1
|
Brouns I, Adriaensen D, Timmermans JP. The pulmonary neuroepithelial body microenvironment represents an underestimated multimodal component in airway sensory pathways. Anat Rec (Hoboken) 2025; 308:1094-1117. [PMID: 36808710 DOI: 10.1002/ar.25171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
Exciting new imaging and molecular tools, combined with state-of-the-art genetically modified mouse models, have recently boosted interest in pulmonary (vagal) sensory pathway investigations. In addition to the identification of diverse sensory neuronal subtypes, visualization of intrapulmonary projection patterns attracted renewed attention on morphologically identified sensory receptor end-organs, such as the pulmonary neuroepithelial bodies (NEBs) that have been our area of expertise for the past four decades. The current review aims at providing an overview of the cellular and neuronal components of the pulmonary NEB microenvironment (NEB ME) in mice, underpinning the role of these complexly organized structures in the mechano- and chemosensory potential of airways and lungs. Interestingly, the pulmonary NEB ME additionally harbors different types of stem cells, and emerging evidence suggests that the signal transduction pathways that are active in the NEB ME during lung development and repair also determine the origin of small cell lung carcinoma. Although documented for many years that NEBs appear to be affected in several pulmonary diseases, the current intriguing knowledge on the NEB ME seems to encourage researchers that are new to the field to explore the possibility that these versatile sensor-effector units may be involved in lung pathogenesis or pathobiology.
Collapse
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Yan L, Claman A, Bode A, Collins KM. The C. elegans uv1 Neuroendocrine Cells Provide Mechanosensory Feedback of Vulval Opening. J Neurosci 2025; 45:e0678242024. [PMID: 39788737 PMCID: PMC11800740 DOI: 10.1523/jneurosci.0678-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm Caenorhabditis elegans, four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying. We have previously shown uv1 cells are mechanically deformed during egg laying, driving uv1 Ca2+ transients. However, whether egg-laying circuit activity, vulval opening, and/or egg release triggered uv1 Ca2+ activity was unclear. Here, we show uv1 responds directly to mechanical activation. Optogenetic vulval muscle stimulation triggers uv1 Ca2+ activity following muscle contraction even in sterile animals. Direct mechanical prodding with a glass probe placed against the worm cuticle triggers robust uv1 Ca2+ activity similar to that seen during egg laying. Direct mechanical activation of uv1 cells does not require other cells in the egg-laying circuit, synaptic or peptidergic neurotransmission, or transient receptor potential vanilloid and Piezo channels. EGL-19 L-type Ca2+ channels, but not P/Q/N-type or ryanodine receptor Ca2+ channels, promote uv1 Ca2+ activity following mechanical activation. L-type channels also facilitate the coordinated activation of uv1 cells across the vulva, suggesting mechanical stimulation of one uv1 cell cross-activates the other. Our findings show how neuroendocrine cells like uv1 report on the mechanics of tissue deformation and muscle contraction, facilitating feedback to local circuits to coordinate behavior.
Collapse
Affiliation(s)
- Lijie Yan
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - Alexander Claman
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - Addys Bode
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - Kevin M Collins
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| |
Collapse
|
3
|
Kim HB, Lee SH, Yang DY, Lee SH, Kim JH, Kim HC, Choi KY, Lee SY, Yang SI, Suh DI, Shin YH, Kim KW, Ahn K, Choi SJ, Kwon JY, Kim SH, Jun JK, Lee MY, Won HS, Kim K, Hong SJ. PM exposure during pregnancy affects childhood asthma via placental epigenetic changes: Neuronal differentiation and proliferation and Notch signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125471. [PMID: 39643224 DOI: 10.1016/j.envpol.2024.125471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Particulate matter (PM) exposure during pregnancy increases the risk of developing asthma in children. However, the placental mechanisms have yet to be elucidated. This study aims to evaluate the mechanisms associated with PM exposure during pregnancy and asthma susceptibility via placental epigenetic dysregulation. We analyzed data from two independent Korean birth cohorts (COCOA, 684 children; PSKC, 818 children). Physician-diagnosed current asthma and bronchial hyperresponsiveness (BHR) via methacholine challenge tests were evaluated at age seven. We estimated PM exposure with a diameter <10 μm (PM10) during pregnancy using land-use regression models. We performed genome-wide methylation profiling in the placenta of 40 samples in the COCOA study and analyzed the gene expression levels. High PM10 exposure during pregnancy increased the risk of developing current asthma and BHR in the COCOA study (aOR 2.36, 95% CI 1.06-5.22; aOR 2.14, 95% CI 1.40-3.27, respectively) and current asthma in the PSKC (aOR 2.62, 95% CI 1.35-5.09). The genes involved in neuronal differentiation and proliferation and Notch signaling pathways were significantly hypermethylated in children with high PM10-exposed asthma. The methylation and expression levels of eight genes (PAX6, REST, OLIG2, GLI1, ZBTB7A, NOTCH4, NOTCH1, and NOTCH3) in these pathways correlated with clinical parameters. This may effectively predict PM-related asthma through a prediction model using degrees of gene-based or CpG-based methylation (AUC = 0.96 and 0.93, respectively). PM10 exposure during pregnancy impacts asthma development in offspring via placental DNA hypermethylation via neuronal differentiation and proliferation and Notch signaling pathways.
Collapse
Affiliation(s)
- Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Si Hyeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Yeol Yang
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Hwa Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hyun Kim
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Kil Yong Choi
- Department of Environmental Energy Engineering, Anyang University, Anyang, Republic of Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Song-I Yang
- Department of Pediatrics, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Young Kwon
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mi-Young Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-Sung Won
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kwoneel Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Das S, Samaddar S. Recent Advances in the Clinical Translation of Small-Cell Lung Cancer Therapeutics. Cancers (Basel) 2025; 17:255. [PMID: 39858036 PMCID: PMC11764476 DOI: 10.3390/cancers17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant form of cancer, representing 15% of lung cancer cases globally. SCLC is classified within the range of neuroendocrine pulmonary neoplasms, exhibiting shared morphologic, ultrastructural, immunohistochemical, and molecular genomic features. It is marked by rapid proliferation, a propensity for early metastasis, and an overall poor prognosis. The current conventional therapies involve platinum-etoposide-based chemotherapy in combination with immunotherapy. Nonetheless, the rapid emergence of therapeutic resistance continues to pose substantial difficulties. The genomic profiling of SCLC uncovers significant chromosomal rearrangements along with a considerable mutation burden, typically involving the functional inactivation of the tumor suppressor genes TP53 and RB1. Identifying biomarkers and evaluating new treatments is crucial for enhancing outcomes in patients with SCLC. Targeted therapies such as topoisomerase inhibitors, DLL3 inhibitors, HDAC inhibitors, PARP inhibitors, Chk1 inhibitors, etc., have introduced new therapeutic options for future applications. In this current review, we will attempt to outline the key molecular pathways that play a role in the development and progression of SCLC, together with a comprehensive overview of the most recent advancements in the development of novel targeted treatment strategies, as well as some ongoing clinical trials against SCLC, with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
5
|
Giunta-Stibb H, Hackett B. Interstitial lung disease in the newborn. J Perinatol 2025; 45:13-23. [PMID: 38956315 DOI: 10.1038/s41372-024-02036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Although relatively rare, interstitial lung diseases may present with respiratory distress in the newborn period. Most commonly these include developmental and growth disorders, disorders of surfactant synthesis and homeostasis, pulmonary interstitial glycogenosis, and neuroendocrine cell hyperplasia of infancy. Although the diagnosis of these disorders is sometimes made based on clinical presentation and imaging, due to the significant overlap between disorders and phenotypic variability, lung biopsy or, increasingly genetic testing is needed for diagnosis. These diseases may result in significant morbidity and mortality. Effective medical treatment options are in some cases limited and/or invasive. The genetic basis for some of these disorders has been identified, and with increased utilization of exome and whole genome sequencing even before lung biopsy, further insights into their genetic etiologies should become available.
Collapse
Affiliation(s)
- Hannah Giunta-Stibb
- Divisions of Neonatology and Pulmonology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| | - Brian Hackett
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
6
|
Li C, Zang N, Liu E. Neuropeptides or their receptors in pathogenesis of lung diseases and therapeutic potentials. Neuropeptides 2024; 108:102482. [PMID: 39520945 DOI: 10.1016/j.npep.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
There are complex interactions between the immune system and the nervous system in the lung. The nervous system perceives environmental stimuli and transmits these signals to immune cells via neurotransmitters, which is essential for effective immunity and environmental balance. Neuropeptides are important neurotransmitters in the lung, where they regulate immune responses through direct and indirect mechanisms, affecting the occurrence and development of lung diseases. In this review, we emphasize the role of neuropeptides in the pathogeneis of lung diseases and their potential therapeutic value for lung diseases.
