1
|
Pal D, Das P, Ghosh P, Mondal S, Halder S, Basak P, Nandi SK. Waste-derived marigold flower carbon dot spray and gel formulations exhibit enhanced wound healing in deep excisional cutaneous and burn wounds. J Mater Chem B 2025. [PMID: 40308184 DOI: 10.1039/d5tb00323g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Bioactive carbon dots have shown significant progress in biomedical therapeutics due to their unique physicochemical characteristics and exceptional biocompatibility. This work focuses on the synthesis, characterization, and biomedical evaluation of carbon dots (CDs) extracted from waste and discarded marigold flowers for wound healing applications. The synthesized CDs exhibited a uniform size distribution of 2-5 nm and a zeta potential of -15.8 mV, indicating moderate stability against aggregation. Excitation-dependent photoluminescence was observed, with maximum intensity at 380 nm. In comparison, the UV-Vis adsorption spectrum showed a peak at 278 nm, corresponding to the π-π* transition of sp2 carbon domains. Additional FTIR and XPS analyses revealed the presence of functional groups, including hydroxyl, carbonyl, and aromatic domains, and confirmed nitrogen and oxygen doping, which enhanced hydrophilicity and reactivity, respectively. In vitro cytocompatibility assays using MTT and FDA showed maximum cell viability at 500 μg mL-1. Macroscopic examination of the scratch assay showed promising results, with cells and fibroblasts achieving a 98.97% wound healing rate at 48 h compared to control values. In vivo experiments on deep excisional full-thickness and burn injuries exhibited enhanced wound contraction, ECM deposition, angiogenesis, and faster healing with CD gel and spray compared to the control and standard treatments. Histology and immunohistochemistry supported enhanced collagen synthesis and remodeling in the treated tissue; however, the gel demonstrated marginally superior results compared to the spray, as it adhered more securely. These results show that the developed marigold-derived CDs are biocompatible, promote angiogenesis, and enhance healing of deep excisional and burn wounds.
Collapse
Affiliation(s)
- Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| | - Pratik Das
- ICAR Project, Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Purnendu Ghosh
- Department of Biotechnology Project, Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Samar Halder
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata 700032, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| |
Collapse
|
2
|
Ortiz-Morales G, Ruiz-Lozano RE, Morales-Mancillas NR, Homar Paez-Garza J, Rodriguez-Garcia A. Pediatric blepharokeratoconjunctivitis: A challenging ocular surface disease. Surv Ophthalmol 2025; 70:516-535. [PMID: 39828005 DOI: 10.1016/j.survophthal.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Pediatric blepharokeratoconjunctivitis (PBKC) is a chronic and recurrent ocular surface inflammatory disorder affecting children in early life. It is frequently under- or late- diagnosed, representing a potential cause of severe visual morbidity worldwide. An expert panel consensus recently agreed on its definition and proposed diagnostic criteria for suspected and definitive PBKC to reduce confusion and avoid varied terminology previously used in the literature, improving early and precise diagnosis. Previous evidence has pointed to the role of the adaptive immune system in recognizing and handling antigenic eyelid bacterial products, particularly from the cell wall, and the direct toxic and inflammatory effects of their cytolytic exotoxins on the ocular surface. PBKC is a frequent referral in pediatric and cornea clinics characterized by a history of recurrent chalazia, blepharitis, meibomian gland dysfunction, conjunctival hyperemia, phlyctenules formation, and corneal infiltrates with vascularization and scarring. The latter is a major cause of significant visual loss and amblyopia. Current treatment strategies aim to control inflammation on the ocular surface, halt disease progression, and avoid corneal involvement. Further research on pathogenic mechanisms will shed light on novel potential therapeutic strategies. Awareness of PBKC should enhance early diagnosis, prompt adequate treatment, and improve outcomes. We compile current evidence on epidemiology, pathophysiology, clinical spectrum of disease, diagnostic criteria, and management strategies for PBKC.
Collapse
Affiliation(s)
- Gustavo Ortiz-Morales
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico
| | - Raul E Ruiz-Lozano
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico
| | - Nallely R Morales-Mancillas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico
| | - J Homar Paez-Garza
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico
| | - Alejandro Rodriguez-Garcia
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico.
| |
Collapse
|
3
|
You N, Liu G, Yu M, Chen W, Fei X, Sun T, Han M, Qin Z, Wei Z, Wang D. Reconceptualizing Endothelial-to-mesenchymal transition in atherosclerosis: Signaling pathways and prospective targeting strategies. J Adv Res 2025:S2090-1232(24)00627-1. [PMID: 39756576 DOI: 10.1016/j.jare.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The modification of endothelial cells (ECs) biological function under pathogenic conditions leads to the expression of mesenchymal stromal cells (MSCs) markers, defined as endothelial-to-mesenchymal transition (EndMT). Invisible in onset and slow in progression, atherosclerosis (AS) is a potential contributor to various atherosclerotic cardiovascular diseases (ASCVD). By triggering AS, EndMT, the "initiator" of AS, induces the progression of ASCVD such as coronary atherosclerotic heart disease (CHD) and ischemic cerebrovascular disease (ICD), with serious clinical complications such as myocardial infarction (MI) and stroke. In-depth research of the pathomechanisms of EndMT and identification of potential targeted therapeutic strategies hold considerable research value for the prevention and treatment of ASCVD-associated with delayed EndMT. Although previous studies have progressively unraveled the complexity of EndMT and its pathogenicity triggered by alterations in vascular microenvironmental factors, systematic descriptions of the most recent pathogenic roles of EndMT in the progression of AS, targeted therapeutic strategies, and their future research directions are scarce. AIM OF REVIEW We aim to provide new researchers with comprehensive knowledge of EndMT in AS. We exhaustively review the latest research advancements in the field and provide a theoretical basis for investigating EndMT, a biological process with sophisticated mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarized that altered hemodynamics with microenvironmental crosstalk consisting of inflammatory responses or glycolysis, oxidative stress, lactate or acetyl-CoA (Ac-CoA), fatty acid oxidation (FAO), intracellular iron overload, and transcription factors, including ELK1 and STAT3, modulate the EndMT and affect AS progression. In addition, we provide new paradigms for the development of promising therapeutic agents against these disease-causing processes and indicate promising directions and challenges that need to be addressed to elucidate the EndMT process.
Collapse
Affiliation(s)
- Nanlin You
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Guohao Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengchen Yu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenbo Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyao Fei
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengtao Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhen Qin
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaosheng Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong 253032, China.
| |
Collapse
|
4
|
Corti F, Locri F, Plastino F, Perrotta P, Zsebo K, Ristori E, Yin X, Song E, André H, Simons M. Anti-Syndecan 2 Antibody Treatment Reduces Edema Formation and Inflammation of Murine Laser-Induced CNV. Transl Vis Sci Technol 2025; 14:10. [PMID: 39792057 PMCID: PMC11730891 DOI: 10.1167/tvst.14.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects. Methods We have developed an alternative strategy that uses anti-syndecan-2 polyclonal antibody (anti-Sdc2 pAb) to block VEGF-A-induced permeability without interfering with other VEGF-A activities. The effect of anti-Sdc2 pAb therapy was assessed in vitro using a transendothelial electrical resistance (TEER) assay, as well as staining of the endothelial cell junction, and in vivo in the laser-induced choroidal neovascularization (CNV) model. Results Anti-Sdc2 pAb blocked VEGF-A-induced permeability in vitro, and both local intravitreal injections and systemic intravenous treatments with anti-Sdc2 pAb were as effective as intravitreal anti-VEGF therapy in reducing edema, size of retinal lesions, and local inflammation in this model. Post-injury neovascularization was not affected by treatment with anti-Sdc2 pAb. Conclusions These findings indicate that anti-Sdc2 pAb therapy can be an effective alternative to anti-VEGF-A approaches for suppression of edema and to prevent retinal lesions in wet neovascular AMD (nAMD). Translational Relevance Intravitreal anti-Sdc2 treatment may avoid side effects observed with the long-term anti-VEGF therapy, and systemic treatment with an anti-Sdc2 pAb antibody can address the issues associated with repeated intravitreal injections.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Filippo Locri
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Paola Perrotta
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Emma Ristori
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiangyun Yin
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Shi X, Zhou Y, Du B, Yao X, Du X. Wound healing after surgical therapy for multiple myeloma: a case-control study. J Wound Care 2024; 33:866-874. [PMID: 39480735 DOI: 10.12968/jowc.2024.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
OBJECTIVE The aim of this study was to observe the surgical wound healing process in patients with multiple myeloma who had undergone surgery. METHOD We collected clinical data on patients with multiple myeloma and observed wound healing following surgical therapy. Additionally, we compared the expression of angiogenesis markers in patients with and without multiple myeloma (undergoing surgical excision of other tumour tissues). In patients who had multiple myeloma bone disease, we examined several clinical features: haemoglobin levels; albumin levels; blood glucose levels; and surgery programme. We then compared expression levels of the angiogenesis markers CD31, CD34 and vascular endothelial growth factor (VEGF) in samples scraped from the skin margin of the surgical incision in 12 patients without multiple myeloma (control) and nine patients with multiple myeloma. RESULTS All 61 patients with multiple myeloma observed showed no disunion, no delayed union and no infection in their wound healing. CD31 and VEGF expression was higher in the nine patients with multiple myeloma compared with the 12 control patients without. We observed no difference in CD34 expression between control and experimental groups. CONCLUSION The results of this study suggest that patients with multiple myeloma who have undergone surgery recover well and produce higher quantities of new vessels compared with patients without multiple myeloma. This occurs through increased expression of CD31 and VEGF, angiogenic factors which promote wound healing. We did not observe higher expression of these factors contributing to increased incisional implantation metastasis.
