergizes with PD-1 blockade to promote normalization of tumor vessels via CD8T cells and IFNγ. Proc Natl Acad Sci U S A 2024; 121:e2404778121. [PMID: 39018197 PMCID: PMC11287262 DOI: 10.1073/pnas.2404778121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/21/2024] [Indexed: 07/19/2024] Open
Abstract
Tumor blood vessels are highly leaky in structure and have poor blood perfusion, which hampers infiltration and function of CD8T cells within tumor. Normalizing tumor vessels is thus thought to be important in promoting the flux of immune T cells and enhancing ant-tumor immunity. However, how tumor vasculature is normalized is poorly understood. Metformin (Met) combined with ant-PD-1 therapy is known to stimulate proliferation of and to produce large amounts of IFNγ from tumor-infiltrating CD8T lymphocytes (CD8TILs). We found that the combination therapy promotes the pericyte coverage of tumor vascular endothelial cells (ECs) to improve blood perfusion and that it suppresses the hyperpermeability through the increase of VE-cadherin. Peripheral node addressin(PNAd) and vascular cell adhesion molecule (VCAM)-1, both implicated to promote tumor infiltration of CD8T cells, were also increased. Importantly, tumor vessel normalization, characterized as the reduced 70-kDa dextran leakage and the enhancement of VE-cadherin and VCAM-1, were canceled by anti-CD8 Ab or anti-IFNγ Ab injection to mice. The increased CD8TILs were also abrogated by anti-IFNγ Ab injection. In vascular ECs, flow cytometry analysis revealed that pSTAT1 expression was found to be associated with VE-cadherin expression. Moreover, in vitro treatment with Met and IFNγ enhanced VE-cadherin and VCAM-1 on human umbilical vein endothelial cells (HUVECs). The Kaplan-Meier method revealed a correlation of VE-cadherin or VCAM-1 levels with overall survival in patients treated with immune checkpoint inhibitors. These data indicate that IFNγ-mediated cross talk of CD8TILs with tumor vessels is important for creating a better tumor microenvironment and maintaining sustained antitumor immunity.
Collapse
Affiliation(s)
- Miho Tokumasu
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Mikako Nishida
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Weiyang Zhao
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Ruoyu Chao
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Natsumi Imano
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Nahoko Yamashita
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo060-8586, Japan
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa920-8640, Ishikawa, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| |
Collapse
|
9
|
Harada M, Adam J, Covic M, Ge J, Brandmaier S, Muschet C, Huang J, Han S, Rommel M, Rotter M, Heier M, Mohney RP, Krumsiek J, Kastenmüller G, Rathmann W, Zou Z, Zukunft S, Scheerer MF, Neschen S, Adamski J, Gieger C, Peters A, Ankerst DP, Meitinger T, Alderete TL, de Angelis MH, Suhre K, Wang-Sattler R. Bidirectional modulation of TCA cycle metabolites and anaplerosis by metformin and its combination with SGLT2i. Cardiovasc Diabetol 2024; 23:199. [PMID: 38867314 PMCID: PMC11170891 DOI: 10.1186/s12933-024-02288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Metformin and sodium-glucose-cotransporter-2 inhibitors (SGLT2i) are cornerstone therapies for managing hyperglycemia in diabetes. However, their detailed impacts on metabolic processes, particularly within the citric acid (TCA) cycle and its anaplerotic pathways, remain unclear. This study investigates the tissue-specific metabolic effects of metformin, both as a monotherapy and in combination with SGLT2i, on the TCA cycle and associated anaplerotic reactions in both mice and humans. METHODS Metformin-specific metabolic changes were initially identified by comparing metformin-treated diabetic mice (MET) with vehicle-treated db/db mice (VG). These findings were then assessed in two human cohorts (KORA and QBB) and a longitudinal KORA study of metformin-naïve patients with Type 2 Diabetes (T2D). We also compared MET with db/db mice on combination therapy (SGLT2i + MET). Metabolic profiling analyzed 716 metabolites from plasma, liver, and kidney tissues post-treatment, using linear regression and Bonferroni correction for statistical analysis, complemented by pathway analyses to explore the pathophysiological implications. RESULTS Metformin monotherapy significantly upregulated TCA cycle intermediates such as malate, fumarate, and α-ketoglutarate (α-KG) in plasma, and anaplerotic substrates including hepatic glutamate and renal 2-hydroxyglutarate (2-HG) in diabetic mice. Downregulated hepatic taurine was also observed. The addition of SGLT2i, however, reversed these effects, such as downregulating circulating malate and α-KG, and hepatic glutamate and renal 2-HG, but upregulated hepatic taurine. In human T2D patients on metformin therapy, significant systemic alterations in metabolites were observed, including increased malate but decreased citrulline. The bidirectional modulation of TCA cycle intermediates in mice influenced key anaplerotic pathways linked to glutaminolysis, tumorigenesis, immune regulation, and antioxidative responses. CONCLUSION This study elucidates the specific metabolic consequences of metformin and SGLT2i on the TCA cycle, reflecting potential impacts on the immune system. Metformin shows promise for its anti-inflammatory properties, while the addition of SGLT2i may provide liver protection in conditions like metabolic dysfunction-associated steatotic liver disease (MASLD). These observations underscore the importance of personalized treatment strategies.
Collapse
Affiliation(s)
- Makoto Harada
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jonathan Adam
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marcela Covic
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jianhong Ge
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stefan Brandmaier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Caroline Muschet
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jialing Huang
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Siyu Han
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Martina Rommel
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Rotter
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | | | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sven Zukunft
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus F Scheerer
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Neschen
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Donna P Ankerst
- Departments of Mathematics and Life Science Systems, Technical University of Munich (TUM), Garching, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum Rechts der Isar, TUM, Munich, Germany
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, USA
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, TUM, Freising, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine - Qatar, Education City - Qatar Foundation, Doha, Qatar
| | - Rui Wang-Sattler
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
10
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
11
|
Takahashi Y, Nakano H, Motoki M, Wakimoto Y, Ikechi D, Koyama Y, Hashimoto H. Successful use of methylene blue for catecholamine-refractory vasoplegic shock due to metformin intoxication: A case report and literature review. Acute Med Surg 2024; 11:e981. [PMID: 39010890 PMCID: PMC11247704 DOI: 10.1002/ams2.981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/25/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Background Severe metformin intoxication can lead to lactic acidosis and vasoplegic shock, for which the optimal management strategy remains uncertain, especially in cases of severe circulatory collapse. Case Presentation A 45-year-old diabetic woman on metformin therapy presented with impaired consciousness and seizures. She had experienced a cardiac arrest and undergone extracorporeal cardiopulmonary resuscitation. Blood gas analysis showed severe lactic acidosis. A 71-g metformin packet was found at the patient's home, suggesting an overdose. Despite extracorporeal support and blood purification, severe lactic acidosis and hypotension persisted. Methylene blue was administered 32 h from the onset, which improved her metabolic and circulatory status. We examined her blood sample throughout the case to check the transition of metformin blood concentration. Conclusion Methylene blue may be beneficial for severe metformin toxicity, regardless of the blood concentration of metformin and the time since intoxication. However, further research is needed to establish its optimal use and effectiveness.
Collapse
Affiliation(s)
- Yuji Takahashi
- Department of Emergency and Critical Care Medicine Hitachi General Hospital Hitachi Ibaraki Japan
| | - Hidehiko Nakano
- Department of Emergency and Critical Care Medicine Hitachi General Hospital Hitachi Ibaraki Japan
| | - Maiko Motoki
- Department of Emergency and Critical Care Medicine Hitachi General Hospital Hitachi Ibaraki Japan
| | - Yuji Wakimoto
- Department of Emergency and Critical Care Medicine Hitachi General Hospital Hitachi Ibaraki Japan
| | - Daisuke Ikechi
- Department of Emergency and Critical Care Medicine Hitachi General Hospital Hitachi Ibaraki Japan
| | - Yasuaki Koyama
- Department of Emergency and Critical Care Medicine Hitachi General Hospital Hitachi Ibaraki Japan
| | - Hideki Hashimoto
- Department of Emergency and Critical Care Medicine Hitachi General Hospital Hitachi Ibaraki Japan
| |
Collapse
|
12
|
Nabeh OA, Saud AI, Amin B, Khedr AS, Amr A, Faoosa AM, Esmat E, Mahmoud YM, Hatem A, Mohamed M, Osama A, Soliman YMA, Elkorashy RI, Elmorsy SA. A Systematic Review of Novel Therapies of Pulmonary Arterial Hypertension. Am J Cardiovasc Drugs 2024; 24:39-54. [PMID: 37945977 PMCID: PMC10805839 DOI: 10.1007/s40256-023-00613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive, cureless disease, characterized by increased pulmonary vascular resistance and remodeling, with subsequent ventricular dilatation and failure. New therapeutic targets are being investigated for their potential roles in improving PAH patients' symptoms and reversing pulmonary vascular pathology. METHOD We aimed to address the available knowledge from the published randomized controlled trials (RCTs) regarding the role of Rho-kinase (ROCK) inhibitors, bone morphogenetic protein 2 (BMP2) inhibitors, estrogen inhibitors, and AMP-activated protein kinase (AMPK) activators on the PAH evaluation parameters. This systematic review (SR) was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CDR42022340658) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Overall, 5092 records were screened from different database and registries; 8 RCTs that met our inclusion criteria were included. The marked difference in the study designs and the variability of the selected outcome measurement tools among the studies made performing a meta-analysis impossible. However, the main findings of this SR relate to the powerful potential of the AMPK activator and the imminent antidiabetic drug metformin, and the BMP2 inhibitor sotatercept as promising PAH-modifying therapies. There is a need for long-term studies to evaluate the effect of the ROCK inhibitor fasudil and the estrogen aromatase inhibitor anastrozole in PAH patients. The role of tacrolimus in PAH is questionable. The discrepancy in the hemodynamic and clinical parameters necessitates defining cut values to predict improvement. The differences in the PAH etiologies render the judgment of the therapeutic potential of the tested drugs challenging. CONCLUSION Metformin and sotatercept appear as promising therapeutic drugs for PAH. CLINICAL TRIALS REGISTRATION This work was registered in PROSPERO (CDR42022340658).
