1
|
Jafarzadeh A, Zandvakili R, Jafarzadeh Z, Nemati M. Dysregulated expression of the suppressors of cytokine signaling (SOCS) contributes to the development of prostate cancer. Pathol Res Pract 2024; 262:155558. [PMID: 39213689 DOI: 10.1016/j.prp.2024.155558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Different types of cytokines, growth factors, or hormones present within the tumor microenvironment that can activate the JAK-STAT signaling pathway by binding to their specific cell surface receptors. The constitutive activation of the JAK-STAT pathway can promote uncontrolled cell proliferation and prevent apoptosis contributing to tumor development. Activation of the JAK-STAT pathway is controlled by several regulatory molecules, particularly the suppressor of cytokine signaling (SOCS) family consisting of eight members, which include SOCS1-SOCS7 and the cytokine-inducible SH2-containing (CIS) proteins. In prostate cancer cells, the irregular expression of the SOCS1-SOCS3, SOCS5-SOCS7 as well as CIS can similarly and differentially result in the initiation of various cellular signaling pathways (in particular JAK-STAT3, MAPK, ERK) that promote cell proliferation, migration, invasion and viability; cell cycle progression; epithelial-mesenchymal transition; angiogenesis; resistance to therapy; immune evasion; and chronic inflammation within the tumor microenvironment which lead to tumor progression, metastasis and poor prognosis. Epigenetic modifications, mainly due to DNA methylation, microRNAs, pro-inflammatory cytokines, growth factors and androgens can influence the expression of the SOCS molecules in prostate cancer cells. Using strategies to modulate, restore or enhance the expression of SOCS proteins, may help overcome treatment resistance and improve the efficacy of existing therapies. In this review, we provide a comprehensive explanation regarding SOCS dysregulation in prostate cancer to provide insights into the mechanisms underlying the dysregulation of SOCS proteins. This knowledge may pave the way for the development of novel therapeutic strategies to manage prostate cancer by restoring and modulating the expression of SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Liu CW, Peng HY, Siao AC, Tsuei YW, Lin YY, Shiah SG, Shih LJ, Yeh CC, Lee SW, Kao YH. Resistin stimulates PC-3 prostate cancer cell growth through stimulation of SOCS3 and SOCS5 genes. Exp Biol Med (Maywood) 2023; 248:1695-1707. [PMID: 37646261 PMCID: PMC10792425 DOI: 10.1177/15353702231191206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/08/2023] [Indexed: 09/01/2023] Open
Abstract
Resistin and suppressors of cytokine signaling (SOCSs) have been reported to regulate prostate cancer (PCa) cell proliferation and survival, respectively. Whether any of the SOCS molecules mediate the mitogenic effect of resistin on PCa cells is unknown. Using PC-3 human PCa cells, we found that resistin upregulates the expression of SOCS3 and SOCS5 mRNA, but not SOCS7 mRNA, in a dose- and time-dependent manner. The resistin-induced increases in SOCS3 and SOCS5 expression and cell proliferation were prevented by pretreatment with specific inhibitors of the TLR4, ERK, p38 MAPK, JNK, PI3K, and JAK2 proteins. However, pretreatment with a TLR2 inhibitor had no effect on resistin-mediated SOCS3 and SOCS5 expression. In addition, the effects of resistin on SOCS3, SOCS5, and SOCS7 mRNA levels were cell type-specific. Overexpression of either SOCS3 or SOCS5 enhanced further resistin-stimulated growth of PC-3 cells, whereas silencing SOCS3 or SOCS5 antagonized resistin-increased cell growth. Further PCa tissue analysis demonstrated higher levels of RETN, TLR4, SOCS3, and SOCS5 mRNAs in cancer tissues than benign prostate hyperplasia and indicated positive correlations among RETN, TLR4, and SOCS5. These data suggest that SOCS5, TLR4, and, to a lesser extent, SOCS3 can mediate the mitogenic effect of resistin on PC-3 PCa cells.
Collapse
Affiliation(s)
- Chi-Wei Liu
- Department of Life Sciences, National Central University, Taoyuan 320
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330
| | - Hsuan-Yu Peng
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350
| | - An-Ci Siao
- Department of Life Sciences, National Central University, Taoyuan 320
| | - Yi-Wei Tsuei
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325
| | - Yen-Yue Lin
- Department of Life Sciences, National Central University, Taoyuan 320
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350
| | - Li-Jane Shih
- Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan 325
| | - Chien-Chih Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan 325
| | - Shih-Wei Lee
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan 320
| |
Collapse
|
3
|
Klaver D, Gander H, Dobler G, Rahm A, Thurnher M. The P2Y11 receptor of human M2 macrophages activates canonical and IL-1 receptor signaling to translate the extracellular danger signal ATP into anti-inflammatory and pro-angiogenic responses. Cell Mol Life Sci 2022; 79:519. [PMID: 36107259 PMCID: PMC9476423 DOI: 10.1007/s00018-022-04548-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022]
Abstract
The cytoprotective ATP receptor P2Y11 is upregulated during M2 macrophage differentiation and contributes to the anti-inflammatory properties of this macrophage subset. Here, we studied P2Y11-induced reprogramming of human M2 macrophages at the level of mRNA and protein expression. Upregulation of IL-1 receptor (IL-1R) and its known downstream effectors VEGF, CCL20 and SOCS3 as well as downregulation of the ATP-degrading ecto-ATPase CD39 emerged as hallmarks of P2Y11 activation. The anti-inflammatory signature of the P2Y11 transcriptome was further characterized by the downregulation of P2RX7, toll-like receptors and inflammasome components. P2Y11-induced IL-1R upregulation formed the basis for reinforced IL-1 responsiveness of activated M2 macrophages, as IL-1α and IL-1ß each enhanced P2Y11-induced secretion of VEGF and CCL20 as well as the previously reported shedding of soluble tumor necrosis factor receptor 2 (sTNFR2). Raising intracellular cyclic AMP (cAMP) in M2 macrophages through phosphodiesterase 4 inhibition enhanced P2Y11-driven responses. The cAMP-binding effector, exchange protein activated by cAMP 1 (Epac1), which is known to induce SOCS3, differentially regulated the P2Y11/IL-1R response because pharmacological Epac1 inhibition enhanced sTNFR2 and CCL20 release, but had no effect on VEGF secretion. In addition to cAMP, calcium and protein kinase C participated in P2Y11 signaling. Our study reveals how P2Y11 harnesses canonical and IL-1R signaling to promote an anti-inflammatory and pro-angiogenic switch of human M2 macrophages, which may be controlled in part by an Epac1-SOCS3 axis.
Collapse
Affiliation(s)
- Dominik Klaver
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020, Innsbruck, Austria
| | - Hubert Gander
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020, Innsbruck, Austria
| | - Gabriele Dobler
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020, Innsbruck, Austria
| | - Andrea Rahm
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020, Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Dai L, Li Z, Liang W, Hu W, Zhou S, Yang Z, Tao Y, Hou X, Xing Z, Mao J, Shi Z, Wang X. SOCS proteins and their roles in the development of glioblastoma. Oncol Lett 2021; 23:5. [PMID: 34820004 PMCID: PMC8607235 DOI: 10.3892/ol.2021.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary brain tumor in adults. GBM is characterized by a high degree of malignancy and aggressiveness, as well as high morbidity and mortality rates. GBM is currently treatable via surgical resection, chemotherapy and radiotherapy, but the prognosis of patients with GBM is poor. The suppressor of cytokine signaling (SOCS) protein family comprises eight members, including SOCS1-SOCS7 and cytokine-inducible SH2-containing protein. SOCS proteins regulate the biogenesis of GBM via the JAK/STAT and NF-κB signaling pathways. Driven by NF-κB, the expression of SOCS proteins can serve as a negative regulator of the JAK/STAT signaling pathway and exerts a potential inhibitory effect on GBM. In GBM, E3 ubiquitin ligase is involved in the regulation of cellular functions, such as the receptor tyrosine kinase (RTK) survival signal, in which SOCS proteins negatively regulate RTK signaling, and kinase overexpression or mutation can lead to the development of malignancies. Moreover, SOCS proteins affect the proliferation and differentiation of GBM cells by regulating the tumor microenvironment. SOCS proteins also serve specific roles in GBM of different grades and different isocitrate dehydrogenase mutation status. The aim of the present review was to describe the biogenesis and function of the SOCS protein family, the roles of SOCS proteins in the microenvironment of GBM, as well as the role of this protein family and E3 ubiquitin ligases in GBM. Furthermore, the role of SOCS proteins as diagnostic and prognostic markers in GBM and their potential role as GBM therapeutics were explored.
Collapse
Affiliation(s)
- Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Wulong Liang
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Weihua Hu
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xuelei Hou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Jianchao Mao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
5
|
Zhang J, Pu XM, Xiong Y. kshv-mir-k12-1-5p promotes cell growth and metastasis by targeting SOCS6 in Kaposi's sarcoma cells. Cancer Manag Res 2019; 11:4985-4995. [PMID: 31213914 PMCID: PMC6549767 DOI: 10.2147/cmar.s198411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Kaposi’s sarcoma (KS) is a highly disseminated angiogenic tumour of endothelial cells. Many deregulated miRNAs, including kshv-mir-k12-1-5p, have been identified in KS. kshv-mir-k12-1-5p plays important roles in KS. However, the underlying mechanism is not fully understood. The aim of this study was to investigate the exact functions of kshv-mir-k12-1-5p in KS cells. Materials and methods: The biological functions of kshv-mir-k12-1-5p were studied using CCK-8, apoptosis, migration and invasion assays. Bioinformatics software was used to identify the target gene (SOCS6) of kshv-mir-k12-1-5p. A dual luciferase assay, Western blot (WB) and quantitative real-time polymerase chain reaction (q-PCR) were performed to further verify the target gene. The underlying molecular mechanisms of kshv-mir-k12-1-5p in KS cells were also explored. Results: kshv-mir-k12-1-5p can promote the proliferation, migration and invasion of KS cells and inhibit cell apoptosis. Suppressor of cytokine signalling 6 (SOCS6) was identified as a direct target of kshv-mir-k12-1-5p, and kshv-mir-k12-1-5p can downregulate SOCS6 expression. In addition, knockdown of SOCS6 rescued the effects of kshv-mir-k12-1-5p inhibitor. Hence, a direct relationship between kshv-mir-k12-1-5p and SOCS6 was confirmed. Conclusions: kshv-mir-k12-1-5p promotes the malignant phenotype of KS cells by targeting SOCS6, suggesting that kshv-mir-k12-1-5p could be a potential therapeutic target for KS.