Collapse
Affiliation(s)
- Changgen Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
7
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
8
|
Thakur A, Mei S, Zhang N, Zhang K, Taslakjian B, Lian J, Wu S, Chen B, Solway J, Chen HJ. Pulmonary neuroendocrine cells: crucial players in respiratory function and airway-nerve communication. Front Neurosci 2024; 18:1438188. [PMID: 39176384 PMCID: PMC11340541 DOI: 10.3389/fnins.2024.1438188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024] Open
Abstract
Pulmonary neuroendocrine cells (PNECs) are unique airway epithelial cells that blend neuronal and endocrine functions, acting as key sensors in the lung. They respond to environmental stimuli like allergens by releasing neuropeptides and neurotransmitters. PNECs stand out as the only lung epithelial cells innervated by neurons, suggesting a significant role in airway-nerve communication via direct neural pathways and hormone release. Pathological conditions such as asthma are linked to increased PNECs counts and elevated calcitonin gene-related peptide (CGRP) production, which may affect neuroprotection and brain function. CGRP is also associated with neurodegenerative diseases, including Parkinson's and Alzheimer's, potentially due to its influence on inflammation and cholinergic activity. Despite their low numbers, PNECs are crucial for a wide range of functions, highlighting the importance of further research. Advances in technology for producing and culturing human PNECs enable the exploration of new mechanisms and cell-specific responses to targeted therapies for PNEC-focused treatments.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Shuya Mei
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Noel Zhang
- Canyon Crest Academy, San Diego, CA, United States
| | - Kui Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Boghos Taslakjian
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Jiacee Lian
- School of Health Sciences, Ngee Ann Polytechnic, Singapore, Singapore
| | - Shuang Wu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, United States
| | - Julian Solway
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, United States
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Jin L, Wei W. It Is Time to Get to Know the Neuroendocrine Cell Hyperplasia of Infancy. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13827. [PMID: 39138819 PMCID: PMC11322232 DOI: 10.1111/crj.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
In the two decades that have elapsed since the initial proposal of neuroendocrine cell hyperplasia of infancy (NEHI), several hundred cases have been reported and researched. However, a comprehensive analysis of research progress remains absent from the literature. The present article endeavors to evaluate the current progress of NEHI research and offer a reference for the clinical management of this condition.
Collapse
Affiliation(s)
- Long Jin
- Department of Respiratory MedicineAnhui Provincial Children's HospitalHefeiAnhuiChina
| | - Wen Wei
- Department of Respiratory MedicineAnhui Provincial Children's HospitalHefeiAnhuiChina
| |
Collapse
|
10
|
Liszewski MC, Smalley R, Boulais J, Winant AJ, Vargas SO, Lee EY. Neonatal Chest Imaging: Congenital and Acquired Disorders. Semin Roentgenol 2024; 59:238-248. [PMID: 38997179 DOI: 10.1053/j.ro.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 07/14/2024]
Affiliation(s)
- Mark C Liszewski
- Department of Radiology, Columbia University Irving Medical Center, New York, NY.
| | - Robert Smalley
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Jaclyn Boulais
- Division of Neonatology, Department of Pediatrics, Tufts Medical Center, Tufts University School of Medicine, Boston, MA
| | - Abbey J Winant
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Edward Y Lee
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Frelinger AL, Haynes RL, Goldstein RD, Berny-Lang MA, Gerrits AJ, Riehs M, Haas EA, Paunovic B, Mena OJ, Campman SC, Milne GL, Sleeper LA, Kinney HC, Michelson AD. Dysregulation of platelet serotonin, 14-3-3, and GPIX in sudden infant death syndrome. Sci Rep 2024; 14:11092. [PMID: 38750089 PMCID: PMC11096399 DOI: 10.1038/s41598-024-61949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant mortality, but the underlying cause(s) are unclear. A subset of SIDS infants has abnormalities in the neurotransmitter, serotonin (5-hydroxytryptamine [5-HT]) and the adaptor molecule, 14-3-3 pathways in regions of the brain involved in gasping, response to hypoxia, and arousal. To evaluate our hypothesis that SIDS is, at least in part, a multi-organ dysregulation of 5-HT, we examined whether blood platelets, which have 5-HT and 14-3-3 signaling pathways similar to brain neurons, are abnormal in SIDS. We also studied platelet surface glycoprotein IX (GPIX), a cell adhesion receptor which is physically linked to 14-3-3. In infants dying of SIDS compared to infants dying of known causes, we found significantly higher intra-platelet 5-HT and 14-3-3 and lower platelet surface GPIX. Serum and plasma 5-HT were also elevated in SIDS compared to controls. The presence in SIDS of both platelet and brainstem 5-HT and 14-3-3 abnormalities suggests a global dysregulation of these pathways and the potential for platelets to be used as a model system to study 5-HT and 14-3-3 interactions in SIDS. Platelet and serum biomarkers may aid in the forensic determination of SIDS and have the potential to be predictive of SIDS risk in living infants.
Collapse
Affiliation(s)
- Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Karp 08212, 300 Longwood Avenue, Boston, MA, 02115-5737, USA.
| | - Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard D Goldstein
- Robert's Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, USA
| | - Michelle A Berny-Lang
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anja J Gerrits
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Molly Riehs
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Othon J Mena
- County of Ventura Medical Examiner's Office, Ventura, CA, USA
| | - Steven C Campman
- County of San Diego Medical Examiner's Office, San Diego, CA, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Lynn A Sleeper
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hannah C Kinney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan D Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Marega M, El-Merhie N, Gökyildirim MY, Orth V, Bellusci S, Chao CM. Stem/Progenitor Cells and Related Therapy in Bronchopulmonary Dysplasia. Int J Mol Sci 2023; 24:11229. [PMID: 37446407 DOI: 10.3390/ijms241311229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly seen in preterm infants, and is triggered by infection, mechanical ventilation, and oxygen toxicity. Among other problems, lifelong limitations in lung function and impaired psychomotor development may result. Despite major advances in understanding the disease pathologies, successful interventions are still limited to only a few drug therapies with a restricted therapeutic benefit, and which sometimes have significant side effects. As a more promising therapeutic option, mesenchymal stem cells (MSCs) have been in focus for several years due to their anti-inflammatory effects and their secretion of growth and development promoting factors. Preclinical studies provide evidence in that MSCs have the potential to contribute to the repair of lung injuries. This review provides an overview of MSCs, and other stem/progenitor cells present in the lung, their identifying characteristics, and their differentiation potential, including cytokine/growth factor involvement. Furthermore, animal studies and clinical trials using stem cells or their secretome are reviewed. To bring MSC-based therapeutic options further to clinical use, standardized protocols are needed, and upcoming side effects must be critically evaluated. To fill these gaps of knowledge, the MSCs' behavior and the effects of their secretome have to be examined in more (pre-) clinical studies, from which only few have been designed to date.