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Alaa I Saud
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Amin
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Alaa Amr
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Eshraka Esmat
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Aya Hatem
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam Mohamed
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Osama
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Reem Ibrahim Elkorashy
- Pulmonology, Pulmonary Medicine Department, Kasr Alainy Hospital, Cairo University, Cairo, Egypt
| | - Soha Aly Elmorsy
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Fysekidis M, Cosson E, Sabouret P, Takbou K, Sutton A, Charnaux N, Banu I, Testa A, Biondi-Zoccai G, Vicaut E, Valensi P. Insulin analogs as an add-on to metformin after failure to oral treatment in type 2 diabetic patients increase diastole duration. The INSUlin Regimens and VASCular Functions (INSUVASC) study. Minerva Cardiol Angiol 2023; 71:659-672. [PMID: 37405711 DOI: 10.23736/s2724-5683.23.06139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
BACKGROUND Fast acting insulin analogues are known to improve arterial stiffness. The combination of metformin with insulin represents a widely used therapeutic strategy in diabetes. We hypothesized that insulin treatment in patients with type 2 diabetes (T2D) with long-acting, fast-acting or basal bolus insulin as an add-on to metformin would provide additional improvement of arterial stiffness. METHODS The INSUlin Regimens and VASCular Functions (INSUVASC) study is a pilot, randomized, open label three-arms study that included 42 patients with type 2 diabetes (T2D) in primary prevention, after a failure to oral antidiabetic agents. Arterial stiffness measurements were performed at fasting and after a standardized breakfast. During the first visit (V1) pre-randomization, participants took only metformin to perform the tests. The same tests were repeated after 4 weeks of insulin treatment during the second visit (V2). RESULTS Data were available for final analysis in 40 patients, with a mean age of 53.6±9.7 years and a mean duration of diabetes of 10.6±5.6 years. Twenty-one were females (52.5%), hypertension and dyslipidemia were present in 18 (45%) and 17 patients (42.5%), respectively. After insulin treatment, the metabolic control was associated to a decrease in oxidative stress and improvement of endothelial functions, with a post prandial diastole duration increased and a decrease of the peripheral arterial stiffness, with a better post prandial pulse pressure ratio and ejection duration after insulin. In hypertensive patients, insulin treatment provided positive effects by decreasing the pulse wave velocity and improving reflection time. CONCLUSIONS A short time treatment by insulin in addition to metformin improved myocardial perfusion. Moreover, insulin treatment in hypertensive patients provides a better hemodynamic profile in large arteries.
Collapse
Affiliation(s)
- Marinos Fysekidis
- Department of Endocrinology, Jean Verdier Hospital, Assistence Publique - Hôpitaux de Paris, Paris13 University, Sorbonne Paris Cité, Paris, France -
- Department of Diabetology-Nutrition, Research Center for Human Nutrition of Ile-de-France, Integrated Obesity Center of North Ile-de-France (CINFO), Bondy, France -
- Center of Research in Epidemiology and Statistics (UMR U1153), National Institute of Health and Medical Research (Inserm), Université Paris13, Sorbonne Paris Cité, Bobigny, France -
| | - Emmanuel Cosson
- Department of Endocrinology, Jean Verdier Hospital, Assistence Publique - Hôpitaux de Paris, Paris13 University, Sorbonne Paris Cité, Paris, France
- Department of Diabetology-Nutrition, Research Center for Human Nutrition of Ile-de-France, Integrated Obesity Center of North Ile-de-France (CINFO), Bondy, France
- Center of Research in Epidemiology and Statistics (UMR U1153), National Institute of Health and Medical Research (Inserm), Université Paris13, Sorbonne Paris Cité, Bobigny, France
| | - Pierre Sabouret
- Heart Institute, Pitié-Salpétrière Hospital, Sorbonne University, Paris, France
- National College of French Cardiologists, Paris, France
| | - Karim Takbou
- Department of Endocrinology, Jean Verdier Hospital, Assistence Publique - Hôpitaux de Paris, Paris13 University, Sorbonne Paris Cité, Paris, France
| | - Angela Sutton
- Biochemistry Department, Jean Verdier Hospital, Assistence Publique - Hôpitaux de Paris, Bondy, France
| | - Nathalie Charnaux
- Biochemistry Department, Jean Verdier Hospital, Assistence Publique - Hôpitaux de Paris, Bondy, France
| | - Isabela Banu
- Department of Endocrinology, Jean Verdier Hospital, Assistence Publique - Hôpitaux de Paris, Paris13 University, Sorbonne Paris Cité, Paris, France
| | - Alberto Testa
- Sapienza School for Advanced Studies, Sapienza University, Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Eric Vicaut
- Clinical Research Unit, Lariboisière-St Louis, Fernand Widal Hospitals, Assistence Publique - Hôpitaux de Paris, Paris, France
| | - Paul Valensi
- Department of Endocrinology, Jean Verdier Hospital, Assistence Publique - Hôpitaux de Paris, Paris13 University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
14
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
15
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
New Drugs and Therapies in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24065850. [PMID: 36982922 PMCID: PMC10058689 DOI: 10.3390/ijms24065850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Pulmonary arterial hypertension is a chronic, progressive disorder of the pulmonary vasculature with associated pulmonary and cardiac remodeling. PAH was a uniformly fatal disease until the late 1970s, but with the advent of targeted therapies, the life expectancy of patients with PAH has now considerably improved. Despite these advances, PAH inevitably remains a progressive disease with significant morbidity and mortality. Thus, there is still an unmet need for the development of new drugs and other interventional therapies for the treatment of PAH. One shortcoming of currently approved vasodilator therapies is that they do not target or reverse the underlying pathogenesis of the disease process itself. A large body of evidence has evolved in the past two decades clarifying the role of genetics, dysregulation of growth factors, inflammatory pathways, mitochondrial dysfunction, DNA damage, sex hormones, neurohormonal pathways, and iron deficiency in the pathogenesis of PAH. This review focuses on newer targets and drugs that modify these pathways as well as novel interventional therapies in PAH.
Collapse
|
17
|
Parveen R, Mishra P, Luthra R, Bajpai R, Agarwal N. Association of Metformin with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2023. [DOI: 10.1055/s-0042-1760353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
AbstractStudies have demonstrated high prevalence of mortality in coronavirus disease (COVID-19) patients with type 2 diabetes mellitus; however, the effects of antidiabetic pharmacotherapy on COVID-19 complications need further exploration. The aim of the study was to explore the association of metformin use and mortality in COVID-19 patients. A literature search was conducted using the databases Medline (via PubMed) and Cochrane Central Register of Controlled Trials until February 09, 2021. Nine studies were included in the meta-analysis, including 12,684 COVID-19 patients. The meta-analysis suggested 37% lower risk of mortality in patients receiving metformin (risk ratio: 0.63; 95% confidence interval: 0.50–0.78; p < 0.001). However, no significant difference in hospitalization days between the two groups (p = 0.197) was observed. The analysis revealed significantly lower risk of having obesity (p < 0.001), hypertension (p < 0.001), heart failure (p < 0.001), and cerebrovascular disease (p = 0.015) in the group receiving metformin. The analysis also demonstrated significantly lower risk of using anticoagulants (p = 0.015), diuretics (p < 0.001), and antiplatelets (p = 0.010) in patients receiving metformin. Our findings suggest that metformin use decreases mortality in COVID-19 patients. However, randomized studies demonstrating the consequences of metformin use are needed to understand the magnitude of the beneficial effects of metformin.