Collapse
Affiliation(s)
- Xiangjun Shi
- Department of Hematology, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100043, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yanyou Zhou
- Department of Orthopaedics, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Boran Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100084, China
| | - Xingchen Yao
- Department of Orthopaedics, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Xinru Du
- Department of Orthopaedics, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100043, China
| |
Collapse
|
6
|
Lee MK, Jeong HH, Kim MJ, Seo JS, Hwang JY, Jung WK, Moon KM, Lee I, Lee B. The Beneficial Roles of Sargassum spp. in Skin Disorders. J Med Food 2024; 27:359-368. [PMID: 38526569 DOI: 10.1089/jmf.2023.k.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
As the body's largest organ, the skin is located at the internal and external environment interface, serving as a line of defense against various harmful stressors. Recently, marine-derived physiologically active ingredients have attracted considerable attention in the cosmeceutical industry due to their beneficial effects on skin health. Sargassum, a genus of brown macroalgae, has traditionally been consumed as food and medicine in several countries and is rich in bioactive compounds such as meroterpenoids, sulfated polysaccharides, fucoidan, fucoxanthin, flavonoids, and terpenoids. Sargassum spp. have various beneficial effects on skin disorders. They help with atopic dermatitis by improving skin barrier protection and reducing inflammation. Several species show potential in treating acne by inhibiting bacterial growth and reducing inflammation. Some species, such as Sargassum horneri, demonstrate antiallergic effects by modulating mast cell activity. Certain Sargassum species exhibit anticancer activity by inhibiting tumor growth and promoting apoptosis, and some species help with wound healing by promoting angiogenesis and reducing oxidative stress. Overall, Sargassum spp. demonstrate potential for treating and managing various skin conditions. Therefore, the bioactive compounds of Sargassum spp. may be natural ingredients with a wide range of functional properties for preventing and treating skin disorders. The present review focused on the various biological effects of Sargassum extracts and derived compounds on skin disorders.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Jae Seong Seo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Ji Young Hwang
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Korea
| | - Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Incheol Lee
- Department of Ocean Engineering, Pukyong National University, Busan, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| |
Collapse
|
7
|
Yang Z, Wang C, Zhang Z, Yu F, Wang Y, Ding J, Zhao Z, Liu Y. A pH responsive tannic acid/quaternized carboxymethyl chitosan/oxidized sodium alginate hydrogels for accelerated diabetic wound healing and real-time monitoring. Int J Biol Macromol 2024; 264:130741. [PMID: 38460649 DOI: 10.1016/j.ijbiomac.2024.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Treatment of diabetic wounds is a major clinical issue. Diabetic wound dressings have higher requirements for anti-oxidant, antibacterial and wound monitoring properties compared to conventional wound dressings. In this study, a novel tannic acid (TA)/quaternized carboxymethyl chitosan (QCMCS)/oxidized sodium alginate (OSA)@carbon quantum dots (CQD) (TA/QCMCS/OSA@CQD) hydrogels for promoting diabetic wound healing and real-time monitoring have been developed. The TA/QCMCS/OSA@CQD hydrogels exhibited excellent self-healing, antibacterial and antioxidant properties. Besides, these hydrogels possessed good biocompatibility and effective hemostasis in a mouse liver injury model and significantly facilitated the healing process in a diabetic wound model. In addition, these hydrogels can reliable and timely measure the diabetic wound pH information by collecting image signals of hydrogels to monitor the healing status. Therefore, the pH responsive TA/QCMCS/OSA@CQD hydrogels could be utilized as wound dressing for promoting diabetic wound healing and real-time monitoring.
Collapse
Affiliation(s)
- Zhifei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zhiyuan Zhang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Fangzheng Yu
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Yu Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Jianqiang Ding
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Hainan Institute of Wuhan University of Technology, Sanya 572000, China.
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China.
| |
Collapse
|
8
|
Ding C, Yang J, Wang N, Ding Q, Sun S, Gao Y, Shen L, Zhao T, Wang Y. Sodium alginate/polyvinyl alcohol nanofibers loaded with Shikonin for diabetic wound healing: In vivo and in vitro evaluation. Int J Biol Macromol 2024; 262:129937. [PMID: 38325683 DOI: 10.1016/j.ijbiomac.2024.129937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Diabetic wounds are typically chronic wounds and the healing process is limited by problems such as high blood glucose levels, bacterial infections, and other issues that make wound healing difficult. Designing drug-loaded wound dressings is an effective way to promote diabetic wound healing. In this study, we developed an SA/PVA nanofiber (SPS) containing Shikonin (SK) for the treatment of diabetic wounds. The prepared nanofibers were uniform in diameter, had good hydrophilicity and high water vapor permeability, and effectively promoted gas exchange between the wound site and the outside world. The results of in vitro experiments showed that SPS was effective in antimicrobial, antioxidant, and biocompatible. In vivo tests showed that the wound healing rate of mice treated with SPS reached 85.5 %. Immunohistochemical staining results showed that SPS was involved in the diabetic wound healing process through the up-regulation of growth factors (CD31, HIF-1α) and the down-regulation of inflammatory factors (CD68). Western blotting experiments showed that SPS attenuated the inflammation through the inhibition of the IκBα/NF-κB signaling pathway. These results suggest that SPS is a promising candidate for future clinical application of chronic wound dressings.
Collapse
Affiliation(s)
- Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd, LinJiang 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd, LinJiang 134600, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yue Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
9
|
Bi M, Yang K, Yu T, Wu G, Li Q. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed Pharmacother 2023; 169:115907. [PMID: 37984308 DOI: 10.1016/j.biopha.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The lack of a functional vascular supply has been identified as a major challenge limiting the clinical introduction of stem cell-based bone tissue engineering (BTE) for the repair of large-volume bone defects (LVBD). Various approaches have been explored to improve the vascular supply in tissue-engineered constructs, and the development of strategies that could effectively induce the establishment of a functional vascular supply has become a major goal of BTE research. One of the state-of-the-art methods is to incorporate both angiogenic and osteogenic cells in co-culture systems. This review clarifies the key concepts involved, summarises the cell types and models used to date, and systematically evaluates their performance. We also discuss the cell-to-cell communication between these two cell types and the strategies explored in BTE constructs with angiogenic and osteogenic cells to optimise their functions. In addition, we outline unresolved issues and remaining obstacles that need to be overcome for further development in this field and eventual successful repair of LVBD.
Collapse
Affiliation(s)
- Mengning Bi
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology Shanghai, China
| | - Kaiwen Yang
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology &Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands.
| | - Qiong Li
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
10
|
Kostyunin A, Glushkova T, Velikanova E, Mukhamadiyarov R, Bogdanov L, Akentyeva T, Ovcharenko E, Evtushenko A, Shishkova D, Markova Y, Kutikhin A. Embedding and Backscattered Scanning Electron Microscopy (EM-BSEM) Is Preferential over Immunophenotyping in Relation to Bioprosthetic Heart Valves. Int J Mol Sci 2023; 24:13602. [PMID: 37686408 PMCID: PMC10487790 DOI: 10.3390/ijms241713602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Hitherto, calcified aortic valves (AVs) and failing bioprosthetic heart valves (BHVs) have been investigated by similar approaches, mostly limited to various immunostaining techniques. Having employed multiple immunostaining combinations, we demonstrated that AVs retain a well-defined cellular hierarchy even at severe stenosis, whilst BHVs were notable for the stochastic degradation of the extracellular matrix (ECM) and aggressive infiltration by ECM-digesting macrophages. Leukocytes (CD45+) comprised ≤10% cells in the AVs but were the predominant cell lineage in BHVs (≥80% cells). Albeit cells with uncertain immunophenotype were rarely encountered in the AVs (≤5% cells), they were commonly found in BHVs (≥80% cells). Whilst cell conversions in the AVs were limited to the endothelial-to-mesenchymal transition (represented by CD31+α-SMA+ cells) and the formation of endothelial-like (CD31+CD68+) cells at the AV surface, BHVs harboured numerous macrophages with a transitional phenotype, mostly CD45+CD31+, CD45+α-SMA+, and CD68+α-SMA+. In contrast to immunostaining, which was unable to predict cell function in the BHVs, our whole-specimen, nondestructive electron microscopy approach (EM-BSEM) was able to distinguish between quiescent and matrix-degrading macrophages, foam cells, and multinucleated giant cells to conduct the ultrastructural analysis of organelles and the ECM, and to preserve tissue integrity. Hence, we suggest EM-BSEM as a technique of choice for studying the cellular landscape of BHVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.K.); (T.G.); (E.V.); (R.M.); (L.B.); (T.A.); (E.O.); (A.E.); (D.S.); (Y.M.)