Collapse
Affiliation(s)
- Manuela Marega
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Natalia El-Merhie
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Mira Y Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Valerie Orth
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Saverio Bellusci
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
14
|
Shirey KA, Lai W, Sunday ME, Cuttitta F, Blanco JCG, Vogel SN. Novel neuroendocrine role of γ-aminobutyric acid and gastrin-releasing peptide in the host response to influenza infection. Mucosal Immunol 2023; 16:302-311. [PMID: 36965691 PMCID: PMC10330014 DOI: 10.1016/j.mucimm.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Gastrin-releasing peptide (GRP), an evolutionarily conserved neuropeptide, significantly contributes to influenza-induced lethality and inflammation in rodent models. Because GRP is produced by pulmonary neuroendocrine cells (PNECs) in response to γ-aminobutyric acid (GABA), we hypothesized that influenza infection promotes GABA release from PNECs that activate GABAB receptors on PNECs to secrete GRP. Oxidative stress was increased in the lungs of influenza A/PR/8/34 (PR8)-infected mice, as well as serum glutamate decarboxylase 1, the enzyme that converts L-glutamic acid into GABA. The therapeutic administration of saclofen, a GABAB receptor antagonist, protected PR8-infected mice, reduced lung proinflammatory gene expression of C-C chemokine receptor type 2 (Ccr2), cluster of differentiation 68 (Cd68), and Toll like receptor 4 (Tlr4) and decreased the levels of GRP and high-mobility group box 1 (HMGB1) in sera. Conversely, baclofen, a GABAB receptor agonist, significantly increased the lethality and inflammatory responses. The GRP antagonist, NSC77427, as well as the GABAB antagonist, saclofen, blunted the PR8-induced monocyte infiltration into the lung. Together, these data provide the first report of neuroregulatory control of influenza-induced disease.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Mary E Sunday
- Duke University Medical Center, Durham, North Carolina, USA
| | - Frank Cuttitta
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Wong SL, Kardia E, Vijayan A, Umashankar B, Pandzic E, Zhong L, Jaffe A, Waters SA. Molecular and Functional Characteristics of Airway Epithelium under Chronic Hypoxia. Int J Mol Sci 2023; 24:ijms24076475. [PMID: 37047450 PMCID: PMC10095024 DOI: 10.3390/ijms24076475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Localized and chronic hypoxia of airway mucosa is a common feature of progressive respiratory diseases, including cystic fibrosis (CF). However, the impact of prolonged hypoxia on airway stem cell function and differentiated epithelium is not well elucidated. Acute hypoxia alters the transcription and translation of many genes, including the CF transmembrane conductance regulator (CFTR). CFTR-targeted therapies (modulators) have not been investigated in vitro under chronic hypoxic conditions found in CF airways in vivo. Nasal epithelial cells (hNECs) derived from eight CF and three non-CF participants were expanded and differentiated at the air-liquid interface (26-30 days) at ambient and 2% oxygen tension (hypoxia). Morphology, global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility and ion transport) of basal stem cells and differentiated cultures were assessed. hNECs expanded at chronic hypoxia, demonstrating epithelial cobblestone morphology and a similar proliferation rate to hNECs expanded at normoxia. Hypoxia-inducible proteins and pathways in stem cells and differentiated cultures were identified. Despite the stem cells' plasticity and adaptation to chronic hypoxia, the differentiated epithelium was significantly thinner with reduced barrier integrity. Stem cell lineage commitment shifted to a more secretory epithelial phenotype. Motile cilia abundance, length, beat frequency and coordination were significantly negatively modulated. Chronic hypoxia reduces the activity of epithelial sodium and CFTR ion channels. CFTR modulator drug response was diminished. Our findings shed light on the molecular pathophysiology of hypoxia and its implications in CF. Targeting hypoxia can be a strategy to augment mucosal function and may provide a means to enhance the efficacy of CFTR modulators.
Collapse
Affiliation(s)
- Sharon L Wong
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Egi Kardia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Abhishek Vijayan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam Jaffe
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Eenjes E, Benthem F, Boerema-de Munck A, Buscop-van Kempen M, Tibboel D, Rottier RJ. Distinct roles for SOX2 and SOX21 in differentiation, distribution and maturation of pulmonary neuroendocrine cells. Cell Mol Life Sci 2023; 80:79. [PMID: 36867267 PMCID: PMC9984344 DOI: 10.1007/s00018-023-04731-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Pulmonary neuroendocrine (NE) cells represent a small population in the airway epithelium, but despite this, hyperplasia of NE cells is associated with several lung diseases, such as congenital diaphragmatic hernia and bronchopulmonary dysplasia. The molecular mechanisms causing the development of NE cell hyperplasia remains poorly understood. Previously, we showed that the SOX21 modulates the SOX2-initiated differentiation of epithelial cells in the airways. Here, we show that precursor NE cells start to develop in the SOX2 + SOX21 + airway region and that SOX21 suppresses the differentiation of airway progenitors to precursor NE cells. During development, clusters of NE cells start to form and NE cells mature by expressing neuropeptide proteins, such as CGRP. Deficiency in SOX2 resulted in decreased clustering, while deficiency in SOX21 increased both the numbers of NE ASCL1 + precursor cells early in development, and the number of mature cell clusters at E18.5. In addition, at the end of gestation (E18.5), a number of NE cells in Sox2 heterozygous mice, did not yet express CGRP suggesting a delay in maturation. In conclusion, SOX2 and SOX21 function in the initiation, migration and maturation of NE cells.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Floor Benthem
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
18
|
Eenjes E, Tibboel D, Wijnen RM, Rottier RJ. Lung epithelium development and airway regeneration. Front Cell Dev Biol 2022; 10:1022457. [PMID: 36299482 PMCID: PMC9589436 DOI: 10.3389/fcell.2022.1022457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The lung is composed of a highly branched airway structure, which humidifies and warms the inhaled air before entering the alveolar compartment. In the alveoli, a thin layer of epithelium is in close proximity with the capillary endothelium, allowing for an efficient exchange of oxygen and carbon dioxide. During development proliferation and differentiation of progenitor cells generates the lung architecture, and in the adult lung a proper function of progenitor cells is needed to regenerate after injury. Malfunctioning of progenitors during development results in various congenital lung disorders, such as Congenital Diaphragmatic Hernia (CDH) and Congenital Pulmonary Adenomatoid Malformation (CPAM). In addition, many premature neonates experience continuous insults on the lung caused by artificial ventilation and supplemental oxygen, which requires a highly controlled mechanism of airway repair. Malfunctioning of airway progenitors during regeneration can result in reduction of respiratory function or (chronic) airway diseases. Pathways that are active during development are frequently re-activated upon damage. Understanding the basic mechanisms of lung development and the behavior of progenitor cell in the ontogeny and regeneration of the lung may help to better understand the underlying cause of lung diseases, especially those occurring in prenatal development or in the immediate postnatal period of life. This review provides an overview of lung development and the cell types involved in repair of lung damage with a focus on the airway.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rene M.H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Robbert J. Rottier,
| |
Collapse
|
19
|
Xu J, Xu L, Sui P, Chen J, Moya EA, Hume P, Janssen WJ, Duran JM, Thistlethwaite P, Carlin A, Gulleman P, Banaschewski B, Goldy MK, Yuan JXJ, Malhotra A, Pryhuber G, Crotty-Alexander L, Deutsch G, Young LR, Sun X. Excess neuropeptides in lung signal through endothelial cells to impair gas exchange. Dev Cell 2022; 57:839-853.e6. [PMID: 35303432 PMCID: PMC9137452 DOI: 10.1016/j.devcel.2022.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 01/16/2023]
Abstract
Although increased neuropeptides are often detected in lungs that exhibit respiratory distress, whether they contribute to the condition is unknown. Here, we show in a mouse model of neuroendocrine cell hyperplasia of infancy, a pediatric disease with increased pulmonary neuroendocrine cells (PNECs), excess PNEC-derived neuropeptides are responsible for pulmonary manifestations including hypoxemia. In mouse postnatal lung, prolonged signaling from elevated neuropeptides such as calcitonin gene-related peptide (CGRP) activate receptors enriched on endothelial cells, leading to reduced cellular junction gene expression, increased endothelium permeability, excess lung fluid, and hypoxemia. Excess fluid and hypoxemia were effectively attenuated by either prevention of PNEC formation, inactivation of CGRP gene, endothelium-specific inactivation of CGRP receptor gene, or treatment with CGRP receptor antagonist. Neuropeptides were increased in human lung diseases with excess fluid such as acute respiratory distress syndrome. Our findings suggest that restricting neuropeptide function may limit fluid and improve gas exchange in these conditions.