Collapse
Affiliation(s)
- Jing Zhang
- Postgraduate College of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.,Department of Pathology, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xiong-Ming Pu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People's Republic of China
| | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
6
|
Prognostic values of signal transducers activators of transcription in gastric cancer. Biosci Rep 2019; 39:BSR20181695. [PMID: 30944204 PMCID: PMC6488950 DOI: 10.1042/bsr20181695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/06/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
The signal transducers and activators of transcription genes family (STATs) have been well studied as prognostic predictors for various solid tumors, but their prognostic values in gastric cancer (GC) patients have not been fully elucidated. The 'Kaplan-Meier plotter' and multiple public available databases were used for the characterization of the prognostic roles of STATs family in GC. The results indicated that high mRNA expression of all individual STATs, except STAT3 and STAT6, were significantly associated with favorable overall survival (OS) in GC. Moreover, the prognostic values of STATs were further characterized in subtypes, including HER2 status, Lauren's classification, differentiation, and clinical stages. Moreover, the prognostic value of STATs signature was also characterized. Low risk group displayed a significantly favorable OS than high risk (HR: 1.71; 95% CI: 1.09-2.66, P=0.0184). In addition, STATs showed distinct expression between GC and normal groups. Meanwhile, comparable high correlation between STATs and tumor immune infiltrating cells (TIICs) was also observed. STAT4 displayed highest correlation with dendritic cells (correlation = 0.716, P=1.63e-59) and CD8+ T cells (correlation = 0.697, P=5.02e-55). In conclusion, our results suggest that all individual STATs, except STAT3 and STAT6, may act as prognostic markers in GC.
Collapse
|
7
|
Su M, Qin B, Liu F, Chen Y, Zhang R. miR-885-5p upregulation promotes colorectal cancer cell proliferation and migration by targeting suppressor of cytokine signaling. Oncol Lett 2018; 16:65-72. [PMID: 29928388 PMCID: PMC6006474 DOI: 10.3892/ol.2018.8645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the role of microRNA (miR)-885-5p in colorectal cancer cell proliferation and migration, and to determine the possible underlying molecular mechanisms. The expression of miR-885-5p in colorectal cancer tissue and cells was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of three suppressor of cytokine signaling (SOCS) factors were detected by RT-qPCR and western blotting. The effects of miR-885-5p on tumor cell proliferation and migration were studied using MTT and Transwell assays, respectively. Additionally, the expression levels of epithelial-mesenchymal transition (EMT)-related proteins (N-cadherin, E-cadherin, vimentin and Snail) were detected by RT-qPCR and western blot analysis. Furthermore, the target of miR-885-5p was predicted and confirmed using a luciferase reporter assay. miR-885-5p was demonstrated to be upregulated and SOCS was downregulated in colorectal cancer tissue, and cells. miR-885-5p suppression significantly inhibited tumor cell proliferation and migration, promoted E-cadherin expression, and inhibited the expression levels of N-cadherin, vimentin and Snail. Further studies showed that SOCS5, SOCS6 and SOCS7 were direct targets of miR-885-5p. The results suggest that miR-885-5p suppression inhibited cell proliferation and migration, and the EMT process by targeting SOCS5, SOCS6 and SOCS7 genes in colorectal cancer. miR-885-5p and SOCS may be used for the diagnosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Meng Su
- Department of Medical Oncology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Baoli Qin
- Department of Medical Oncology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Fang Liu
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Yuze Chen
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
8
|
The Immunohistochemical Analysis of SOCS3 Protein Identifies a Subgroup of Prostatic Cancer Biopsies With Aggressive Behavior. Appl Immunohistochem Mol Morphol 2018; 26:324-329. [DOI: 10.1097/pai.0000000000000438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Culig Z, Puhr M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol Cell Endocrinol 2018; 462:25-30. [PMID: 28315704 DOI: 10.1016/j.mce.2017.03.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/27/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-6 is a pro-inflammatory cytokine that is expressed in prostate tumors and in the stromal tumor micro-enviroment. It is known to regulate proliferation, apoptosis, angiogenesis, and differentiation. The signaling pathway of Janus kinase and signal transducer and activator of transcription (STAT)3, which is activated by IL-6, is in the focus of scientific investigations for improved treatment approaches. Different effects of IL-6 and/or STAT3 on tumor cell growth have been observed in human and murine prostate cancer (PCa) models. Experimental therapies have been proposed in order to block the IL-6/STAT3 signaling pathway. In this context, the anti-IL-6 antibody siltuximab (CNTO 328) has been demonstrated to inhibit growth of prostate tumors in vitro and in vivo and delays progression towards castration resistance. However, clinically, the anti-IL-6 antibody was not successful as a monotherapy in phase II studies in patients with metastatic PCa. IL-6 is implicated in regulation of cellular stemness by increasing phosphorylation of STAT3. The cytokine has also a role in development of resistance to the non-steroidal anti-androgen enzalutamide. Endogenous inhibitors of IL-6 are suppressors of cytokine signaling and protein inhibitors of activated STAT. Although they inhibit signal transduction through STAT3, they may also exhibit anti-apoptotic effects. On the basis of complexity of IL-6 action in PCa, an individualized approach is needed to identify patients who will benefit from anti-IL-6 therapy in combination with standard treatments.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | - Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Kidney-Replenishing Herb Induces SOCS-3 Expression via ERK/MAPK Pathway and Improves Growth of the First-Trimester Human Trophoblast Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2473431. [PMID: 29234375 PMCID: PMC5637846 DOI: 10.1155/2017/2473431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
Abstract
Kidney-replenishing herb is a traditional medicine formula in China which has been widely used for clinical treatment of recurrent miscarriage. Our previous study showed that Kidney-replenishing herb could promote proliferation and inhibit apoptosis of the human first-trimester trophoblasts. In the present study, we further explored the potential mechanism and signal pathway of Kidney-replenishing herb on human trophoblast cells. Our research showed that Kidney-replenishing herb stimulated proliferation and reduced apoptosis of human trophoblast cells in vitro, and this appeared to be positive correlation with SOCS-3 transcription, suggesting that Kidney-replenishing herb regulated biological functions of human trophoblast cells by inducing SCOS-3 expression. Furthermore, the Kidney-replenishing herb treatment stimulated the phosphorylation of ERK1/2, and blocking the signaling pathway by mitogen-activated protein MAPK (MEK) inhibitor, U0126, inhibited Kidney-replenishing herb-induced SOCS-3 transcription, depressed proliferation, and promoted apoptosis of human trophoblasts. Kidney-replenishing herbs still induced ERK1/2 phosphorylation after SOCS-3 siRNA silence. Overexpression of SOCS-3 stimulated the proliferation of trophoblast. These findings suggest that SOCS-3 expression is induced by Kidney-replenishing herbs via activation of MAPK pathways, and this may possibly be involved in promoting human trophoblast cells growth which is contributed to embryo development.
Collapse
|
11
|
Loeschenberger B, Niess L, Würzner R, Schwelberger H, Eder IE, Puhr M, Guenther J, Troppmair J, Rudnicki M, Neuwirt H. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells. Eur J Immunol 2017; 48:330-343. [PMID: 29143318 DOI: 10.1002/eji.201747135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/12/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation.
Collapse
Affiliation(s)
| | - Lea Niess
- Department of Internal Medicine IV, Innsbruck Medical University, Innsbruck, Austria
| | - Reinhard Würzner
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Hubert Schwelberger
- Molecular Biology Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Iris E Eder
- Department of Urology, Division of Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Division of Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Julia Guenther
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant- and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant- and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV, Innsbruck Medical University, Innsbruck, Austria
| | - Hannes Neuwirt
- Department of Internal Medicine IV, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
12
|
Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA. Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts. Cytokine Growth Factor Rev 2017; 37:67-79. [DOI: 10.1016/j.cytogfr.2017.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/15/2022]
|
13
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
14
|
15-Deoxy-Δ(12,14)-prostaglandin J2 Induces Apoptosis and Upregulates SOCS3 in Human Thyroid Cancer Cells. PPAR Res 2016; 2016:4106297. [PMID: 27190500 PMCID: PMC4852108 DOI: 10.1155/2016/4106297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
The cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a natural ligand of peroxisome proliferator-activated receptor gamma (PPAR-γ) and a potential mediator of apoptosis in cancer cells. In the present study, we evaluated the effect of 15d-PGJ2 in human thyroid papillary carcinoma cells (TPC-1) using different doses of 15d-PGJ2 (0.6 to 20 μM) to determine IC50 (9.3 μM) via the MTT assay. The supernatant culture medium of the TPC-1 cells that was treated either with 15d-PGJ2 or with vehicle (control) for 24 hours was assessed for IL-6 secretion via CBA assay. RT-qPCR was used to evaluate mRNA expression of IL-6, SOCS1, SOCS3, and STAT3. TPC-1 cells treated with 15d-PGJ2 decreased the secretion and expression of IL-6 and STAT3, while it increased SOCS1 and SOCS3. Overall, we demonstrated that 15d-PGJ2 downregulated IL-6 signaling pathway and led TPC-1 cells into apoptosis. In conclusion, 15d-PGJ2 shows the potential to become a new therapeutic approach for thyroid tumors.
Collapse
|
15
|
Yin Y, Liu W, Dai Y. SOCS3 and its role in associated diseases. Hum Immunol 2015; 76:775-80. [DOI: 10.1016/j.humimm.2015.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/03/2015] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
|
16
|
SOCS3 promotes inflammation and apoptosis via inhibiting JAK2/STAT3 signaling pathway in 3T3-L1 adipocyte. Immunobiology 2015; 220:947-53. [DOI: 10.1016/j.imbio.2015.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 11/18/2022]
|
17
|
Fu X, Ren L, Chen J, Liao K, Fu Y, Qian X, Xiao J. Characterization of the roles of suppressor of cytokine signaling-3 in prostate cancer development and progression. Asia Pac J Clin Oncol 2015; 11:106-13. [PMID: 25899712 DOI: 10.1111/ajco.12357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2015] [Indexed: 01/01/2023]
Abstract
As negative feedback regulators of cytokine signaling, suppressor of cytokine signaling proteins are induced by interleukins and various peptide hormones and may prevent sustained activation of signaling pathways. In particular, suppressor of cytokine signaling-3 (SOCS-3) plays pivotal roles in the development and progression of various cancers and exerts pleiotropic effects on cell proliferation and apoptosis. In recent years, abnormal expression of SOCS-3 and its multiple functions have been extensively investigated in human carcinomas, particularly in prostate cancer. SOCS-3 can act as an oncogene or a tumor suppressor depending on the cellular context. In this review, we focus on the role of SOCS-3 in prostate cancer development and prognosis, as well as the potential of SOCS-3 as a therapeutic target and diagnostic marker.