| |
Collapse
|
11
|
Vasalou V, Kotidis E, Tatsis D, Boulogeorgou K, Grivas I, Koliakos G, Cheva A, Ioannidis O, Tsingotjidou A, Angelopoulos S. The Effects of Tissue Healing Factors in Wound Repair Involving Absorbable Meshes: A Narrative Review. J Clin Med 2023; 12:5683. [PMID: 37685753 PMCID: PMC10488606 DOI: 10.3390/jcm12175683] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Wound healing is a complex and meticulously orchestrated process involving multiple phases and cellular interactions. This narrative review explores the intricate mechanisms behind wound healing, emphasizing the significance of cellular processes and molecular factors. The phases of wound healing are discussed, focusing on the roles of immune cells, growth factors, and extracellular matrix components. Cellular shape alterations driven by cytoskeletal modulation and the influence of the 'Formin' protein family are highlighted for their impact on wound healing processes. This review delves into the use of absorbable meshes in wound repair, discussing their categories and applications in different surgical scenarios. Interleukins (IL-2 and IL-6), CD31, CD34, platelet rich plasma (PRP), and adipose tissue-derived mesenchymal stem cells (ADSCs) are discussed in their respective roles in wound healing. The interactions between these factors and their potential synergies with absorbable meshes are explored, shedding light on how these combinations might enhance the healing process. Recent advances and challenges in the field are also presented, including insights into mesh integration, biocompatibility, infection prevention, and postoperative complications. This review underscores the importance of patient-specific factors and surgical techniques in optimizing mesh placement and healing outcomes. As wound healing remains a dynamic field, this narrative review provides a comprehensive overview of the current understanding and potential avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Varvara Vasalou
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
- Andreas Syggros Hospital, 11528 Athens, Greece
| | - Efstathios Kotidis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Dimitris Tatsis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
- Oral and Maxillofacial Surgery Department, School of Dentistry, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Kassiani Boulogeorgou
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.B.)
| | - Ioannis Grivas
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Koliakos
- Department of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Cheva
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.B.)
| | - Orestis Ioannidis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stamatis Angelopoulos
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
12
|
Ha H, Park JY, Lee CH, Son D, Chung SW, Baek S, Lee K, Lee KS, Yi SW, Kang M, Kim D, Sung H. Vascular Cast to Program Antistenotic Hemodynamics and Remodeling of Vein Graft. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204993. [PMID: 36727829 PMCID: PMC10074125 DOI: 10.1002/advs.202204993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/28/2022] [Indexed: 05/31/2023]
Abstract
The structural stability of medical devices is established by managing stress distribution in response to organ movement. Veins abruptly dilate upon arterial grafting due to the mismatched tissue property, resulting in flow disturbances and consequently stenosis. Vascular cast is designed to wrap the vein-artery grafts, thereby adjusting the diameter and property mismatches by relying on the elastic fixity. Here, a small bridge connection in the cast structure serves as an essential element to prevent stress concentrations due to the improved elastic fixity. Consequently, the vein dilation is efficiently suppressed, healthy (laminar and helical) flow is induced effectively, and the heathy functions of vein grafting are promoted, as indicated by the flow directional alignment of endothelial cells with arterialization, muscle expansion, and improved contractility. Finally, collaborative effects of the bridge drastically suppress stenosis with patency improvement. As a key technical point, the advantages of the bridge addition are validated via the computational modeling of fluid-structure interaction, followed by a customized ex vivo set-up and analyses. The calculated effects are verified using a series of cell, rat, and canine models towards translation. The bridge acted like "Little Dutch boy" who saved the big mass using one finger by supporting the cast function.
Collapse
Affiliation(s)
- Hyunsu Ha
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Ju Young Park
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
| | - Chan Hee Lee
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Deok‐Hyeon Son
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Soon Won Chung
- Department of Plastic SurgeryKorea University Guro HospitalKorea University College of MedicineGurodong‐ro 28‐gilGuro‐guSeoul08308Republic of Korea
| | - Sewoom Baek
- Department of Brain Korea 21 FOUR Project for Medical Science and Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Kyubae Lee
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Kang Suk Lee
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
| | - Se Won Yi
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
| | - Mi‐Lan Kang
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
| | - Dae‐Hyun Kim
- Department of Veterinary SurgeryChungnam National University College of Veterinary Medicine99, Daehak‐roYuseong‐guDaejeon34134Republic of Korea
| | - Hak‐Joon Sung
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
- Department of Brain Korea 21 FOUR Project for Medical Science and Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| |
Collapse
|
13
|
CD14+/CD31+ monocytes expanded by UM171 correct hemophilia A in zebrafish upon lentiviral gene transfer of factor VIII. Blood Adv 2023; 7:697-711. [PMID: 36477543 PMCID: PMC9984962 DOI: 10.1182/bloodadvances.2022009014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging gene therapy clinical trials test the correction of hemophilia A (HA) by replacing factor VIII (FVIII) in autologous hematopoietic stem cells (HSCs). Although it is known that platelets, monocyte/macrophages, and mesenchymal stromal cells can secrete transgenic FVIII, a systematic examination of blood lineages as extrahepatic sources of FVIII, to our knowledge, has not yet been performed. In this study, we sought to provide a comprehensive map of native and lentivirus-based transgenic FVIII production from HSC stage to mature blood cells, through a flow cytometry analysis. In addition, we generated a model of transient HA in zebrafish based on antisense RNA, to assess the corrective potential of the FVIII-transduced HSCs. We discovered that FVIII production begins at the CD34+ progenitor stage after cytokine stimulation in culture. Among all mature white blood cells, monocytes are the largest producers of native FVIII and can maintain protein overexpression during differentiation from HSCs when transduced by a FVIII lentiviral vector. Moreover, the addition of the HSC self-renewal agonist UM171 to CD34+ cells during transduction expanded a subpopulation of CD14+/CD31+ monocytes with excellent ability to carry the FVIII transgene, allowing the correction of HA phenotype in zebrafish. Finally, the HA zebrafish model showed that f8 RNA is predominantly localized in the hematopoietic system at the larval stage, which indicates a potential contributory role of FVIII in hematopoiesis that warrants further investigation. We believe that this study may be of broad interest to hematologists and researchers striving to advance knowledge and permanent treatments for patients with HA.
Collapse
|
14
|
Candesartan protects against unilateral peripheral limb ischemia in type-2 diabetic rats: Possible contribution of PI3K-Akt-eNOS-VEGF angiogenic signaling pathway. Int Immunopharmacol 2023; 116:109817. [PMID: 36773570 DOI: 10.1016/j.intimp.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Type-2 diabetes (T2DM) is known to be highly associated with increased risk for vascular complications including peripheral arterial diseases (PAD). Critical limb ischemia (CLI) is the most advanced stage of PAD. Current therapeutic options for diabetic patients experiencing vascular complications are limited to surgical revascularization with no effective pharmacotherapy available for clinical settings. This study is dedicated to evaluate the angiogenic potential of candesartan an angiotensin-II receptor blocker in an experimental model of vascular complications associating T2DM. T2DM was induced in rats through feeding with high fat diet for 6 weeks, followed by injection with streptozotocin (STZ, 30 mg/kg; i.p). After establishment of T2DM, unilateral CLI was induced through the ligation and excision of superficial femoral artery. Candesartan treatment (10 or 30 mg/kg; orally) was initiated one day post CLI and thereafter once daily for up to 14 days. T2DM rats that underwent CLI demonstrated impaired angiogenic signaling, increased inflammation and apoptosis in gastrocnemius muscle (GC). Candesartan reversed ischemic insult in T2DM rats subjected to unilateral CLI and induced reparative angiogenesis that was evident by increase in p-PI3K/PI3K, p-Akt/Akt, p-eNOS/eNOS, p-VEGFR2/VEGFR2 ratios, and VEGF levels. Candesartan treatment also increased levels of HO-1; while decreased caspase-3 apoptotic marker and levels of inflammatory markers; NF-κB and TNF-α, all of which were accompanied by preserved histological manifestations of GC muscles. Candesartan was able to combat limb ischemia under diabetic conditions which could pave the way for its therapeutic utility for diabetic patients experiencing vascular complications in clinical setting.