Collapse
Affiliation(s)
- Jinhao Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Le Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pengfei Sui
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jiyuan Chen
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92121, USA
| | - Esteban A Moya
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick Hume
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Jason M Duran
- Division of Cardiology, Department of Internal Medicine, University of California San Diego Medical Center, La Jolla, CA 92037, USA
| | - Patricia Thistlethwaite
- Division of Cardiothoracic Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Aaron Carlin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter Gulleman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brandon Banaschewski
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 16104, USA
| | - Mary Kate Goldy
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 16104, USA
| | - Jason X-J Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92121, USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92121, USA
| | - Gloria Pryhuber
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laura Crotty-Alexander
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92121, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Gail Deutsch
- Department of Laboratories, Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| | - Lisa R Young
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 16104, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Abstract
This chapter broadly reviews cardiopulmonary sympathetic and vagal sensors and their reflex functions during physiologic and pathophysiologic processes. Mechanosensory operating mechanisms, including their central projections, are described under multiple sensor theory. In addition, ways to interpret evidence surrounding several controversial issues are provided, with detailed reasoning on how conclusions are derived. Cardiopulmonary sensory roles in breathing control and the development of symptoms and signs and pathophysiologic processes in cardiopulmonary diseases (such as cough and neuroimmune interaction) also are discussed.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine (Pulmonary), University of Louisville, and Robley Rex VA Medical Center, Louisville, KY, United States.
| |
Collapse
|
21
|
Yang KH, Kulatti A, Sherer K, Rao A, Cernelc-Kohan M. Case report: Rare lung disease of infancy diagnosed with the assistance of a home pulse oximetry baby monitor. Front Pediatr 2022; 10:918764. [PMID: 36147808 PMCID: PMC9488520 DOI: 10.3389/fped.2022.918764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroendocrine cell hyperplasia of infancy (NEHI) is a rare childhood interstitial lung disease characterized by a gradual onset of tachypnea, hypoxemia, and failure to thrive in the first 2 years of life. NEHI is challenging to diagnose and can masquerade as common respiratory infections and reactive airway disease. Timely diagnosis is essential to optimize management of comorbidities, improve outcomes, and prevent unnecessary interventions. We report a case of a 14-month-old male who was hospitalized multiple times with recurrent episodes of presumed bronchiolitis. However, early on, the parents had detected unexplained nighttime hypoxemia with a wearable home pulse oximetry baby monitor. While recurrent respiratory infections are common in infancy, our patient had numerous persistent symptoms refractory to traditional treatments, which prompted further workup and ultimately led to the diagnosis of NEHI. The home baby monitor provided useful information that accelerated workup for a presentation that did not fit the usual picture of recurrent bronchiolitis, bronchospasm, or pneumonia. These devices that monitor infant cardiopulmonary status and oxygenation are becoming increasingly popular for home use. There is controversy over their clinical utility due to the frequency of false alarms, excessive parental reliance on these devices, and lack of Food and Drug Administration oversight to ensure accuracy and effectiveness of these devices. Our case provides an example of how in certain clinical settings, information from these devices might serve as a complementary tool in the pediatrician's medical decision-making and possibly lead to a rare diagnosis such as NEHI.
Collapse
Affiliation(s)
- Kevin H Yang
- Rady Children's Hospital, UC San Diego School of Medicine, San Diego, CA, United States
| | - Art Kulatti
- Rady Children's Hospital, UC San Diego School of Medicine, San Diego, CA, United States
| | - Kimberly Sherer
- Rady Children's Hospital, UC San Diego School of Medicine, San Diego, CA, United States
| | - Aparna Rao
- Division of Respiratory Medicine, Rady Children's Hospital, San Diego, CA, United States
| | - Mateja Cernelc-Kohan
- Division of Respiratory Medicine, Rady Children's Hospital, San Diego, CA, United States
| |
Collapse
|
22
|
RSV Promotes Epithelial Neuroendocrine Phenotype Differentiation through NODAL Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9956078. [PMID: 34541002 PMCID: PMC8445725 DOI: 10.1155/2021/9956078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023]
Abstract
Background Respiratory syncytial virus (RSV) infects infants and children, predisposing them to development of asthma during adulthood. Epithelial neuroendocrine phenotypes may be associated with development of asthma. This study hopes to ascertain if RSV infection promotes epithelial neuroendocrine phenotypes through the NODAL signaling pathway. Methods The GSE6802 data set was obtained from the GEO database, and the differential genes were analyzed using the R language. An in vitro model was constructed with RSV infected human respiratory epithelial cells, and then real-time qPCR and immunofluorescence were used to detect the expression of different epithelial biomarkers and airway neuropeptides. The acute and chronic infection model of RSV infection was established by intranasal injection of RSV into guinea pigs. Immunohistochemistry and Western blot were used to detect the expression of pulmonary neuroendocrine cells markers ENO2 and neuropeptides. Results The expression levels of ENO2, SP, CGRP, and NODAL/ACTRII were significantly higher in the RSV infection group than those of the control group, which were abrogated by siRNA-NODAL. In vivo, we found that the expression levels of ENO2, SP, and CGRP were significantly higher than that of the control group. Conclusion RSV promotes epithelial neuroendocrine phenotypes through the NODAL signaling pathway.
Collapse
|
23
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
24
|
Wang B, Cardenas M, Bedoya M, Colin AA, Rossi GA. Upregulation of neuropeptides and obstructive airway disorder in infancy: A review with focus on post-RSV wheezing and NEHI. Pediatr Pulmonol 2021; 56:1297-1306. [PMID: 33524244 DOI: 10.1002/ppul.25292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
Obstructive airway disorders, common in infancy and early childhood, include some entities that are recognized to have neuro immune mediators as their underlying pathogenetic mechanisms. The best characterized example amongst post-viral wheezing phenotypes is the disorder that follows respiratory syncytial virus (RSV) infection and leads to intermittent, long-term wheezing. The underlying mechanisms of the airway reactivity related to RSV infection have been extensively studies and are associated with dysregulation of the nonadrenergic-noncholinergic (NANC) system, via upregulation of neurotransmitters, typically Substance P. Neuroendocrine hyperplasia of infancy (NEHI), while a less common entity, is a disorder characterized by more severe and long-term obstructive airway disease. NEHI is pathophysiologically characterized by abundance of neuroendocrine cells in the airways containing the neuroimmune mediator bombesin, the release of which is presumed to be the driver of the persistent small airway obstruction and functional air-trapping. Here we review the NANC and neuroendocrine cells, the neurotransmitter systems and their studied roles in pulmonary diseases with a focus on their role in lung development, and subsequent various pediatric lung diseases. We focus on the juxtaposition of the separate neuroimmune mechanisms underlying the pathogenesis of post-RSV recurrent wheezing and NEHI's persistent small airway obstruction. We finally propose a unifying concept of neuropeptides in obstructive disorders that may encompass these two entities and possibly others.
Collapse
Affiliation(s)
- Bin Wang
- Division of Critical Care Medicine, Jackson Memorial Hospital and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Monica Cardenas
- Division of Pediatric Pulmonology, Jackson Memorial Hospital and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mariana Bedoya
- Division of Pediatric Pulmonology, Jackson Memorial Hospital and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Jackson Memorial Hospital and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Giovanni A Rossi
- Pulmonary and Allergy Disease Unit, Department of Pediatrics, G. Gaslini University Hospital, Genoa, Italy
| |
Collapse
|
25
|
Breuer O, Cohen-Cymberknoh M, Picard E, Bentur L, Bar-Yoseph R, Shoseyov D, Tsabari R, Kerem E, Hevroni A. The Use of Infant Pulmonary Function Tests in the Diagnosis of Neuroendocrine Cell Hyperplasia of Infancy. Chest 2021; 160:1397-1405. [PMID: 34029568 DOI: 10.1016/j.chest.2021.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Infant pulmonary function tests (iPFTs) in subjects with neuroendocrine cell hyperplasia of infancy (NEHI) have demonstrated significant expiratory airflow obstruction and air trapping. RESEARCH QUESTION Can indexes from iPFTs be used in the diagnosis of NEHI? STUDY DESIGN AND METHODS This is an observational case-control study evaluating iPFT results from a registry of patients assessed at the Hadassah Hebrew University Medical Center between 2008 and 2018. We used the Kruskal-Wallis H test to compare iPFT results in infants with NEHI with those in two infants in a disease control group (infants evaluated for recurrent wheezing and infants evaluated owing to prematurity) and those in a spirometry control group of infants with normal expiratory airflow. Receiver operating characteristic (ROC) curves were used to assess the diagnostic accuracy of the iPFT indexes. RESULTS We evaluated iPFT data in 481 infants (15, NEHI; 292, wheezing; 128, premature; and 46, control group). Infants with NEHI had significantly increased trapped air volumes (median functional residual capacity measured with baby-body plethysmograph [FRCpleth] was 199% predicted; median ratio of residual volume to total lung capacity was 59% predicted) when compared with results in all evaluated groups of infants (P < .001), including multiple pairwise comparisons. Airflow limitation was demonstrated in infants with NEHI when compared with the infants in the spirometry control group but was similar to that in the two infants in the disease control group. FRCpleth had the best discriminatory ability for NEHI diagnosis, with an FRCpleth ≥ 150% predicted demonstrating a ROC of 0.91 (95% CI, 0.82-1.00), sensitivity of 86.7% (95% CI, 59.5%-98.3%), and specificity of 95.5% (95% CI, 93.2%-97.3%). INTERPRETATION Findings on iPFTs of markedly increased air trapping, out of proportion to the degree of airflow limitation, are characteristic of infants with NEHI. iPFT results demonstrating an FRCpleth ≥ 150% predicted are highly specific for NEHI and may aid in early diagnosis. Further research is required to confirm these findings in a prospective cohort and to understand the pathophysiologic explanation for these findings.