Collapse
Affiliation(s)
- Xian Fu
- Department of Urology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhou QX, Jiang XM, Wang ZD, Li CL, Cui YF. Enhanced expression of suppresser of cytokine signaling 3 inhibits the IL-6-induced epithelial-to-mesenchymal transition and cholangiocarcinoma cell metastasis. Med Oncol 2015; 32:105. [PMID: 25744243 DOI: 10.1007/s12032-015-0553-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 01/03/2023]
Abstract
It was recently demonstrated that interleukin-6 (IL-6) induces the epithelial-to-mesenchymal transition (EMT) in cholangiocarcinoma (CCA), but the underlying molecular mechanism remains to be explored. In this study, we studied the role of suppresser of cytokine signaling 3 (SOCS3), a negative feedback regulator of IL-6/STAT3, in the IL-6-induced EMT in CCA. Treatment with IL-6 induced the EMT by decreasing the E-cadherin expression and increasing the expression of N-cadherin and vimentin. Using wound healing and invasion assays, we found that IL-6 promoted cell motility. Further, a stably transfected cell line overexpressing SOCS3 was constructed. Enhanced SOCS3 expression decreased IL-6-induced cell invasion and EMT in parallel with downregulating the IL-6/STAT3 pathway. In contrast, SOCS3 silencing using siRNA exhibited no effect on the cell invasive ability and EMT. Finally, an in vivo study indicated that the enhancement of SOCS3 expression decreased metastasis compared with the control, and this effect was achieved by the repression of p-STAT3, N-cadherin and vimentin, and the induction of E-cadherin assessed by Western blot analysis. Our results suggest that enhanced expression of SOCS3 can antagonize IL-6-induced EMT and cell metastasis by abrogating the IL-6/STAT3 pathway. These data establish that SOCS3 plays a role in the EMT in CCA and may provide novel therapeutic strategies for CCA.
Collapse
Affiliation(s)
- Qing-Xin Zhou
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Affiliated Hospital, Harbin Medical University, No. 246 Xuefu Road, Harbin, 150086, Heilongjiang Province, China
| | | | | | | | | |
Collapse
|
19
|
Neuwirt H, Wabnig E, Feistritzer C, Eder IE, Salvador C, Puhr M, Culig Z, Massoner P, Tiefenthaler M, Steurer M, Konwalinka G. Akacid medical formulation induces apoptosis in myeloid and lymphatic leukemic cell lines in vitro and in vivo. PLoS One 2015; 10:e0117806. [PMID: 25680181 PMCID: PMC4334520 DOI: 10.1371/journal.pone.0117806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/01/2015] [Indexed: 12/21/2022] Open
Abstract
Akacid medical formulation (AMF) is an oligoguanidine that exerts biocidal activity against airborne and surface microorganisms including bacteria, viruses, fungi, and molds, while showing relatively low toxicity to humans. We have previously shown that AMF exerts antiproliferative effects on a variety of solid tumor cell lines. In this study we raised the question whether AMF could also substantially inhibit cell growth or induce apoptosis in cell lines derived from hematologic malignancies such as leukemia or lymphoma. We found that AMF has antiproliferative effects on various hematologic cell lines derived from human leukemia and lymphoma. Additionally, we show that AMF induces apoptosis in leukemia cell lines not only via the extrinsic and intrinsic pathway, but also in a caspase-independent manner. This effect was found also in G0-arrested cells. Finally, in our animal experiments utilizing male nu/nu Balb/c mice we found a significant growth retardation, which was immunohistochemically associated with a significantly lower number of KI67-positive cells and caspase-3 induction in AMF-treated mice.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Caspase Inhibitors/pharmacology
- Caspases/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- Enzyme Activation/drug effects
- G1 Phase Cell Cycle Checkpoints/drug effects
- Guanidines/administration & dosage
- Guanidines/pharmacology
- Humans
- Leukemia, Lymphoid/drug therapy
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/pathology
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Male
- Mice
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hannes Neuwirt
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Elisabeth Wabnig
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Feistritzer
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris E. Eder
- Department of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Salvador
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Massoner
- Department of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Tiefenthaler
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Steurer
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Guenther Konwalinka
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Culig Z. Proinflammatory cytokine interleukin-6 in prostate carcinogenesis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:231-238. [PMID: 25374925 PMCID: PMC4219316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Interleukin-6 (IL-6) is a multifunctional pro-inflammatory cytokine which is expressed in clinical specimens obtained from patients with prostate cancer and in multiple cell lines. IL-6 expression is regulated in prostate cancer by several oncogenes and tumor suppressors. IL-6 activates in prostate cancer pathways of Janus kinases/signal transducers and activators of transcription (STAT), mitogen-activated protein kinases, and phosphatidylinositol 3-kinase. In several tumor models, proliferative and anti-apoptotic effects were described, although androgen-sensitive prostate cancer cells LNCaP are inhibited by IL-6. IL-6 is also involved in regulation of neuroendocrine differentiation and angiogenesis in prostate cancer. IL-6 activation of the androgen receptor is important for tumor growth and differentiation. IL-6 activation of STAT3 is crucial for maintenance of the tumor progenitor cells phenotype. Suppressors of cytokine signaling inhibit permanent activation of STAT3, however they may have also IL-6-independent effects. Experimental therapies with aim to inhibit IL-6 signaling in prostate cancer were developed with the monoclonal antibody CNTO328. Although progression towards castration resistance was delayed by CNTO328 in a xenograft model, clinical monotherapies in patients with castration therapy-resistant disease with the antibody did not yield a satisfactory response.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Innsbruck Medical University Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
21
|
SOCS3 expression is inversely correlated with Pyk2 in non-small cell lung cancer and exogenous SOCS3 inhibits proliferation and invasion of A549 cells. Pathology 2014; 44:434-40. [PMID: 22722483 DOI: 10.1097/pat.0b013e328354ffdf] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIMS We have confirmed that suppressor of cytokine signalling 3 (SOCS3) is silenced and proline-rich tyrosine kinase 2 (Pyk2) is over-expressed in non-small cell lung cancer (NSCLC). The aim of this study was to investigate the correlation of SOCS3 and Pyk2 expression in NSCLC, and the effects of SOCS3 up-regulation on A549 cells. METHODS One hundred cases of NSCLC were detected for the expression of SOCS3 and Pyk2 by immunohistochemistry. The expression of SOCS3 and Pyk2 were also examined in human bronchial epithelial cells (HBE) and six lung cancer cell lines using Western blot and immunofluorescence staining. Then plasmid containing full-length SOCS3 was transfected into A549 cells to further investigate the effects of SOCS3 over-expression on proliferation, apoptosis and invasion of transfected cells, which were examined using MTT, flow cytometry and Transwell assays. RESULTS Our results showed a significant negative correlation between SOCS3 and Pyk2 in both NSCLC tissues and cell lines. Up-regulation of SOCS3 increased the apoptotic rates of transfected cells, while the numbers of proliferative and invasive cells were decreased. CONCLUSIONS Our data indicate that SOCS3 definitely plays roles in regulating Pyk2 expression, and up-regulation of SOCS3 could be an effective way to prevent the progression of NSCLC.
Collapse
|
22
|
Nam KW, Chae S, Song HY, Mar W, Han MD. The role of wogonin in controlling SOCS3 expression in neuronal cells. Biochem Biophys Res Commun 2014; 450:1518-24. [PMID: 25035930 DOI: 10.1016/j.bbrc.2014.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 11/16/2022]
Abstract
The mechanism underlying the wogonin-mediated increase in the expression of suppressor of cytokine signaling 3 (SOCS3) is unclear. Promoter deletion assay results revealed that wogonin-induced SOCS3 expression is dependent on the AP-1 consensus sequences and two STAT responsive elements (TTACAAGAA and TTCCAGGAA) in the 5'-flanking region of the SOCS3 gene in SH-SY5Y cells. Wogonin-induced SOCS3 expression was blocked by inhibitors of PI3K, Akt, Raf, p38, JNK, MEK, and STAT3, respectively. However, JAK2 inhibitors did not inhibit wogonin-induced SOCS3 expression. These results indicate that SOCS3-inducing effect of wogonin is caused by the activation of PI3K-mediated MAPK signaling pathways (Akt, ERK1/2, p38, and JNK), and the subsequent activation of AP-1 consensus sequences and STAT responsive elements in SH-SY5Y cells.
Collapse
Affiliation(s)
- Kung-Woo Nam
- Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University, Asan 336-745, Republic of Korea
| | - Sungwook Chae
- Herbal Quality Control Center, Korea Institute of Oriental Medicine, 488 Expo, Daejeon 305-811, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 330-721, Republic of Korea
| | - Woongchon Mar
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Man-Deuk Han
- Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University, Asan 336-745, Republic of Korea.
| |
Collapse
|
23
|
Sintubin P, Greene E, Collin A, Bordas A, Zerjal T, Tesseraud S, Buyse J, Dridi S. Expression profile of hypothalamic neuropeptides in chicken lines selected for high or low residual feed intake. Neuropeptides 2014; 48:213-20. [PMID: 24857415 DOI: 10.1016/j.npep.2014.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/24/2014] [Accepted: 04/15/2014] [Indexed: 02/08/2023]
Abstract
The R(+) and R(-) chicken lines have been divergently selected for high (R(+)) or low (R(-)) residual feed intake. For the same body weight and egg production, the R(+) chickens consume 40% more food than their counterparts R(-) lines. In the present study we sought to determine the hypothalamic expression profile of feeding-related neuropeptides in these lines maintained under fed or food-deprived conditions. In the fed condition, the suppressor of cytokine signaling 3 (SOCS3) was 17-fold lower (P<0.05) and the ghrelin receptor was 7-fold higher (P<0.05) in R(+) compared to R(-) chicken lines. The hypothalamic expression of the other studied genes remained unchanged between the two lines. In the fasted state, orexigenic neuropeptide Y and agouti-related peptide were more responsive, with higher significant levels in the R(+) compared to R(-) chickens, while no significant differences were seen for the anorexigenic neuropeptides pro-opiomelanocortin and corticotropin releasing hormone. Interestingly, C-reactive protein, adiponectin receptor 1 and ghrelin receptor gene expression were significantly higher (12-, 2- and 3-folds, respectively), however ghrelin and melanocortin 5 receptor mRNA levels were lower (4- and 2-folds, P=0.05 and P=0.03, respectively) in R(+) compared to R(-) animals. We identified several key feeding-related genes that are differently expressed in the hypothalamus of R(+) and R(-) chickens and that might explain the difference in feed intake observed between the two lines.