Collapse
Affiliation(s)
- Rizwana Parveen
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Pinki Mishra
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Reva Luthra
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ram Bajpai
- School of Medicine, Keele University, Staffordshire, United Kingdom
| | - Nidhi Agarwal
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
Mori A, Ezawa Y, Asano D, Kanamori T, Morita A, Kashihara T, Sakamoto K, Nakahara T. Resveratrol dilates arterioles and protects against N-methyl-d-aspartic acid-induced excitotoxicity in the rat retina. Neurosci Lett 2023; 793:136999. [PMID: 36470506 DOI: 10.1016/j.neulet.2022.136999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Resveratrol, a natural polyphenolic compound, reportedly possesses numerous biological activities, including anti-inflammatory and antioxidant effects. In the current study, we examined (1) the dilator effects of resveratrol on retinal arterioles, (2) the protective effects of resveratrol against excitotoxic retinal injury, and (3) whether these effects are mediated by the AMP-activated kinase (AMPK)-dependent pathway in rats. Male Wistar rats (7 to 10 weeks old) were used in this study. The diameters of the retinal arterioles, mean arterial pressure, and heart rate were measured in vivo. The retinal injury was assessed by histological examination. Intravenous injection of resveratrol (3 mg/kg) increased the diameter of the retinal arterioles without affecting the mean arterial pressure and heart rate. The AMPK inhibitor, compound C (5 mg/kg, intravenously), significantly attenuated the retinal vasodilator response to resveratrol. Seven days after intravitreal injection of N-methyl-d-aspartic acid (NMDA; 25, 50, and 100 nmol/eye), the number of cells located in the ganglion cell layer (GCL) was reduced, along with thinning of the inner plexiform layer. Intravitreal resveratrol injection (100 nmol/eye) reduced the NMDA (25 and 50 nmol/eye)-induced cell loss in the GCL. The neuroprotective effect of resveratrol was significantly but not completely reversed by compound C (10 nmol/eye). These results suggest that resveratrol dilates retinal arterioles and protects against NMDA-induced retinal neurodegeneration via an AMPK-dependent pathway in rats. Resveratrol may have the potential to slow the onset and progression of diseases associated with retinal ischemia by improving impaired retinal circulation and protecting retinal neuronal cells.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuna Ezawa
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Daiki Asano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiki Kanamori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
19
|
Imran M, Sachdeva G, Menon S, Das D, Davuluri S, Acharya K, Chaudhari U. Therapeutic metformin concentrations positively regulate proliferation in endometrial epithelial cells via mTOR activation and augmented mitochondrial strength. Can J Physiol Pharmacol 2023; 101:52-64. [PMID: 36322951 DOI: 10.1139/cjpp-2022-0307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metformin, an antidiabetic drug, has recently been repositioned in the treatment of several nondiabetic disorders, including reproductive disorders such as polycystic ovarian syndrome, where it improves endometrial functions. In vitro studies employing supratherapeutic concentrations (5-20 mmol/L) of metformin have reported antiproliferative effects on endometrial epithelial and stromal cells. However, animal and human studies have revealed that therapeutic serum concentrations of metformin range between 20 and 70 µmol/L. In the present study, the effect of therapeutic concentrations of metformin was studied on endometrial epithelial cells (EECs). Therapeutic concentrations of metformin induced proliferation in Ishikawa and HEC-1A cells. The proliferation of EECs was found to be mammalian target of rapamycin (mTOR) dependent. Interestingly, therapeutic metformin concentrations were not able to activate the classical AMP-activated protein kinase (AMPK) signaling. On the contrary, supratherapeutic metformin concentration (10 mmol/L) inhibited mTOR and activated AMPK signaling. Microarray analysis of metformin-treated HEC-1A cells revealed dose-dependent differential effects on biological pathways associated with translation, ribosomal RNA processing, mitochondrial translation, and cell proliferation. Therapeutic concentrations of metformin upregulated mitochondrial number as demonstrated by increased MitoTracker™ Red staining and enhanced succinate dehydrogenase expression; however, higher concentration (10 mmol/L) abrogated the same. Our results suggest that therapeutic concentrations of metformin augment mitochondrial strength and induce mTOR-dependent endometrial cell proliferation.
Collapse
Affiliation(s)
- M Imran
- Cell Physiology and Pathology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | - Geetanjali Sachdeva
- Cell Physiology and Pathology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | - Shyla Menon
- Stem Cell Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | - Dhanjit Das
- Stem Cell Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | | | - Kshitish Acharya
- Shodhaka Life Sciences Pvt. Ltd., Bengaluru, Karnataka, India.,Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Uddhav Chaudhari
- Cell Physiology and Pathology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| |
Collapse
|
20
|
Bellerba F, Chatziioannou AC, Jasbi P, Robinot N, Keski-Rahkonen P, Trolat A, Vozar B, Hartman SJ, Scalbert A, Bonanni B, Johansson H, Sears DD, Gandini S. Metabolomic profiles of metformin in breast cancer survivors: a pooled analysis of plasmas from two randomized placebo-controlled trials. J Transl Med 2022; 20:629. [PMID: 36581893 PMCID: PMC9798585 DOI: 10.1186/s12967-022-03809-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Obesity is a major health concern for breast cancer survivors, being associated with high recurrence and reduced efficacy during cancer treatment. Metformin treatment is associated with reduced breast cancer incidence, recurrence and mortality. To better understand the underlying mechanisms through which metformin may reduce recurrence, we aimed to conduct metabolic profiling of overweight/obese breast cancer survivors before and after metformin treatment. METHODS Fasting plasma samples from 373 overweight or obese breast cancer survivors randomly assigned to metformin (n = 194) or placebo (n = 179) administration were collected at baseline, after 6 months (Reach For Health trial), and after 12 months (MetBreCS trial). Archival samples were concurrently analyzed using three complementary methods: untargeted LC-QTOF-MS metabolomics, targeted LC-MS metabolomics (AbsoluteIDQ p180, Biocrates), and gas chromatography phospholipid fatty acid assay. Multivariable linear regression models and family-wise error correction were used to identify metabolites that significantly changed after metformin treatment. RESULTS Participants (n = 352) with both baseline and study end point samples available were included in the analysis. After adjusting for confounders such as study center, age, body mass index and false discovery rate, we found that metformin treatment was significantly associated with decreased levels of citrulline, arginine, tyrosine, caffeine, paraxanthine, and theophylline, and increased levels of leucine, isoleucine, proline, 3-methyl-2-oxovalerate, 4-methyl-2-oxovalerate, alanine and indoxyl-sulphate. Long-chain unsaturated phosphatidylcholines (PC ae C36:4, PC ae C38:5, PC ae C36:5 and PC ae C38:6) were significantly decreased with the metformin treatment, as were phospholipid-derived long-chain n-6 fatty acids. The metabolomic profiles of metformin treatment suggest change in specific biochemical pathways known to impair cancer cell growth including activation of CYP1A2, alterations in fatty acid desaturase activity, and altered metabolism of specific amino acids, including impaired branched chain amino acid catabolism. CONCLUSIONS Our results in overweight breast cancer survivors identify new metabolic effects of metformin treatment that may mechanistically contribute to reduced risk of recurrence in this population and reduced obesity-related cancer risk reported in observational studies. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01302379 and EudraCT Protocol #: 2015-001001-14.
Collapse
Affiliation(s)
- Federica Bellerba
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Nivonirina Robinot
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Amarine Trolat
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Béatrice Vozar
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Sheri J Hartman
- Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
- Department of Medicine, UC San Diego, La Jolla, CA, USA
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
21
|
Top WMC, Lehert P, Schalkwijk CG, Stehouwer CDA, Kooy A. Effect of metformin on arginine and dimethylarginines in patients with advanced type 2 diabetes: A post hoc analysis of a randomized trial. Diabetes Obes Metab 2022; 24:1983-1988. [PMID: 35789192 DOI: 10.1111/dom.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
AIM To study the effect of metformin on plasma levels of arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), indicators of the nitric oxide pathway. MATERIALS AND METHODS In this post hoc analysis of the HOME trial, we analysed plasma levels of arginine, ADMA and SDMA during the 4.3-year follow-up (comparing the effects of metformin versus placebo on top of insulin therapy). Statistical analysis was performed with a mixed model approach, in which simultaneously constant treatment effects were estimated, as well as time-dependent treatment effects. RESULTS We found that metformin compared with placebo did not affect ADMA or SDMA plasma levels but rapidly decreased arginine plasma levels and hence the arginine to ADMA ratio. The constant treatment effect on ADMA was 0.99 (95% CI 0.97, 1.00) relative to placebo and the time-dependent treatment effect was 1.00 (95% CI 1.00, 1.01). By contrast, the constant treatment effect on arginine was 0.86 (95% CI 0.84, 0.88), with only a minimal time-dependent change of 1.01 (95% CI 1.00, 1.01). CONCLUSIONS The potential benefits of metformin on endothelial function cannot be explained by a decrease in ADMA or by improved global arginine availability. The clinical significance of the decreased arginine plasma levels is not clear and can be harmful or beneficial, depending on the mechanism involved. However, a potential effect of metformin on the nitric oxide pathway is not restricted to the studied metabolites.
Collapse
Affiliation(s)
- Wiebe M C Top
- Department of Internal Medicine, Treant Care Group, Hoogeveen, The Netherlands
- Bethesda Diabetes Research Center, Hoogeveen, The Netherlands
| | - Philippe Lehert
- Department of Statistics, Faculty of Economics, Facultés Universitaires Catholiques de Mons, Louvain Academy, Mons, Belgium
| | - Casper G Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Adriaan Kooy
- Department of Internal Medicine, Treant Care Group, Hoogeveen, The Netherlands
- Bethesda Diabetes Research Center, Hoogeveen, The Netherlands
- Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
A review on role of metformin as a potential drug for epilepsy treatment and modulation of epileptogenesis. Seizure 2022; 101:253-261. [PMID: 36116284 DOI: 10.1016/j.seizure.2022.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Available anti-seizure medications (ASMs) target the symptomatology of the disease rather than any significant disease/epileptogenesis modifying actions. There are critical concerns of drug resistance and seizure recurrence during epilepsy management. So, drug repurposing is evolving as a paradigm change in the quest for novel epilepsy treatment strategies. Metformin, a well-known anti-diabetic drug has shown multiple pieces of evidence of its potential antiepileptic action. OBJECTIVE This review elucidates various mechanisms underlying the beneficial role of metformin in seizure control and modulation of the epileptogenesis process. METHODS Preclinical and clinical evidence involving metformin's role in epilepsy and special conditions like tuberous sclerosis have been reviewed in this paper. The putative mechanisms of epileptogenesis modulation through the use of metformin are also summarised. RESULTS This review found the efficacy of metformin in different seizure models including genetic knockout model, chemical induced, and kindling models. Only one clinical study of metformin in tuberous sclerosis has shown a reduction in seizure frequency and tumor volume compared to placebo. The suggested mechanisms of metformin relevant to epileptogenesis modulation mainly encompass AMPK activation, mTOR inhibition, protection against blood-brain-barrier disruption, inhibition of neuronal apoptosis, and reduction of oxidative stress. In addition to seizure protection, metformin has a potential role in attenuating adverse effects associated with epilepsy and ASMs such as cognition and memory impairment. CONCLUSION Metformin has shown promising utility in epilepsy management and epileptogenesis modulation. The evidence in this review substantiates the need for a robust clinical trial to explore the efficacy and safety of metformin in persons with epilepsy.