Collapse
|
15
|
Ross M, Kargl CK, Ferguson R, Gavin TP, Hellsten Y. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol 2023:10.1007/s00421-022-05128-6. [PMID: 36715739 DOI: 10.1007/s00421-022-05128-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.
Collapse
Affiliation(s)
- Mark Ross
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, UK.
| | - Christopher K Kargl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, USA.,Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Richard Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Timothy P Gavin
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
High-Frequency Nanosecond Bleomycin Electrochemotherapy and its Effects on Changes in the Immune System and Survival. Cancers (Basel) 2022; 14:cancers14246254. [PMID: 36551739 PMCID: PMC9776811 DOI: 10.3390/cancers14246254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, a time-dependent and time-independent study on bleomycin-based high-frequency nsECT (3.5 kV/cm × 200 pulses) for the elimination of LLC1 tumours in C57BL/6J mice is performed. We show the efficiency of nsECT (200 ns and 700 ns delivered at 1 kHz and 1 MHz) for the elimination of tumours in mice and increase of their survival. The dynamics of the immunomodulatory effects were observed after electrochemotherapy by investigating immune cell populations and antitumour antibodies at different timepoints after the treatment. ECT treatment resulted in an increased percentage of CD4+ T, splenic memory B and tumour-associated dendritic cell subsets. Moreover, increased levels of antitumour IgG antibodies after ECT treatment were detected. Based on the time-dependent study results, nsECT treatment upregulated PD 1 expression on splenic CD4+ Tr1 cells, increased the expansion of splenic CD8+ T, CD4+CD8+ T, plasma cells and the proportion of tumour-associated pro inflammatory macrophages. The Lin- population of immune cells that was increased in the spleens and tumour after nsECT was identified. It was shown that nsECT prolonged survival of the treated mice and induced significant changes in the immune system, which shows a promising alliance of nanosecond electrochemotherapy and immunotherapy.
Collapse
|
17
|
HTRA1 Regulates Subclinical Inflammation and Activates Proangiogenic Response in the Retina and Choroid. Int J Mol Sci 2022; 23:ijms231810206. [PMID: 36142120 PMCID: PMC9499640 DOI: 10.3390/ijms231810206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
High-temperature requirement A1 (HtrA1) has been identified as a disease-susceptibility gene for age-related macular degeneration (AMD) including polypoidal choroidal neovasculopathy (PCV). We characterized the underlying phenotypic changes of transgenic (Tg) mice expressing ubiquitous CAG promoter (CAG-HtrA1 Tg). In vivo imaging modalities and histopathology were performed to investigate the possible neovascularization, drusen formation, and infiltration of macrophages. Subretinal white material deposition and scattered white-yellowish retinal foci were detected on CFP [(Tg—33% (20/60) and wild-type (WT)—7% (1/15), p < 0.05]. In 40% (4/10) of the CAG-HtrA1 Tg retina, ICGA showed punctate hyperfluorescent spots. There was no leakage on FFA and OCTA failed to confirm vascular flow signals from the subretinal materials. Increased macrophages and RPE cell migrations were noted from histopathological sections. Monocyte subpopulations were increased in peripheral blood in the CAG-HtrA1 Tg mice (p < 0.05). Laser induced CNV in the CAG-HtrA1 Tg mice and showed increased leakage from CNV compared to WT mice (p < 0.05). Finally, choroidal explants of the old CAG-HtrA1 Tg mice demonstrated an increased area of sprouting (p < 0.05). Signs of subclinical inflammation was observed in CAG-HtrA1 Tg mice. Such subclinical inflammation may have resulted in increased RPE cell activation and angiogenic potential.
Collapse
|
18
|
Li Y, Alnojeidi H, Kilani RT, Ghahary A. M-CSF-stimulated myeloid cells can convert into epithelial cells to participate in re-epithelialization and hair follicle regeneration during dermal wound healing. PLoS One 2022; 17:e0262060. [PMID: 35737933 PMCID: PMC9225457 DOI: 10.1371/journal.pone.0262060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Dermal wound healing is a complex process which requires the interaction of many cell types and mediators in a highly sophisticated temporal sequence. Myeloid cells which compose of a significant proportion of the inflammatory cells infiltrate to the to a wound site where they play important roles in clearance of damaged tissue and microorganisms. Myeloid cells have the capacity to be converted into fibroblast-like cells and endothelial cells during wound healing process. However, whether myeloid cells in wounds can convert into epithelial cells where they contribute to healing process is not clear. In this study, we performed double immunofluorescent staining with antibodies for hematopoietic cells and keratinocytes as well as cell tracing technique to investigate hematopoietic cell conversion. The result showed that during the healing process, some of the CD45-positive hematopoietic cells also expressed keratin 14, a marker for keratinocytes. Further, double immunofluorescent staining in dermal wounds, using CD11b and K14 antibodies indicated that CD11b-positive myeloid cells were the origin of newly generated epithelial cells. Through tracing injected labeled splenocyte-derived myeloid cells in skin, we confirmed that myeloid cells were able to convert into keratinocytes in repaired skin. Furthermore, our results from in vivo experiments provided new information on contribution of myeloid cells in hair follicle regeneration. In conclusion, this work highlights the myeloid cell contributions in wound repair and hair follicle regeneration through conversion of M-CSF-stimulated CD11b-positive myeloid cells into epithelial cells in a murine model.
Collapse
Affiliation(s)
- Yunyuan Li
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hatem Alnojeidi
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ruhangiz T. Kilani
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
19
|
Jakab M, Rostalski T, Lee KH, Mogler C, Augustin HG. Tie2 Receptor in Tumor-Infiltrating Macrophages Is Dispensable for Tumor Angiogenesis and Tumor Relapse after Chemotherapy. Cancer Res 2022; 82:1353-1364. [PMID: 35373291 PMCID: PMC9762345 DOI: 10.1158/0008-5472.can-21-3181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/05/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
Tumor relapse after chemotherapy relies on the reconstruction of damaged tumor vasculature. In this context, proangiogenic Tie2-expressing macrophages have been suggested to serve as crucial instructors of tumor revascularization by secreting angiogenic factors while being closely associated with the vessel wall. Although the proangiogenic nature of Tie2+ macrophages is well described, the functional contribution of macrophage Tie2 expression remains elusive. Here, we employed a Cre-loxP system to specifically delete Tie2 in macrophages. In multiple syngeneic solid tumor models and two distinct chemotherapeutic treatment regimens, macrophage-expressed Tie2 did not contribute to primary tumor growth, tumor revascularization after chemotherapy, tumor recurrence, or metastasis. Exposing cultured murine macrophage cell lines and bone marrow-derived macrophages to hypoxia or stimulating them with Ang2 did not induce expression of Tie2 at the RNA or protein level. Furthermore, a comprehensive meta-analysis of publicly available single cell RNA sequencing datasets of human and murine tumor-infiltrating CD11b+ myeloid cells did not reveal a transcriptionally distinct macrophage population marked by the expression of Tie2. Collectively, these data question the previously reported critical role of Tie2-expressing macrophages for tumor angiogenesis and tumor relapse after chemotherapy. Moreover, lack of Tie2 inducibility and absence of Tie2-positive macrophages in multiple recently published tumor studies refute a possible prognostic value of macrophage-expressed Tie2. SIGNIFICANCE Multiple preclinical tumor models, cell stimulation experiments, and meta-analysis of published tumor single cell RNA sequencing data challenge the reported role of Tie2-positive macrophages for tumor angiogenesis, metastasis, and relapse after chemotherapy. See related commentary by Zhang and Brekken, p. 1172.
Collapse
Affiliation(s)
- Moritz Jakab
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Till Rostalski
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Ki Hong Lee
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Munich, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
20
|
Zhao CC, Han QJ, Ying HY, Gu XX, Yang N, Li LY, Zhang QZ. TNFSF15 facilitates differentiation and polarization of macrophages toward M1 phenotype to inhibit tumor growth. Oncoimmunology 2022; 11:2032918. [PMID: 35127254 PMCID: PMC8812784 DOI: 10.1080/2162402x.2022.2032918] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Can-Can Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qiu-Ju Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Hao-Yan Ying
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiang-Xiang Gu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Kumari R, Dutta R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Pal HC, Verma SK. ALKBH5 Regulates SPHK1-Dependent Endothelial Cell Angiogenesis Following Ischemic Stress. Front Cardiovasc Med 2022; 8:817304. [PMID: 35127873 PMCID: PMC8811170 DOI: 10.3389/fcvm.2021.817304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background Endothelial cells dysfunction has been reported in many heart diseases including acute myocardial infarction, and atherosclerosis. The molecular mechanism for endothelial dysfunction in the heart is still not clearly understood. We aimed to study the role of m6A RNA demethylase alkB homolog 5 (ALKBH5) in ECs angiogenesis during ischemic injury. Methods and Results ECs were treated with ischemic insults (lipopolysaccharide and 1% hypoxia) to determine the role of ALKBH5 in ECs angiogenesis. siRNA mediated ALKBH5 gene silencing was used for examining the loss of function. In this study, we report that ALKBH5 levels are upregulated following ischemia and are associated with maintaining ischemia-induced ECs angiogenesis. To decipher the mechanism of action, we found that ALKBH5 is required to maintain eNOS phosphorylation and SPHK1 protein levels. ALKBH5 silencing alone or with ischemic stress significantly increased SPHK1 m6A mRNA methylation. In contrast, METTL3 (RNA methyltransferase) overexpression resulted in the reduced expression of SPHK1. Conclusion We reported that ALKBH5 helps in the maintenance of angiogenesis in endothelial cells following acute ischemic stress via reduced SPHK1 m6A methylation and downstream eNOS-AKT signaling.