Collapse
Affiliation(s)
- P Sintubin
- Division of Livestock-Nutrition-Quality, Department of Biosystems, KU Leuven, Kasteelpark Arenberg, 30, 3001 Leuven, Belgium.
| | - E Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - A Collin
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France.
| | - A Bordas
- INRA/AgroParisTech, UMR 1313 GABI, Division of Animal Genetics, 78352 Jouy-en-Josas, France.
| | - T Zerjal
- INRA/AgroParisTech, UMR 1313 GABI, Division of Animal Genetics, 78352 Jouy-en-Josas, France.
| | - S Tesseraud
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France.
| | - J Buyse
- Division of Livestock-Nutrition-Quality, Department of Biosystems, KU Leuven, Kasteelpark Arenberg, 30, 3001 Leuven, Belgium.
| | - S Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
24
|
Hoefer J, Kern J, Ofer P, Eder IE, Schäfer G, Dietrich D, Kristiansen G, Geley S, Rainer J, Gunsilius E, Klocker H, Culig Z, Puhr M. SOCS2 correlates with malignancy and exerts growth-promoting effects in prostate cancer. Endocr Relat Cancer 2014; 21:175-87. [PMID: 24280133 PMCID: PMC3907181 DOI: 10.1530/erc-13-0446] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deregulation of cytokine and growth factor signaling due to an altered expression of endogenous regulators is well recognized in prostate cancer (PCa) and other cancers. Suppressor of cytokine signaling 2 (SOCS2) is a key regulator of the GH, IGF, and prolactin signaling pathways that have been implicated in carcinogenesis. In this study, we evaluated the expression patterns and functional significance of SOCS2 in PCa. Protein expression analysis employing tissue microarrays from two independent patient cohorts revealed a significantly enhanced expression in tumor tissue compared with benign tissue as well as association with Gleason score and disease progression. In vitro and in vivo assays uncovered the involvement of SOCS2 in the regulation of cell growth and apoptosis. Functionally, SOCS2 knockdown inhibited PCa cell proliferation and xenograft growth in a CAM assay. Decreased cell growth after SOCS2 downregulation was associated with cell-cycle arrest and apoptosis. In addition, we proved that SOCS2 expression is significantly elevated upon androgenic stimulation in androgen receptor (AR)-positive cell lines, providing a possible mechanistic explanation for high SOCS2 levels in PCa tissue. Consequently, SOCS2 expression correlated with AR expression in the malignant tissue of patients. On the whole, our study linked increased SOCS2 expression in PCa with a pro-proliferative role in vitro and in vivo.
Collapse
Affiliation(s)
- Julia Hoefer
- Experimental Urology, Department of UrologyInnsbruck Medical UniversityAnichstrasse 35A-6020, InnsbruckAustria
| | - Johann Kern
- Oncotyrol Laboratory for Tumor Biology and AngiogenesisInnsbruckAustria
| | - Philipp Ofer
- Experimental Urology, Department of UrologyInnsbruck Medical UniversityAnichstrasse 35A-6020, InnsbruckAustria
| | - Iris E Eder
- Experimental Urology, Department of UrologyInnsbruck Medical UniversityAnichstrasse 35A-6020, InnsbruckAustria
| | - Georg Schäfer
- Experimental Urology, Department of UrologyInnsbruck Medical UniversityAnichstrasse 35A-6020, InnsbruckAustria
| | - Dimo Dietrich
- Institute of PathologyUniversity Hospital BonnBonnGermany
| | | | - Stephan Geley
- Division of Molecular PathophysiologyInnsbruck Biocenter Medical University InnsbruckInnsbruckAustria
| | - Johannes Rainer
- Division of Molecular PathophysiologyInnsbruck Biocenter Medical University InnsbruckInnsbruckAustria
| | | | - Helmut Klocker
- Experimental Urology, Department of UrologyInnsbruck Medical UniversityAnichstrasse 35A-6020, InnsbruckAustria
| | - Zoran Culig
- Experimental Urology, Department of UrologyInnsbruck Medical UniversityAnichstrasse 35A-6020, InnsbruckAustria
- Correspondence should be addressed to Z Culig or M Puhr Emails: or
| | - Martin Puhr
- Experimental Urology, Department of UrologyInnsbruck Medical UniversityAnichstrasse 35A-6020, InnsbruckAustria
- Correspondence should be addressed to Z Culig or M Puhr Emails: or
| |
Collapse
|
25
|
The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014; 2014:630797. [PMID: 24757565 PMCID: PMC3976820 DOI: 10.1155/2014/630797] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022] Open
Abstract
Suppressors of cytokine signalling 1-7 (SOCS1-7) and cytokine-inducible SH2-containing protein (CIS) are a group of intracellular proteins that are well known as JAK-STAT and several other signalling pathways negative feedback regulators. More recently several members have been identified as tumour suppressors and dysregulation of their biological roles in controlling cytokine and growth factor signalling may contribute to the development of many solid organ and haematological malignancies. This review explores their biological functions and their possible tumour suppressing role in human neoplasms.
Collapse
|
26
|
Kneitz B, Krebs M, Kalogirou C, Schubert M, Joniau S, van Poppel H, Lerut E, Kneitz S, Scholz CJ, Ströbel P, Gessler M, Riedmiller H, Spahn M. Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res 2014; 74:2591-603. [PMID: 24607843 DOI: 10.1158/0008-5472.can-13-1606] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A lack of reliably informative biomarkers to distinguish indolent and lethal prostate cancer is one reason this disease is overtreated. miR-221 has been suggested as a biomarker in high-risk prostate cancer, but there is insufficient evidence of its potential utility. Here we report that miR-221 is an independent predictor for cancer-related death, extending and validating earlier findings. By mechanistic investigations we showed that miR-221 regulates cell growth, invasiveness, and apoptosis in prostate cancer at least partially via STAT1/STAT3-mediated activation of the JAK/STAT signaling pathway. miR-221 directly inhibits the expression of SOCS3 and IRF2, two oncogenes that negatively regulate this signaling pathway. miR-221 expression sensitized prostate cancer cells for IFN-γ-mediated growth inhibition. Our findings suggest that miR-221 offers a novel prognostic biomarker and therapeutic target in high-risk prostate cancer.
Collapse
Affiliation(s)
- Burkhard Kneitz
- Authors' Affiliations: Department of Urology and Paediatric Urology, University Hospital Wuerzburg; IZKF Laboratory for Microarray Applications, University Hospital Wuerzburg; Departments of Physiological Chemistry I; Developmental Biochemistry, Biocenter; Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg; Department of Pathology, University Hospital Goettingen, Goettingen, Germany; Department of Urology, University Hospital Bern, Inselspital, Bern, Switzerland; and Departments of Urology and Pathology, University Hospital Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deng J, Jiao X, Liu H, Wu L, Zhang R, Wang B, Pan Y, Hao X, Liang H. Lymph node metastasis is mediated by suppressor of cytokine signaling-3 in gastric cancer. Tumour Biol 2013; 34:3627-3636. [PMID: 23824571 DOI: 10.1007/s13277-013-0944-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 06/12/2013] [Indexed: 01/13/2023] Open
Abstract
Suppressor of cytokine signaling-3 (SOCS-3), a multifunctional cytokine, is able to inhibit cell growth and migration by blocking the Janus kinase signal transducers and activators of transcription signaling (JAK/STAT) activation in oncogenesis. Although the STAT-3 expression was associated with lymph node metastasis from gastric cancer (GC), the implication of SOCS-3 expression in GC is not clearly elucidated. In this study, SOCS-3, STAT-3, and pSTAT-3 were evaluated in GC tissues and adjacent non-tumor tissues of 107 patients who underwent curative surgery by immunohistochemistry. Further, SOCS-3 and STAT-3 mRNA levels were also detected simultaneously. In addition, survival analysis was performed between clinicopathologic variables and prognosis of GC patients. Finally, correlative analysis was adopted for demonstration the best predicator of the survival independent factor. From the results, we demonstrated that only the lymph node metastasis was the independent predictor of the overall survival (OS) of GC patients, although SOCS-3, STAT-3, and other variables were significantly relative to OS. With multivariate logistical regression analysis, SOCS-3, STAT-3, and the status of extragastric nodal metastasis were identified to be the independent factors of the lymph node metastasis from GC. Ultimately, the SOCS-3 was the best predicator of lymph node metastasis from GC identified with the nominal regression analysis. Therefore, SOCS-3 should be considered as a potential indicator for prediction the lymph node metastasis from GC.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Gastric Cancer Surgery, City Key Laboratory of Tianjin Cancer Center, Tianjin Medical University Cancer Hospital, Tianjin, 300060, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhu JG, Dai QS, Han ZD, He HC, Mo RJ, Chen G, Chen YF, Wu YD, Yang SB, Jiang FN, Chen WH, Sun ZL, Zhong WD. Expression of SOCSs in human prostate cancer and their association in prognosis. Mol Cell Biochem 2013; 381:51-9. [PMID: 23666742 DOI: 10.1007/s11010-013-1687-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/02/2013] [Indexed: 12/25/2022]
Abstract
Suppressors of cytokine signaling (SOCS) proteins have been identified as negative feedback regulators of cytokine-mediated signaling in various tissues, and demonstrated to play critical roles in tumorigenesis and tumor development of different cancers. The involvement of SOCSs in human prostate cancer (PCa) has not been fully elucidated. Thus, the aim of this study is to investigate the expression patterns and the clinical significance of SOCSs in PCa. The expression changes of SOCSs at mRNA and protein levels in human PCa tissues compared with adjacent benign prostate tissues were, respectively, detected by using real-time quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) and immunohistochemistry analyses. The associations of SOCSs expression with clinicopathological features and clinical outcome of PCa patients were further statistically analyzed. Among SOCSs, both QRT-PCR and immunohistochemistry analyses found that SOCS2 expression was upregulated (at mRNA level: change ratio = 1.98, P = 0.031; at protein level: 5.12 ± 0.60 vs. 2.68 ± 0.37, P = 0.016) and SOCS6 expression was downregulated (at mRNA level: change ratio = -1.65, P = 0.008; at protein level: 3.03 ± 0.32 vs. 4.0.72 ± 0.39, P = 0.004) in PCa tissues compared with those in non-cancerous prostate tissues. In addition, the upregulation of SOCS2 in PCa tissues was correlated with the lower Gleason score (P < 0.001), the absence of metastasis (P < 0.001) and the negative PSA failure (P = 0.009); the downregulation of SOCS6 tended to be found in PCa tissues with the higher Gleason score (P = 0.016), the advanced pathological stage (P = 0.007), the positive metastasis (P = 0.020), and the positive PSA failure (P = 0.032). Furthermore, both univariate and multivariate analyses showed that the downregulation of SOCS2 was an independent predictor of shorter biochemical recurrence-free survival. Our data offer the convincing evidence for the first time that the dysregulation of SOCS2 and SOCS6 may be associated with the aggressive progression of PCa. SOCS2 may be potential markers for prognosis in PCa patients.