Collapse
|
23
|
Yagyu H, Shimano H. Treatment of diabetes mellitus has borne much fruit in the prevention of cardiovascular disease. J Diabetes Investig 2022; 13:1472-1488. [PMID: 35638331 PMCID: PMC9434581 DOI: 10.1111/jdi.13859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular (CV) disease is the most alarming complication of diabetes mellitus (DM), and a strategy aiming at cardiovascular event prevention in diabetes mellitus has long been debated. Large landmark clinical trials have shown cardiovascular benefits of intensive glycemic control as a 'legacy effect' in newly diagnosed type 2 diabetes mellitus. In contrast, we have learned that excessive intervention aimed at strong glycemic control could cause unexpected cardiovascular death in patients who are resistant to treatments against hyperglycemia. It has also been shown that the comprehensive multifactorial intervention for cardiovascular risk factors that was advocated in the current guideline provided substantial cardiovascular event reduction. The impact of classical antidiabetic agents launched before 1990s on cardiovascular events is controversial. Although there are many clinical or observational studies assessing the impact of those agents on cardiovascular events, the conclusions are inconsistent owing to variable patient backgrounds and concomitant antidiabetic agents among the studies. Moreover, most of them were not large-scale, randomized, cardiovascular outcome trials. In contrast, GLP-1RA (glucagon-like peptide-1 receptor agonist) and SGLT2 (sodium-glucose cotransporter 2) inhibitors have demonstrated undeniable cardiovascular benefits in large-scale, randomized, controlled trials. Whereas GLP-1RAs decrease atherosclerotic disease, especially stroke, SGLT2 inhibitors mainly prevent heart failure. SGLT2 inhibitors are superior to GLP-1RAs with respect to hard renal outcomes. Therefore, it can be said that drugs such as GLP-1RAs and SGLT2 inhibitors that prevent cardiovascular events, in addition to their glucose-lowering effect, are incredible novel tools that we have gained for use in diabetic treatment.
Collapse
Affiliation(s)
- Hiroaki Yagyu
- Department of Endocrinology and Metabolism, Tsukuba University Hospital Mito Clinical Education and Training CenterMito Kyodo General HospitalMitoJapan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| |
Collapse
|
24
|
Metformin Reverses the Effects of Angiotensin 2 in Human Mammary Arteries by Modulating the Expression of Nitric Oxide Synthases. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Angiotensin 2 impairs vascular function by activation of reactive oxygen species (ROS) production and development of endothelial dysfunction. Metformin, the first-line therapeutic agent for type 2 diabetes mellitus, has vascular protective properties, beyond its glucose lowering effects. The aim of the present study was to in-vestigate the interaction between metformin and angiotensin 2 in human internal mammary arteries harvested from patients with coronary heart disease undergoing revascularization procedure, by evaluation of vascular function, reactive oxygen species (ROS) production and the gene expression of nitric oxide (NO) synthases (endothelial – eNOS, neuronal – nNOS and inducible – iNOS). To this aim, vascular samples were incubated with angiotensin 2 (Ang2, 12 h) with/without metformin (Metf, 10 μM) and used for ROS measurement (FOX assay), vascular reactivity in organ bath (contractility to phenylephrine, relaxation to acetylcholine, con-tractility to NG-nitro-L-arginine methyl ester/L-NAME) and RT-PCT studies. Acute incubation of the vascular rings with Ang2 im-paired vascular reactivity (increase contractility, decrease relax-ation), increased ROS production, supressed eNOS/nNOS and in-creased iNOS mRNA expression. Ex vivo incubation with metfor-min at a clinically relevant concentration reversed all these ef-fects. These data suggest that Metformin might be useful in allevi-ating endothelial dysfunction by improving the endothelial-de-pendent relaxation and mitigating oxidative stress in clinical set-ting associated with cardiovascular disease regardless the pres-ence of impaired glucose metabolism.
Collapse
|
25
|
Metformin Protects Against Sunitinib-induced Cardiotoxicity: Investigating the Role of AMPK. J Cardiovasc Pharmacol 2022; 79:799-807. [PMID: 35266920 DOI: 10.1097/fjc.0000000000001256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Sunitinib is associated with cardiotoxicity through inhibition of AMP-protein kinase (AMPK) signaling. By contrast, the common antidiabetic agent metformin has demonstrated cardioprotection through indirect AMPK activation. In this study, we investigate the effects of metformin during sunitinib-induced cytotoxicity. Left ventricular developed pressure, coronary flow, heart rate, and infarct size were measured in Langendorff-perfused rat hearts treated with 1 µM sunitinib ±50 µM metformin ±1 µM human equilibrative nucleoside transporter inhibitor S-(4-Nitrobenzyl)-6-thioinosine (NBTI). Western blot analysis was performed for p-AMPKα levels. Primary isolated cardiac myocytes from the left ventricular tissue were used to measure live cell population levels. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess adjunctive treatment of and metformin in human hepatoma G2 and promyelocytic leukemia (HL-60) cells treated with 0.1-100 µM sunitinib ±50 µM metformin. In the perfused hearts, coadministration of metformin attenuated the sunitinib-induced changes to left ventricular developed pressure, infarct size, and cardiac myocyte population. Western blot analysis revealed a significant decrease in p-AMPKα during sunitinib treatment, which was attenuated after coadministration with metformin. All metformin-induced effects were attenuated, and NBTI was coadministered. The MTT assay demonstrated an increase in the EC50 value during coadministration of metformin with sunitinib compared with sunitinib monotherapy in hepatoma G2 and HL-60 cell lines, demonstrating the impact and complexity of metformin coadministration and the possible role of AMPK signaling. This study highlights the novel cardioprotective properties of metformin and AMPK activation during sunitinib-induced cardiotoxicity when administered together in the Langendorff heart model.
Collapse
|
26
|
Carey RM, Hariri BM, Adappa ND, Palmer JN, Lee RJ. HSP90 Modulates T2R Bitter Taste Receptor Nitric Oxide Production and Innate Immune Responses in Human Airway Epithelial Cells and Macrophages. Cells 2022; 11:1478. [PMID: 35563784 PMCID: PMC9101439 DOI: 10.3390/cells11091478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bitter taste receptors (T2Rs) are G protein-coupled receptors (GPCRs) expressed in various cell types including ciliated airway epithelial cells and macrophages. T2Rs in these two innate immune cell types are activated by bitter products, including those secreted by Pseudomonas aeruginosa, leading to Ca2+-dependent activation of endothelial nitric oxide (NO) synthase (eNOS). NO enhances mucociliary clearance and has direct antibacterial effects in ciliated epithelial cells. NO also increases phagocytosis by macrophages. Using biochemistry and live-cell imaging, we explored the role of heat shock protein 90 (HSP90) in regulating T2R-dependent NO pathways in primary sinonasal epithelial cells, primary monocyte-derived macrophages, and a human bronchiolar cell line (H441). Immunofluorescence showed that H441 cells express eNOS and T2Rs and that the bitter agonist denatonium benzoate activates NO production in a Ca2+- and HSP90-dependent manner in cells grown either as submerged cultures or at the air-liquid interface. In primary sinonasal epithelial cells, we determined that HSP90 inhibition reduces T2R-stimulated NO production and ciliary beating, which likely limits pathogen clearance. In primary monocyte-derived macrophages, we found that HSP-90 is integral to T2R-stimulated NO production and phagocytosis of FITC-labeled Escherichia coli and pHrodo-Staphylococcus aureus. Our study demonstrates that HSP90 serves as an innate immune modulator by regulating NO production downstream of T2R signaling by augmenting eNOS activation without impairing upstream Ca2+ signaling. These findings suggest that HSP90 plays an important role in airway antibacterial innate immunity and may be an important target in airway diseases such as chronic rhinosinusitis, asthma, or cystic fibrosis.
Collapse
Affiliation(s)
- Ryan M. Carey
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Benjamin M. Hariri
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Chow E, Yang A, Chung CHL, Chan JCN. A Clinical Perspective of the Multifaceted Mechanism of Metformin in Diabetes, Infections, Cognitive Dysfunction, and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15040442. [PMID: 35455439 PMCID: PMC9030054 DOI: 10.3390/ph15040442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
In type 2 diabetes, ecological and lifecourse factors may interact with the host microbiota to influence expression of his/her genomes causing perturbation of interconnecting biological pathways with diverse clinical course. Metformin is a plant-based or plant-derived medicinal product used for the treatment of type 2 diabetes for over 60 years and is an essential drug listed by the World Health Organization. By reducing mitochondrial oxidative phosphorylation and adenosine triphosphate (ATP) production, metformin increased AMP (adenosine monophosphate)-activated protein kinase (AMPK) activity and altered cellular redox state with reduced glucagon activity, endogenous glucose production, lipogenesis, and protein synthesis. Metformin modulated immune response by directly reducing neutrophil to lymphocyte ratio and improving the phagocytic function of immune cells. By increasing the relative abundance of mucin-producing and short-chain-fatty-acid-producing gut microbes, metformin further improved the host inflammatory and metabolic milieu. Experimentally, metformin promoted apoptosis and reduced proliferation of cancer cells by reducing their oxygen consumption and modulating the microenvironment. Both clinical and mechanistic studies support the pluripotent effects of metformin on reducing cardiovascular–renal events, infection, cancer, cognitive dysfunction, and all-cause death in type 2 diabetes, making this low-cost medication a fundamental therapy for individualization of other glucose-lowering drugs in type 2 diabetes. Further research into the effects of metformin on cognitive function, infection and cancer, especially in people without diabetes, will provide new insights into the therapeutic value of metformin in our pursuit of prevention and treatment of ageing-related as well as acute and chronic diseases beyond diabetes.
Collapse
Affiliation(s)
- Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China; (E.C.); (A.Y.); (C.H.L.C.)
- The Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China; (E.C.); (A.Y.); (C.H.L.C.)
- The Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
| | - Colin H. L. Chung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China; (E.C.); (A.Y.); (C.H.L.C.)
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China; (E.C.); (A.Y.); (C.H.L.C.)