Collapse
Affiliation(s)
- Rajesh Kumari
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Roshan Dutta
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prabhat Ranjan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Gbongbo Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish Chandra Pal
- Department of Pathology, Molecular and Cellular Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Suresh Kumar Verma
| |
Collapse
|
22
|
Yoon H, Lee H, Shin SY, Jodat YA, Jhun H, Lim W, Seo JW, Kim G, Mun JY, Zhang K, Wan KT, Noh S, Park YJ, Baek SH, Hwang YS, Shin SR, Bae H. Photo-Cross-Linkable Human Albumin Colloidal Gels Facilitate In Vivo Vascular Integration for Regenerative Medicine. ACS OMEGA 2021; 6:33511-33522. [PMID: 34926900 PMCID: PMC8675023 DOI: 10.1021/acsomega.1c04292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 05/14/2023]
Abstract
Biodegradable cellular and acellular scaffolds have great potential to regenerate damaged tissues or organs by creating a proper extracellular matrix (ECM) capable of recruiting endogenous cells to support cellular ingrowth. However, since hydrogel-based scaffolds normally degrade through surface erosion, cell migration and ingrowth into scaffolds might be inhibited early in the implantation. This could result in insufficient de novo tissue formation in the injured area. To address these challenges, continuous and microsized strand-like networks could be incorporated into scaffolds to guide and recruit endogenous cells in rapid manner. Fabrication of such microarchitectures in scaffolds is often a laborious and time-consuming process and could compromise the structural integrity of the scaffold or impact cell viability. Here, we have developed a fast single-step approach to fabricate colloidal hydrogels, which are made up of randomly packed human serum albumin-based photo-cross-linkable microparticles with continuous internal networks of microscale voids. The human serum albumin conjugated with methacrylic groups were assembled to microsized aggregates for achieving unique porous structures inside the colloidal gels. The albumin hydrogels showed tunable mechanical properties such as elastic modulus, porosity, and biodegradability, providing a suitable ECM for various cells such as cardiomyoblasts and endothelial cells. In addition, the encapsulated cells within the hydrogel showed improved cell retention and increased survivability in vitro. Microporous structures of the colloidal gels can serve as a guide for the infiltration of host cells upon implantation, achieving rapid recruitment of hematopoietic cells and, ultimately, enhancing the tissue regeneration capacity of implanted scaffolds.
Collapse
Affiliation(s)
- Heejeong Yoon
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Hanna Lee
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Seon Young Shin
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Yasamin A. Jodat
- Division
of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts 02139, United States
| | - Hyunjhung Jhun
- Technical
Assistance Center, Korea Food Research Institute, Jeonbuk 55365, Republic of Korea
| | - Wonseop Lim
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Wook Seo
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyumin Kim
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Young Mun
- Neural
Circuit Research Group, Korea Brain Research
Institute (KBRI), Daegu 41068, Republic of Korea
| | - Kaizhen Zhang
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kai-Tak Wan
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Seulgi Noh
- Neural
Circuit Research Group, Korea Brain Research
Institute (KBRI), Daegu 41068, Republic of Korea
| | - Yeon Joo Park
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Sang Hong Baek
- Laboratory
of Cardiovascular Regeneration, Division of Cardiology, Seoul St.
Mary’s Hospital, The Catholic University
of Korea School of Medicine, Seoul 02841, Republic
of Korea
| | - Yu-Shik Hwang
- Department
of Maxillofacial Biomedical Engineering and Institute of Oral Biology,
School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Ryon Shin
- Division
of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts 02139, United States
| | - Hojae Bae
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
23
|
Newcomb G, Wilson BL, White RJ, Goldman B, Lachant NA, Lachant DJ. An Untapped Resource: Characteristics of Thrombus Recovered from Intermediate or High Risk Pulmonary Embolus Patients. Cardiovasc Pathol 2021; 57:107392. [PMID: 34718141 DOI: 10.1016/j.carpath.2021.107392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Response to anticoagulation varies during management of acute hospitalized pulmonary embolism. We aimed to study thrombus histology in pulmonary embolism samples removed during acute surgical embolectomy to evaluate whether thrombus morphology was similar between patients and whether there was an association with duration of symptoms and/or resolution on follow up imaging. METHODS This was a retrospective observational single center study at the University of Rochester Medical Center. We evaluated patients that underwent acute surgical embolectomy and followed up in our clinic 2-4 months after the event with Ventilation/Perfusion (V/Q) scan obtained for all regardless of symptoms. Thromboemboli were formalin fixed and processed for light microscopy in the hospital histopathology laboratory. Four-micron thick sections were stained with hematoxylin and eosin, Masson trichrome, and Verhoeff elastic tissue stains. Immunohistochemistry was performed using anti-CD31 and anti-CD68. Slides were independently evaluated for time-dependent microscopic changes using Irniger's classification by two blinded pathologists. RESULTS Sixteen patients underwent embolectomy with fifteen having V/Q imaging at follow up. The majority of patients were female. Samples showed a generally similar overall architecture that included a central core composed primarily of red blood cells and fibrin and an outer layer of platelets and monocytes. Two samples had evidence of fibrosis and recanalization. CONCLUSIONS We found heterogeneous histopathology in samples obtained during acute embolectomy. Further prospective studies should systematically characterize clot morphology and evaluate treatment response and outcomes. Careful thrombus specimen measurement and consistent sampling for sections will be required to draw firm conclusions.
Collapse
Affiliation(s)
- Geoffrey Newcomb
- Department of Internal Medicine, University of Rochester Medical Center, Rochester, NY
| | - Bennett L Wilson
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - R James White
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Bruce Goldman
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Neil A Lachant
- Division of Hematology and Oncology at the Wilmot Cancer Center, University of Rochester, Rochester, NY
| | - Daniel J Lachant
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
24
|
Hasan N, Lee J, Kwak D, Kim H, Saparbayeva A, Ahn HJ, Yoon IS, Kim MS, Jung Y, Yoo JW. Diethylenetriamine/NONOate-doped alginate hydrogel with sustained nitric oxide release and minimal toxicity to accelerate healing of MRSA-infected wounds. Carbohydr Polym 2021; 270:118387. [PMID: 34364628 DOI: 10.1016/j.carbpol.2021.118387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022]
Abstract
This study demonstrates the development of a nitric oxide (NO)-releasing hydrogel wound dressing and its efficacy at accelerating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. A DETA/NONOate-doped alginate (Alg-DETA/NO) hydrogel was synthesized using alginate as a hydrogel-forming wound dressing material and diethylenetriamine/diazeniumdiolate (DETA/NONOate) as an NO donor. Alg-DETA/NO exhibited a prolonged NO release profile over a period of 4 days. The rheological properties of Alg-DETA/NO did not differ significantly from those of pure alginate. Importantly, Alg-DETA/NO showed potent antibacterial activity against MRSA, with minimal toxicity to mouse fibroblasts. The application of Alg-DETA/NO to MRSA-infected wounds in a mouse model showed a favorable wound healing with accelerated wound-size reduction and reduced skin bacterial infection. Additionally, histological examination revealed that Alg-DETA/NO reduced inflammation at the wound site and promoted re-epithelialization, angiogenesis, and collagen deposition. Thus, Alg-DETA/NO presented herein could serve as a safe and potent hydrogel dressing for the treatment of MRSA-infected wounds.
Collapse
Affiliation(s)
- Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Dongmin Kwak
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hyunwoo Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | | | - Hye-Jin Ahn
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea..
| |
Collapse
|
25
|
Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J. Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 2021; 25:15-33. [PMID: 34499264 PMCID: PMC8813834 DOI: 10.1007/s10456-021-09817-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The cardiovascular system is composed around the central function of the endothelium that lines the inner surfaces of its vessels. In recent years, the existence of a progenitor population within the endothelium has been validated through the study of endothelial colony-forming cells (ECFCs) in human peripheral blood and certain vascular beds. However, our knowledge on endothelial populations in vivo that can give rise to ECFCs in culture has been limited. In this review we report and analyse recent attempts at describing progenitor populations in vivo from murine studies that reflect the self-renewal and stemness capacity observed in ECFCs. We pinpoint seminal discoveries within the field, which have phenotypically defined, and functionally scrutinised these endothelial progenitors. Furthermore, we review recent publications utilising single-cell sequencing technologies to better understand the endothelium in homeostasis and pathology.
