1
|
Ghazi R, Ibrahim TK, Nasir JA, Gai S, Ali G, Boukhris I, Rehman Z. Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review. RSC Adv 2025; 15:11587-11616. [PMID: 40230636 PMCID: PMC11995399 DOI: 10.1039/d5ra00728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Iron-oxide nanoparticles (IONPs) have garnered substantial attention in both research and technological domains due to their exceptional chemical and physical properties. These nanoparticles have mitigated the adverse effects of conventional treatment procedures by facilitating advanced theranostic approaches in integration with biomedicine. These IONPs have been extensively utilized in MRI (as contrast agents in diagnosis), drug delivery (as drug carriers), and hyperthermia (treatment), demonstrating promising results with potential for further enhancement. This study elucidates the operational principles of these NPs during diagnosis, drug delivery, and treatment, and emphasizes their precision and efficacy in transporting therapeutic agents to targeted sites without drug loss. It also analyses various challenges associated with the application of these IONPs in this field, such as biocompatibility, agglomeration, and toxicity. Furthermore, diverse strategies have been delineated to address these challenges. Overall, this review provides a comprehensive overview of the applications of IONPs in the field of biomedicine and treatment, along with the associated challenges. It offers significant assistance to researchers, professionals, and clinicians in the field of biomedicine.
Collapse
Affiliation(s)
- Rizwana Ghazi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Talib K Ibrahim
- Department of Petroleum Engineering, College of Engineering, Knowledge University Erbil Iraq
- Department of Petroleum Engineering, Al-Kitab University Altun Kupri Iraq
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 P. R. China
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH Nilore Islamabad Pakistan
| | - Imed Boukhris
- Department of Physics, Faculty of Science, King Khalid University P. O. Box 9004 Abha Saudi Arabia
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| |
Collapse
|
2
|
Alavian F, Khodabakhshi F, Chenary FH. Biosensors for early stroke detection. Clin Chim Acta 2025; 567:120079. [PMID: 39643153 DOI: 10.1016/j.cca.2024.120079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This article aims to provide a comprehensive review of the latest advances in biosensor technology for early stroke diagnosis. Analyzing current research from authoritative databases highlights the significance of biosensors in improving stroke detection and treatment outcomes, discusses their diagnostic capabilities, and addresses the challenges that must be overcome for broader clinical application. This review utilizes updated information and valid research from ISI, Google Scholar, Science Direct, Scopus, and PubMed to examine recent developments in biosensors applicable to early stroke diagnosis. The results indicate that biosensors are crucial for the early detection of strokes, and enhance treatment efficacy. The biosensors studied in this research serve as rapid and non-intrusive diagnostic instruments with exceptional precision and detection capabilities. Cutting-edge biosensors can identify distinct stroke-related biomarkers, offering rapid and non-invasive diagnostic solutions to improve stroke care outcomes. Despite these advancements, significant challenges remain regarding the sensitivity, specificity, and reliability of biosensors. These issues must be resolved to facilitate their widespread implementation in clinical settings.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Department of Biology Education, Farhangian University, PO Box 889-14665, Tehran, Iran.
| | - Fatemeh Khodabakhshi
- Biology Secretary, Laran Region, Shahrekord, Chaharmahal and Bakhtiari Province, Iran
| | | |
Collapse
|
3
|
Palomino-Cano C, Moreno E, Irache JM, Espuelas S. Targeting and activation of macrophages in leishmaniasis. A focus on iron oxide nanoparticles. Front Immunol 2024; 15:1437430. [PMID: 39211053 PMCID: PMC11357945 DOI: 10.3389/fimmu.2024.1437430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages play a pivotal role as host cells for Leishmania parasites, displaying a notable functional adaptability ranging from the proinflammatory, leishmanicidal M1 phenotype to the anti-inflammatory, parasite-permissive M2 phenotype. While macrophages can potentially eradicate amastigotes through appropriate activation, Leishmania employs diverse strategies to thwart this activation and redirect macrophages toward an M2 phenotype, facilitating its survival and replication. Additionally, a competition for iron between the two entities exits, as iron is vital for both and is also implicated in macrophage defensive oxidative mechanisms and modulation of their phenotype. This review explores the intricate interplay between macrophages, Leishmania, and iron. We focus the attention on the potential of iron oxide nanoparticles (IONPs) as a sort of immunotherapy to treat some leishmaniasis forms by reprogramming Leishmania-permissive M2 macrophages into antimicrobial M1 macrophages. Through the specific targeting of iron in macrophages, the use of IONPs emerges as a promising strategy to finely tune the parasite-host interaction, endowing macrophages with an augmented antimicrobial arsenal capable of efficiently eliminating these intrusive microbes.
Collapse
Affiliation(s)
- Carmen Palomino-Cano
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Juan M. Irache
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Socorro Espuelas
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
4
|
Grimm M, Großmann L, Senekowitsch S, Rump A, Polli JE, Dressman J, Weitschies W. Enteric-Coated Capsules Providing Reliable Site-Specific Drug Delivery to the Distal Ileum. Mol Pharm 2024; 21:2828-2837. [PMID: 38723178 DOI: 10.1021/acs.molpharmaceut.3c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nefecon, a targeted-release capsule formulation of budesonide approved for the reduction of proteinuria in adults with primary immunoglobulin A nephropathy, targets overproduction of galactose-deficient immunoglobulin A type 1 in the Peyer's patches at the gut mucosal level. To investigate whether the commercial formulation of Nefecon capsules reliably releases budesonide to the distal ileum, a human study was conducted with test capsules reproducing the delayed-release function of Nefecon capsules. Caffeine was included in the test capsules as a marker for capsule opening in the gut since it appears rapidly in saliva after release from orally administered dosage forms. Magnetic resonance imaging with black iron oxide was used to determine the capsule's position in the gut at the time caffeine was first measured in saliva and additionally to directly visualize dispersion of the capsule contents in the gut. In vitro dissolution results confirmed that the test capsules had the same delayed-release characteristics as Nefecon capsules. In 10 of 12 human volunteers, the capsule was demonstrated to open in the distal ileum; in the other two subjects, it opened just past the ileocecal junction. These results compared favorably with the high degree of variability seen in other published imaging studies of delayed-release formulations targeting the gut. The test capsules were shown to reliably deliver their contents to the distal ileum, the region with the highest concentration of Peyer's patches.
Collapse
Affiliation(s)
- Michael Grimm
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | - Linus Großmann
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | | | - Adrian Rump
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Werner Weitschies
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| |
Collapse
|
5
|
Taha HAIM, Agamy NFM, Soliman TN, Younes NM, El-Enshasy HA, Darwish AMG. Preparation and characterization of vitamin E/calcium/soy protein isolate nanoparticles for soybean milk beverage fortification. PeerJ 2024; 12:e17007. [PMID: 38584941 PMCID: PMC10998632 DOI: 10.7717/peerj.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Soybean milk is a rich plant-based source of protein, and phenolic compounds. This study compared the nutritional value of soybean milk, flour, soy protein isolate (SPI) and evaluated the impact of prepared vitamin E/calcium salt/soy protein isolate nanoparticles (ECSPI-NPs) on fortification of developed soybean milk formulations. Results indicated that soybean flour protein content was 40.50 g/100 g, that fulfills 81% of the daily requirement (DV%), the unsaturated fatty acids (USFs), oleic and linoleic content was 21.98 and 56.7%, respectively, of total fatty acids content. In soybean milk, essential amino acids, threonine, leucine, lysine achieved 92.70, 90.81, 77.42% of amino acid scores (AAS) requirement values respectively. Ferulic acid was the main phenolic compound in soybean flour, milk and SPI (508.74, 13.28, 491.78 µg/g). Due to the moisture content of soybean milk (88.50%) against (7.10%) in soybean flour, the latest showed higher nutrients concentrations. The prepared calcium (20 mM/10 g SPI) and vitamin E (100 mg/g SPI) nanoparticles (ECSPI-NPs) exhibited that they were effectively synthesized under transmission electron microscope (TEM), stability in the zeta sizer analysis and safety up to IC50 value (202 ug/mL) on vero cell line. ECSPI-NPs fortification (NECM) enhanced significantly phenolic content (149.49 mg/mL), taste (6.10), texture (6.70) and consumer overall acceptance (6.54). Obtained results encourage the application of the prepared ECSPI-NPs for further functional foods applications.