- The Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-3505-3138
| |
Collapse
|
28
|
Khattab MH, Shahwan MJ, Hassan NAGM, Jairoun AA. Abnormal High-sensitivity C-reactive Protein is Associated with an Increased Risk of Cardiovascular Disease and Renal Dysfunction among Patients Diagnosed with Type 2 Diabetes Mellitus in Palestine. Rev Diabet Stud 2022; 18:27-33. [PMID: 35300754 PMCID: PMC9382681 DOI: 10.1900/rds.2022.18.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE: In this study, we aimed to evaluate the prevalence of high sensitivity C-reactive protein (hsCRP) as an inflammatory mediator and its association with renal function and other biochemical markers in patients with type 2 diabetes mellitus. METHODS: We carried
out a cross-sectional study at private healthcare center. We included 453 patients (48.6% males and 51.4% females) with type 2 diabetes mellitus. We obtained socio- demographic, clinical, and laboratory data from patient medical records. We carried out statistical analysis to ascertain associations
between parameters. RESULTS: The overall risk of cardiovascular disease (hsCRP > 1 mg/L) among the study participants was 27.2%. Age, gender, body mass index, fasting blood glucose and serum creatinine were significantly associated with risk of cardiovascular disease (hsCRP >
1 mg/L) whereas estimated glomerular filtration rate, vitamin B12, calcium, sodium and metformin users were negatively associated with the hsCRP. CONCLUSIONS: We found a significant positive association of elevated level of C-reactive protein with type 2 diabetes mellitus. Moreover,
additional to increased cardiovascular disease risk, hsCRP also seems to be a major inflammatory risk marker indicating renal function loss.
Collapse
Affiliation(s)
- Mohammed Husham Khattab
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Jamal Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | | | - Ammar Abdulrahman Jairoun
- Consumer Product Safety Section, Public Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
| |
Collapse
|
29
|
Top WMC, Kooy A, Stehouwer CDA. Metformin: A Narrative Review of Its Potential Benefits for Cardiovascular Disease, Cancer and Dementia. Pharmaceuticals (Basel) 2022; 15:312. [PMID: 35337110 PMCID: PMC8951049 DOI: 10.3390/ph15030312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
The biguanide metformin has been used as first-line therapy in type 2 diabetes mellitus (T2DM) treatment for several decades. In addition to its glucose-lowering properties and its prevention of weight gain, the landmark UK Prospective Diabetes Study (UKPDS) demonstrated cardioprotective properties in obese T2DM patients. Coupled with a favorable side effect profile and low cost, metformin has become the cornerstone in the treatment of T2DM worldwide. In addition, metformin is increasingly being investigated for its potential anticancer and neuroprotective properties both in T2DM patients and non-diabetic individuals. In the meantime, new drugs with powerful cardioprotective properties have been introduced and compete with metformin for its place in the treatment of T2DM. In this review we will discuss actual insights in the various working mechanisms of metformin and the evidence for its beneficial effects on (the prevention of) cardiovascular disease, cancer and dementia. In addition to observational evidence, emphasis is placed on randomized trials and recent meta-analyses to obtain an up-to-date overview of the use of metformin in clinical practice.
Collapse
Affiliation(s)
- Wiebe M. C. Top
- Department of Intensive Care, Treant Care Group, 7909 AA Hoogeveen, The Netherlands;
| | - Adriaan Kooy
- Department of Internal Medicine, Treant Care Group, 7909 AA Hoogeveen, The Netherlands
- Bethesda Diabetes Research Center, 7909 AA Hoogeveen, The Netherlands
- Department of Internal Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Coen D. A. Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| |
Collapse
|
30
|
Kurmanbekova BT, Noruizbaeva AM. Cardiovascular Effects of Metformin. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2022. [DOI: 10.20996/1819-6446-2022-02-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes mellitus is one of the most important independent risk factors for the development, progression and mortality from cardiovascular diseases (CVD). The world communities are faced with the question of developing the optimal management tactics for such comorbidity patients. Thus, the prescribed drug should not only have an adequate hypoglycemic effect, but also have a number of cardioprotective properties, be safe in patients with CVD, and possibly even improve the prognosis and reduce mortality rates. This review is devoted to a representative of the biguanide class - metformin, which is one of the earliest and most effective antihyperglycemic drugs, both as monotherapy and in combination with other antihyperglycemic drugs and insulin; while the evidence base for its cardiovascular profile is only gaining momentum. Thus, the purpose of this review is to highlight the cardiovascular effects of metformin in the context of recent research.
Collapse
Affiliation(s)
- B. T. Kurmanbekova
- National Center of cardiology and internal medicine named after academician M.Mirrakhimov
| | - A. M. Noruizbaeva
- National Center of cardiology and internal medicine named after academician M.Mirrakhimov
| |
Collapse
|
31
|
Liu J, Aylor KW, Chai W, Barrett EJ, Liu Z. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. Am J Physiol Endocrinol Metab 2022; 322:E293-E306. [PMID: 35128961 PMCID: PMC8897003 DOI: 10.1152/ajpendo.00240.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Insulin increases muscle microvascular perfusion, which contributes to its metabolic action in muscle, but this action is impaired in obesity. Metformin improves endothelial function beyond its glucose lowering effects. We aim to examine whether metformin could prevent microvascular insulin resistance and endothelial dysfunction during the development of obesity. Adult male rats were fed a high-fat diet (HFD) with or without simultaneous metformin administration for either 2 or 4 wk. Insulin's metabolic and microvascular actions were determined using a combined euglycemic-hyperinsulinemic clamp and contrast-enhanced ultrasound approach. Compared with chow-fed controls, HFD feeding increased body adiposity without excess body weight gain, and this was associated with a marked decrease in insulin-mediated whole body glucose disposal and abolishment of insulin-induced muscle microvascular recruitment. Simultaneous administration of metformin fully rescued insulin-induced muscle microvascular recruitment as early as 2 wk and normalized insulin-mediated whole body glucose disposal at week 4. The divergent responses between insulin's microvascular and metabolic actions seen at week 2 were accompanied with reduced endothelial oxidative stress and vascular inflammation, and improved endothelial function and vascular insulin signaling in metformin-treated rats. In conclusions, metformin could prevent the development of microvascular insulin resistance and endothelial dysfunction by alleviating endothelial oxidative stress and vascular inflammation during obesity development.NEW & NOTEWORTHY Muscle microvascular insulin action contributes to insulin-mediated glucose use. Microvascular insulin resistance is an early event in diet-induced obesity and is associated with vascular inflammation. Metformin effectively reduces endothelial oxidative stress, improves endothelial function, and prevents microvascular insulin resistance during obesity development. These may contribute to metformin's salutary diabetes prevention and cardiovascular protective actions.
Collapse
Affiliation(s)
- Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Weidong Chai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
32
|
Pavic K, Chippalkatti R, Abankwa D. Drug targeting opportunities en route to Ras nanoclusters. Adv Cancer Res 2022; 153:63-99. [PMID: 35101236 DOI: 10.1016/bs.acr.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disruption of the native membrane organization of Ras by the farnesyltransferase inhibitor tipifarnib in the late 1990s constituted the first indirect approach to drug target Ras. Since then, our understanding of how dynamically Ras shuttles between subcellular locations has changed significantly. Ras proteins have to arrive at the plasma membrane for efficient MAPK-signal propagation. On the plasma membrane Ras proteins are organized into isoform specific proteo-lipid assemblies called nanocluster. Recent evidence suggests that Ras nanocluster have a specific lipid composition, which supports the recruitment of effectors such as Raf. Conversely, effectors possess lipid-recognition motifs, which appear to serve as co-incidence detectors for the lipid domain of a given Ras isoform. Evidence suggests that dimeric Raf proteins then co-assemble dimeric Ras in an immobile complex, thus forming the minimal unit of an active nanocluster. Here we review established and novel trafficking chaperones and trafficking factors of Ras, along with the set of lipid and protein modulators of Ras nanoclustering. We highlight drug targeting approaches and opportunities against these determinants of functional Ras membrane organization. Finally, we reflect on implications for Ras signaling in polarized cells, such as epithelia, which are a common origin of tumorigenesis.
Collapse
Affiliation(s)
- Karolina Pavic
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
33
|
Kiyooka T, Ohanyan V, Yin L, Pung YF, Chen YR, Chen CL, Kang PT, Hardwick JP, Yun J, Janota D, Peng J, Kolz C, Guarini G, Wilson G, Shokolenko I, Stevens DA, Chilian WM. Mitochondrial DNA integrity and function are critical for endothelium-dependent vasodilation in rats with metabolic syndrome. Basic Res Cardiol 2022; 117:3. [PMID: 35039940 PMCID: PMC9030679 DOI: 10.1007/s00395-021-00908-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/31/2023]
Abstract
Endothelial dysfunction in diabetes is generally attributed to oxidative stress, but this view is challenged by observations showing antioxidants do not eliminate diabetic vasculopathy. As an alternative to oxidative stress-induced dysfunction, we interrogated if impaired mitochondrial function in endothelial cells is central to endothelial dysfunction in the metabolic syndrome. We observed reduced coronary arteriolar vasodilation to the endothelium-dependent dilator, acetylcholine (Ach), in Zucker Obese Fatty rats (ZOF, 34 ± 15% [mean ± standard deviation] 10-3 M) compared to Zucker Lean rats (ZLN, 98 ± 11%). This reduction in dilation occurred concomitantly with mitochondrial DNA (mtDNA) strand lesions and reduced mitochondrial complex activities in the endothelium of ZOF versus ZLN. To demonstrate endothelial dysfunction is linked to impaired mitochondrial function, administration of a cell-permeable, mitochondria-directed endonuclease (mt-tat-EndoIII), to repair oxidatively modified DNA in ZOF, restored mitochondrial function and vasodilation to Ach (94 ± 13%). Conversely, administration of a cell-permeable, mitochondria-directed exonuclease (mt-tat-ExoIII) produced mtDNA strand breaks in ZLN, reduced mitochondrial complex activities and vasodilation to Ach in ZLN (42 ± 16%). To demonstrate that mitochondrial function is central to endothelium-dependent vasodilation, we introduced (via electroporation) liver mitochondria (from ZLN) into the endothelium of a mesenteric vessel from ZOF and restored endothelium-dependent dilation to vasoactive intestinal peptide (VIP at 10-5 M, 4 ± 3% vasodilation before mitochondrial transfer and 48 ± 36% after transfer). Finally, to demonstrate mitochondrial function is key to endothelium-dependent dilation, we administered oligomycin (mitochondrial ATP synthase inhibitor) and observed a reduction in endothelium-dependent dilation. We conclude that mitochondrial function is critical for endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Takahiko Kiyooka
- Division of Cardiology, Tokai University Oiso Hospital, Oiso, Kanagawa, Japan
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Yuh Fen Pung
- Division of Biomedical Sciences, University of Nottingham, Malaysia Campus, Selangor, Malaysia
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Patrick T Kang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - June Yun
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Danielle Janota
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Joanna Peng
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Giacinta Guarini
- Cardiovascular Unit, Spedali Riuniti Santa Maria Maddalena, Volterra, Italy
| | - Glenn Wilson
- Department of Biomedical Science, University of South Alabama, Mobile, USA
| | - Inna Shokolenko
- Department of Biomedical Science, University of South Alabama, Mobile, USA
| | - Donte A Stevens
- Division of Biological Sciences, University of California-San Diego, San Diego, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA.