Collapse
Affiliation(s)
- Jian-guo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Neuwirt H, Eder IE, Puhr M, Rudnicki M. SOCS-3 is downregulated in progressive CKD patients and regulates proliferation in human renal proximal tubule cells in a STAT1/3 independent manner. J Transl Med 2013; 93:123-34. [PMID: 23108375 DOI: 10.1038/labinvest.2012.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proliferation and the sequence of epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET), called epithelial-mesenchymal-epithelial (EME) cycling are pivotal mechanisms of kidney repair and fibrosis. Furthermore, data suggest that dedifferentiation (EMT) is a prerequisite for proliferation of tubule cells. These processes have been shown to be regulated by STAT1/3 signaling. Suppressor of cytokine signaling-3 (SOCS-3) is a negative regulator of STAT1/3 signaling. Using a transcriptomics data set of patients with proteinuric kidney diseases we found that low levels of SOCS-3 RNA were associated with high-serum creatinine values in the long-term follow-up, which suggested a role of SOCS-3, regulated signaling in progression of chronic kidney disease. This result was validated in an independent cohort of patients with proteinuric nephropathies on protein level. In addition ∼60% of STAT target genes were differentially expressed in relation to stable kidney disease patients. Using two renal cellular models and SOCS-3 knockdown by short interfering RNA we investigated SOCS-3 effects on oncostatin M-induced STAT activation, differentiation and proliferation. SOCS-3 knockdown resulted in enhanced pSTAT1/3 phosphorylation and epithelial differentiation. The latter effect was only slightly enhanced by OSM treatment. Cellular proliferation was inhibited after SOCS-3 knockdown. This effect could not be further stimulated by OSM. Effects of SOCS-3 knockdown were not enhanced by downregulation of STAT1/3, suggesting a STAT independent effect on cell cycle regulators. Indeed, knockdown and overexpression of SOCS-3 were associated with decrease and increase of cyclin D1, -E and proliferation, respectively. In summary, SOCS-3 inhibits phosphorylation of pSTAT1/3 in renal tubule cells. Additionally, we show for the first time that-in vivo-loss of SOCS-3 is associated with unfavorable prognosis. In vitro, downregulation of SOCS-3 inhibits dedifferentiation (EMT) and cellular proliferation in kidney proximal tubule cells.
Collapse
Affiliation(s)
- Hannes Neuwirt
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | |
Collapse
|
30
|
Calarco A, Pinto F, Pierconti F, Sacco E, Marrucci E, Totaro A, Palermo G, Vittori M, Bassi P. Role of SOCS3 evaluated by immunohistochemical analysis in a cohort of patients affected by prostate cancer: preliminary results. Urologia 2012; 79 Suppl 19:4-8. [PMID: 22865333 DOI: 10.5301/ru.2012.9392] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Chronic inflammation may play a role in prostate carcinogenesis. Molecular alterations of the Suppressor of Cytokine Signaling (SOCS)-3 can contribute to explain the pleiotropic role of interleukin (IL)-6 in this type of cancer. Recently, the methylation of SOCS3 gene has been demonstrated to cause the non-expression of the protein, being involved in the pathogenesis of prostate cancer (PC) and identifying a subset of aggressive tumors. We evaluated the expression of SOCS3 protein in patients (pt) with bioptically-diagnosed PC by immunohistochemical analysis, which is easier to perform, cheaper and more reproducible compared to DNA analysis. METHODS We analyzed the protein expression of SOCS3 by immunohistochemistry in 44 patients (pt) with PC diagnosed after biopsy. Slides were incubated with monoclonal antibody SOCS3 (1E4, 1.5 μg/mL; Abnova, Taiwan). The SOCS3 staining intensity was evaluated by two pathologists (FP and LML) in three different ways: positive (+), negative (-) and weak (+/-). Colonic mucosa was used as positive control. 36/44 patients underwent radical prostatectomy (RP). RESULTS Biopsy Gleason score (Gs) was: <7 in 8 pt, 7 in 33 pt (3 + 4 pattern in 21 pt, 4 + 3 pattern in 12 pt), >7 in 3 pt. 8/8 (100%) pt with Gs <7 and 7/33 (21%) with Gs 7 were SOCS+. 15/33 (45%) pt with Gs 7 and 3/3 (100%) pt with Gs >7 were negative. In 11/33 pt (33%) Gs 7 a weak intensity was found so they were classified as SOCS3 +/-.25/36 (69%) patients who underwent RP were SOCS3- (15 pt with Gs 7(3 + 4), 7 pt with Gs 7(4 + 3), 3 pt with Gs 8) and 11/36 (30%) SOCS3+ (8 pt with Gs 6 and 3 pt with Gs 7(3 + 4)) (Tab 2). 12/25 (48%) SOCS3- pt had an organ-confined disease (≤pT2), whereas 13/25 (52%) had an extra prostatic neoplasm (5 pT3a (one was N+), 6 pT3b, 1 pT4). All SOCS3+ patients (8/8 (100%)) had an organ-confined disease. 3/3 (100%) SOCS3+/- pt had an extra prostatic neoplasm (>pT2). CONCLUSIONS SOCS3- pt turned out to have a more aggressive disease compared with SOCS3+. In particular, also SOCS3+/- patients seemed to have an aggressive behavior. The non-expression of SOCS3 protein may identify PC with more aggressive behavior and can be evaluated with immunohystochemical analysis, which is a relatively easy and cheap procedure in clinical practice. These results, if confirmed by a wider population and a longer follow-up, may encourage the research on the use of this molecular family as a prognostic marker and a target for therapy with demethylating agents.
Collapse
Affiliation(s)
- Alessandro Calarco
- Catholic University School of Medicine A. Gemelli Hospital, Urology Department, Rome - Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
INTRODUCTION Interleukin-6 (IL-6) is a multifunctional cytokine which is implicated in the regulation of immune responses and cellular events. It may activate signaling pathways of Janus kinase/signal transducer and activator of transcription (JAK/STAT) factors, mitogen-activated protein kinases, and Akt. IL-6 could exert pleiotropic effects in a variety of cancers. AREAS COVERED Oral squamous cell carcinoma epidemiology, pathology, regulation by IL-6, and experimental therapy. EXPERT OPINION Oral squamous cell carcinoma development is in part facilitated by chronic epithelial irritations and this tumor is more frequent in smokers or individuals who consume excessive amounts of alcohol. IL-6 levels are elevated in this neoplasm and IL-6 is considered a bad prognostic factor in oral cancer. IL-6 secretion in oral squamous cancer is facilitated by the microenvironment, in particular by stromal derived factor-1. IL-6 function in non-malignant and malignant diseases is controlled by endogenous inhibitors of cytokine signaling. IL-6 action in oral squamous cancer is largely mediated by the JAK/STAT3 pathway and may lead to epithelial to mesenchymal transition, thus contributing to tumor progression. IL-6 also enhances angiogenesis and lymphangiogenesis through regulation of vascular endothelial growth factor. In addition, experimental anti-IL-6/anti-IL-6 receptor-targeted therapies in oral cancer have been proposed.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
32
|
Rudnicki M, Perco P, Neuwirt H, Noppert SJ, Leierer J, Sunzenauer J, Eder S, Zoja C, Eller K, Rosenkranz AR, Müller GA, Mayer B, Mayer G. Increased renal versican expression is associated with progression of chronic kidney disease. PLoS One 2012; 7:e44891. [PMID: 23024773 PMCID: PMC3443107 DOI: 10.1371/journal.pone.0044891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/15/2012] [Indexed: 12/29/2022] Open
Abstract
Novel prognostic markers for progression of kidney disease are needed to distinguish patients who might benefit from a more aggressive nephroprotective therapy. Expression of the proteoglycan versican was evaluated in renal transcriptomics profiles and in an independent set of 74 renal biopsies. Versican levels were correlated to histologic damage scores and to renal outcome, and versican expression and regulation was evaluated in vitro. In transcriptomics profiles of renal tissue versican was positively correlated with (i) histological parameters in kidney biopsies, (ii) progressive decline of renal function in proteinuric kidney diseases, and (iii) impaired renal function and histology scores in diabetic nephropathy. In an independent cohort of 74 biopsies of glomerular diseases renal RNA levels of versican isoforms V0 and V1, but not V2 and V3 correlated significantly with creatinine after a mean follow up time of 53 months. Versican isoforms V0 and V1 together with serum creatinine at time of biopsy and the degree of glomerulosclerosis predicted 20% and 24% of the variability of creatinine at follow up, which was significantly more than serum creatinine and histological parameters alone (16%). However, when patients with acute kidney failure at time of biopsy (n = 5) were excluded, the additive predictive value of versican V1 was only marginally higher (35%) than creatinine and glomerulosclerosis alone (34%). Versican isoforms V0 and V1 were primarily expressed in vitro in proximal tubule cells and in fibroblasts. The results in humans were confirmed in three rodent models of kidney disease, in which renal versican expression was significantly upregulated as compared to corresponding controls. These data show for the first time an association of renal versican isoform V0 and V1 expression with progressive renal disease.