Collapse
Affiliation(s)
- Heba A. I. M. Taha
- Department of Nutrition, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Neveen F. M. Agamy
- Department of Nutrition, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Tarek N. Soliman
- Department of Dairy Sciences, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Nashwa M. Younes
- Department of Home Economics, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor, Malaysia
- Universiti Teknologi Malaysia, Johor, Malaysia
- City of Scientific Research and Technology Applications, Alexandria, Borg El Arab, Egypt
| | - Amira M. G. Darwish
- Faculty of Industrial and Energy Technology, Borg Al Arab Technological University BATU, Alexandria, Borg El Arab, Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| |
Collapse
|
6
|
Sajjad M, Almufarij R, Ali Z, Sajid M, Raza N, Manzoor S, Hayat M, Abdelrahman EA. Magnetic solid phase extraction of aminoglycosides residue in chicken egg samples using Fe 3O 4-GO-Agarose-Chitosan composite. Food Chem 2024; 430:137092. [PMID: 37544153 DOI: 10.1016/j.foodchem.2023.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Difficulties in identification of drug residues in food products arise due to their trace amounts in complex matrices. An eco-friendly and low-cost agarose-chitosan-magnetic graphene oxide based adsorbent was synthesized and employed for determination of aminoglycosides from chicken egg samples through HPLC. Synthesized adsorbent was characterized by SEM, FTIR, XRD, and VSM. Among two investigated aminoglycosides, streptomycin was derivatized with ninhydrin while gentamicin was detected without its derivatization. Impact of experimental variables such as adsorbent dose, extraction time, temperature, pH, and analyte concentration on extraction efficiency was investigated. Statistical analysis for determination of streptomycin and gentamicin demonstrated excellent linearity in the range of 0.2-1.6 µg kg-1, LOQ of 0.3 and 0.6 µg kg-1 for streptomycin and gentamicin, respectively and LOD of 0.1 and 0.19 µg kg-1 for streptomycin and gentamicin, respectively with RSD of 2.5% and recoveries up to 94%. Regeneration studies revealed that composite film can be used four times without considerable reduction in its extraction efficiency.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rasmiah Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zeeshan Ali
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Chemistry, Govt. Alamdar Hussain Islamia Degree College, Multan, Pakistan.
| | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Hayat
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
7
|
Estévez M, Cicuéndez M, Crespo J, Serrano-López J, Colilla M, Fernández-Acevedo C, Oroz-Mateo T, Rada-Leza A, González B, Izquierdo-Barba I, Vallet-Regí M. Large-scale production of superparamagnetic iron oxide nanoparticles by flame spray pyrolysis: In vitro biological evaluation for biomedical applications. J Colloid Interface Sci 2023; 650:560-572. [PMID: 37429163 DOI: 10.1016/j.jcis.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Despite the large number of synthesis methodologies described for superparamagnetic iron oxide nanoparticles (SPIONs), the search for their large-scale production for their widespread use in biomedical applications remains a mayor challenge. Flame Spray Pyrolysis (FSP) could be the solution to solve this limitation, since it allows the fabrication of metal oxide nanoparticles with high production yield and low manufacture costs. However, to our knowledge, to date such fabrication method has not been upgraded for biomedical purposes. Herein, SPIONs have been fabricated by FSP and their surface has been treated to be subsequently coated with dimercaptosuccinic acid (DMSA) to enhance their colloidal stability in aqueous media. The final material presents high quality in terms of nanoparticle size, homogeneous size distribution, long-term colloidal stability and magnetic properties. A thorough in vitro validation has been performed with peripheral blood cells and mesenchymal stem cells (hBM-MSCs). Specifically, hemocompatibility studies show that these functionalized FSP-SPIONs-DMSA nanoparticles do not cause platelet aggregation or impair basal monocyte function. Moreover, in vitro biocompatibility assays show a dose-dependent cellular uptake while maintaining high cell viability values and cell cycle progression without causing cellular oxidative stress. Taken together, the results suggest that the FSP-SPIONs-DMSA optimized in this work could be a worthy alternative with the benefit of a large-scale production aimed at industrialization for biomedical applications.
Collapse
Affiliation(s)
- Manuel Estévez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Mónica Cicuéndez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Julián Crespo
- Tecnología Navarra de Nanoproductos S.L. (TECNAN), área industrial PERGUITA, C/A, N° 1, 31210 Los Arcos (Navarra), Spain.
| | - Juana Serrano-López
- Experimental Hematology Lab, IIS- Fundación Jiménez Díaz, UAM, Madrid 28040, Spain.
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Claudio Fernández-Acevedo
- Centro Tecnológico ĹUrederra, área industrial PERGUITA, C/A, N° 1, 31210 Los Arcos (Navarra), Spain.
| | - Tamara Oroz-Mateo
- Centro Tecnológico ĹUrederra, área industrial PERGUITA, C/A, N° 1, 31210 Los Arcos (Navarra), Spain.
| | - Amaia Rada-Leza
- Centro Tecnológico ĹUrederra, área industrial PERGUITA, C/A, N° 1, 31210 Los Arcos (Navarra), Spain.
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
8
|
Puri S, Mazza M, Roy G, England RM, Zhou L, Nourian S, Anand Subramony J. Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv Drug Deliv Rev 2023; 200:114962. [PMID: 37321376 DOI: 10.1016/j.addr.2023.114962] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Nanotechnology research over the past several decades has been aimed primarily at improving the physicochemical properties of small molecules to produce druggable candidates as well as for tumor targeting of cytotoxic molecules. The recent focus on genomic medicine and the success of lipid nanoparticles for mRNA vaccines have provided additional impetus for the development of nanoparticle drug carriers for nucleic acid delivery, including siRNA, mRNA, DNA, and oligonucleotides, to create therapeutics that can modulate protein deregulation. Bioassays and characterizations, including trafficking assays, stability, and endosomal escape, are key to understanding the properties of these novel nanomedicine formats. We review historical nanomedicine platforms, characterization methodologies, challenges to their clinical translation, and key quality attributes for commercial translation with a view to their developability into a genomic medicine. New nanoparticle systems for immune targeting, as well as in vivo gene editing and in situ CAR therapy, are also highlighted as emerging areas.
Collapse
Affiliation(s)
- Sanyogitta Puri
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Gourgopal Roy
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States
| | - Richard M England
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Macclesfield, UK
| | - Liping Zhou
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Saghar Nourian
- Emerging Innovations Unit, Discovery Sciences, Biopharmaceutical R&D , AstraZeneca, Gaithersburg, MD, USA
| | - J Anand Subramony
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States.
| |
Collapse
|
9
|
Miola M, Multari C, Kostevšek N, Gerbaldo R, Laviano F, Verné E. Tannic-acid-mediated synthesis and characterization of magnetite-gold nanoplatforms for photothermal therapy. Nanomedicine (Lond) 2023; 18:1331-1342. [PMID: 37800456 DOI: 10.2217/nnm-2023-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Aim: The design of new hybrid nanoplatforms (HNPs) through the innovative and eco-friendly use of tannic acid (TA) for the synthesis and stabilization of the nanoplatforms. Materials & methods: The size, morphology, composition and magnetic and plasmonic properties of HNPs were investigated together with their ability to generate heat under laser irradiation and the hemotoxicity to explore their potential use for biomedical applications. Results & conclusion: The use of TA allowed the synthesis of the HNPs by adopting a simple and green method. The HNPs preserved the peculiar properties of both magnetic and plasmonic nanoparticles and did not show any hemotoxic effect.
Collapse
Affiliation(s)
- Marta Miola
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Cristina Multari
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Roberto Gerbaldo
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Francesco Laviano
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Enrica Verné
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| |
Collapse
|
10
|
Hekmat M, Ahmadi H, Baniasadi F, Ashtari B, Naserzadeh P, Mirzaei M, Omidi H, Mostafavinia A, Amini A, Hamblin MR, Chien S, Bayat M. Combined Use of Photobiomodulation and Curcumin-Loaded Iron Oxide Nanoparticles Significantly Improved Wound Healing in Diabetic Rats Compared to Either Treatment Alone. J Lasers Med Sci 2023; 14:e18. [PMID: 37583498 PMCID: PMC10423961 DOI: 10.34172/jlms.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/08/2023] [Indexed: 08/17/2023]
Abstract
Introduction: Here, we assess the therapeutic effects of photobiomodulation (PBM) and curcumin (CUR)-loaded superparamagnetic iron oxide nanoparticles (SPIONs), alone or together, on the maturation step of a type 1 diabetes (DM1) rat wound model. Methods: Full-thickness wounds were inflicted in 36 rats with diabetes mellitus (DM) induced by the administration of streptozotocin (STZ). The rats were randomly allocated to four groups. Group one was untreated (control); group two received CUR; group 3 received PBM (890 nm, 80 Hz, 0.2 J/cm2); group 4 received a combination of PBM plus CUR. On days 0, 4, 7, and 15, we measured microbial flora, wound closure fraction, tensile strength, and stereological analysis. Results: All treatment groups showed a substantial escalation in the wound closure rate, a substantial reduction in the count of methicillin-resistant Staphylococcus aureus (MRSA), a substantial improvement in wound strength, a substantially improvement in stereological parameters compared to the control group, however, the PBM+CUR group was superior to the other treatment groups (all, P≤0.05). Conclusion: All treatment groups showed significantly improved wound healing in the DM1 rat model. However, the PBM+CUR group was superior to the other treatment groups and the control group in terms of wound strength and stereological parameters.
Collapse
Affiliation(s)
- Manouchehr Hekmat
- Department of Cardiac Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farazad Baniasadi
- School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Ashtari
- Department of Medical Nanotechnology. Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences. Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Medical Nanotechnology. Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences. Tehran, Iran
| | - Mansooreh Mirzaei
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Omidi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa, and Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA
| |
Collapse
|
11
|
Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis. Mol Imaging 2023. [DOI: 10.1155/2023/4131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Magnetic particle imaging (MPI) is a new tracer-based imaging modality that is useful in diagnosing various pathophysiology related to the vascular system and for sensitive tracking of cytotherapies. MPI uses nonradioactive and easily assimilated nanometer-sized iron oxide particles as tracers. MPI images the nonlinear Langevin behavior of the iron oxide particles and has allowed for the sensitive detection of iron oxide-labeled therapeutic cells in the body. This review will provide an overview of MPI technology, the tracer, and its use in vascular imaging and cytotherapies using molecular targets.