Collapse
Affiliation(s)
- James Dight
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Jilai Zhao
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Cassandra Styke
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| | - Jatin Patel
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia. .,Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| |
Collapse
|
26
|
Abcouwer SF, Shanmugam S, Muthusamy A, Lin CM, Kong D, Hager H, Liu X, Antonetti DA. Inflammatory resolution and vascular barrier restoration after retinal ischemia reperfusion injury. J Neuroinflammation 2021; 18:186. [PMID: 34446062 PMCID: PMC8394696 DOI: 10.1186/s12974-021-02237-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Several retinal pathologies exhibit both inflammation and breakdown of the inner blood-retinal barrier (iBRB) resulting in vascular permeability, suggesting that treatments that trigger resolution of inflammation may also promote iBRB restoration. Methods Using the mouse retinal ischemia-reperfusion (IR) injury model, we followed the time course of neurodegeneration, inflammation, and iBRB disruption and repair to examine the relationship between resolution of inflammation and iBRB restoration and to determine if minocycline, a tetracycline derivative shown to reverse microglial activation, can hasten these processes. Results A 90-min ischemic insult followed by reperfusion in the retina induced cell apoptosis and inner retina thinning that progressed for approximately 2 weeks. IR increased vascular permeability within hours, which resolved between 3 and 4 weeks after injury. Increased vascular permeability coincided with alteration and loss of endothelial cell tight junction (TJ) protein content and disorganization of TJ protein complexes. Shunting of blood flow away from leaky vessels and dropout of leaky capillaries were eliminated as possible mechanisms for restoring the iBRB. Repletion of TJ protein contents occurred within 2 days after injury, long before restoration of the iBRB. In contrast, the eventual re-organization of TJ complexes at the cell border coincided with restoration of the barrier. A robust inflammatory response was evident a 1 day after IR and progressed to resolution over the 4-week time course. The inflammatory response included a rapid and transient infiltration of granulocytes and Ly6C+ classical inflammatory monocytes, a slow accumulation of Ly6Cneg monocyte/macrophages, and activation, proliferation, and mobilization of resident microglia. Extravasation of the majority of CD45+ leukocytes occurred from the superficial plexus. The presence of monocyte/macrophages and increased numbers of microglia were sustained until the iBRB was eventually restored. Intervention with minocycline to reverse microglial activation at 1 week after injury promoted early restoration of the iBRB coinciding with decreased expression of mRNAs for the microglial M1 markers TNF-α, IL-1β, and Ptgs2 (Cox-2) and increased expression of secreted serine protease inhibitor Serpina3n mRNA. Conclusions These results suggest that iBRB restoration occurs as TJ complexes are reorganized and that resolution of inflammation and restoration of the iBRB following retinal IR injury are functionally linked. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02237-5.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | | | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Dejuan Kong
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA.,Department of Molecular and Integrative Physiology, Ann Arbor, MI, 48109, USA
| |
Collapse
|
27
|
Lin YA, Chu PY, Ma WL, Cheng WC, Chan ST, Yang JC, Wu YC. Enzyme-Digested Peptides Derived from Lates calcarifer Enhance Wound Healing after Surgical Incision in a Murine Model. Mar Drugs 2021; 19:md19030154. [PMID: 33809638 PMCID: PMC8002292 DOI: 10.3390/md19030154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Surgical wounds are common injuries of skin and tissues and usually become a clinical problem. Until now, various synthetic and natural peptides have been widely explored as potential drug candidates for wound healing. Inhibition of the TNF-α signaling pathway and promotion of angiogenesis are suggested to be involved in their effects. Angiogenesis at the wound site is one of the essential requisites for rapid healing. In the present study, a novel peptide extract derived from the natural source Lates calcarifer, commonly known as sea bass or barramundi, was evaluated for its wound healing property. The specific acidic and enzymatic approaches were employed for producing sea bass extract containing small size peptides (molecular weight ranging from 1 kD to 5 kD). The cytotoxicity of the extract was examined in HaCaT and NIH3T3. After this, the effects of enzyme digested peptide extracts of sea bass on wound healing in mice were investigated. The peptide extracts (660 and 1320 mg/kg/day) and control protein (1320 mg/kg/day) was orally given to the wounded mice, respectively, for 12 days. The surgical method was improved by implanting a silicone ring at the wound site. The ring avoided the contracting effect in murine wounds, making it more closely related to a clinical condition. The results showed promising improvement at the wound site in mice. Sea bass peptide extracts accelerated the wound healing process and enhanced the microvessel formation at the wound site. The remarkable effects of this novel sea bass peptide extract in healing traumatic injuries revealed a new option for developing wound management.
Collapse
Affiliation(s)
- Yen-An Lin
- Graduate Institute of Basic Medical Science, School of China Medical University, Taichung 40402, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (W.-L.M.); (W.-C.C.)
| | - Pei-Yi Chu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan;
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (W.-L.M.); (W.-C.C.)
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (W.-L.M.); (W.-C.C.)
- Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan
| | | | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan;
- Correspondence: (J.-C.Y.); (Y.-C.W.); Tel.: +886-422-052-121 (ext. 7832) (J.-C.Y.); +886-422-053-366 (ext. 3605) (Y.-C.W.)
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan;
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: (J.-C.Y.); (Y.-C.W.); Tel.: +886-422-052-121 (ext. 7832) (J.-C.Y.); +886-422-053-366 (ext. 3605) (Y.-C.W.)
| |
Collapse
|
28
|
Liu Y, Zhuang X, Yu S, Yang N, Zeng J, Liu X, Chen X. Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization. Stem Cell Res Ther 2021; 12:76. [PMID: 33482924 PMCID: PMC7821694 DOI: 10.1186/s13287-021-02151-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background Reconstruction of complex critical-size defects (CSD) in the craniofacial region is a major challenge, and soft tissue regeneration is crucial in determining the therapeutic outcomes of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) that are homologous to cells in craniofacial tissue and represent a promising source for craniofacial tissue regeneration. Exosomes, which contain compound bioactive compounds, are the key factors in stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue. Methods SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularization were detected by measuring the wound area and performing histological and immunofluorescence analysis on the palatal gingival CSD of mice. Real-time live-cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo-mediated EC angiogenesis in vitro were tested by immunofluorescence staining, Western blot, and pull-down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect vascularization and wound healing through cell division cycle 42 (Cdc42). Results We found that SCAP-Exo promoted tissue regeneration of palatal gingival CSD by enhancing vascularization in the early phase in vivo and that SCAP-Exo improved the angiogenic capacity of ECs in vitro. Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via Cdc42 signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs and that the Cdc42 protein could be reused directly by recipient ECs, which resulted in the activation of Cdc42-dependent filopodium formation and elevation in cell migration of ECs. Conclusion This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used in a cell-free approach to optimize tissue regeneration in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02151-w.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xueying Zhuang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Si Yu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
| | - Jianhong Zeng
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
| | - Xuemei Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Chen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China. .,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
29
|
Evans WS, Sapp RM, Kim KI, Heilman JM, Hagberg J, Prior SJ. Effects of Exercise Training on the Paracrine Function of Circulating Angiogenic Cells. Int J Sports Med 2020; 42:1047-1057. [PMID: 33124014 DOI: 10.1055/a-1273-8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise training has various benefits on cardiovascular health, and circulating angiogenic cells have been proposed as executing these changes. Work from the late 1990s supported an important role of these circulating post-natal cells in contributing to the maintenance and repair of the endothelium and vasculature. It was later found that circulating angiogenic cells were a heterogenous population of cells and primarily functioned in a paracrine manner by adhering to damaged endothelium and releasing growth factors. Many studies have discovered novel circulating angiogenic cell secreted proteins, microRNA and extracellular vesicles that mediate their angiogenic potential, and some studies have shown that both acute and chronic aerobic exercise training have distinct benefits. This review highlights work establishing an essential role of secreted factors from circulating angiogenic cells and summarizes studies regarding the effects of exercise training on these factors. Finally, we highlight the various gaps in the literature in hopes of guiding future work.
Collapse
Affiliation(s)
- William S Evans
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - Ryan M Sapp
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - Katherine I Kim
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - James M Heilman
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - James Hagberg
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park.,Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, Department of Veterans Affairs, Baltimore
| |
Collapse
|
30
|
Abstract
Guided by organ-specific signals in both development and disease response, the heterogeneous endothelial cell population is a dynamic member of the vasculature. Functioning as the gatekeeper to fluid, inflammatory cells, oxygen, and nutrients, endothelial cell communication with its local environment is critical. Impairment of endothelial cell-cell communication not only disrupts this signaling process, but also contributes to pathologic disease progression. Expanding our understanding of those processes that mediate endothelial cell-cell communication is an important step in the approach to treatment of disease processes.