Collapse
Affiliation(s)
- Michael Rudnicki
- Medical University Innsbruck, Deptartment of Internal Medicine IV-Nephrology and Hypertension, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Culig Z, Puhr M. Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol 2012; 360:52-8. [PMID: 21664423 PMCID: PMC3409376 DOI: 10.1016/j.mce.2011.05.033] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 12/19/2022]
Abstract
Several cytokines are involved in regulation of cellular events in prostate cancer. Interleukin-6 (IL-6) was frequently investigated in prostate cancer models because of its increased expression in cancer tissue at early stages of the disease. In patients with metastatic prostate cancer, it is well-known that IL-6 levels increase in serum. High levels of IL-6 were measured in the supernatants of cells which do not respond to androgenic stimulation. IL-6 expression in prostate cancer increases due to enhanced expression of transforming growth factor-beta, and members of the activating protein-1 complex, and loss of the retinoblastoma tumour suppressor. IL-6 activation of androgen receptor (AR) may contribute to progression of a subgroup of prostate cancers. Results obtained with two prostate cancer cell lines, LNCaP and MDA PCa 2b, indicate that IL-6 activation of AR may cause either stimulatory or inhibitory responses on proliferation. Interestingly, prolonged treatment with IL-6 led to establishment of an IL-6 autocrine loop, suppressed signal transducer and activator of transcription (STAT)3 activation, and increased mitogen-activated protein kinase phosphorylation. In several cell lines IL-6 acts as a survival molecule through activation of the signalling pathway of phosphotidylinositol 3-kinase. Expression of suppressors of cytokine signalling (SOCS) has been studied in prostate cancer. SOCS-3 prevents phosphorylation of STAT3 and is an important anti-apoptotic factor in AR-negative prostate cancer cells. Experimental therapy against IL-6 in prostate cancer is based on the use of the monoclonal antibody siltuximab which may be used for personalised therapy coming in the future.
Collapse
Affiliation(s)
- Zoran Culig
- Department of Urology, Experimental Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
34
|
Horndasch M, Culig Z. SOCS-3 antagonizes pro-apoptotic effects of TRAIL and resveratrol in prostate cancer cells. Prostate 2011; 71:1357-66. [PMID: 21308719 DOI: 10.1002/pros.21353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND Therapy for advanced prostate cancer is only palliative and its improvement could be achieved by sensitization to pro-apoptotic agents to which resveratrol belongs. We investigated the interaction between the tumor-selective apoptosis inducer tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and suppressor of cytokine signaling (SOCS-3), an antiapoptotic molecule which is up-regulated in prostate cancer. METHODS Expression of SOCS-3 and TRAIL (death) receptors was determined by Western blot after treatment with TRAIL in prostate cancer cell lines. Binding of SOCS-3 to death receptors was investigated by immunoprecipitation. Apoptosis rate was determined by a propidium iodide assay after treatment by TRAIL and resveratrol. RESULTS SOCS-3, whose expression was differentially regulated by TRAIL in androgen-insensitive prostate cell lines, binds to death receptor 4. Overexpression of SOCS-3 reduced apoptosis in TRAIL- and resveratrol-treated DU145 cells and SOCS-3 siRNA increased apoptosis in TRAIL-treated PC-3 and LNCaP-IL-6+ cells. CONCLUSIONS Our results strongly suggest that SOCS-3 is one of the proteins which influence the ability of TRAIL and resveratrol to cause programmed cell death in prostate cancer.
Collapse
Affiliation(s)
- Manuela Horndasch
- Department of Urology, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
35
|
Culig Z. IL-6 causes multiple effects in androgen-sensitive and -insensitive prostate cancer cell lines. Expert Rev Endocrinol Metab 2011; 6:327-332. [PMID: 30754107 DOI: 10.1586/eem.11.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The androgen receptor (AR) is expressed in most human prostate cancers. It can be activated in a hypersensitive manner by androgens, nonandrogenic steroids, nonsteroidal anti-androgens and in a ligand-independent manner. IL-6 is a proinflammatory cytokine that activates several signaling pathways. It can either stimulate or inhibit growth of prostate cancer cells. IL-6 is an important positive regulator of AR activity and can stimulate the expression of prostate-specific antigen in a ligand-independent manner. IL-6/AR interaction may either result in growth stimulation (MDA PCa 2b cells) or inhibition (LAPC-4 cells). IL-8 and IL-4 have also been observed to activate AR. Cells generated by prolonged treatment with IL-6 acquire a growth advantage. There are several therapeutic options to target IL-6 in prostate cancer and most laboratory studies have been performed with the monoclonal antibody siltuximab. Endogenous suppressors of cytokine signaling (SOCS)-3 and -1 are expressed in prostate cancer tissue. SOCS-3 inhibits apoptosis in AR-negative cells. However, in androgen-sensitive prostate cancer cell lines, SOCS-3 is induced by androgen and blocks its effects on proliferation and secretion. It is currently understood that there are numerous interactions between androgen and IL-6 signaling in human prostate cancer.
Collapse
Affiliation(s)
- Zoran Culig
- a Department of Urology, Experimental Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
36
|
Desouza CV, Hamel FG, Bidasee K, O'Connell K. Role of inflammation and insulin resistance in endothelial progenitor cell dysfunction. Diabetes 2011; 60:1286-94. [PMID: 21346178 PMCID: PMC3064102 DOI: 10.2337/db10-0875] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/12/2011] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) are decreased in number and function in type 2 diabetes. Mechanisms by which this dysfunction occurs are largely unknown. We tested the hypothesis that a chronic inflammatory environment leads to insulin signaling defects in EPCs and thereby reduces their survival. Modifying EPCs by a knockdown of nuclear factor-κB (NF-κB) can reverse the insulin signaling defects, improve EPC survival, and decrease neointimal hyperplasia in Zucker fatty rats postangioplasty. RESEARCH DESIGN AND METHODS EPCs from Zucker fatty insulin-resistant rats were cultured and exposed to tumor necrosis factor-α (TNF-α). Insulin signaling defects and apoptosis were measured in the presence and absence of an NF-κB inhibitor, BAY11. Then, EPCs were modified by a knockdown of NF-κB (RelA) and exposed to TNF-α. For in vivo experiments, Zucker fatty rats were given modified EPCs post-carotid angioplasty. Tracking of EPCs was done at various time points, and neointimal hyperplasia was measured 3 weeks later. RESULTS Insulin signaling as measured by the phosphorylated-to-total AKT ratio was reduced by 56% in EPCs exposed to TNF-α. Apoptosis was increased by 71%. These defects were reversed by pretreatment with an NF-κB inhibitor, BAY11. Modified EPCs exposed to TNF-α showed a lesser reduction (RelA 20%) in insulin-stimulated AKT phosphorylation versus a 55% reduction in unmodified EPCs. Apoptosis was 41% decreased for RelA knockdown EPCs. Noeintimal hyperplasia postangioplasty was significantly less in rats receiving modified EPCs than in controls (intima-to-media ratio 0.58 vs. 1.62). CONCLUSIONS In conclusion, we have shown that insulin signaling and EPC survival is impaired in Zucker fatty insulin resistant rats. For the first time, we have shown that this defect can be significantly ameliorated by a knockdown of NF-κB and that these EPCs given to Zucker fatty rats decrease neointimal hyperplasia post-carotid angioplasty.
Collapse
Affiliation(s)
- Cyrus V Desouza
- University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | | | |
Collapse
|
37
|
Pierconti F, Martini M, Pinto F, Cenci T, Capodimonti S, Calarco A, Bassi PF, Larocca LM. Epigenetic silencing of SOCS3 identifies a subset of prostate cancer with an aggressive behavior. Prostate 2011; 71:318-25. [PMID: 20717995 DOI: 10.1002/pros.21245] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/12/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic inflammation and subsequent tissutal alterations may play a key role in prostate carcinogenesis. In this way, molecular alterations of the suppressor of cytokine signaling 3 (SOCS3), one of the most important inhibitory molecule of inflammatory signal transduction circuitries, could contribute to explain the pleiotropic role of interleukin-6 (IL-6) in this type of cancer. METHODS We analyzed the methylation status and mRNA expression of SOCS3 in 20 benign prostate hyperplasias (BPH) and in 51 prostate cancer specimens. We analyzed the SOCS3 methylation status using methylation-specific PCR. Hypermethylation was confirmed by sequencing after subcloning. Epigenetic silencing of this gene was also demonstrated by real-time PCR and by immunohistochemistry. Results and correlation with clinical data were statistically analyzed. RESULTS We found that the promoter of SOCS3 was methylated in 39.2% of prostate cancer. On the contrary, all BPH and normal controls had an unmethylated pattern. Real-time analysis showed that in methylated cases SOCS3 mRNA expression was reduced by three and four folds as compared to BPH and unmethylated cases, respectively. Interestingly, SOCS3 mRNA level was higher in unmethylated prostate cancer than in BPH. The immunohistochemical staining analysis for SOCS 3 confirmed mRNA results. Moreover, methylation of SOCS3 promoter significantly associated with intermediate-high grade Gleason score (P = 0.0007) and with an unfavorable clinical outcome (P = 0.0019). CONCLUSIONS Our data suggest that SOCS3 hypermethylation may be involved in the pathogenesis of prostate cancer and could identify a tumor subset with an aggressive behavior.