Collapse
|
12
|
Ranjbary AG, Saleh GK, Azimi M, Karimian F, Mehrzad J, Zohdi J. Superparamagnetic Iron Oxide Nanoparticles Induce Apoptosis in HT-29 Cells by Stimulating Oxidative Stress and Damaging DNA. Biol Trace Elem Res 2023; 201:1163-1173. [PMID: 35451693 DOI: 10.1007/s12011-022-03229-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles have garnered considerable scientific attention in recent years due to their diagnostic and therapeutic applications in cancer. The purpose of this study was to determine the effect of superparamagnetic iron oxide nanoparticles (Fe3O4 MNPs) on the induction of apoptosis in human colorectal adenocarcinoma cell line (HT-29) cells. The purpose of this study was to elucidate the mechanisms of apoptosis induced by Fe3O4 MNPs following MTT assay and to determine the optimal dose of 2.5 g/mL for inducing apoptosis in HT-29 cells. In HT-29 cells, Fe3O4 MNPs increased reactive oxygen species (ROS), calcium ion (Ca2+), and DNA damage. Additionally, the Fe3O4 MNPs significantly increased caspase 3 and 9 expression and decreased Bcl-2 expression at the protein and mRNA levels when compared to the control group (P = 0.0001). Fe3O4 MNPs also induced apoptosis in cancer cells by increasing the level of (ROS) and intracellular Ca2+, followed by an increase in caspase 3 and 9 expression and a decrease in Bcl-2 expression and direct DNA damage. Fe3O4 MNPs are an appropriate choice for colon cancer treatment based on their cell toxicity and induction of apoptosis in HT29 cells.
Collapse
Affiliation(s)
- Ali Ghorbani Ranjbary
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
- The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammadreza Azimi
- Department of Biochemistry, Medical Faculty, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Fatemeh Karimian
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Javad Zohdi
- Faculty of Veterinary Medicine, Department of Immunology and Oncology, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| |
Collapse
|
13
|
Soltani A, Pakravan P. Preparation and Characterization of Magnetic Solid Lipid Nanoparticles as a Targeted Drug Delivery System for Doxorubicin. Adv Pharm Bull 2023; 13:301-308. [PMID: 37342367 PMCID: PMC10278217 DOI: 10.34172/apb.2023.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/11/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2024] Open
Abstract
Purpose: In the present study, we investigated the magnetic solid lipid nanoparticles (mSLNs) for targeted delivery of doxorubicin (DOX) into breast cancer cells. Methods: The synthesis of iron oxide nanoparticles was carried out by co-precipitation of a ferrous and ferric aqueous solution with the addition of a base; moreover, during precipitation process, the magnetite nanoparticles should be coated with stearic acid (SA) and tripalmitin (TPG). An emulsification dispersion-ultrasonic method was employed to prepare DOX loaded mSLNs. Fourier transforms infrared spectroscopy, vibrating sample magnetometer, and photon correlation spectroscopy (PCS) were used to characterize the subsequently prepared nanoparticles. In addition, the antitumor efficacy of particles was evaluated on MCF-7 cancer cell lines. Results: The findings showed that entrapment efficiency values for solid lipid and magnetic SLNs were 87±4.5% and 53.7±3.5%, respectively. PCS investigations showed that particle size increased with magnetic loading in the prepared NPs. In vitro drug release of DOX-loaded SLN and DOX-loaded mSLN in phosphate buffer saline (pH=7.4) showed that the amount of drug released approached 60% and 80%, respectively after 96 h of incubation. The electrostatic interactions between magnetite and drug had little effect on the release characteristics of the drug. The higher toxicity of DOX as nanoparticles compared to free drug was inferred from in vitro cytotoxicity. Conclusion: DOX encapsulated magnetic SLNs can act as a suitable and promising candidate for controlled and targeted therapy for cancer.
Collapse
Affiliation(s)
| | - Parvaneh Pakravan
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
14
|
Baabu PRS, Kumar HK, Gumpu MB, Babu K J, Kulandaisamy AJ, Rayappan JBB. Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010059. [PMID: 36614400 PMCID: PMC9820855 DOI: 10.3390/ma16010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/14/2023]
Abstract
Materials science and technology, with the advent of nanotechnology, has brought about innumerable nanomaterials and multi-functional materials, with intriguing yet profound properties, into the scientific realm. Even a minor functionalization of a nanomaterial brings about vast changes in its properties that could be potentially utilized in various applications, particularly for biological applications, as one of the primary needs at present is for point-of-care devices that can provide swifter, accurate, reliable, and reproducible results for the detection of various physiological conditions, or as elements that could increase the resolution of current bio-imaging procedures. In this regard, iron oxide nanoparticles, a major class of metal oxide nanoparticles, have been sweepingly synthesized, characterized, and studied for their essential properties; there are 14 polymorphs that have been reported so far in the literature. With such a background, this review's primary focus is the discussion of the different synthesis methods along with their structural, optical, magnetic, rheological and phase transformation properties. Subsequently, the review has been extrapolated to summarize the effective use of these nanoparticles as contrast agents in bio-imaging, therapeutic agents making use of its immune-toxicity and subsequent usage in hyperthermia for the treatment of cancer, electron transfer agents in copious electrochemical based enzymatic or non-enzymatic biosensors and bactericidal coatings over biomaterials to reduce the biofilm formation significantly.
Collapse
Affiliation(s)
- Priyannth Ramasami Sundhar Baabu
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hariprasad Krishna Kumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Acrophase, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Manju Bhargavi Gumpu
- Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | - Jayanth Babu K
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | | | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
15
|
Metallic Nanoparticles as promising tools to eradicate H. pylori: A comprehensive review on recent advancements. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Ardeshirzadeh A, Ahmadi H, Mirzaei M, Omidi H, Mostafavinia A, Amini A, Bayat S, Fridoni M, Chien S, Bayat M. The combined use of photobiomodulation and curcumin-loaded iron oxide nanoparticles significantly improved wound healing in diabetic rats compared to either treatment alone. Lasers Med Sci 2022; 37:3601-3611. [PMID: 36053389 DOI: 10.1007/s10103-022-03639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
This experimental study examined the effects of curcumin-loaded iron oxide nanoparticles (CUR), photobiomodulation (PBM), and CUR + PBM treatments on mast cells (MC)s numbers and degranulation, inflammatory cells (macrophages, neutrophils), and wound strength in the last step of the diabetic wound repair process (maturation phase) in a rat model of type one diabetes mellitus (T1DM). T1DM was induced in 24 rats, and 1 month later, an excisional wound was created on each rat's back skin. The rats were then distributed into four groups: (1) untreated diabetic control group (UDCG); (2) rats treated with CUR (CUR); (3) rats exposed to PBM (890 nm, 80 Hz, 0.2 J/cm2) (PBM); (4) rats treated with CUR plus PBM (CUR + PBM). Fifteen days after surgery, skin tissue samples were taken for biomechanical and stereological evaluations. The biomechanical factor of maximum force was observed to be considerably improved in the CUR + PBM (p = 0.000), PBM (p = 0.014), and CUR (p = 0.003) groups compared to the UDCG. CUR + PBM, PBM, and CUR groups had significantly decreased total numbers of MC compared with the UDCG (all, p = 0.001). The results were significantly better in the CUR + PBM (p = 0.000) and PBM (p = 0.003) groups than in the CUR group. Inflammatory cell counts were significantly lower in the CUR + PBM, PBM, and CUR groups than in the UDCG (all, p = 0.0001). In all evaluating methods, the usage of CUR + PBM produced better results than the use of CUR or PBM alone (almost all tests, p = 0.0001). CUR + PBM, PBM, and CUR significantly improved the repair of diabetic skin wounds in type 1 DM rats through significant decreases of MC number, degranulation, and inflammatory cells as well as a noteworthy improvement in wound strength. The impact of CUR + PBM was superior to that of either PBM or CUR alone. It is suggested that CUR + PBM could be used as a MC stabilizer for the effective treatment of some related human diseases.
Collapse
Affiliation(s)
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mansooreh Mirzaei
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Omidi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | | | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sahar Bayat
- Illinois Institute of Technology, Chicago, IL, USA
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
17
|
Iron-Based Magnetic Nanosystems for Diagnostic Imaging and Drug Delivery: Towards Transformative Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14102093. [PMID: 36297529 PMCID: PMC9607318 DOI: 10.3390/pharmaceutics14102093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The advancement of biomedicine in a socioeconomically sustainable manner while achieving efficient patient-care is imperative to the health and well-being of society. Magnetic systems consisting of iron based nanosized components have gained prominence among researchers in a multitude of biomedical applications. This review focuses on recent trends in the areas of diagnostic imaging and drug delivery that have benefited from iron-incorporated nanosystems, especially in cancer treatment, diagnosis and wound care applications. Discussion on imaging will emphasise on developments in MRI technology and hyperthermia based diagnosis, while advanced material synthesis and targeted, triggered transport will be the focus for drug delivery. Insights onto the challenges in transforming these technologies into day-to-day applications will also be explored with perceptions onto potential for patient-centred healthcare.