Collapse
Affiliation(s)
- Oded Breuer
- Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| | - Malena Cohen-Cymberknoh
- Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Elie Picard
- Pediatric Pulmonary Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Lea Bentur
- Pediatric Pulmonary Unit, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Ronen Bar-Yoseph
- Pediatric Pulmonary Unit, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - David Shoseyov
- Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Reuven Tsabari
- Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Eitan Kerem
- Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Avigdor Hevroni
- Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Pulmonary Unit, Kaplan Medical Center, Rehovot, Israel
| |
Collapse
|
26
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
27
|
Abstract
The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children’s Hospital, UC Davis Health, UC Davis, Davis, California, USA
| | - Girija G. Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
28
|
Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021; 14:978-990. [PMID: 33608655 PMCID: PMC7893625 DOI: 10.1038/s41385-020-00370-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
The airway epithelium protects us from environmental insults, which we encounter with every breath. Not only does it passively filter large particles, it also senses potential danger and alerts other cells, including immune and nervous cells. Together, these tissues orchestrate the most appropriate response, balancing the need to eliminate the danger with the risk of damage to the host. Each cell subset within the airway epithelium plays its part, and when impaired, may contribute to the development of respiratory disease. Here we highlight recent advances regarding the cellular and functional heterogeneity along the airway epithelium and discuss how we can use this knowledge to design more effective, targeted therapeutics.
Collapse
|
29
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Noguchi M, Furukawa KT, Morimoto M. Pulmonary neuroendocrine cells: physiology, tissue homeostasis and disease. Dis Model Mech 2020; 13:13/12/dmm046920. [PMID: 33355253 PMCID: PMC7774893 DOI: 10.1242/dmm.046920] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian lungs have the ability to recognize external environments by sensing different compounds in inhaled air. Pulmonary neuroendocrine cells (PNECs) are rare, multi-functional epithelial cells currently garnering attention as intrapulmonary sensors; PNECs can detect hypoxic conditions through chemoreception. Because PNEC overactivation has been reported in patients suffering from respiratory diseases – such as asthma, chronic obstructive pulmonary disease, bronchopulmonary dysplasia and other congenital diseases – an improved understanding of the fundamental characteristics of PNECs is becoming crucial in pulmonary biology and pathology. During the past decade, murine genetics and disease models revealed the involvement of PNECs in lung ventilation dynamics, mechanosensing and the type 2 immune responses. Single-cell RNA sequencing further unveiled heterogeneous gene expression profiles in the PNEC population and revealed that a small number of PNECs undergo reprogramming during regeneration. Aberrant large clusters of PNECs have been observed in neuroendocrine tumors, including small-cell lung cancer (SCLC). Modern innovation of imaging analyses has enabled the discovery of dynamic migratory behaviors of PNECs during airway development, perhaps relating to SCLC malignancy. This Review summarizes the findings from research on PNECs, along with novel knowledge about their function. In addition, it thoroughly addresses the relevant questions concerning the molecular pathology of pulmonary diseases and related therapeutic approaches. Summary: This Review highlights the physiological relevance of pulmonary neuroendocrine cells, rare airway epithelial cells that form intrapulmonary sensory organs, abnormalities of which are associated with several pulmonary disorders, such as asthma and lung cancer.
Collapse
Affiliation(s)
- Masafumi Noguchi
- Laboratory for Lung Development and Regeneration, RIKEN Centre for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Kana T Furukawa
- Laboratory for Lung Development and Regeneration, RIKEN Centre for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Centre for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
31
|
Seidl E, Carlens J, Schwerk N, Wetzke M, Marczak H, Lange J, Krenke K, Mayell SJ, Escribano A, Seidenberg J, Ahrens F, Hebestreit H, Nährlich L, Sismanlar T, Aslan AT, Snijders D, Ullmann N, Kappler M, Griese M. Persistent tachypnea of infancy: Follow up at school age. Pediatr Pulmonol 2020; 55:3119-3125. [PMID: 32761949 DOI: 10.1002/ppul.25004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Persistent tachypnea of infancy (PTI) is a rare pediatric lung disease of unknown origin. The diagnosis can be made by clinical presentation and chest high resolution computed tomography after exclusion of other causes. Clinical courses beyond infancy have rarely been assessed. METHODS Patients included in the Kids Lung Register diagnosed with PTI as infants and now older than 5 years were identified. Initial presentation, extrapulmonary comorbidities, spirometry and clinical outcome were analyzed. RESULTS Thirty-five children older than 5 years with PTI diagnosed as infants were analyzed. At the age of 5 years, 74% of the patients were reported as asymptomatic and did not develope new symptoms during the observational period at school-age (mean, 3.9 years; range, 0.3-6.3). At the age of about 10 years, none of the symptomatic children had abnormal oxygen saturation during sleep or exercise anymore. Lung function tests and breathing frequency were within normal values throughout the entire observational period. CONCLUSIONS PTI is a pulmonary disease that can lead to respiratory insufficiency in infancy. As at school age most of the previously chronically affected children became asymptomatic and did not develop new symptoms. We conclude that the overall clinical course is favorable.
Collapse
Affiliation(s)
- Elias Seidl
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, German Center for Lung Research, Munich, Germany
| | - Julia Carlens
- Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | - Nicolaus Schwerk
- Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | - Martin Wetzke
- Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | - Honorata Marczak
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Lange
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Sarah J Mayell
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Amparo Escribano
- Hospital Clínico Universitario, Unidad Neumología Infantil, Universidad de Valencia, Valencia, Spain
| | - Jürgen Seidenberg
- Neonatologie und Intensivmedizin, Klinikum Oldenburg, Oldenburg, Germany
| | | | | | - Lutz Nährlich
- Universities of Giessen and Marburg Lung Center, German Center of Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tugba Sismanlar
- Department of Pediatric Pulmonology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ayse T Aslan
- Department of Pediatric Pulmonology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Deborah Snijders
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Nicola Ullmann
- Pediatric Pulmonology and Respiratory Intermediate Care Unit, Sleep and Long Term Ventilation Unit, Academic Department of Pediatrics (DPUO), Pediatric Hospital "Bambino Gesù" Research Institute, Rome, Italy
| | - Matthias Kappler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, German Center for Lung Research, Munich, Germany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, German Center for Lung Research, Munich, Germany
| |
Collapse
|
32
|
Xu J, Yu H, Sun X. Less Is More: Rare Pulmonary Neuroendocrine Cells Function as Critical Sensors in Lung. Dev Cell 2020; 55:123-132. [PMID: 33108755 DOI: 10.1016/j.devcel.2020.09.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
Pulmonary neuroendocrine cells (PNECs) are rare airway epithelial cells that also uniquely harbor neuronal and endocrine characteristics. In vitro data indicate that these cells respond to chemical or mechanical stimuli by releasing neuropeptides and neurotransmitters, implicating them as airway sensors. Emerging in vivo data corroborate this role and demonstrate that PNECs are important for lung response to signals, such as allergens. With close proximity to steady-state immune cells and innervating nerves, PNECs, as prototype tissue-resident neuroendocrine cells, are at the center of a neuro-immune module that enables the fundamental ability of an organ to sense and respond to the environment.