Collapse
Affiliation(s)
- Daniel D Lee
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| | - Margaret A Schwarz
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
31
|
Gouveia-Fernandes S. Monocytes and Macrophages in Cancer: Unsuspected Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:161-185. [PMID: 32130699 DOI: 10.1007/978-3-030-34025-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The behavior of cancer is undoubtedly affected by stroma. Macrophages belong to this microenvironment and their presence correlates with reduced survival in most cancers. After a tumor-induced "immunoediting", these monocytes/macrophages, originally the first line of defense against tumor cells, undergo a phenotypic switch and become tumor-supportive and immunosuppressive.The influence of these tumor-associated macrophages (TAMs) on cancer is present in all traits of carcinogenesis. These cells participate in tumor initiation and growth, migration, vascularization, invasion and metastasis. Although metastasis is extremely clinically relevant, this step is always reliant on the angiogenic ability of tumors. Therefore, the formation of new blood vessels in tumors assumes particular importance as a limiting step for disease progression.Herein, the once unsuspected roles of macrophages in cancer will be discussed and their importance as a promising strategy to treat this group of diseases will be reminded.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Tanyanskiy DA, Pigarevskii PV, Maltseva SV, Denisenko AD. Immunohistochemical analysis of adiponectin in atherosclerotic lesions of human aorta. ARYA ATHEROSCLEROSIS 2019; 15:179-184. [PMID: 31819751 PMCID: PMC6884728 DOI: 10.22122/arya.v15i4.1873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Metabolic syndrome, a cluster of interrelated disorders including abdominal obesity, insulin resistance, dyslipidemia, and hypertension (HTN) plays an important role in development of atherosclerotic lesions in arterial wall. Dysregulation of adipose tissue hormones (adipokines) production is a possible link between abdominal obesity and other manifestations of metabolic syndrome. Adiponectin is a well-known adipokine which affects metabolism and inflammatory response. However, data on its role in atherogenesis are still controversial. The aim of this study is to investigate whether adiponectin is present in atherosclerotic lesions of human aorta. METHODS Thirty-five autopsy segments from abdominal, thoracic aortas, and aortic arch of four men (mean age: 57 years) were fixed and stained for lipids [Oil Red O (ORO)], cells [hematoxylin-eosin (H&E)], and adiponectin [indirect immunoperoxidase assay (IPA) method]. Samples of both stable and unstable plaques were selected for analysis. Human adipose tissue, THP-1 monocytes/macrophages, and human endothelial hybrid cell line (EA.hy926) were chosen for detection of adiponectin messenger ribonucleic acid (mRNA) using reverse transcription polymerase chain reaction (RT-PCR). RESULTS Adiponectin accumulations were found inside endothelial cells covering both stable and unstable atherosclerotic plaques. Focal depositions of adiponectin were also found in fibrous caps of stable lesions and atheromatous core of both stable and unstable plaques and also in adventitia. RT-PCR revealed mRNA expression of adiponectin gene in adipose tissue, but not in mononuclears and endothelial cells. CONCLUSION Adiponectin is present in aortic plaques of humans, but is not synthesized in endothelial cells and mononuclears, at least in culture conditions. Detection of adiponectin in atherosclerotic lesions can serve as indirect evidence of possible participation of this adipokine in atherogenesis.
Collapse
Affiliation(s)
- Dmitry A Tanyanskiy
- Department of Biochemistry, Institute of Experimental Medicine AND Department of Fundamental Medicine and Medical Technology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Peter V Pigarevskii
- Associate Professor, Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Svetlana V Maltseva
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander D Denisenko
- Professor, Department of Biochemistry, Institute of Experimental Medicine AND Department of Fundamental Medicine and Medical Technology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
33
|
Protective effects of Salidroside on cardiac function in mice with myocardial infarction. Sci Rep 2019; 9:18127. [PMID: 31792327 PMCID: PMC6888872 DOI: 10.1038/s41598-019-54713-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023] Open
Abstract
Salidroside (SAL) is the major ingredient of Rhodiola rosea, and has been traditionally used in Chinese medicine for decades. Numerous studies have demonstrated the protective effects of SAL for myocardial ischemia. However, it is yet to be deciphered whether SAL has cardioprotective effects after myocardial infarction (MI) in vivo. In the present study, we established a mouse MI model via coronary artery ligation. The aim was to investigate whether SAL treatment could reduce mortality, improve cardiac function and attenuate myocardial remodeling in MI mice. Post-surgery, mice were randomly administered SAL or normal saline. After 21 days, SAL was found to significantly reduce mortality, improve cardiac function, reduce fibrosis and infarct size compared to normal saline. In addition, oral administration of SAL could attenuate myocardial inflammation and apoptosis and promote angiogenesis. SAL down-regulated the expression levels of TNF-α, TGF-β1, IL-1β, Bax and up-regulate the expression of Bcl-2, VEGF, Akt and eNOS. These results indicated that SAL could alleviate the pathological processes of myocardial remodeling in MI mice, and may be a potentially effective therapeutic approach for the management of clinical ischemic cardiovascular diseases.
Collapse
|
34
|
Wegner S, Uhlemann R, Boujon V, Ersoy B, Endres M, Kronenberg G, Gertz K. Endothelial Cell-Specific Transcriptome Reveals Signature of Chronic Stress Related to Worse Outcome After Mild Transient Brain Ischemia in Mice. Mol Neurobiol 2019; 57:1446-1458. [PMID: 31758402 PMCID: PMC7060977 DOI: 10.1007/s12035-019-01822-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022]
Abstract
Vascular mechanisms underlying the adverse effects that depression and stress-related mental disorders have on stroke outcome are only partially understood. Identifying the transcriptomic signature of chronic stress in endothelium harvested from the ischemic brain is an important step towards elucidating the biological processes involved. Here, we subjected male 129S6/SvEv mice to a 28-day model of chronic stress. The ischemic lesion was quantified after 30 min filamentous middle cerebral artery occlusion (MCAo) and 48 h reperfusion by T2-weighted MRI. RNA sequencing was used to profile transcriptomic changes in cerebrovascular endothelial cells (ECs) from the infarct. Mice subjected to the stress procedure displayed reduced weight gain, increased adrenal gland weight, and increased hypothalamic FKBP5 mRNA and protein expression. Chronic stress conferred increased lesion volume upon MCAo. Stress-exposed mice showed a higher number of differentially expressed genes between ECs isolated from the ipsilateral and contralateral hemisphere than control mice. The genes in question are enriched for roles in biological processes closely linked to endothelial proliferation and neoangiogenesis. MicroRNA-34a was associated with nine of the top 10 biological process Gene Ontology terms selectively enriched in ECs from stressed mice. Moreover, expression of mature miR-34a-5p and miR-34a-3p in ischemic brain tissue was positively related to infarct size and negatively related to sirtuin 1 (Sirt1) mRNA transcription. In conclusion, this study represents the first EC-specific transcriptomic analysis of chronic stress in brain ischemia. The stress signature uncovered relates to worse stroke outcome and is directly relevant to endothelial mechanisms in the pathogenesis of stroke.
Collapse
Affiliation(s)
- Stephanie Wegner
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ria Uhlemann
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Valérie Boujon
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Burcu Ersoy
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Endres
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Berlin, 10115, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 10117, Berlin, Germany
| | - Golo Kronenberg
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,University of Leicester and Leicestershire Partnership NHS Trust, Leicester, UK
| | - Karen Gertz
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,DZHK (German Center for Cardiovascular Research), Partner site Berlin, 10115, Berlin, Germany.