Collapse
|
18
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
19
|
Stability Studies of Magnetite Nanoparticles in Environmental Solutions. MATERIALS 2021; 14:ma14175069. [PMID: 34501159 PMCID: PMC8434380 DOI: 10.3390/ma14175069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022]
Abstract
In the presented paper, studies of magnetite nanoparticle stability in selected environmental solutions are reported. The durability tests were performed in four types of liquids: treated and untreated wastewater, river water, and commercial milk (0.5% fat). Nanoparticles before and after deposition in the testing conditions were measured by transmission electron microscopy, X-ray diffraction, infrared spectroscopy, and Mössbauer spectroscopy. The amount of Fe atoms transferred into the solutions was estimated on the basis of flame atomic absorption spectroscopy. The analysis of the obtained results shows good stability of the tested nanoparticles in all water solutions. They do not change their structure or magnetic properties significantly, which makes them a good candidate to be used as, for example, detectors of specific compounds or heavy metals. On the other hand, studies show that particles are stable in environmental conditions for a long period of time in an unchanged form, which can cause their accumulation; therefore, they may be hazardous to living organisms.
Collapse
|
20
|
Mohammadi H, Nekobahr E, Akhtari J, Saeedi M, Akbari J, Fathi F. Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicol Rep 2021; 8:331-336. [PMID: 33659189 PMCID: PMC7892792 DOI: 10.1016/j.toxrep.2021.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Modified magnetite nanoparticles had low cytotoxicity. Nanoparticles had high surface modification and manipulation. Magnetite nanoprticles coated with silica and oleic acid was lower toxicity than other coatings.
Recent advances in the use of magnetite nanoparticles for biomedical applications have led to special attention to these nanoparticles. The unique properties of magnetite nanoparticles such as superparamagnetism, low toxicity, and the ability to bond with biological molecules, are suitable for drug delivery, diagnostic methods and therapeutic approaches. The aim of this study was to synthesize magnetite nanoparticles with different biocompatible coatings and investigate their cytotoxicity. Magnetite nanoparticles were synthesized by co-precipitation method and the cytotoxicity of these nanoparticles was investigated with Hepatoma G2 cell using the MTT assay. Treated cells, did not showed any evident cell cycle arrest. The Fourier Transmission Infrared (FTIR) spectroscopy, X- ray powder Diffraction (XRD), Transmission Electron Microscopy (TEM) were evaluated. The results of XRD showed the coated magnetite nanoparticles were 10−12 nm and this size also achieved with TEM images. Synthesized magnetite nanoparticles with SiO2 and oleic acid coatings had lower cytotoxicity than other coatings.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elahe Nekobahr
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Javad Akhtari
- The Health of Plant and Livestock Products Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Fathi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
21
|
Ali SS, Darwesh OM, Kornaros M, Al-Tohamy R, Manni A, El-Shanshoury AERR, Metwally MA, Elsamahy T, Sun J. Nano-biofertilizers: Synthesis, advantages, and applications. BIOFERTILIZERS 2021:359-370. [DOI: 10.1016/b978-0-12-821667-5.00007-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Raoofi A, Delbari A, Mahdian D, Mojadadi MS, Akhlaghi M, Dadashizadeh G, Ebrahimi V, Amini A, Golmohammadi R, Javadinia SS, Khaneghah AM. Effects of curcumin nanoparticle on the histological changes and apoptotic factors expression in testis tissue after methylphenidate administration in rats. Acta Histochem 2021; 123:151656. [PMID: 33249311 DOI: 10.1016/j.acthis.2020.151656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022]
Abstract
The present article sought to evaluate the impact of curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles (NPs) on the histological variables and apoptotic agents in adult male rats after 3-weeks of methylphenidate (MPH) oral administration (20 mg/kg) versus vehicle therapy on the testis. Twenty-four male rats have been categorized randomly into four groups, in which Group 1 has been chosen as the controls, and Group 2 has been a vehicle and taken the sesame oil as curcumin carrier. Moreover, Group 3 has been taken MPH (20 mg/kg by gavage for 21 consecutive days). Group 4 received MPH plus Curcumin nanoparticles (5.4 mg/100 g) for twenty-one consecutive days. Then, testis histology, apoptosis as well as stereology have been examined. According to the examinations, curcumin nanoparticles are significantly capable of improving the sperms and stereological variables; for example, round spermatid and Leydig cells by enhancing the level of the serum testosterone in comparison with the MPH and vehicle groups. Besides, it was found that the gene expression in inflammation pathways and apoptosis genes largely diminished in the treatment group by curcumin nanoparticles in comparison with the MPH and vehicle groups, also we observed considerable differences for the weight of testes between the examined groups. Therefore, Curcumin effectively inhibited the testis damages and MPH-induced apoptosis, indicating possible protecting features of the Curcumin nanoparticles in opposition to MPH.
Collapse
Affiliation(s)
- Amir Raoofi
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Delbari
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Mahdian
- Cellular and Molecular Research Center, Department of Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad-Shafi Mojadadi
- Leishmaniasis Research Center, Department of Immunology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maedeh Akhlaghi
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ghazaleh Dadashizadeh
- Cellular and Molecular Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahid Ebrahimi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rahim Golmohammadi
- Cellular and Molecular Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Sara Sadat Javadinia
- Cellular and Molecular Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
23
|
Khosravi A, Hasani A, Rahimi K, Aliaghaei A, Pirani M, Azad N, Ramezani F, Tamimi A, Behnam P, Raoofi A, Fathabadi FF, Abdi S, Abdollahifar MA, Hejazi F. Ameliorating effects of curcumin-loaded superparamagnetic iron oxide nanoparticles (SPIONs) on the mouse testis exposed to the transient hyperthermia: A molecular and stereological study. Acta Histochem 2020; 122:151632. [PMID: 33128988 DOI: 10.1016/j.acthis.2020.151632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Testicular hyperthermia can have negative effects on male fertility. Despite reported therapeutic benefits of curcumin, several factors often limit its application such as low water solubility and instable structure. Curcumin-loaded superparamagnetic iron oxide nanoparticles (SPIONs) were designed to solve its limitation of use. In the present study, we evaluated the effect of curcumin-loaded SPIONs on transient testicular hyperthermia in mouse. MATERIALS AND METHOD A total of 18 adult male NMRI mice were divided into three groups (n = 6): I. Controls (Cont), II. Scrotal hyperthermia (Hyp), III. Scrotal hyperthermia + curcumin-loaded iron particles (240 μL) (Hyp + Cur). After seventy days, the animals were sacrificed and used for further molecular and stereological evaluations. RESULTS Sperm count, motility and viability significantly decreased in group hyp as compared to cont group. Furthermore, Sperm DNA fragmentation and cell apoptosis in testes increased remarkably in group hyp, compared with group cont. Stereological study showed a reduction in number of spermatogenic and Leydig cells, as well as reduced weight and volume of testes in hyp group. Degenerative appearance of testes exposed to hyperthermia was also observed. In addition, higher mRNA expression of inflammatory cytokines (IL1-α, IL6, and TNF-α) was detected in group hyp compared to cont group. However, curcumin-loaded SPIONs alleviated all of the pathologic changes in the Hyp + Cur group compared to the hyp group. CONCLUSION Here, we used nanoparticle form of curcumin in testicular hyperthermia model and showed its ameliorating effects on testes damages caused by heat stress, which can be an appropriate method to overcome the problems that limit curcumin application in cases with increased intra testicular temperature.
Collapse
|
24
|
Crist RM, Dasa SSK, Liu CH, Clogston JD, Dobrovolskaia MA, Stern ST. Challenges in the development of nanoparticle-based imaging agents: Characterization and biology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1665. [PMID: 32830448 DOI: 10.1002/wnan.1665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Despite imaging agents being some of the earliest nanomedicines in clinical use, the vast majority of current research and translational activities in the nanomedicine field involves therapeutics, while imaging agents are severely underrepresented. The reasons for this lack of representation are several fold, including difficulties in synthesis and scale-up, biocompatibility issues, lack of suitable tissue/disease selective targeting ligands and receptors, and a high bar for regulatory approval. The recent focus on immunotherapies and personalized medicine, and development of nanoparticle constructs with better tissue distribution and selectivity, provide new opportunities for nanomedicine imaging agent development. This manuscript will provide an overview of trends in imaging nanomedicine characterization and biocompatibility, and new horizons for future development. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Siva Sai Krishna Dasa
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Christina H Liu
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
25
|
Curcumin-Loaded Iron Particle Improvement of Spermatogenesis in Azoospermic Mouse Induced by Long-Term Scrotal Hyperthermia. Reprod Sci 2020; 28:371-380. [DOI: 10.1007/s43032-020-00288-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/02/2020] [Indexed: 11/26/2022]
|
26
|
Fatemi Abhari SM, Khanbabaei R, Hayati Roodbari N, Parivar K, Yaghmaei P. Curcumin-loaded super-paramagnetic iron oxide nanoparticle affects on apoptotic factors expression and histological changes in a prepubertal mouse model of polycystic ovary syndrome-induced by dehydroepiandrosterone - A molecular and stereological study. Life Sci 2020; 249:117515. [PMID: 32147428 DOI: 10.1016/j.lfs.2020.117515] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/09/2023]
Abstract
AIMS This study investigated the effects of curcumin-loaded super-paramagnetic iron oxide (Fe3O4) nanoparticles (NPs) (SPIONs) on histological parameters and apoptosis-inducing factors (AIFs) in an experimental mouse model of polycystic ovary syndrome (PCOS). MATERIALS AND METHODS A total number of 40 female prepuberal BALB/c mice were randomly divided into four groups. Group 1 was selected as control and Group 2 was considered as a vehicle taking sesame oil, in the form of a curcumin carrier. Moreover, Group 3 was administered with dehydroepiandrosterone (DHEA) at 6 mg/100 g of the body weight and Group 4 received the DHEA plus the NPs of curcumin (5.4 mg/100 g) for twenty consecutive days. Finally, histology, stereology, and apoptosis of the ovary were evaluated. KEY FINDINGS The results revealed that the NPs of curcumin had reduced ovarian volume (p < 0.05) and a total number of primary, secondary, antral, and primordial follicles in comparison with the PCOS and vehicle groups (p < 0.05). Furthermore, curcumin treatment following administration of the DHEA resulted in a significant decrease in BAX (p < 0.001) and levels of expression of Caspase3 (CASP3) protein, increased levels of B-cell lymphoma 2 (Bcl2) expression (p < 0.05), and moderated apoptosis in granulosa cells in comparison with the ones seen in the PCOS group. SIGNIFICANCE Ovarian injuries and DHEA-induced apoptosis were efficiently suppressed by curcumin, indicating the probable protective property of NPs of curcumin against PCOS.