| |
Collapse
|
34
|
Ives Tallman C, Zhang Y, Black N, Lynch K, Fayed M, Armenian P. Refractory vasodilatory shock secondary to metformin overdose supported with VA ECMO. Toxicol Rep 2022; 9:64-67. [PMID: 35004183 PMCID: PMC8718576 DOI: 10.1016/j.toxrep.2021.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/27/2023] Open
Abstract
Metformin overdose can lead to vasodilatory shock refractory to medical management. Extracorporeal circulatory support with venoarterial ECMO is an effective way to manage profound shock associated with metformin overdose. We report the highest recorded serum metformin level in the literature to date.
Metformin overdose may result in vasodilatory shock, lactic acidosis and death. Hemodialysis is an effective means of extracorporeal elimination, but may be insufficient in the shock setting. We present a case of a 39 yo male who presented with hypotension, coma, hypoglycemia, and lactate of 6.5 mmol/L after ingesting an unknown medication. Metformin overdose was suspected, and he was started on hemodialysis. He developed profound vasoplegia refractory to high doses of norepinephrine, vasopressin, epinephrine and phenylephrine. Venoarterial extracorporeal membrane oxygenation (VA ECMO) was initiated and he had full recovery. Serum analysis with high resolution liquid chromatography mass spectrometry revealed a metformin level of 678 μg/mL and trazodone level of 2.1 μg/mL. This case is one of only a handful of reported cases of metformin overdose requiring ECMO support, and we report the highest serum metformin levels in the literature to date. We recommend early aggressive hemodialysis and vasopressor support in all suspected cases of metformin toxicity as well as VA ECMO if refractory to these therapies. Objective We present a case of vasodilatory shock secondary to metformin overdose requiring venoarterial extracorporeal membrane oxygenation (VA ECMO) support. This case is one of only a handful of reported cases of metformin overdose requiring ECMO support, and we report the highest serum metformin levels in the literature to date. Data sources University of San Francisco, Fresno. Study design Case report. Data extraction Clinical records and high resolution liquid chromatography mass spectroscopy analysis. Data synthesis None. Conclusions Venoarterial ECMO provided an effective means of hemodynamic support for a patient with severe metformin toxicity.
Collapse
Affiliation(s)
- Crystal Ives Tallman
- UCSF Fresno Department of Emergency Medicine, United States.,UCSF Fresno Department of Medicine, Pulmonary Critical Care Division, United States
| | - Yu Zhang
- UCSF Department of Laboratory Medicine, Division of Clinical Chemistry, San Francisco, CA, United States
| | - Nicholas Black
- UCSF Fresno Department of Emergency Medicine, United States
| | - Kara Lynch
- UCSF Department of Laboratory Medicine, Division of Clinical Chemistry, San Francisco, CA, United States
| | - Mohamed Fayed
- UCSF Fresno Department of Medicine, Pulmonary Critical Care Division, United States
| | - Patil Armenian
- UCSF Fresno Department of Emergency Medicine, United States
| |
Collapse
|
35
|
Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules 2021; 11:biom11121834. [PMID: 34944478 PMCID: PMC8698925 DOI: 10.3390/biom11121834] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide major health burden and heart failure (HF) is the most common cardiovascular (CV) complication in affected patients. Therefore, identifying the best pharmacological approach for glycemic control, which is also useful to prevent and ameliorate the prognosis of HF, represents a crucial issue. Currently, the choice is between the new drugs sodium/glucose co-transporter 2 inhibitors that have consistently shown in large CV outcome trials (CVOTs) to reduce the risk of HF-related outcomes in T2DM, and metformin, an old medicament that might end up relegated to the background while exerting interesting protective effects on multiple organs among which include heart failure. When compared with other antihyperglycemic medications, metformin has been demonstrated to be safe and to lower morbidity and mortality for HF, even if these results are difficult to interpret as they emerged mainly from observational studies. Meta-analyses of randomized controlled clinical trials have not produced positive results on the risk or clinical course of HF and sadly, large CV outcome trials are lacking. The point of force of metformin with respect to new diabetic drugs is the amount of data from experimental investigations that, for more than twenty years, still continues to provide mechanistic explanations of the several favorable actions in heart failure such as, the improvement of the myocardial energy metabolic status by modulation of glucose and lipid metabolism, the attenuation of oxidative stress and inflammation, and the inhibition of myocardial cell apoptosis, leading to reduced cardiac remodeling and preserved left ventricular function. In the hope that specific large-scale trials will be carried out to definitively establish the metformin benefit in terms of HF failure outcomes, we reviewed the literature in this field, summarizing the available evidence from experimental and clinical studies reporting on effects in heart metabolism, function, and structure, and the prominent pathophysiological mechanisms involved.
Collapse
|
36
|
Kubra KT, Uddin MA, Akhter MS, Leo AJ, Siejka A, Barabutis N. P53 mediates the protective effects of metformin in inflamed lung endothelial cells. Int Immunopharmacol 2021; 101:108367. [PMID: 34794886 DOI: 10.1016/j.intimp.2021.108367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
The endothelial barrier regulates interstitial fluid homeostasis by transcellular and paracellular means. Dysregulation of this semipermeable barrier may lead to vascular leakage, edema, and accumulation of pro-inflammatory cytokines, inducing microvascular hyperpermeability. Investigating the molecular pathways involved in those events will most probably provide novel therapeutic possibilities in pathologies related to endothelial barrier dysfunction. Metformin (MET) is an anti-diabetic drug, opposes malignancies, inhibits cellular transformation, and promotes cardiovascular protection. In the current study, we assess the protective effects of MET in LPS-induced lung endothelial barrier dysfunction and evaluate the role of P53 in mediating the beneficial effects of MET in the vasculature. We revealed that this biguanide (MET) opposes the LPS-induced dysregulation of the lung microvasculature, since it suppressed the formation of filamentous actin stress fibers, and deactivated cofilin. To investigate whether P53 is involved in those phenomena, we employed the fluorescein isothiocyanate (FITC) - dextran permeability assay, to measure paracellular permeability. Our observations suggest that P53 inhibition increases paracellular permeability, and MET prevents those effects. Our results contribute towards the understanding of the lung endothelium and reveal the significant role of P53 in the MET-induced barrier enhancement.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Antoinette J Leo
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
37
|
Yang Q, Ma Q, Xu J, Liu Z, Mao X, Zhou Y, Cai Y, Da Q, Hong M, Weintraub NL, Fulton DJ, Belin de Chantemèle EJ, Huo Y. Endothelial AMPKα1/PRKAA1 exacerbates inflammation in HFD-fed mice. Br J Pharmacol 2021; 179:1661-1678. [PMID: 34796475 PMCID: PMC9112062 DOI: 10.1111/bph.15742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Excess nutrient-induced endothelial cell inflammation is a hallmark in high fat diet (HFD)-induced metabolic syndrome. Pharmacological activation of protein kinase AMP-activated alpha 1(PRKAA1)/5'-Adenosine monophosphate-activated protein kinase alpha1 (AMPKα1) shows its beneficial effects in many studies of cardiometabolic disorders. However, AMPKα1, as a major cellular sensor of energy and nutrients in endothelial cells, has not been studied for its physiological role in excess nutrient-induced endothelial cell (EC) inflammation. EXPERIMENTAL APPROACH Wild-type and EC-specific Prkaa1 knockout mice were fed with an HFD. Body weight, fat mass composition, glucose and lipid levels were monitored regularly. Insulin sensitivity was analyzed systemically and in major metabolic organs/tissues. Inflammation status in metabolic organs/tissues were examined with quantitative RT-PCR and flow cytometry. Additionally, metabolic status, inflammation severity and signaling in cultured ECs were assayed with multiple approaches at the molecular level. KEY RESULTS EC Prkaa1 deficiency unexpectedly alleviated HFD-induced metabolic syndromes including decreased body weight and fat mass, enhanced glucose clearance and insulin sensitivity, and relieved adipose inflammation and hepatic steatosis. Mechanistically, PRKAA1 knockdown in cultured ECs reduced endothelial glycolysis and fatty acid oxidation, decreased the levels of acetyl-coA, and suppressed transcription of inflammatory molecules mediated by ATP citrate lyase (ACLY) and histone acetyltransferase p300. CONCLUSIONS AND IMPLICATIONS This unexpected pro-inflammatory effect of endothelial AMPKα1/PRKAA1 in metabolic context provides additional insight in AMPKα1/PRKAA1 activities, warranting that in-depth study and thoughtful consideration should be applied when AMPKα1/PRKAA1 is used as a therapeutic target in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Qiuhua Yang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Qian Ma
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen, China
| | - Jiean Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen, China
| | - Zhiping Liu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoxiao Mao
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen, China
| | - Yaqi Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen, China
| | - Yongfeng Cai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen, China
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen, China
| | - Neal L Weintraub
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David J Fulton
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
38
|
Ding Y, Zhou Y, Ling P, Feng X, Luo S, Zheng X, Little PJ, Xu S, Weng J. Metformin in cardiovascular diabetology: a focused review of its impact on endothelial function. Am J Cancer Res 2021; 11:9376-9396. [PMID: 34646376 PMCID: PMC8490502 DOI: 10.7150/thno.64706] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
As a first-line treatment for diabetes, the insulin-sensitizing biguanide, metformin, regulates glucose levels and positively affects cardiovascular function in patients with diabetes and cardiovascular complications. Endothelial dysfunction (ED) represents the primary pathological change of multiple vascular diseases, because it causes decreased arterial plasticity, increased vascular resistance, reduced tissue perfusion and atherosclerosis. Caused by “biochemical injury”, ED is also an independent predictor of cardiovascular events. Accumulating evidence shows that metformin improves ED through liver kinase B1 (LKB1)/5'-adenosine monophosphat-activated protein kinase (AMPK) and AMPK-independent targets, including nuclear factor-kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), forkhead box O1 (FOXO1), krüppel-like factor 4 (KLF4) and krüppel-like factor 2 (KLF2). Evaluating the effects of metformin on endothelial cell functions would facilitate our understanding of the therapeutic potential of metformin in cardiovascular diabetology (including diabetes and its cardiovascular complications). This article reviews the physiological and pathological functions of endothelial cells and the intact endothelium, reviews the latest research of metformin in the treatment of diabetes and related cardiovascular complications, and focuses on the mechanism of action of metformin in regulating endothelial cell functions.