Collapse
Affiliation(s)
- Jinhao Xu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haoze Yu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Emiralioğlu N, Orhan D, Cinel G, Tuğcu GD, Yalçın E, Doğru D, Özçelik U, Griese M, Kiper N. Variation in the bombesin staining of pulmonary neuroendocrine cells in pediatric pulmonary disorders-A useful marker for airway maturity. Pediatr Pulmonol 2020; 55:2383-2388. [PMID: 32558323 DOI: 10.1002/ppul.24910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/16/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Pulmonary neuroendocrine cells (NEC) increase with age due to pulmonary maturity. The aim of this study was to determine whether open lung biopsies from patients with interstitial lung diseases have increased pulmonary NEC compared with neuroendocrine cell hyperplasia of infancy (NEHI). Our second aim was to assess pulmonary NECs in the lung autopsy of children without lung disease who died from different causes. METHODS Lung tissue of 5 infants with NEHI; 21 patients with pediatric interstitial lung disease (chILD); 17 lung autopsies of infants at varying age without lung disease were included. The percentage of the airways containing neuroendocrine cells, the average percentage of neuroendocrine cells (NECs) per airway, and the number of neuroendocrine bodies (NEBs) in each case were analyzed. RESULTS The mean percentage of the airways containing neuroendocrine cells were 95% in the NEHI group, 30% in the chILD group, 89% under Intrauterine 37 weeks, 70% between intrauterine 37 to 40 weeks, 52% at postnatal 4 days to 6 months of autopsy ages. In the NEHI group, diffuse NE cell distribution and large NEBs were noticed in the lung biopsy. In the chILD group, neuroendocrine cells were dispersed, did not form clusters and NE cells showed solitary distribution. In the lung autopsy group, linear NE cells were detected at younger aged fetuses and solitary distribution of NE cells was detected with the older increasing age. CONCLUSIONS Our findings confirm that NECs are seen in many other childhood interstitial lung diseases; NE cell hyperplasia may be a marker of decreased pulmonary development and NE cells decrease with the increasing age of the fetus during Intrauterine life.
Collapse
Affiliation(s)
- Nagehan Emiralioğlu
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Diclehan Orhan
- Department of Pediatric Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Güzin Cinel
- Department of Pediatric Pulmonology, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Gökçen Dilşa Tuğcu
- Department of Pediatric Pulmonology, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Ebru Yalçın
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Doğru
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Uğur Özçelik
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Matthias Griese
- Division of Pediatric Pneumology, University Hospital Munich & German Center for Lung Research (DZL), Dr. von Hauner Children's Hospital, Munich, Germany
| | - Nural Kiper
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
34
|
Hor P, Punj V, Calvert BA, Castaldi A, Miller AJ, Carraro G, Stripp BR, Brody SL, Spence JR, Ichida JK, Ryan Firth AL, Borok Z. Efficient Generation and Transcriptomic Profiling of Human iPSC-Derived Pulmonary Neuroendocrine Cells. iScience 2020; 23:101083. [PMID: 32380423 PMCID: PMC7205764 DOI: 10.1016/j.isci.2020.101083] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/13/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Expansion of pulmonary neuroendocrine cells (PNECs) is a pathological feature of many human lung diseases. Human PNECs are inherently difficult to study due to their rarity (<1% of total lung cells) and a lack of established protocols for their isolation. We used induced pluripotent stem cells (iPSCs) to generate induced PNECs (iPNECs), which express core PNEC markers, including ROBO receptors, and secrete major neuropeptides, recapitulating known functions of primary PNECs. Furthermore, we demonstrate that differentiation efficiency is increased in the presence of an air-liquid interface and inhibition of Notch signaling. Single-cell RNA sequencing (scRNA-seq) revealed a PNEC-associated gene expression profile that is concordant between iPNECs and human fetal PNECs. In addition, pseudotime analysis of scRNA-seq results suggests a basal cell origin of human iPNECs. In conclusion, our model has the potential to provide an unlimited source of human iPNECs to explore PNEC pathophysiology associated with several lung diseases.
Collapse
Affiliation(s)
- Pooja Hor
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, HMR 712, University of Southern California, Los Angeles, CA 90033, USA
| | - Vasu Punj
- Division of Hematology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben A Calvert
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Alyssa J Miller
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gianni Carraro
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Jason R Spence
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, HMR 712, University of Southern California, Los Angeles, CA 90033, USA.
| | - Amy L Ryan Firth
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, HMR 712, University of Southern California, Los Angeles, CA 90033, USA.
| | - Zea Borok
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
35
|
Brodskaya TA, Nevzorova VA, Vasileva MS, Lavrenyuk VV. [Endothelium-related and neuro-mediated mechanisms of emphysema development in chronic obstructive pulmonary disease]. TERAPEVT ARKH 2020; 92:116-124. [PMID: 32598803 DOI: 10.26442/00403660.2020.03.000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
Emphysema is one of the main manifestations of chronic obstructive pulmonary disease (COPD), and smoking is one of the most significant risk factors. The results of studies in humans and animals show the vascular endothelium initiates and modulates the main pathological processes in COPD and smoking is an important factor initiating, developing and persisting inflammation and remodeling of blood vessels and tissues, including the destruction of small respiratory tracts with the development of lung tissue destruction and emphysema. The latest studies describe mechanisms not just associated with the endothelium, but specific neuro-mediated mechanisms. There is reason to believe that neuro-mediated and neuro-similar mechanisms associated and not related to endothelial dysfunction may play the significant role in the pathogenesis of COPD and emphysema formation. Information about components and mechanisms of neurogenic inflammation in emphysema development is fragmentary and not systematized in the literature. It is described that long-term tobacco smoking can initiate processes not only of cells and tissues damage, but also become a trigger for excessive release of neurotransmitters, which entails whole cascades of adverse reactions that have an effect on emphysema formation. With prolonged and/or intensive stimulation of sensor fibers, excessive release of neuropeptides is accompanied by a number of plastic and destructive processes due to a cascade of pathological reactions of neurogenic inflammation, the main participants of which are classical neuropeptides and their receptors. The most important consequences can be the maintenance and stagnation of chronic inflammation, activation of the mechanisms of destruction and remodeling, inadequate repair processes in response to damage, resulting in irreversible loss of lung tissue. For future research, there is interest to evaluate the possibilities of therapeutic and prophylactic effects on neuro-mediated mechanisms of endothelial dysfunction and damage emphysema in COPD and smoking development.
Collapse
|
36
|
Windmöller BA, Greiner JF, Förster C, Wilkens L, Mertzlufft F, Esch JSA, Kaltschmidt B, Kaltschmidt C, Beshay M. A typical carcinoid of the lung - a case report with pathological correlation and propagation of the cancer stem cell line BKZ1 with synaptophysin expression. Medicine (Baltimore) 2019; 98:e18174. [PMID: 31804333 PMCID: PMC6919531 DOI: 10.1097/md.0000000000018174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Neuroendocrine tumors (NETs) of the lung account for 5% of all cases of lung cancer, which itself is the leading cause of cancer-related death worldwide. In accordance to its rarity, only few cell lines of NETs exist, which even often lack key characteristics of the primary tumor, making it difficult to study underlying molecular mechanisms. PATIENT CONCERNS The patient reported in this case is a 71-year old woman, which never smoked but suffered under dry cough. DIAGNOSES Chest CT-scan showed a paracardiac nodule of the lingula with 2 × 1.8 cm in diameter. INTERVENTIONS The detected paracardiac nodule of the lingula was anatomically resected using video assisted thoracic surgery. OUTCOMES Histopathological diagnostic of the removed tissue identified the tumor as a well-differentiated typical carcinoid (TC), which represents one of the four subgroups of pulmonary NETs. Next to the successful treatment of the patient, we were able to propagate cancer stem cells (CSCs) out of the resected tumor tissue. To the best of our knowledge, we firstly isolated CSCs of a typical carcinoid, which were positive for the prominent CSC markers CD44, CD133 and nestin, confirming their stem cell properties. Additionally, CSCs, further referred as BKZ1, expressed the neuroendocrine marker synaptophysin, verifying their neuroendocrine origin. However, nuclear synaptophysin protein was also present in other stem cell populations, suggesting a role as general stem cell marker. LESSON In line with the importance of CSCs in cancer treatment and the lack of CSC-models for neuroendocrine neoplasms, the here described BKZ1 cancer stem cell line of a typical carcinoid represents a promising new model to study pulmonary carcinoids and particular NETs.