Collapse
Affiliation(s)
| | - Ramzan Khanbabaei
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Kharey P, Dutta SB, M M, Palani IA, Majumder SK, Gupta S. Green synthesis of near-infrared absorbing eugenate capped iron oxide nanoparticles for photothermal application. NANOTECHNOLOGY 2020; 31:095705. [PMID: 31715590 DOI: 10.1088/1361-6528/ab56b6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanomaterials exhibit different interesting physical, chemical, electronic and magnetic properties that can be used in a variety of biomedical applications such as molecular imaging, cancer therapy, biosensing, and targeted drug delivery. Among various types of nanoparticles, super paramagnetic iron oxide nanoparticles (SPIONs) have emerged as exogenous contrast agents for in vitro and in vivo deep tissue imaging. Here, we propose a facile, rapid, non-toxic, and cost-effective single step green synthesis method to fabricate eugenate (4-allyl-2-methoxyphenolate) capped iron oxide nanoparticles (E-capped IONPs). The magnetic E-capped IONPs are first time synthesized using a medicinal aromatic plant, Pimenta dioica. The Pimenta dioica leaf extract was used as a natural reducing agent for E-capped IONPs synthesis. The crystalline structure and size of the synthesized spherical nanoparticles were confirmed using the x-ray diffraction and electron microscopic images respectively. In addition, the presence of the functional groups, responsible for capping and stabilizing the synthesized nanoparticles, were identified by the Fourier transform infra-red spectrum. These nanoparticles were found to be safe for human cervical cancer (HeLa) and human embryonic kidney 293 (HEK 293) cell lines and their safety was established using MTT[3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide] assay. These green synthesized E-capped IONPs display a distinct absorbance in the tissue transparent near-infrared (NIR) wavelength region. This property was used for the NIR photothermal application of E-capped IONPs. The results suggest that these E-capped IONPs could be used for deep tissue photothermal therapy along with its application as an exogenous contrast agent in biomedical imaging.
Collapse
Affiliation(s)
- Prashant Kharey
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | | | | | | | | | | |
Collapse
|
28
|
Mohammadi F, Moeeni M, Li C, Boukherroub R, Szunerits S. Interaction of cellulose and nitrodopamine coated superparamagnetic iron oxide nanoparticles with alpha-lactalbumin. RSC Adv 2020; 10:9704-9716. [PMID: 35497200 PMCID: PMC9050155 DOI: 10.1039/c9ra09045b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/20/2020] [Indexed: 11/21/2022] Open
Abstract
The adsorption of BLA on the SPIOns, and their non-toxic nature of the bioconjugate make these nanoparticles new model nanostructures for nanomedicine orientated applications.
Collapse
Affiliation(s)
- Fakhrossadat Mohammadi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Marzieh Moeeni
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Chengnan Li
- Univ. Lille
- CNRS
- Centrale Lille
- ISEN
- Univ. Valenciennes
| | | | | |
Collapse
|
29
|
González-Gómez MA, Belderbos S, Yañez-Vilar S, Piñeiro Y, Cleeren F, Bormans G, Deroose CM, Gsell W, Himmelreich U, Rivas J. Development of Superparamagnetic Nanoparticles Coated with Polyacrylic Acid and Aluminum Hydroxide as an Efficient Contrast Agent for Multimodal Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1626. [PMID: 31731823 PMCID: PMC6915788 DOI: 10.3390/nano9111626] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Early diagnosis of disease and follow-up of therapy is of vital importance for appropriate patient management since it allows rapid treatment, thereby reducing mortality and improving health and quality of life with lower expenditure for health care systems. New approaches include nanomedicine-based diagnosis combined with therapy. Nanoparticles (NPs), as contrast agents for in vivo diagnosis, have the advantage of combining several imaging agents that are visible using different modalities, thereby achieving high spatial resolution, high sensitivity, high specificity, morphological, and functional information. In this work, we present the development of aluminum hydroxide nanostructures embedded with polyacrylic acid (PAA) coated iron oxide superparamagnetic nanoparticles, Fe3O4@Al(OH)3, synthesized by a two-step co-precipitation and forced hydrolysis method, their physicochemical characterization and first biomedical studies as dual magnetic resonance imaging (MRI)/positron emission tomography (PET) contrast agents for cell imaging. The so-prepared NPs are size-controlled, with diameters below 250 nm, completely and homogeneously coated with an Al(OH)3 phase over the magnetite cores, superparamagnetic with high saturation magnetization value (Ms = 63 emu/g-Fe3O4), and porous at the surface with a chemical affinity for fluoride ion adsorption. The suitability as MRI and PET contrast agents was tested showing high transversal relaxivity (r2) (83.6 mM-1 s-1) and rapid uptake of 18F-labeled fluoride ions as a PET tracer. The loading stability with 18F-fluoride was tested in longitudinal experiments using water, buffer, and cell culture media. Even though the stability of the 18F-label varied, it remained stable under all conditions. A first in vivo experiment indicates the suitability of Fe3O4@Al(OH)3 nanoparticles as a dual contrast agent for sensitive short-term (PET) and high-resolution long-term imaging (MRI).
Collapse
Affiliation(s)
- Manuel Antonio González-Gómez
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| | - Sarah Belderbos
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium; (W.G.); (U.H.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
| | - Susana Yañez-Vilar
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| | - Yolanda Piñeiro
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&NII Herestraat 49—Box 821, 3000 Leuven, Belgium; (F.C.); (G.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&NII Herestraat 49—Box 821, 3000 Leuven, Belgium; (F.C.); (G.B.)
| | - Christophe M. Deroose
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven/UZ Leuven, Herestraat 49—Box 7003 59, 3000 Leuven, Belgium;
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium; (W.G.); (U.H.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium; (W.G.); (U.H.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
| | - José Rivas
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| |
Collapse
|
30
|
Xu C, Chen X, Yang M, Yuan X, Zhao A, Bao H. Simple strategy for single-chain fragment antibody-conjugated probe construction. Life Sci 2019; 239:117052. [PMID: 31733318 DOI: 10.1016/j.lfs.2019.117052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022]
Abstract
AIMS A combination of biomarker and instrument technology diagnosis methods, especially antigen-targeted imaging methods, is required to increase the accuracy of the diagnosis of cancer. Currently, the targeting efficiency is limited by the conjugation methods used for the conjugation of antibodies and imaging materials. Here, a simple strategy for the conjugation of a probe and a single-chain fragment antibody (scFv) that does not change the characteristics of the antibody was shown. MAIN METHODS An ScFv was conjugated with superparamagnetic iron oxide (SPIO) or indocyanine green (ICG) via a linker by utilizing the reaction between cysteine and maleimide. The characterization of the probe was performed by flow cytometry, confocal imaging, optical imaging and magnetic resonance imaging (MRI). KEY FINDINGS After conjugation, the scFv retained high affinity, antigen specificity, and strong internalization ability. The application of the conjugated probe was also confirmed by optical imaging and MRI. SIGNIFICANCE The proposed strategy provides a simple method for the production of high efficiency antigen-targeted imaging probes for tumor diagnosis.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory Science Department, Tianjin 4th Central Hospital, Tianjin, China, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang Chen
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingjuan Yang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaopeng Yuan
- Zhujiang Hospital, Southern Medical University, Guangzhou, China, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aizhi Zhao
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hujing Bao
- Integrative Medical Diagnosis Laboratory, Tianjin Nankai Hospital, Room 441, 4th Floor of Outpatient Building, Changjiang Road #6, Nankai District, Tianjin, 300100, China.
| |
Collapse
|
31
|
Wallyn J, Anton N, Vandamme TF. Synthesis, Principles, and Properties of Magnetite Nanoparticles for In Vivo Imaging Applications-A Review. Pharmaceutics 2019; 11:E601. [PMID: 31726769 PMCID: PMC6920893 DOI: 10.3390/pharmaceutics11110601] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022] Open
Abstract
The current nanotechnology era is marked by the emergence of various magnetic inorganic nanometer-sized colloidal particles. These have been extensively applied and hold an immense potential in biomedical applications including, for example, cancer therapy, drug nanocarriers (NCs), or in targeted delivery systems and diagnosis involving two guided-nanoparticles (NPs) as nanoprobes and contrast agents. Considerable efforts have been devoted to designing iron oxide NPs (IONPs) due to their superparamagnetic (SPM) behavior (SPM IONPs or SPIONs) and their large surface-to-volume area allowing more biocompatibility, stealth, and easy bonding to natural biomolecules thanks to grafted ligands, selective-site moieties, and/or organic and inorganic corona shells. Such nanomagnets with adjustable architecture have been the topic of significant progresses since modular designs enable SPIONs to carry out several functions simultaneously such as local drug delivery with real-time monitoring and imaging of the targeted area. Syntheses of SPIONs and adjustments of their physical and chemical properties have been achieved and paved novel routes for a safe use of those tailored magnetic ferrous nanomaterials. Herein we will emphasis a basic notion about NPs magnetism in order to have a better understanding of SPION assets for biomedical applications, then we mainly focus on magnetite iron oxide owing to its outstanding magnetic properties. The general methods of preparation and typical characteristics of magnetite are reviewed, as well as the major biomedical applications of magnetite.