Collapse
|
39
|
Voglhuber J, Ljubojevic-Holzer S, Abdellatif M, Sedej S. Targeting Cardiovascular Risk Factors Through Dietary Adaptations and Caloric Restriction Mimetics. Front Nutr 2021; 8:758058. [PMID: 34660673 PMCID: PMC8514725 DOI: 10.3389/fnut.2021.758058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The average human life expectancy continues to rise globally and so does the prevalence and absolute burden of cardiovascular disease. Dietary restriction promotes longevity and improves various cardiovascular risk factors, including hypertension, obesity, diabetes mellitus, and metabolic syndrome. However, low adherence to caloric restriction renders this stringent dietary intervention challenging to adopt as a standard practice for cardiovascular disease prevention. Hence, alternative eating patterns and strategies that recapitulate the salutary benefits of caloric restriction are under intense investigation. Here, we first provide an overview of alternative interventions, including intermittent fasting, alternate-day fasting and the Mediterranean diet, along with their cardiometabolic effects in animal models and humans. We then present emerging pharmacological alternatives, including spermidine, NAD+ precursors, resveratrol, and metformin, as promising caloric restriction mimetics, and briefly touch on the mechanisms underpinning their cardiometabolic and health-promoting effects. We conclude that implementation of feasible dietary approaches holds the promise to attenuate the burden of cardiovascular disease and facilitate healthy aging in humans.
Collapse
Affiliation(s)
- Julia Voglhuber
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Senka Ljubojevic-Holzer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par La Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institute Universitaire de France, Paris, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
40
|
Gao J, Pan X, Li G, Chatterjee E, Xiao J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J Cardiovasc Transl Res 2021; 15:604-620. [PMID: 34533746 PMCID: PMC8447895 DOI: 10.1007/s12265-021-10171-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Increasing evidence shows that endothelial cells play critical roles in maintaining vascular homeostasis, regulating vascular tone, inhibiting inflammatory response, suppressing lipid leakage, and preventing thrombosis. The damage or injury of endothelial cells induced by physical, chemical, and biological risk factors is a leading contributor to the development of mortal cardiovascular and cerebrovascular diseases. However, the underlying mechanism of endothelial injury remains to be elucidated. Notably, no drugs effectively targeting and mending injured vascular endothelial cells have been approved for clinical practice. There is an urgent need to understand pathways important for repairing injured vasculature that can be targeted with novel therapies. Exercise training-induced protection to endothelial injury has been well documented in clinical trials, and the underlying mechanism has been explored in animal models. This review mainly summarizes the protective effects of exercise on vascular endothelium and the recently identified potential therapeutic targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
41
|
Kan C, Zhang Y, Han F, Xu Q, Ye T, Hou N, Sun X. Mortality Risk of Antidiabetic Agents for Type 2 Diabetes With COVID-19: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:708494. [PMID: 34603199 PMCID: PMC8481667 DOI: 10.3389/fendo.2021.708494] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS We conducted a systematic review and meta-analysis to assess various antidiabetic agents' association with mortality in patients with type 2 diabetes (T2DM) who have coronavirus disease 2019 (COVID-19). METHODS We performed comprehensive literature retrieval from the date of inception until February 2, 2021, in medical databases (PubMed, Web of Science, Embase, and Cochrane Library), regarding mortality outcomes in patients with T2DM who have COVID-19. Pooled OR and 95% CI data were used to assess relationships between antidiabetic agents and mortality. RESULTS Eighteen studies with 17,338 patients were included in the meta-analysis. Metformin (pooled OR, 0.69; P=0.001) and sulfonylurea (pooled OR, 0.80; P=0.016) were associated with lower mortality risk in patients with T2DM who had COVID-19. However, patients with T2DM who had COVID-19 and received insulin exhibited greater mortality (pooled OR, 2.20; P=0.002). Mortality did not significantly differ (pooled OR, 0.72; P=0.057) between DPP-4 inhibitor users and non-users. CONCLUSIONS Metformin and sulfonylurea could be associated with reduced mortality risk in patients with T2DM who have COVID-19. Furthermore, insulin use could be associated with greater mortality, while DPP-4 inhibitor use could not be. The effects of antidiabetic agents in patients with T2DM who have COVID-19 require further exploration. SYSTEMATIC REVIEW REGISTRATION PROSPERO (identifier, CRD42021242898).
Collapse
Affiliation(s)
- Chengxia Kan
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yang Zhang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qian Xu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Tongtong Ye
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
42
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
43
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
44
|
Maruhashi T, Higashi Y. Pathophysiological Association between Diabetes Mellitus and Endothelial Dysfunction. Antioxidants (Basel) 2021; 10:antiox10081306. [PMID: 34439553 PMCID: PMC8389282 DOI: 10.3390/antiox10081306] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction plays a critical role in atherosclerosis progression, leading to cardiovascular complications. There are significant associations between diabetes mellitus, oxidative stress, and endothelial dysfunction. Oxidative stress is increased by chronic hyperglycemia and acute glucose fluctuations induced by postprandial hyperglycemia in patients with diabetes mellitus. In addition, selective insulin resistance in the phosphoinositide 3-kinase/Akt/endothelial nitric oxide (NO) synthase pathway in endothelial cells is involved in decreased NO production and increased endothelin-1 production from the endothelium, resulting in endothelial dysfunction. In a clinical setting, selecting an appropriate therapeutic intervention that improves or augments endothelial function is important for preventing diabetic vascular complications. Hypoglycemic drugs that reduce glucose fluctuations by decreasing the postprandial rise in blood glucose levels, such as glinides, α-glucosidase inhibitors and dipeptidyl peptidase 4 inhibitors, and hypoglycemic drugs that ameliorate insulin sensitivity, such as thiazolidinediones and metformin, are expected to improve or augment endothelial function in patients with diabetes. Glucagon-like peptide 1 receptor agonists, metformin, and sodium-glucose cotransporter 2 inhibitors may improve endothelial function through multiple mechanisms, some of which are independent of glucose control or insulin signaling. Oral administration of antioxidants is not recommended in patients with diabetes due to the lack of evidence for the efficacy against diabetic complications.
Collapse
Affiliation(s)
- Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-82-257-5831
| |
Collapse
|
45
|
Ionică LN, Gaiță L, Bînă AM, Soșdean R, Lighezan R, Sima A, Malița D, Crețu OM, Burlacu O, Muntean DM, Sturza A. Metformin alleviates monoamine oxidase-related vascular oxidative stress and endothelial dysfunction in rats with diet-induced obesity. Mol Cell Biochem 2021; 476:4019-4029. [PMID: 34216348 DOI: 10.1007/s11010-021-04194-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
In the past decade, monoamine oxidase (MAO) with 2 isoforms, MAO-A and B, has emerged as an important source of mitochondrial reactive oxygen species (ROS) in cardio-metabolic pathologies. We have previously reported that MAO-related oxidative stress mediates endothelial dysfunction in rodent models of diabetes and diabetic patients; however, the role of MAO in the vascular impairment associated to obesity has not been investigated so far. Metformin (METF), the first-line drug in the therapy of type 2 diabetes mellitus, has been reported to elicit vasculoprotective effects via partially elucidated mechanisms. The present study was purported to assess the effects of METF on MAO expression, ROS production and vasomotor function of aortas isolated from rats with diet-induced obesity. After 24 weeks of high calorie junk food (HCJF) diet, isolated aortic rings were prepared and treated with METF (10 μM, 12 h incubation). Measurements of MAO expression (quantitative PCR and immune histochemistry), ROS production (spectrometry and immune-fluorescence) and vascular reactivity (myograph studies) were performed in rat aortic rings. MAO expression was upregulated in aortic rings isolated from obese rats together with an increase in ROS production and an impairment of vascular reactivity. METF decreased MAO expression and ROS generation, reduced vascular contractility and improved the endothelium-dependent relaxation in the diseased vascular preparations. In conclusion, METF elicited vascular protective effects via the mitigation of MAO-related oxidative stress in the rat model of diet-induced obesity.