Collapse
Affiliation(s)
- Beatrice Ariane Windmöller
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, Bielefeld
- Forschungsverbund BioMedizin Bielefeld, FBMB, Maraweg 21, Bielefeld, Germany
| | - Johannes F.W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, Bielefeld
- Forschungsverbund BioMedizin Bielefeld, FBMB, Maraweg 21, Bielefeld, Germany
| | - Christine Förster
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Hannover
- Forschungsverbund BioMedizin Bielefeld, FBMB, Maraweg 21, Bielefeld, Germany
| | - Ludwig Wilkens
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Hannover
- Forschungsverbund BioMedizin Bielefeld, FBMB, Maraweg 21, Bielefeld, Germany
| | - Fritz Mertzlufft
- Protestant Hospital of Bethel Foundation, Maraweg 21
- Forschungsverbund BioMedizin Bielefeld, FBMB, Maraweg 21, Bielefeld, Germany
| | - Jan Schulte am Esch
- Department of General and Visceral Surgery, Protestant Hospital of Bethel Foundation, Schildescher Strasse 99
- Forschungsverbund BioMedizin Bielefeld, FBMB, Maraweg 21, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, Bielefeld
- Molecular Neurobiology, University of Bielefeld, Universitätsstrasse 25
- Forschungsverbund BioMedizin Bielefeld, FBMB, Maraweg 21, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, Bielefeld
- Forschungsverbund BioMedizin Bielefeld, FBMB, Maraweg 21, Bielefeld, Germany
| | - Morris Beshay
- Department of General Thoracic Surgery, Protestant Hospital of Bethel Foundation, Burgsteig 13
- Forschungsverbund BioMedizin Bielefeld, FBMB, Maraweg 21, Bielefeld, Germany
| |
Collapse
|
37
|
Sarode P, Mansouri S, Karger A, Schaefer MB, Grimminger F, Seeger W, Savai R. Epithelial cell plasticity defines heterogeneity in lung cancer. Cell Signal 2019; 65:109463. [PMID: 31693875 DOI: 10.1016/j.cellsig.2019.109463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer death for both men and women and accounts for almost 18.4% of all deaths due to cancer worldwide, with the global incidence increasing by approximately 0.5% per year. Lung cancer is regarded as a devastating type of cancer owing to its high prevalence, reduction in the health-related quality of life, frequently delayed diagnosis, low response rate, high toxicity, and resistance to available therapeutic options. The highly heterogeneous nature of this cancer with a proximal-to-distal distribution throughout the respiratory tract dramatically affects its diagnostic and therapeutic management. The diverse composition and plasticity of lung epithelial cells across the respiratory tract are regarded as significant factors underlying lung cancer heterogeneity. Therefore, definitions of the cells of origin for different types of lung cancer are urgently needed to understand lung cancer biology and to achieve early diagnosis and develop cell-targeted therapies. In the present review, we will discuss the current understanding of the cellular and molecular alterations in distinct lung epithelial cells that result in each type of lung cancer.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Annika Karger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany.
| |
Collapse
|
38
|
Asavasupreechar T, Saito R, Edwards DP, Sasano H, Boonyaratanakornkit V. Progesterone receptor isoform B expression in pulmonary neuroendocrine cells decreases cell proliferation. J Steroid Biochem Mol Biol 2019; 190:212-223. [PMID: 30926428 PMCID: PMC9968952 DOI: 10.1016/j.jsbmb.2019.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 11/22/2022]
Abstract
The progesterone receptor (PR) has been reported to play important roles in lung development and function, such as alveolarization, alveolar fluid clearance (AFC) and upper airway dilator muscle activity. In the lung, pulmonary neuroendocrine cells (PNECs) are important in the etiology and progression of lung neuroendocrine tumors (NETs). Women with lung NETs had significantly better survival rates than men, suggesting that sex steroids and their receptors, such as the PR, could be involved in the progression of lung NETs. The PR exists as two major isoforms, PRA and PRB. How the expression of different PR isoforms affects proliferation and the development of lung NETs is not well understood. To determine the role of the PR isoforms in PNECs, we constructed H727 lung NET cell models expressing PRB, PRA, Green Fluorescence Protein (GFP) (control). The expression of PRB significantly inhibited H727 cell proliferation better than that of PRA in the absence of progestin. The expression of the unrelated protein, GFP, had little to no effect on H727 cell proliferation. To better understand the role of the PR isoform in PNECs, we examined PR isoform expression in PNECs in lung tissues. A monoclonal antibody specific to the N-terminus of PRB (250H11 mAb) was developed to specifically recognize PRB, while a monoclonal antibody specific to a common N-terminus epitope present in both PRA and PRB (1294 mAb) was used to detect both PRA and PRB. Using these PR and PRB-specific antibodies, we demonstrated that PR (PRA&PRB) and PRB were expressed in the PNECs of the normal fetal and adult lung, with significantly higher PR expression in the fetal lung. Interestingly, PRB expression in the normal lung was associated with lower cell proliferation than PR expression, suggesting a distinct role of PRB in the PNECs. A better understanding of the molecular mechanism of PR and PR isoform signaling in lung NET cells may help in developing novel therapeutic strategies that will benefit lung NET patients in the future.
Collapse
Affiliation(s)
- Teeranut Asavasupreechar
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ryoko Saito
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dean P Edwards
- Departments of Molecular & Cellular Biology and Pathology & Immunology, Baylor College of Medicine, Houston, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Viroj Boonyaratanakornkit
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
39
|
Serotonin, hematopoiesis and stem cells. Pharmacol Res 2019; 140:67-74. [DOI: 10.1016/j.phrs.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 02/08/2023]
|
40
|
Garg A, Sui P, Verheyden JM, Young LR, Sun X. Consider the lung as a sensory organ: A tip from pulmonary neuroendocrine cells. Curr Top Dev Biol 2019; 132:67-89. [PMID: 30797518 DOI: 10.1016/bs.ctdb.2018.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While the lung is commonly known for its gas exchange function, it is exposed to signals in the inhaled air and responds to them by collaborating with other systems including immune cells and the neural circuit. This important aspect of lung physiology led us to consider the lung as a sensory organ. Among different cell types within the lung that mediate this role, several recent studies have renewed attention on pulmonary neuroendocrine cells (PNECs). PNECs are a rare, innervated airway epithelial cell type that accounts for <1% of the lung epithelium population. They are enriched at airway branch points. Classical in vitro studies have shown that PNECs can respond to an array of aerosol stimuli such as hypoxia, hypercapnia and nicotine. Recent in vivo evidence suggests an essential role of PNECs at neuroimmunomodulatory sites of action, releasing neuropeptides, neurotransmitters and facilitating asthmatic responses to allergen. In addition, evidence supports that PNECs can function both as progenitor cells and progenitor niches following airway epithelial injury. Increases in PNECs have been documented in a large array of chronic lung diseases. They are also the cells-of-origin for small cell lung cancer. A better understanding of the specificity of their responses to distinct insults, their impact on normal lung function and their roles in the pathogenesis of pulmonary ailments will be the next challenge toward designing therapeutics targeting the neuroendocrine system in lung.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Pengfei Sui
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jamie M Verheyden
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Lisa R Young
- Division of Pulmonary Medicine, Center for Childhood Lung Research, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States; Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
41
|
Abstract
A hypoxic environment can be defined as a region of the body or the whole body that is deprived of oxygen. Hypoxia is a feature of many diseases, such as cardiovascular disease, tissue trauma, stroke, and solid cancers. A loss of oxygen supply usually results in cell death; however, when cells gradually become hypoxic, they may survive and continue to thrive as described for conditions that promote metastatic growth. The role of hypoxia in these pathogenic pathways is therefore of great interest, and understanding the effect of hypoxia in regulating these mechanisms is fundamentally important. This chapter gives an extensive overview of these mechanisms. Moreover, given the challenges posed by tumor hypoxia we describe the current methods to simulate and detect hypoxic conditions followed by a discussion on current and experimental therapies that target hypoxic cells.
Collapse
Affiliation(s)
- Elizabeth Bowler
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK.
| | - Michael R Ladomery
- Faculty Health and Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
42
|
Shyu S, Heath JE, Burke AP. Neuroendocrine cell proliferations in lungs explanted for fibrotic interstitial lung disease and emphysema. Pathology 2018; 50:699-702. [DOI: 10.1016/j.pathol.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
|
43
|
Verckist L, Pintelon I, Timmermans JP, Brouns I, Adriaensen D. Selective activation and proliferation of a quiescent stem cell population in the neuroepithelial body microenvironment. Respir Res 2018; 19:207. [PMID: 30367659 PMCID: PMC6203996 DOI: 10.1186/s12931-018-0915-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/17/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The microenvironment (ME) of neuroepithelial bodies (NEBs) harbors densely innervated groups of pulmonary neuroendocrine cells that are covered by Clara-like cells (CLCs) and is believed to be important during development and for adult airway epithelial repair after severe injury. Yet, little is known about its potential stem cell characteristics in healthy postnatal lungs. METHODS Transient mild lung inflammation was induced in mice via a single low-dose intratracheal instillation of lipopolysaccharide (LPS). Bronchoalveolar lavage fluid (BALF), collected 16 h after LPS instillation, was used to challenge the NEB ME in ex vivo lung slices of control mice. Proliferating cells in the NEB ME were identified and quantified following simultaneous LPS instillation and BrdU injection. RESULTS The applied LPS protocol induced very mild and transient lung injury. Challenge of lung slices with BALF of LPS-treated mice resulted in selective Ca2+-mediated activation of CLCs in the NEB ME of control mice. Forty-eight hours after LPS challenge, a remarkably selective and significant increase in the number of divided (BrdU-labeled) cells surrounding NEBs was observed in lung sections of LPS-challenged mice. Proliferating cells were identified as CLCs. CONCLUSIONS A highly reproducible and minimally invasive lung inflammation model was validated for inducing selective activation of a quiescent stem cell population in the NEB ME. The model creates new opportunities for unraveling the cellular mechanisms/pathways regulating silencing, activation, proliferation and differentiation of this unique postnatal airway epithelial stem cell population.