Collapse
Affiliation(s)
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
| | | |
Collapse
|
32
|
Encapsulation of gadolinium ferrite nanoparticle in generation 4.5 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field. Colloids Surf B Biointerfaces 2019; 184:110531. [PMID: 31590053 DOI: 10.1016/j.colsurfb.2019.110531] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023]
Abstract
Iron oxide-based magnetic resonance imaging (MRI) contrast agents have negative contrast limitations in cancer diagnosis. Gadolinium (Gd)-based contrast agents show toxicity. To overcome these limitations, Gd-doped ferrite (Gd:Fe3O4 (GdIO) nanoparticles (NPs) were synthesized as T1-T2 dual-modal contrast agents for MRI-traced drug delivery. A theranostics GdIO encapsulated in a Generation 4.5 PAMAM dendrimer (G4.5-GdIO) was developed by alkaline coprecipitation. The drug-loading efficiency of the NPs was ∼24%. In the presence of a low-frequency alternating magnetic field (LFAMF), a maximum cumulative doxorubicin (DOX) release of ∼77.47% was achieved in a mildly acidic (pH = 5.0) simulated endosomal microenvironment. Relaxometric measurements indicated superior r1 (5.19 mM-1s-1) and r2 (26.13 mM-1s-1) for G4.5-GdIO relative to commercially available Gd-DTPA. Thus, G4.5-GdIO is promising as an alternative noninvasive MRI-traced cancer drug delivery system.
Collapse
|
33
|
Pongrac IM, Radmilović MD, Ahmed LB, Mlinarić H, Regul J, Škokić S, Babič M, Horák D, Hoehn M, Gajović S. D-mannose-Coating of Maghemite Nanoparticles Improved Labeling of Neural Stem Cells and Allowed Their Visualization by ex vivo MRI after Transplantation in the Mouse Brain. Cell Transplant 2019; 28:553-567. [PMID: 31293167 PMCID: PMC7103599 DOI: 10.1177/0963689719834304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/26/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) of superparamagnetic iron oxide-labeled cells can be used as a non-invasive technique to track stem cells after transplantation. The aim of this study was to (1) evaluate labeling efficiency of D-mannose-coated maghemite nanoparticles (D-mannose(γ-Fe2O3)) in neural stem cells (NSCs) in comparison to the uncoated nanoparticles, (2) assess nanoparticle utilization as MRI contrast agent to visualize NSCs transplanted into the mouse brain, and (3) test nanoparticle biocompatibility. D-mannose(γ-Fe2O3) labeled the NSCs better than the uncoated nanoparticles. The labeled cells were visualized by ex vivo MRI and their localization subsequently confirmed on histological sections. Although the progenitor properties and differentiation of the NSCs were not affected by labeling, subtle effects on stem cells could be detected depending on dose increase, including changes in cell proliferation, viability, and neurosphere diameter. D-mannose coating of maghemite nanoparticles improved NSC labeling and allowed for NSC tracking by ex vivo MRI in the mouse brain, but further analysis of the eventual side effects might be necessary before translation to the clinic.
Collapse
Affiliation(s)
- Igor M. Pongrac
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | | | - Lada Brkić Ahmed
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Hrvoje Mlinarić
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Jan Regul
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Siniša Škokić
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Michal Babič
- Institute of Macromolecular Chemistry, Academy of Sciences, Prague, Czech
Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences, Prague, Czech
Republic
| | - Mathias Hoehn
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory,
Cologne, Germany
| | - Srećko Gajović
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| |
Collapse
|
34
|
Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines. Pharm Res 2019; 36:78. [PMID: 30945009 DOI: 10.1007/s11095-019-2608-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
This review article presents the state-of-the-art in the major imaging modalities supplying relevant information on patient health by real-time monitoring to establish an accurate diagnosis and potential treatment plan. We draw a comprehensive comparison between all imagers and ultimately end with our focus on two main types of scanners: X-ray CT and MRI scanners. Numerous types of imaging probes for both imaging techniques are described, as well as reviewing their strengths and limitations, thereby showing the current need for the development of new diagnostic contrast agents (CAs). The role of nanoparticles in the design of CAs is then extensively detailed, reviewed and discussed. We show how nanoparticulate agents should be promising alternatives to molecular ones and how they are already paving new routes in the field of nanomedicine.
Collapse
|
35
|
Iron Oxide Nanoparticles Affects Behaviour and Monoamine Levels in Mice. Neurochem Res 2019; 44:1533-1548. [PMID: 30941547 DOI: 10.1007/s11064-019-02774-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
Abstract
Iron oxide (Fe2O3) nanoparticles (NPs) attract the attention of clinicians for its unique magnetic and paramagnetic properties, which are exclusively used in neurodiagnostics and therapeutics among the other biomedical applications. Despite numerous research findings has already proved neurotoxicity of Fe2O3-NPs, factors affecting neurobehaviour has not been elucidated. In this study, mice were exposed to Fe2O3-NPs (25 and 50 mg/kg body weight) by oral intubation daily for 30 days. It was observed that Fe2O3-NPs remarkably impair motor coordination and memory. In the treated brain regions, mitochondrial damage, depleted energy level and decreased ATPase (Mg2+, Ca2+ and Na+/K+) activities were observed. Disturbed ion homeostasis and axonal demyelination in the treated brain regions contributes to poor motor coordination. Increased intracellular calcium ([Ca2+]i) and decreased expression of growth associated protein 43 (GAP43) impairs vesicular exocytosis could result in insufficient signal between neurons. In addition, levels of dopamine (DA), norepinephrine (NE) and epinephrine (EP) were found to be altered in the subjected brain regions in correspondence to the expression of monoamine oxidases (MAO). Along with all these factors, over expression of glial fibrillary acidic protein (GFAP) confirms the neuronal damage, suggesting the evidences for behavioural changes.
Collapse
|
36
|
Wallyn J, Anton N, Mertz D, Begin-Colin S, Perton F, Serra CA, Franconi F, Lemaire L, Chiper M, Libouban H, Messaddeq N, Anton H, Vandamme TF. Magnetite- and Iodine-Containing Nanoemulsion as a Dual Modal Contrast Agent for X-ray/Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:403-416. [PMID: 30541280 DOI: 10.1021/acsami.8b19517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Noninvasive diagnostic by imaging combined with a contrast agent (CA) is by now the most used technique to get insight into human bodies. X-ray and magnetic resonance imaging (MRI) are widely used technologies providing complementary results. Nowadays, it seems clear that bimodal CAs could be an emerging approach to increase the patient compliance, accessing different imaging modalities with a single CA injection. Owing to versatile designs, targeting properties, and high payload capacity, nanocarriers are considered as a viable solution to reach this goal. In this study, we investigated efficient superparamagnetic iron oxide nanoparticle (SPION)-loaded iodinated nano-emulsions (NEs) as dual modal injectable CAs for X-ray imaging and MRI. The strength of this new CA lies not only in its dual modal contrasting properties and biocompatibility, but also in the simplicity of the nanoparticulate assembling: iodinated oily core was synthesized by the triiodo-benzene group grafting on vitamin E (41.7% of iodine) via esterification, and SPIONs were produced by thermal decomposition during 2, 4, and 6 h to generate SPIONs with different morphologies and magnetic properties. SPIONs with most anisotropic shape and characterized by the highest r2/ r1 ratio once encapsulated into iodinated NE were used for animal experimentation. The in vivo investigation showed an excellent contrast modification because of the presence of the selected NEs, for both imaging techniques explored, that is, MRI and X-ray imaging. This work provides the description and in vivo application of a simple and efficient nanoparticulate system capable of enhancing contrast for both preclinical imaging modalities, MRI, and computed tomography.