Collapse
Affiliation(s)
- Francesco Pierconti
- Institute of Pathological Anatomy, Catholic University of Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Culig Z. Cytokine disbalance in common human cancers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:308-14. [PMID: 21167870 DOI: 10.1016/j.bbamcr.2010.12.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/04/2010] [Accepted: 12/09/2010] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-6, -4, and -8 levels have been elevated in most patients suffering from prostate, breast, or colon cancer. There is a large body of evidence suggesting that chronic inflammation is one of the etiologic factors in these tumors. IL-6 is a multifunctional cytokine which is known to influence proliferation, apoptosis, and angiogenesis in cancer. Its transcription factor STAT3 is known as an oncogene that is constitutively phosphorylated in these malignancies. However, IL-6-induced STAT3 phosphorylation may result in growth arrest. IL-6 activation of androgen receptor in prostate cancer may yield either tumor cell proliferation or differentiation. Prolonged treatment with IL-6 results in generation of sublines which express a more malignant phenotype. Therapy options against IL-6 have been established and the antibody siltuximab has been applied in preclinical and clinical studies. Recently, investigations of the role of suppressors of cytokine signaling have been carried out. IL-4 and -8 are implicated in regulation of apoptosis, migration, and angiogenesis in cancers associated with chronic inflammation. All cytokines mentioned above regulate cellular events in stem cells. These cells could not be targeted by most conventional cancer therapies.
Collapse
Affiliation(s)
- Zoran Culig
- Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Australia.
| |
Collapse
|
39
|
Lu J, Chen H, Xu Q, Zheng J, Liu H, Li J, Chen K. Comparative proteomics of kidney samples from puffer fish Takifugu rubripes exposed to excessive fluoride: an insight into molecular response to fluorosis. Toxicol Mech Methods 2010; 20:345-54. [PMID: 20528257 DOI: 10.3109/15376516.2010.490967] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate comparative proteomics of the pufferfish kidney exposed to excessive fluoride, the authors randomly put 16 fish into the control and treated groups that were raised in softwater alone (F(-) = 0.4 mg/L) or with sodium fluoride of 35 mg/L for 3 days, respectively. Then proteins of the fish kidneys were profiled by two-dimensional electrophoresis, and the matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS) was applied to identify the spots on the gel with altered densities. On average, 547 and 516 protein spots were detected in the control and the treated groups, respectively. Among them, 32 protein spots showed significant alteration (p < 0.05) between the fluoride-treated and the control groups, and 22 differentially expressed protein spots were identified by MALDI TOF-TOF MS. Consistent with their previously annotated functions, these proteins appear to be involved in the biological functions associated with fluorosis. These results will greatly advance one's understanding of the effects of fluoride exposure on the physiological and biochemical functions of takifugu kidney as well as the toxicological mechanism of fluoride-causing fluorosis in both fish and humans.
Collapse
Affiliation(s)
- Jian Lu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang City, PR China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Yap J, Salamonsen LA, Jobling T, Nicholls PK, Dimitriadis E. Interleukin 11 is upregulated in uterine lavage and endometrial cancer cells in women with endometrial carcinoma. Reprod Biol Endocrinol 2010; 8:63. [PMID: 20553623 PMCID: PMC2901310 DOI: 10.1186/1477-7827-8-63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/17/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Interleukin (IL) 11 is produced by human endometrium and endometrial cancer tissue. It has roles in endometrial epithelial cell adhesion and trophoblast cell invasion, two important processes in cancer progression. This study aimed to determine the levels of IL11 in uterine lavage fluid in women with endometrial cancer and postmenopausal women. It further aimed to determine the levels of IL11 protein and its signaling molecules in human endometrial cancer of varying grades, and endometrium from postmenopausal women and IL11 signalling mechanisms in endometrial cancer cell lines. METHODS IL11 levels in uterine lavage were measured by ELISA. IL11, IL11 receptor(R) alpha, phosphorylated (p) STAT3 and SOCS3 were examined by immunohistochemistry in endometrial carcinomas and in control endometrium from postmenopausal women and normal cycling women. The effect of IL11 on pSTAT3/STAT3 and SOCS3 protein abundance in endometrial cancer cell lines and non-cancer endometrial epithelial cells was determined by Western blot. RESULTS IL11 was present in uterine flushings and was significantly higher in women with Grade 1 carcinomas compared to postmenopausal women (p < 0.05). IL11 immunostaining was significantly elevated in the endometrial tumour epithelial cells from Grade 1 and 3 compared to endometrial epithelium from postmenopausal and cycling women. IL11R alpha immunostaining intensity was increased in cancer epithelium in the Grades 1 and 2 tumours compared to epithelium from postmenopausal women. Both IL11 and IL11R alpha localized to vascular endothelial and smooth muscle cells while IL11 also localized to subsets of leucocytes in the cancer tissues. pSTAT3 was found in both the tumour epithelial and stromal compartments but was maximal in the tumour epithelial cells, while SOCS3 was predominantly found in the tumour epithelial cells. pSTAT3 staining intensity was significantly higher in Grade 1 and 2 tumour epithelial cells compared to epithelial cells from cycling and postmenopausal women. SOCS3 staining intensity did not differ between between each tumour and postmenopausal endometrial epithelium but SOCS3 in cycling endometrium was significantly higher compared to postmenopausal and Tumour Grades 2 and 3. IL11 increased pSTAT3/STAT3 in all tumour cell lines, while SOCS3 abundance was increased only in one tumour cell line. CONCLUSIONS The present study suggests that IL11 in uterine washings may be useful as a diagnostic marker for early stage endometrial cancer. It indicates that IL11, along with its specific receptor, IL11R alpha, and downstream signalling molecules, STAT3 and SOCS3, are likely to play a role in the progression of endometrial carcinoma. The precise role of IL11 in endometrial cancer remains to be elucidated.
Collapse
Affiliation(s)
- Joanne Yap
- Prince Henry's Institute of Medical Research, Clayton VIC, 3168, Australia
| | - Lois A Salamonsen
- Prince Henry's Institute of Medical Research, Clayton VIC, 3168, Australia
| | - Tom Jobling
- Department of Obstetrics and Gynaecology, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Peter K Nicholls
- Prince Henry's Institute of Medical Research, Clayton VIC, 3168, Australia
| | | |
Collapse
|
41
|
Tassidis H, Brokken LJS, Jirström K, Ehrnström R, Pontén F, Ulmert D, Bjartell A, Härkönen P, Wingren AG. Immunohistochemical detection of tyrosine phosphatase SHP-1 predicts outcome after radical prostatectomy for localized prostate cancer. Int J Cancer 2010; 126:2296-307. [PMID: 19795453 DOI: 10.1002/ijc.24917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The protein tyrosine kinase (PTK) receptors and cytosolic signaling proteins as well as the protein tyrosine phosphatases (PTPs) have important roles in regulation of growth of the benign and malignant prostate gland. Here, we studied expression of the protein tyrosine phosphatase SHP-1 in prostate cancer cell lines and in human prostatic tissues. SHP-1 is expressed at a high level in LNCaP prostate cancer cells compared with PC3 cells. Silencing of SHP-1 expression with siRNA in LNCaP cells led to an increased rate of proliferation, whereas overexpression of SHP-1 by means of transient and stable transfection in PC3 cells led to a decrease in proliferation. Corresponding changes were observed in cyclin D1 expression. We further demonstrate that LNCaP and PC3 cells respond differently to IL-6 stimulation. SHP-1 overexpression in PC3 cells reversed IL-6 stimulation of proliferation, whereas in SHP-1-silenced LNCaP cells, IL-6 inhibition of proliferation was not affected. In addition, IL-6 treatment led to higher levels of phosphorylated STAT3 in SHP-1-silenced LNCaP cells than in control cells. Next, SHP-1 expression in human prostate cancer was analyzed by immunohistochemical staining of tissue microarrays comprising tumor specimens from 100 prostate cancer patients. We found an inverse correlation between the tumor level of SHP-1 expression and time to biochemical recurrence and clinical progression among prostate cancer patients. In conclusion, our results suggest that a decreased level of SHP-1 expression in prostate cancer cells is associated with a high proliferation rate and an increased risk of recurrence or clinical progression after radical prostatectomy for localized prostate cancer.
Collapse
Affiliation(s)
- Helena Tassidis
- Department of Tumor Biology, Lund University, Malmö University Hospital, Malmö, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ma X, Reynolds SL, Baker BJ, Li X, Benveniste EN, Qin H. IL-17 enhancement of the IL-6 signaling cascade in astrocytes. THE JOURNAL OF IMMUNOLOGY 2010; 184:4898-906. [PMID: 20351184 DOI: 10.4049/jimmunol.1000142] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Astrocytes have important physiological roles in CNS homeostasis and serve as a bridge between the CNS and immune system. IL-17 and IL-6 are important in many CNS disorders characterized by neuroinflammation. We examined the role of IL-17 on the IL-6 signaling cascade in primary astrocytes. IL-17 functioned in a synergistic manner with IL-6 to induce IL-6 expression in astrocytes. The synergistic effect involved numerous signaling pathways including NF-kappaB, JNK MAPK, and p38 MAPK. The NF-kappaB pathway inhibitor BAY-11, JNK inhibitor JNKi II, and p38 inhibitor SB203580 suppressed the synergistic effect of IL-6 and IL-17 on IL-6 expression. IL-17 synergized with IL-6 to enhance the recruitment of activated NF-kappaB p65, c-Fos, c-Jun, and the histone acetyltransferases CREB-binding protein and p300 to the IL-6 promoter in vivo to induce IL-6 transcription. This was accompanied by enhanced acetylation of histones H3 and H4 on the IL-6 promoter. Moreover, we elucidated an important role for suppressor of cytokine signaling (SOCS) 3 in IL-17 enhancement of IL-6 signaling in astrocytes. SOCS3 small interfering RNA knockdown and SOCS3 deletion in astrocytes augmented the synergistic effect of IL-6 and IL-17 due to an enhancement of activation of the NF-kappaB and MAPK pathways. These results indicate that astrocytes can serve as a target of Th17 cells and IL-17 in the CNS, and SOCS3 participates in IL-17 functions in the CNS as a negative feedback regulator.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
43
|
Down-regulation of Suppressor of Cytokine Signaling-3 Causes Prostate Cancer Cell Death through Activation of the Extrinsic and Intrinsic Apoptosis Pathways. Cancer Res 2009; 69:7375-84. [DOI: 10.1158/0008-5472.can-09-0806] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Baker BJ, Akhtar LN, Benveniste EN. SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol 2009; 30:392-400. [PMID: 19643666 PMCID: PMC2836122 DOI: 10.1016/j.it.2009.07.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 11/28/2022]
Abstract
In the decade following their initial discovery, the suppressor of cytokine signaling (SOCS) proteins have been studied for their potential use as immunomodulators in disease. SOCS proteins, especially SOCS1 and SOCS3, are expressed by immune cells and cells of the central nervous system (CNS) and have the potential to impact immune processes within the CNS, including inflammatory cytokine and chemokine production, activation of microglia, macrophages and astrocytes, immune cell infiltration and autoimmunity. We describe CNS-relevant in vitro and in vivo studies that have examined the function of SOCS1 or SOCS3 under various neuroinflammatory or neuropathological conditions, including exposure of CNS cells to inflammatory cytokines or bacterial infection, demyelinating insults, stroke, spinal cord injury, multiple sclerosis and glioblastoma multiforme.