Collapse
Affiliation(s)
- Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium
| | - Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium.
| |
Collapse
|
44
|
Chen Y, Feng J, Zhao S, Han L, Yang H, Lin Y, Rong Z. Long-Term Engraftment Promotes Differentiation of Alveolar Epithelial Cells from Human Embryonic Stem Cell Derived Lung Organoids. Stem Cells Dev 2018; 27:1339-1349. [PMID: 30009668 DOI: 10.1089/scd.2018.0042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cell (hESC) derived 3D human lung organoids (HLOs) provide a promising model to study human lung development and disease. HLOs containing proximal or/and immature distal airway epithelial cells have been successfully generated in vitro, such as early staged alveolar type 2 (AT2) cells (SPC+/SOX9+) and immature alveolar type 1 (AT1) cells (HOPX+/SOX9+). When HLOs were transplanted into immunocompromised mice for further differentiation in vivo, only few distal epithelial cells could be observed. In this study, we transplanted different stages of HLOs into immunocompromised mice to assess whether HLOs could expand and mature in vivo. We found that short-term transplanted HLOs contained lung progenitor cells (NKX2.1+, SOX9+, and P63+), but not SPC+ AT2 cells or AQP5+ AT1 cells. Meanwhile, long-term engrafted HLOs could differentiate into lung distal bipotent progenitor cells (PDPN+/SPC+/SOX9+), AT2 cells (SPC+, SPB+), and immature AT1 cells (PDPN+, AQP5-). However, HLOs at late in vitro stage turned into mature AT1-like cells (AQP5+/SPB-/SOX9-) in vivo. Immunofluorescence staining and transmission electron microscopy (TEM) results revealed that transplanted HLOs contained mesenchymal cells (collagen I+), vasculature (ACTA2+), neuroendocrine-like cells (PGP9.5+), and nerve fiber structures (myelin sheath structure). Together, these data reveal that hESC-derived HLOs would be useful for human lung development modeling, and transplanted HLOs could mimic lung organ-like structures in vivo by possessing vascular network and neuronal network.
Collapse
Affiliation(s)
- Yong Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Jianqi Feng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Shanshan Zhao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Le Han
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Hongcheng Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| |
Collapse
|
45
|
Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res 2018; 19:149. [PMID: 30081920 PMCID: PMC6090699 DOI: 10.1186/s12931-018-0846-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
The nervous system mediates key airway protective behaviors, including cough, mucus secretion, and airway smooth muscle contraction. Thus, its involvement and potential involvement in several airway diseases has become increasingly recognized. In the current review, we focus on the contribution of select neuropeptides in three distinct airway diseases: asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. We present data on some well-studied neuropeptides, as well as call attention to a few that have not received much consideration. Because mucus hypersecretion and mucus obstruction are common features of many airway diseases, we place special emphasis on the contribution of neuropeptides to mucus secretion. Finally, we highlight evidence implicating involvement of neuropeptides in mucus phenotypes in asthma, COPD and cystic fibrosis, as well as bring to light knowledge that is still lacking in the field.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
46
|
Mindt BC, Fritz JH, Duerr CU. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis. Front Immunol 2018; 9:840. [PMID: 29760695 PMCID: PMC5937028 DOI: 10.3389/fimmu.2018.00840] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.
Collapse
Affiliation(s)
- Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montreal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, QC, Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montreal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Claudia U Duerr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montreal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, QC, Canada.,Institute of Microbiology and Infection Immunology, Charité - University Medical Centre Berlin, Berlin, Germany
| |
Collapse
|
47
|
Nadkarni RR, Abed S, Draper JS. Stem Cells in Pulmonary Disease and Regeneration. Chest 2018; 153:994-1003. [DOI: 10.1016/j.chest.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 01/02/2023] Open
|
48
|
Cutz E, Chami R, Dell S, Langer J, Manson D. Pulmonary interstitial glycogenosis associated with a spectrum of neonatal pulmonary disorders. Hum Pathol 2017; 68:154-165. [DOI: 10.1016/j.humpath.2017.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/23/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022]
|
49
|
Abstract
Sudden infant death syndrome (SIDS), the leading cause of postneonatal infant mortality, likely comprises heterogeneous disorders with the common phenotype of sudden death without explanation upon postmortem investigation. Previously, we reported that ∼40% of SIDS deaths are associated with abnormalities in serotonin (5-hydroxytryptamine, 5-HT) in regions of the brainstem critical in homeostatic regulation. Here we tested the hypothesis that SIDS is associated with an alteration in serum 5-HT levels. Serum 5-HT, adjusted for postconceptional age, was significantly elevated (95%) in SIDS infants (n = 61) compared with autopsied controls (n = 15) [SIDS, 177.2 ± 15.1 (mean ± SE) ng/mL versus controls, 91.1 ± 30.6 ng/mL] (P = 0.014), as determined by ELISA. This increase was validated using high-performance liquid chromatography. Thirty-one percent (19/61) of SIDS cases had 5-HT levels greater than 2 SDs above the mean of the controls, thus defining a subset of SIDS cases with elevated 5-HT. There was no association between genotypes of the serotonin transporter promoter region polymorphism and serum 5-HT level. This study demonstrates that SIDS is associated with peripheral abnormalities in the 5-HT pathway. High serum 5-HT may serve as a potential forensic biomarker in autopsied infants with SIDS with serotonergic defects.
Collapse
|
50
|
Taweevisit M, Theerasantipong B, Taothong K, Thorner PS. Pulmonary Neuroendocrine Cell Hyperplasia in Hemoglobin Bart-induced Hydrops Fetalis: A model for Chronic Intrauterine Hypoxia. Pediatr Dev Pathol 2017; 20:298-307. [PMID: 28727978 DOI: 10.1177/1093526617693121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pulmonary neuroendocrine system includes pulmonary neuroendocrine cells (PNECs) and neuroepithelial bodies (NEBs) that are distributed throughout respiratory epithelium and regulate lung growth and maturation antenatally. Abnormalities in this system have been linked to many hypoxia-associated pediatric pulmonary disorders. Hemoglobin (Hb) Bart disease is a severe form of α-thalassemia resulting in marked intrauterine hypoxia with hydrops fetalis (HF) and usually death in utero. Affected fetuses can serve as a naturally occurring human model for the effects of intrauterine hypoxia, and we postulated that these effects should include changes in the pulmonary neuroendocrine system. Bombesin immunostaining was used to assess PNECs and NEBs in stillborn fetuses with Hb Bart HF ( n = 16) and with HF from other causes ( n = 14) in comparison to non-HF controls. Hb Bart HF showed a significant increase in the proportion of PNECs in respiratory epithelium ( P = .002), mean number of NEB nuclei ( P = .03), and mean size of NEBs ( P = .002), compared to normal non-HF controls. Significant differences were not observed between HF due to other causes and non-HF controls with normal lungs. Non-HF controls with pulmonary hypoplasia showed significant increases in PNECs compared to HF cases not due to Hb Bart HF, implying HF alone does not cause such increases. In contrast, no significant differences were noted between non-HF controls with pulmonary hypoplasia and Hb Bart cases. Hb Bart HF may provide a useful model for studying the pulmonary neuroendocrine system under chronic intrauterine hypoxia.
Collapse
Affiliation(s)
- Mana Taweevisit
- 1 Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Boochit Theerasantipong
- 1 Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Kanlaya Taothong
- 1 Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Paul Scott Thorner
- 1 Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,2 Department of Pathology and Laboratory Medicine, Hospital for Sick Children and University of Toronto, Toronto, Canada
| |
Collapse
|