Collapse
Affiliation(s)
- Justine Wallyn
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Damien Mertz
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Sylvie Begin-Colin
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Francis Perton
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Christophe A Serra
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg , France
| | - Florence Franconi
- Université d'Angers, PRISM , F-49045 Angers , France
- Université d'Angers, MINT INSERM 1066/CNRS , F-49045 Angers , France
| | - Laurent Lemaire
- Université d'Angers, PRISM , F-49045 Angers , France
- Université d'Angers, MINT INSERM 1066/CNRS , F-49045 Angers , France
| | - Manuela Chiper
- Université de Strasbourg, CNRS, BSC UMR 7242 , F-67412 Strasbourg , France
| | - Hélène Libouban
- Université d'Angers, GEROM, SFR ICAT 42-08, IRIS-IBS , F-49045 Angers , France
| | - Nadia Messaddeq
- Université de Strasbourg, CNRS, INSERM, Collège de France, IGBMC UMR 7104/UMR_S 694 , F-67400 Strasbourg , France
| | - Halina Anton
- Université de Strasbourg, CNRS, LPB UMR 7213 , F-67400 Strasbourg , France
| | - Thierry F Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| |
Collapse
|
37
|
Alphandéry E. Iron oxide nanoparticles as multimodal imaging tools. RSC Adv 2019; 9:40577-40587. [PMID: 35542631 PMCID: PMC9076245 DOI: 10.1039/c9ra08612a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 01/10/2023] Open
Abstract
In medicine, obtaining simply a resolute and accurate image of an organ of interest is a real challenge.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Paris Sorbonne Université
- Muséum National d'Histoire Naturelle
- UMR CNRS7590
- IRD
- Institut de Minéralogie, de Physique des Matériaux et deCosmochimie
| |
Collapse
|
38
|
An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med Sci 2018; 34:779-791. [PMID: 30393833 DOI: 10.1007/s10103-018-2664-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/10/2018] [Indexed: 01/14/2023]
Abstract
Here, we examined the combined effect of pulse wave photobiomodulation (PBM) with curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles (curcumin), in an experimental mouse model of acute skin wound. Thirty male adult mice were randomly allocated into 5 groups. Group 1 was served as the control group. Group 2 was a placebo and received distilled water, as a carrier of curcumin. Group 3 received laser (890 nm, 80 Hz, 0.2 J/cm2). Group 4 received curcumin by taking four injections around the wound. Group 5 received laser + curcumin. One full-thickness excisional round wound was made on the back of all the mice. On days 0, 4, 7, and 14, bacterial flora, wound surface area, and tensile strength were examined and microbiological examinations were performed. In case of wound closure, the two-way ANOVA shows that wound surface area of entire groups decreased progressively. However, the decrease in laser + curcumin and laser groups, and especially data from laser + curcumin group were statistically more significant, in comparison with the other groups (F statistics = 2.28, sig = 0.019). In terms of microbiology, the two-way ANOVA showed that laser, and laser + curcumin groups have statistically a lower bacterial count than the curcumin, control, and carrier groups (F statistics = 35, sig = 0 = 000). Finally, the one-way ANOVA showed that laser + curcumin, curcumin, and curcumin significantly increased wound strength, compared to the control and carrier groups. Furthermore, laser + curcumin significantly increased wound strength, compared to the control, laser, and curcumin groups (LSD test, p = 0.003, p = 0.002, and p = 0.005, respectively). In conclusion, curcumin nanoparticles, pulse wave laser, and pulse wave laser + curcumin nanoparticles accelerate wound healing, through a significant increase in wound closure rate, as well as wound strength, and a significant decrease in Staphylococcus aureus counts. Furthermore, the statistical analysis of our data suggests that the combined treatment of pulse wave laser + curcumin nanoparticles enhances the wound closure rate, and wound strength, compared to the laser and curcumin nanoparticles alone.
Collapse
|
39
|
Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K. Curcumin loading potentiates the neuroprotective efficacy of Fe 3O 4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 2018; 108:1244-1252. [PMID: 30453447 DOI: 10.1016/j.biopha.2018.09.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. METHODS We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation, ATP level, cytochrome c release and histopathology of cerebellums were determined in brains of schizophrenic rats. RESULTS We showed that effective treatment with CMN reduced or prevented Fe3O4 magnetic-induced oxidative stress and mitochondrial dysfunction in the rat brain probably, as well as mitochondrial complex II activity, MMP, and ATP level were remarkably reduced in the cerebellum mitochondria of treated group toward control (p < 0.05). Therewith, ROS generation, and cytochrome c release were notably (p < 0.05) increased in the cerebellum mitochondria of treated group compared with control group. CONCLUSION Taken together, Fe3O4 magnetic- CurNPs exhibits potent antineurotoxicity activity in cerebellums of schizophrenic rats. This approach can be extended to preclinical and clinical use and may have importance in schizophernia treatment in the future. To our knowledge this is the first report that provides the Fe3O4 magnetic- CurNPs could enhance the neuroprotective effects of CMN in the Schizophrenia.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ashrafi Hafez
- Cancer Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Abdorahim
- Faculté de science, Université Paris-Sud 11, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Mohammad Amin Abdollahifar
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habiballah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box, 11365-11155, Tehran, Iran.
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Willmann W, Dringen R. How to Study the Uptake and Toxicity of Nanoparticles in Cultured Brain Cells: The Dos and Don't Forgets. Neurochem Res 2018; 44:1330-1345. [PMID: 30088236 DOI: 10.1007/s11064-018-2598-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Due to their exciting properties, engineered nanoparticles have obtained substantial attention over the last two decades. As many types of nanoparticles are already used for technical and biomedical applications, the chances that cells in the brain will encounter nanoparticles have strongly increased. To test for potential consequences of an exposure of brain cells to engineered nanoparticles, cell culture models for different types of neural cells are frequently used. In this review article we will discuss experimental strategies and important controls that should be used to investigate the physicochemical properties of nanoparticles for the cell incubation conditions applied as well as for studies on the biocompatibility and the cellular uptake of nanoparticles in neural cells. The main focus of this article will be the interaction of cultured neural cells with iron oxide nanoparticles, but similar considerations are important for studying the consequences of an exposure of other types of cultured cells with other types of nanoparticles. Our article aims to improve the understanding of the special technical challenges of working with nanoparticles on cultured neural cells, to identify potential artifacts and to prevent misinterpretation of data on the potential adverse or beneficial consequences of a treatment of cultured cells with nanoparticles.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
41
|
Kostopoulou A, Brintakis K, Fragogeorgi E, Anthousi A, Manna L, Begin-Colin S, Billotey C, Ranella A, Loudos G, Athanassakis I, Lappas A. Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E315. [PMID: 29747449 PMCID: PMC5977329 DOI: 10.3390/nano8050315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/10/2023]
Abstract
Advances in surfactant-assisted chemical approaches have led the way for the exploitation of nanoscale inorganic particles in medical diagnosis and treatment. In this field, magnetically-driven multimodal nanotools that perform both detection and therapy, well-designed in size, shape and composition, are highly advantageous. Such a theranostic material—which entails the controlled assembly of smaller (maghemite) nanocrystals in a secondary motif that is highly dispersible in aqueous media—is discussed here. These surface functionalized, pomegranate-like ferrimagnetic nanoclusters (40⁻85 nm) are made of nanocrystal subunits that show a remarkable magnetic resonance imaging contrast efficiency, which is better than that of the superparamagnetic contrast agent Endorem©. Going beyond this attribute and with their demonstrated low cytotoxicity in hand, we examine the critical interaction of such nanoprobes with cells at different physiological environments. The time-dependent in vivo scintigraphic imaging of mice experimental models, combined with a biodistribution study, revealed the accumulation of nanoclusters in the spleen and liver. Moreover, the in vitro proliferation of spleen cells and cytokine production witnessed a size-selective regulation of immune system cells, inferring that smaller clusters induce mainly inflammatory activities, while larger ones induce anti-inflammatory actions. The preliminary findings corroborate that the modular chemistry of magnetic iron oxide nanoclusters stimulates unexplored pathways that could be driven to alter their function in favor of healthcare.
Collapse
Affiliation(s)
- Athanasia Kostopoulou
- Institute of Electronic Structure and Laser, Foundation for the Research and Technology, Hellas, Vassilika Vouton, 711 10 Heraklion, Greece.
| | - Konstantinos Brintakis
- Institute of Electronic Structure and Laser, Foundation for the Research and Technology, Hellas, Vassilika Vouton, 711 10 Heraklion, Greece.
| | - Eirini Fragogeorgi
- Institute of Nuclear & Radiological Sciences, Technology, Energy & Safety, NCSR "Demokritos", 153 41 Aghia Paraskevi, Athens, Greece.
| | - Amalia Anthousi
- Department of Biology, University of Crete, Vassilika Vouton, 710 03 Heraklion, Greece.
| | - Liberato Manna
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Sylvie Begin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
| | - Claire Billotey
- Université de Lyon, Université Jean Monnet, EA 3738, Ciblage Thérapeutique en Oncologie, UJM-UCBL-HCL, Hôpital E. Herriot, 5 place d'Arsonval, 69437 Lyon CEDEX 03, France.
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for the Research and Technology, Hellas, Vassilika Vouton, 711 10 Heraklion, Greece.
| | - George Loudos
- Bioemission Technology Solutions, Alexandras 116, 117 42 Athens, Greece.