Collapse
Affiliation(s)
- Loredana N Ionică
- Department of Functional Sciences III, Discipline of Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timişoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Laura Gaiță
- Department of Internal Medicine VII, Discipline of Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Anca M Bînă
- Department of Functional Sciences III, Discipline of Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timişoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania.,Department of Internal Medicine VII, Discipline of Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Raluca Soșdean
- Department of Cardiology VI, 2nd Discipline of Cardiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Rodica Lighezan
- Department of Infectious Diseases XIII, Discipline of Parasitology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Alexandra Sima
- Department of Internal Medicine VII, Discipline of Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Daniel Malița
- Department XV, Discipline of Radiology and Medical Imagistics, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Octavian M Crețu
- Department of Surgery IX, Discipline of Surgical Semiotics 1, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Ovidiu Burlacu
- Department of Surgery IX, Discipline of Surgical Semiotics 1, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.
| | - Danina M Muntean
- Department of Functional Sciences III, Discipline of Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timişoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania.
| | - Adrian Sturza
- Department of Functional Sciences III, Discipline of Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timişoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| |
Collapse
|
46
|
Engin S, Yasar YK, Barut EN, Sezen SF. Improved Endothelium-Dependent Relaxation of Thoracic Aorta in Niclosamide-Treated Diabetic Rats. Cardiovasc Toxicol 2021; 21:563-571. [PMID: 33772737 DOI: 10.1007/s12012-021-09647-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 01/06/2023]
Abstract
Diabetes-induced endothelial dysfunction is critical for the development of diabetic cardiovascular complications. The aim of this study was to investigate the effect of niclosamide (Nic) on vascular endothelial dysfunction in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were injected with a single intraperitoneal injection of STZ (75 mg/kg) to induce type 1 diabetes, and Nic (10 mg/kg) was intraperitoneally administered per day for 4 weeks. Endothelial function was evaluated as carbachol (CCh, an endothelium-dependent vasodilator)-evoked relaxation in the experiments performed on isolated thoracic aortas. The changes in the protein expressions of phosphorylated eNOS at serine 1177 (p-eNOSSer1177) and phosphorylated VASP at serine 239 (p-VASPSer239) of the rat aortas were analyzed by western blotting to determine whether NO/cGMP signaling is involved in the mechanism of Nic. STZ-injected rats had higher fasting blood glucose and less body weight compared to control rats (p < 0.05). Nic treatment did not affect blood glucose levels or body weights of the rats. CCh-induced endothelium-dependent relaxation of the aortic rings was significantly decreased in diabetic rats compared to control (Emax = 66.79 ± 7.41% and 90.28 ± 5.55%, respectively; p < 0.05). CCh-induced relaxation response was greater in Nic-treated diabetic rats compared to diabetic rats (Emax = 91.56 ± 1.20% and 66.79 ± 7.41%, respectively; p < 0.05). Phosphorylation of eNOS and VASP in aortic tissues was significantly reduced in diabetic rats, which were markedly increased by Nic treatment (p < 0.05). We demonstrated that Nic improved endothelial dysfunction possibly through the activation of NO/cGMP signaling without affecting hyperglycemia in diabetic rats. Our results suggesting that Nic has potential of repurposing for diabetic cardiovascular complications.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Cell Adhesion Molecules/metabolism
- Cyclic GMP/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Angiopathies/chemically induced
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Drug Repositioning
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Male
- Microfilament Proteins/metabolism
- Niclosamide/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Rats, Sprague-Dawley
- Streptozocin
- Vasodilation/drug effects
- Rats
Collapse
Affiliation(s)
- Seckin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey.
| | - Yesim Kaya Yasar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
47
|
Sutkowska E, Fortuna P, Kałuża B, Sutkowska K, Wiśniewski J, Prof AG. Metformin has no impact on nitric oxide production in patients with pre-diabetes. Biomed Pharmacother 2021; 140:111773. [PMID: 34062418 DOI: 10.1016/j.biopha.2021.111773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS/INTRODUCTION The authors evaluated the impact of different dose of metformin on NO (nitric oxide) production in subjects with pre-diabetes. MATERIALS AND METHODS The metformin-naïve patients from one Diabetic Center with newly diagnosed pre-diabetes, without cardio-vascular diseases, were randomized (based on the identification number, individual for each inhabitant in the country) for treatment with different doses of metformin (group A 3 × 500 mg, group B 3 × 1000 mg) for 12 weeks. Then, the subjects from group B were switched to dose 3 × 500 for the last 3 weeks. The wide panel of L-arginine/NO pathway metabolites concentrations was assessed using the liquid chromatography-mass spectrometry technique. RESULTS Between October 2017 and December 2018, 36 individuals were initially randomized to intervention groups. The study was completed with 25 subjects: 14 patients in group A, 11 in group B; also 11 healthy volunteers were recruited. There was no difference between participants with pre-diabetes and healthy volunteers as regards the baseline characteristics except for fasting glucose and fatty liver. The decrease of L-citrulline concentration only was reported for treatment groups during the intervention period, with no change for the other NO-production related substances. CONCLUSION It was the first study on the in vivo release of NO in humans with different metformin doses in patients with pre-diabetes. Metformin did not seem to increase NO production measured by the citrulline plasma levels, irrespective of the dose. The citrulline concentration change might indicate the drug impact on the condition of the enterocytes.
Collapse
Affiliation(s)
- Edyta Sutkowska
- Department and Division of Medical Rehabilitation, Wroclaw Medical University, Wroclaw, Poland.
| | - Paulina Fortuna
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Bernadetta Kałuża
- Department of Internal Medicine, Endocrinology and Diabetology, Central Clinical Hospital of the Ministry of the Interior, Warsaw, Poland.
| | | | - Jerzy Wiśniewski
- Central Laboratory of Instrumental Analysis, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Andrzej Gamian Prof
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
48
|
Haxhi J, Thompson PD. Rationale for the use of metformin and exercise to counteract statin-associated side effects. Int J Clin Pract 2021; 75:e13900. [PMID: 33277775 DOI: 10.1111/ijcp.13900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Statins are the most widely prescribed drugs for lowering low-density lipoprotein cholesterol (LDL-C) and reducing cardiovascular morbidity and mortality. They are usually well-tolerated, but have two main safety concerns: statin-associated muscle symptoms (SAMS) and new-onset type 2 diabetes (NOD). METHODS A PubMed search was carried out using the following key words were used: statins, statin-associated muscle symptoms, statin myalgia, statin-associated diabetes, metformin and statins, exercise and statins. RESULTS Mitochondrial damage and muscle atrophy are likely the central mechanisms producing SAMS, whereas decreased glucose transport, fatty acid oxidation and insulin secretion are likely involved in the development of NOD. Metformin and exercise training share many pathways that could potentially contrast SAMS and NOD. Clinical evidence also supports the combination of statins with metformin and exercise. CONCLUSION This combination appears attractive both from a clinical and an economical viewpoint, since all three therapies are highly cost-effective and their combination could result in diabetes and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Jonida Haxhi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Division of Cardiology, Hartford Hospital, Hartford, CT, USA
| | - Paul D Thompson
- Division of Cardiology, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
49
|
Rodríguez C, Muñoz M, Contreras C, Prieto D. AMPK, metabolism, and vascular function. FEBS J 2021; 288:3746-3771. [PMID: 33825330 DOI: 10.1111/febs.15863] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress that plays a key role in maintaining energy homeostasis. This ubiquitous signaling pathway has been implicated in multiple functions including mitochondrial biogenesis, redox regulation, cell growth and proliferation, cell autophagy and inflammation. The protective role of AMPK in cardiovascular function and the involvement of dysfunctional AMPK in the pathogenesis of cardiovascular disease have been highlighted in recent years. In this review, we summarize and discuss the role of AMPK in the regulation of blood flow in response to metabolic demand and the basis of the AMPK physiological anticontractile, antioxidant, anti-inflammatory, and antiatherogenic actions in the vascular system. Investigations by others and us have demonstrated the key role of vascular AMPK in the regulation of endothelial function, redox homeostasis, and inflammation, in addition to its protective role in the hypoxia and ischemia/reperfusion injury. The pathophysiological implications of AMPK involvement in vascular function with regard to the vascular complications of metabolic disease and the therapeutic potential of AMPK activators are also discussed.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
50
|
Ion Transport Modulators Differentially Modulate Inflammatory Responses in THP-1-Derived Macrophages. J Immunol Res 2021; 2021:8832586. [PMID: 33928172 PMCID: PMC8049803 DOI: 10.1155/2021/8832586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
Ion transport modulators are most commonly used to treat various noncommunicable diseases including diabetes and hypertension. They are also known to bind to receptors on various immune cells, but the immunomodulatory properties of most ion transport modulators have not been fully elucidated. We assessed the effects of thirteen FDA-approved ion transport modulators, namely, ambroxol HCl, amiloride HCl, diazoxide, digoxin, furosemide, hydrochlorothiazide, metformin, omeprazole, pantoprazole, phenytoin, verapamil, drug X, and drug Y on superoxide production, nitric oxide production, and cytokine expression by THP-1-derived macrophages that had been stimulated with ethanol-inactivated Mycobacterium bovis BCG. Ambroxol HCl, diazoxide, digoxin, furosemide, hydrochlorothiazide, metformin, pantoprazole, phenytoin, verapamil, and drug Y had an inhibitory effect on nitric oxide production, while all the test drugs had an inhibitory effect on superoxide production. Amiloride HCl, diazoxide, digoxin, furosemide, phenytoin, verapamil, drug X, and drug Y enhanced the expression of IL-1β and TNF-α. Unlike most immunomodulatory compounds currently in clinical use, most of the test drugs inhibited some inflammatory processes while promoting others. Ion pumps and ion channels could therefore serve as targets for more selective immunomodulatory agents which do not cause overt immunosuppression.
Collapse
|