Collapse
Affiliation(s)
- Brandi J Baker
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | | | | |
Collapse
|
45
|
Neuwirt H, Puhr M, Santer FR, Susani M, Doppler W, Marcias G, Rauch V, Brugger M, Hobisch A, Kenner L, Culig Z. Suppressor of cytokine signaling (SOCS)-1 is expressed in human prostate cancer and exerts growth-inhibitory function through down-regulation of cyclins and cyclin-dependent kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1921-30. [PMID: 19342366 PMCID: PMC2671279 DOI: 10.2353/ajpath.2009.080751] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 01/22/2009] [Indexed: 01/01/2023]
Abstract
Suppressor of cytokine signaling (SOCS) proteins play a pivotal role in the development and progression of various cancers. We have previously shown that SOCS-3 is expressed in prostate cancer, and its expression is inversely correlated with activation of signal transducer and activator of transcription factor 3. We hypothesized that SOCS-1, if expressed in prostate cancer cells, has a growth-regulatory role in this malignancy. The presence of both SOCS-1 mRNA and protein was detected in all tested cell lines. To assess SOCS-1 expression levels in vivo, we analyzed tissue microarrays and found a high percentage of positive cells in both prostate intraepithelial neoplasias and cancers. SOCS-1 expression levels decreased in samples taken from patients undergoing hormonal therapy but increased in specimens from patients who failed therapy. In LNCaP-interleukin-6- prostate cancer cells, SOCS-1 was up-regulated by interleukin-6 and in PC3-AR cells by androgens; such up-regulation was also found to significantly impair cell proliferation. To corroborate these findings, we used a specific small interfering RNA against SOCS-1 and blocked expression of the protein. Down-regulation of SOCS-1 expression caused a potent growth stimulation of PC3, DU-145, and LNCaP-interleukin-6- cells that was associated with the increased expression levels of cyclins D1 and E as well as cyclin-dependent kinases 2 and 4. In summary, we show that SOCS-1 is expressed in prostate cancer both in vitro and in vivo and acts as a negative growth regulator.
Collapse
Affiliation(s)
- Hannes Neuwirt
- Department of Urology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Qin H, Niyongere SA, Lee SJ, Baker BJ, Benveniste EN. Expression and functional significance of SOCS-1 and SOCS-3 in astrocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3167-76. [PMID: 18713987 PMCID: PMC2836124 DOI: 10.4049/jimmunol.181.5.3167] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Astrocytes play a number of important physiological roles in CNS homeostasis. Inflammation stimulates astrocytes to secrete cytokines and chemokines that guide macrophages/microglia and T cells to sites of injury/inflammation. Herein, we describe how these processes are controlled by the suppressor of cytokine signaling (SOCS) proteins, a family of proteins that negatively regulate adaptive and innate immune responses. In this study, we describe that the immunomodulatory cytokine IFN-beta induces SOCS-1 and SOCS-3 expression in primary astrocytes at the transcriptional level. SOCS-1 and SOCS-3 transcriptional activity is induced by IFN-beta through IFN-gamma activation site (GAS) elements within their promoters. Studies in STAT-1alpha-deficient astrocytes indicate that STAT-1alpha is required for IFN-beta-induced SOCS-1 expression, while STAT-3 small interfering RNA studies demonstrate that IFN-beta-induced SOCS-3 expression relies on STAT-3 activation. Specific small interfering RNA inhibition of IFN-beta-inducible SOCS-1 and SOCS-3 in astrocytes enhances their proinflammatory responses to IFN-beta stimulation, such as heightened expression of the chemokines CCL2 (MCP-1), CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CCL5 (RANTES), and CXCL10 (IP-10), and promoting chemotaxis of macrophages and CD4(+) T cells. These results indicate that IFN-beta induces SOCS-1 and SOCS-3 in primary astrocytes to attenuate its own chemokine-related inflammation in the CNS.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
47
|
Ramberg H, Eide T, Krobert KA, Levy FO, Dizeyi N, Bjartell AS, Abrahamsson PA, Taskén KA. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer. Prostate 2008; 68:1133-42. [PMID: 18454446 DOI: 10.1002/pros.20778] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Androgen deprivation is the only effective systemic therapy available for patients with prostatic carcinoma, but is associated with a gradual transition to a hormone-refractory prostate cancer (HRCAP) in which ligand-independent activation of the androgen receptor has been implicated. The beta(2)-adrenergic receptor (beta(2)-AR) is a well-known activator of the androgen receptor. METHODS Prostatic cell lines were analyzed using cDNA micro-array, real time RT-PCR, radioligand binding assay, cAMP measurements, transfection and thymidine incorporation assay. Clinical specimens were studied by immunohistochemistry and Affymetrix microarrays. RESULTS Here, we show that beta(2)-AR was transiently down-regulated both at mRNA- and protein levels when hormone-sensitive prostate cancer cells, LNCaP, were cultured in steroid stripped medium (charcoal-stripped fetal calf serum) or when the cells were treated with the anti-androgen, bicalutamide (Casodex). The number of beta-adrenergic receptors was modestly up-regulated in androgen independent cell lines (LNCaP-C4, LNCaP-C4-2 and DU145) compared to LNCaP. Triiodothyronine (T3) increased the level of beta(2)-AR and the effect of T3 was inhibited by bicalutamide. Immunohistochemical staining of human prostate specimens showed high expression of beta(2)-AR in glandular, epithelial cells and increased expression in malignant cells compared to benign hyperplasia and normal tissue. Interestingly, beta(2)-AR mRNA was strongly down-regulated by androgen ablation therapy of prostate cancer patients. CONCLUSION The level of beta(2)-AR was increased by T3 in prostatic adenocarcinoma cells and reduced in prostate cancer patients who had received androgen ablation therapy for 3 months.
Collapse
Affiliation(s)
- Håkon Ramberg
- Faculty Division Aker University Hospital, University of Oslo, Oslo Urological University Clinic, Aker University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hellsten R, Johansson M, Dahlman A, Dizeyi N, Sterner O, Bjartell A. Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. Prostate 2008; 68:269-80. [PMID: 18163422 DOI: 10.1002/pros.20699] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (Stat3) is constitutively active (phosphorylated) in several forms of cancer, including prostate cancer (PCa). Stat3 signaling may be an interesting target for cancer therapy since inhibition of this pathway mediates growth inhibition and apoptosis of these cells. In this study we investigated the in vitro and in vivo effects of the fungal metabolite galiellalactone, a direct inhibitor of Stat3, on PCa cells. METHODS The human PCa cell lines DU145, PC-3, and LNCaP were used. Nude mice with subcutaneous PCa cell xenografts were subjected to daily intraperitoneal injections of galiellalactone for 3 weeks. The effect of galiellalactone on the induction of apoptosis of cultured PCa cells was investigated by Western blot analysis, immunocytochemistry, and annexin V staining. Effects of galiellalactone on Stat3 signaling were investigated by a luciferase reporter gene assay. Expression of Stat3 associated proteins and mRNA was investigated by Western blot and real-time quantitative PCR analysis. RESULTS Galiellalactone induced apoptosis of p-Stat3 positive PCa cells (androgen-insensitive DU145 and PC-3) but not in cells lacking p-Stat3 (androgen-sensitive LNCaP). Galiellalactone inhibited Stat3-mediated luciferase activity (IC(50) approximately 5 microM) and reduced the expression of Bcl-2, Bcl-x(L), c-myc, and cyclin D1. Furthermore, galiellalactone significantly suppressed DU145 xenograft growth in vivo (42% growth reduction; P<0.002) and reduced the relative mRNA expression of Bcl-x(L) and Mcl-1. CONCLUSIONS Galiellalactone induced growth inhibition and apoptosis in androgen-insensitive PCa cells expressing p-Stat3. We suggest that galiellalactone is a potential anti-tumor lead against hormone-refractory PCa with constitutively active Stat3.
Collapse
Affiliation(s)
- Rebecka Hellsten
- Division of Urological Cancers, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
49
|
Epidermal growth factor receptor activation in prostate cancer by three novel missense mutations. Oncogene 2008; 27:3201-10. [PMID: 18193092 DOI: 10.1038/sj.onc.1210983] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While epidermal growth factor receptor (EGFR) dysregulation is known to play a critical role in prostate carcinogenesis, there has been no direct evidence indicating EGFR mutations induce tumorigenesis in prostate cancer. We previously identified four novel EGFR somatic mutations in the EGFR tyrosine kinase domain of prostate cancer patients: G735S, G796S, E804G and R841K. In this study, we investigated the oncogenic potential of these somatic mutations by establishing stable clonal NIH3T3 cells expressing these four mutations and WT EGFR to determine their ability to increase cell proliferation and invasion. In the absence of the EGF ligand, cell proliferation was readily increased in G735S, G796S and E804G mutants compared to WT EGFR. The addition of EGF ligand greatly increased cell growth and transforming ability of these same EGFR mutants. Matrigel invasion assays showed enhanced invasion with G735S, G796S and E804G mutants. Western blot analysis showed that these EGFR mutations enhanced cell growth and invasion via constitutive and hyperactive tyrosine phosphorylation and led to the activation of mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3) and Akt pathways. Our findings demonstrate the oncogenic activation of three novel EGFR somatic missense mutations in prostate cancer. Molecules that regulate the mechanisms of their oncogenic activation represent novel targets for limiting tumor cell progression, and further elucidation of these mutations will have utility in prostate cancer treatment.
Collapse
|
50
|
Qin H, Roberts KL, Niyongere SA, Cong Y, Elson CO, Benveniste EN. Molecular Mechanism of Lipopolysaccharide-Induced SOCS-3 Gene Expression in Macrophages and Microglia. THE JOURNAL OF IMMUNOLOGY 2007; 179:5966-76. [DOI: 10.4049/jimmunol.179.9.5966] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|