- Department of Biomedical Engineering, Technological Educational Institute, 122 10 Egaleo, Athens, Greece.
| | - Irene Athanassakis
- Department of Biology, University of Crete, Vassilika Vouton, 710 03 Heraklion, Greece.
| | - Alexandros Lappas
- Institute of Electronic Structure and Laser, Foundation for the Research and Technology, Hellas, Vassilika Vouton, 711 10 Heraklion, Greece.
| |
Collapse
|
42
|
Abstract
MRI contrast is often enhanced using a contrast agent. Gd3+-complexes are the most widely used metallic MRI agents, and several types of Gd3+-based contrast agents (GBCAs) have been developed. Furthermore, recent advances in MRI technology have, in part, been driven by the development of new GBCAs. However, when designing new functional GBCAs in a small-molecular-weight or nanoparticle form for possible clinical applications, their functions are often compromised by poor pharmacokinetics and possible toxicity. Although great progress must be made in overcoming these limitations and many challenges remain, new functional GBCAs with either small-molecular-weight or nanoparticle forms offer an exciting opportunity for use in precision medicine.
Collapse
|
43
|
Dehvari K, Lin PT, Chang JY. Fluorescence-guided magnetic nanocarriers for enhanced tumor targeting photodynamic therapy. J Mater Chem B 2018; 6:4676-4686. [DOI: 10.1039/c8tb00734a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fe3O4-HA-Ce6 nanotheranostic agents demonstrated specific targeting ability toward cancer cells with subsequent improvement in dual modal MR/NIR imaging and photodynamic therapeutic effects.
Collapse
Affiliation(s)
- Khalilalrahman Dehvari
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taiwan
- Republic of China
| | - Po-Ting Lin
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taiwan
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taiwan
- Republic of China
- Taiwan Building Technology Center
| |
Collapse
|
44
|
Chen HL, Hsu FT, Kao YCJ, Liu HS, Huang WZ, Lu CF, Tsai PH, Ali AAA, Lee GA, Chen RJ, Chen CY. Identification of epidermal growth factor receptor-positive glioblastoma using lipid-encapsulated targeted superparamagnetic iron oxide nanoparticles in vitro. J Nanobiotechnology 2017; 15:86. [PMID: 29166921 PMCID: PMC5700523 DOI: 10.1186/s12951-017-0313-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023] Open
Abstract
Background Targeted superparamagnetic iron oxide (SPIO) nanoparticles have emerged as a promising biomarker detection tool for molecular magnetic resonance (MR) image diagnosis. To identify patients who could benefit from Epidermal growth factor receptor (EGFR)-targeted therapies, we introduce lipid-encapsulated SPIO nanoparticles and hypothesized that anti-EGFR antibody cetuximab conjugated of such nanoparticles can be used to identify EGFR-positive glioblastomas in non-invasive T2 MR image assays. The newly introduced lipid-coated SPIOs, which imitate biological cell surface and thus inherited innate nonfouling property, were utilized to reduce nonspecific binding to off-targeted cells and prevent agglomeration that commonly occurs in nanoparticles. Results The synthesized targeted EGFR-antibody-conjugated SPIO (EGFR-SPIO) nanoparticles were characterized using dynamic light scattering, zeta potential assays, gel electrophoresis mobility shift assays, transmission electron microscopy (TEM) images, and cell line affinity assays, and the results showed that the conjugation was successful. The targeting efficiency of the synthesized EGFR-SPIO nanoparticles was confirmed through Prussian blue staining and TEM images by using glioblastoma cell lines with high or low EGFR expression levels. The EGFR-SPIO nanoparticles preferentially targeted U-251 cells, which have high EGFR expression, and were internalized by cells in a prolonged incubation condition. Moreover, the T2 MR relaxation time of EGFR-SPIO nanoparticles could be used for successfully identifying glioblastoma cells with elevated EGFR expression in vitro and distinguishing U-251 cells from U-87MG cells, which have low EFGR expression. Conclusion These findings reveal that the lipid-encapsulated EGFR-SPIO nanoparticles can specifically target cells with elevated EGFR expression in the three tested human glioblastoma cell lines. The results of this study can be used for noninvasive molecular MR image diagnosis in the future. Electronic supplementary material The online version of this article (10.1186/s12951-017-0313-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huai-Lu Chen
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Fei-Ting Hsu
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chieh Jill Kao
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hua-Shan Liu
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wan-Zhen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia-Feng Lu
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ping-Huei Tsai
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ahmed Atef Ahmed Ali
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Gilbert Aaron Lee
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Cheng-Yu Chen
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
45
|
In vivo magnetic resonance imaging of pancreatic tumors using iron oxide nanoworms targeted with PTR86 peptide. Colloids Surf B Biointerfaces 2017; 158:423-430. [DOI: 10.1016/j.colsurfb.2017.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/17/2023]
|
46
|
Miao X, Xu W, Cha H, Chang Y, Oh IT, Chae KS, Lee GH. Application of Dye-coated Ultrasmall Gadolinium Oxide Nanoparticles for Biomedical Dual Imaging. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu Miao
- Department of Chemistry, College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
| | - Wenlong Xu
- Department of Chemistry, College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
| | - Hyunsil Cha
- Department of Molecular Medicine and Medical & Biological Engineering and DNN; School of Medicine and Hospital; Taegu 702-701 South Korea
| | - Yongmin Chang
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Molecular Medicine and Medical & Biological Engineering and DNN; School of Medicine and Hospital; Taegu 702-701 South Korea
| | - In Taek Oh
- Department of Biology Education and DNN; Teacher's College; Taegu 41566 South Korea
| | - Kwon Seok Chae
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Biology Education and DNN; Teacher's College; Taegu 41566 South Korea
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
- Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU); Taegu 702-701 South Korea
| |
Collapse
|
47
|
Patra JK, Baek KH. Green biosynthesis of magnetic iron oxide (Fe 3 O 4 ) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [DOI: 10.1016/j.jphotobiol.2017.05.045] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Fang CH, Tsai PI, Huang SW, Sun JS, Chang JZC, Shen HH, Chen SY, Lin FH, Hsu LT, Chen YC. Magnetic hyperthermia enhance the treatment efficacy of peri-implant osteomyelitis. BMC Infect Dis 2017; 17:516. [PMID: 28743235 PMCID: PMC5526269 DOI: 10.1186/s12879-017-2621-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND When bacteria colony persist within a biofilm, suitable drugs are not yet available for the eradication of biofilm-producing bacteria. The aim of this study is to study the effect of magnetic nano-particles-induced hyperthermia on destroying biofilm and promoting bactericidal effects of antibiotics in the treatment of osteomyelitis. METHODS Sixty 12-weeks-old male Wistar rats were used. A metallic 18G needle was implanted into the bone marrow cavity of distal femur after the injection of Methicillin-sensitive Staphylococcus aureus (MSSA). All animals were divided into 5 different treatment modalities. The microbiological evaluation, scanning electron microscope examination, radiographic examination and then micro-CT evaluation of peri-implant bone resorption were analyzed. RESULTS The pathomorphological characteristics of biofilm formation were completed after 40-days induction of osteomyelitis. The inserted implants can be heated upto 75 °C by magnetic heating without any significant thermal damage on the surrounding tissue. We also demonstrated that systemic administration of vancomycin [VC (i.m.)] could not eradicate the bacteria; but, local administration of vancomycin into the femoral canal and the presence of magnetic nanoparticles hyperthermia did enhance the eradication of bacteria in a biofilm-based colony. In these two groups, the percent bone volume (BV/TV: %) was significantly higher than that of the positive control. CONCLUSIONS For the treatment of chronic osteomyelitis, we developed a new modality to improve antibiotic efficacy; the protection effect of biofilms on bacteria could be destroyed by magnetic nanoparticles-induced hyperthermia and therapeutic effect of systemic antibiotics could be enhanced.
Collapse
Affiliation(s)
- Chih-Hsiang Fang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-I Tsai
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu, 30010, Taiwan.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040, Taiwan
| | - Shu-Wei Huang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, College of Medicine, National Taiwan University, No. 1, Ren-Ai Rd, Taipei, 10051, Taiwan, Republic of China. .,Department of Orthopedic Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Rd, Taipei, 10002, Taiwan, Republic of China. .,Biomimetic Systems Research Center, National Chiao-Tung University, 1001 University Road, Hsinchu, 300, Taiwan, Republic of China.
| | - Jenny Zwei-Chieng Chang
- School of Dentistry, College of Medicine, National Taiwan University, No 1 Chang-Te Street, Taipei, 10048, Taiwan.
| | - Hsin-Hsin Shen
- Tissue Regeneration Product Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu County, 310, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu, 30010, Taiwan
| | - Feng Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Tao Hsu
- Industrial Technology Research Institute, Rm. 635, Bldg. 53, No. 195, Sec. 4, Chung Hsing Rd, Chutung, Hsinchu, Taiwan
| | - Yen-Chun Chen
- Tissue Regeneration Product Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu County, 310, Taiwan
| |
Collapse
|
49
|
A facile and green synthetic approach toward fabrication of starch-stabilized magnetite nanoparticles. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Khalil M, Liu N, Lee RL. Catalytic Aquathermolysis of Heavy Crude Oil Using Surface-Modified Hematite Nanoparticles. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00468] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Munawar Khalil
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Kampus UI Depok, 16424 Depok, Indonesia
| | - Ning Liu
- Department
of Petroleum Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Robert L. Lee
- Petroleum
Recovery Research Center (PRRC), New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801, United States
| |
Collapse
|