| |
Collapse
|
35
|
Zheng W, Zhang H, Zhao D, Zhang J, Pollard JW. Lung Mammary Metastases but Not Primary Tumors Induce Accumulation of Atypical Large Platelets and Their Chemokine Expression. Cell Rep 2019; 29:1747-1755.e4. [PMID: 31722193 PMCID: PMC6919330 DOI: 10.1016/j.celrep.2019.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023] Open
Abstract
The tumor microenvironment (TME) at the metastatic site consists of multiple components with considerable cellular heterogeneity. To test whether endothelial cells (ECs) associated with lung metastases express a distinct gene expression program that promotes metastatic growth, we isolated CD31+/CD45- cells from lung mammary cancer metastases for RNA sequencing and found CD44 upregulation. Unexpectedly, the CD44+ subset did not comprise authentic ECs nor were they bone-marrow-derived CD45- endothelial progenitor cells. Instead, they were a population of large platelets that are distinct from regular small platelets. These CD44+ large platelets were enriched in lung metastases but not primary mammary tumors and upregulated myeloid cell-regulating chemokines indicative of potential regulation of metastasis via indirect mechanisms. Identification of this cellular player in the TME of metastasis suggests a role for the recently identified lung-resident megakaryocytes (MKs) and offers an unexplored route to discover novel mechanisms and an opportunity for therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Hui Zhang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Jinghang Zhang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
36
|
Yang JI, Jin B, Kim SY, Li Q, Nam A, Ryu MO, Lee WW, Son MH, Park HJ, Song WJ, Youn HY. Antitumour effects of Liporaxel (oral paclitaxel) for canine melanoma in a mouse xenograft model. Vet Comp Oncol 2019; 18:152-160. [PMID: 31503379 DOI: 10.1111/vco.12540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 11/27/2022]
Abstract
Paclitaxel, a member of the taxane family, exhibits antitumour effects by targeting the microtubules in cancer cells. Recently, oral paclitaxel has been developed to overcome the side effects of intravenous paclitaxel administration in human patients. The objective of this study was to investigate the antitumour effects of oral paclitaxel in vitro and in vivo. Three weeks after inoculation, oral paclitaxel (25 and 50 mg/kg) or saline was administered every week for three consecutive weeks. To explore the underlying mechanism, tumour angiogenesis was examined by immunohistochemistry with an anti-CD31 antibody. Tumour cell apoptosis was detected by Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling assay, and cell cycle arrest was confirmed by western blot analysis. Oral paclitaxel treatment of canine melanoma cells exerted mediated antiproliferative effects and mediated cell cycle arrest in vitro. In animal experiments, after oral paclitaxel administration, the average tumour size decreased to approximately 30% of that in the control. Histologically, oral paclitaxel showed anti-angiogenic effects and induced the apoptosis in tumour tissues. Oral paclitaxel also downregulated the intratumoural expression of cyclin D1 and inhibited cell proliferation. The study findings support potential application of oral paclitaxel as a novel chemotherapeutic strategy to treat canine melanoma. This is the first study to investigate the potential of oral paclitaxel as a therapeutic drug against canine tumours.
Collapse
Affiliation(s)
- Ji-In Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bohwan Jin
- Laboratory Animal Center, CHA University, CHA Biocomplex, Seongnam, Republic of Korea
| | - Su-Yeon Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Qiang Li
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Aryung Nam
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min-Ok Ryu
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Won Woo Lee
- Laboratory Animal Center, CHA University, CHA Biocomplex, Seongnam, Republic of Korea
| | - Min-Hee Son
- Daehwa Pharmaceutical Company Co., Ltd, Seoul, Republic of Korea
| | - Hye-Jin Park
- Daehwa Pharmaceutical Company Co., Ltd, Seoul, Republic of Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Skubitz KM, Wilson JD, Cheng EY, Lindgren BR, Boylan KLM, Skubitz APN. Effect of chemotherapy on cancer stem cells and tumor-associated macrophages in a prospective study of preoperative chemotherapy in soft tissue sarcoma. J Transl Med 2019; 17:130. [PMID: 30999901 PMCID: PMC6471853 DOI: 10.1186/s12967-019-1883-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background Cancer stem cells (CSC) may respond to chemotherapy differently from other tumor cells. Methods This study examined the expression of the putative cancer stem cell markers ALDH1, CD44, and CD133; the angiogenesis marker CD31; and the macrophage marker CD68 in soft tissue sarcomas (STS) before and after 4 cycles of chemotherapy with doxorubicin and ifosfamide in 31 patients with high-grade soft tissue sarcoma in a prospective clinical trial. Results None of the markers clearly identified CSCs in STS samples. Macrophages represented a prominent component in viable tumor areas in pre-treatment STS biopsies, ranging from < 5 to > 50%. Furthermore, macrophages expressed CD44 and ALDH1. Macrophage density correlated with baseline maximum standardized uptake value (SUVmax) on fluoro-deoxyglucose positron emission tomography (PET) imaging. Pre-chemotherapy CD68 staining correlated positively with the baseline SUVmax, and negatively with the percent of viable tumor cells in post-chemotherapy resection samples. In particular, cases with more CD68-positive cells at biopsy had fewer viable tumor cells at resection, suggesting a better response to chemotherapy. Conclusions In conclusion, ALDH1, CD44, and CD133 are not likely to be useful markers of CSCs in STS. However, our observation of infiltrating macrophages in STS specimens indicates that these immune cells may contribute significantly to STS biology and response to chemotherapy, and could provide a potential target of therapy. Future studies should investigate macrophage contribution to STS pathophysiology by cytokine signaling. Electronic supplementary material The online version of this article (10.1186/s12967-019-1883-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keith M Skubitz
- Department of Medicine, University of Minnesota Medical School, Box 286 University Hospital, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Jon D Wilson
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA.,Arkana Laboratories, Little Rock, AR, USA
| | - Edward Y Cheng
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Orthopaedic Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Bruce R Lindgren
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Kristin L M Boylan
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Amy P N Skubitz
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| |
Collapse
|
38
|
Guo X, Yuan Z, Xu Y, Zhao X, Fang Z, Yuan WE. A Low-Molecular-Weight Polyethylenimine/pDNA-VEGF Polyplex System Constructed in a One-Pot Manner for Hindlimb Ischemia Therapy. Pharmaceutics 2019; 11:E171. [PMID: 30965617 PMCID: PMC6523750 DOI: 10.3390/pharmaceutics11040171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
Peripheral arterial disease (PAD) is often characterized by continued reduction in blood flow supply to limbs. Advanced therapeutic strategies like gene therapy could potentially be applied to limb ischemia therapy. However, developing a gene delivery system with low toxicity and high efficiency remains a great challenge. In this study, a one-pot construction was used to integrate vector synthesis and polyplex fabrication simultaneously in a simple and robust manner. We fabricated an interpenetrating gene delivery network through the physical interaction between low-molecular-weight polyethylenimine (PEI 1.8 kDa) and plasmid DNA (pDNA) and the chemical bonding between PEI and glutaraldehyde (GA), which was named the glutaraldehydelinked-branched PEI (GPEI) polyplex. The final GPEI polyplex system was pH-responsive and biodegradable due to the imine linkage and it could successfully deliver desired vascular endothelial growth factor (VEGF) pDNA. Compared with PEI (25 kDa)/pDNA polyplexes, GPEI polyplexes showed lower cytotoxicity and higher transfection efficiency both in vitro and in vivo. In addition, we demonstrated that GPEI polyplexes could efficiently promote the formation of new capillaries in vivo, which may provide a practicable strategy for clinical hindlimb ischemia therapy in the future.
Collapse
Affiliation(s)
- Xiaoshuang Guo
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zihan Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yang Xu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaotian Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhiwei Fang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
39
|
Landers-Ramos RQ, Sapp RM, Shill DD, Hagberg JM, Prior SJ. Exercise and Cardiovascular Progenitor Cells. Compr Physiol 2019; 9:767-797. [PMID: 30892694 DOI: 10.1002/cphy.c180030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous stem/progenitor cell-based methods to restore blood flow and function to ischemic tissues are clinically appealing for the substantial proportion of the population with cardiovascular diseases. Early preclinical and case studies established the therapeutic potential of autologous cell therapies for neovascularization in ischemic tissues. However, trials over the past ∼15 years reveal the benefits of such therapies to be much smaller than originally estimated and a definitive clinical benefit is yet to be established. Recently, there has been an emphasis on improving the number and function of cells [herein generally referred to as circulating angiogenic cells (CACs)] used for autologous cell therapies. CACs include of several subsets of circulating cells, including endothelial progenitor cells, with proangiogenic potential that is largely exerted through paracrine functions. As exercise is known to improve CV outcomes such as angiogenesis and endothelial function, much attention is being given to exercise to improve the number and function of CACs. Accordingly, there is a growing body of evidence that acute, short-term, and chronic exercise have beneficial effects on the number and function of different subsets of CACs. In particular, recent studies show that aerobic exercise training can increase the number of CACs in circulation and enhance the function of isolated CACs as assessed in ex vivo assays. This review summarizes the roles of different subsets of CACs and the effects of acute and chronic exercise on CAC number and function, with a focus on the number and paracrine function of circulating CD34+ cells, CD31+ cells, and CD62E+ cells. © 2019 American Physiological Society. Compr Physiol 9:767-797, 2019.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Ryan M Sapp
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Daniel D Shill
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - James M Hagberg
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Steven J Prior
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Pentoxifylline ameliorates chronic stress/high-fat diet-induced vascular wall disease: the role of circulating endothelial progenitor cells. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:669-683. [DOI: 10.1007/s00210-019-01627-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
|
41
|
Zhao X, Qian Y, Cheng Y, Guo X, Yuan WE. One-pot construction of a twice-condensed pDNA polyplex system for peripheral nerve crush injury therapy. Biomater Sci 2018; 6:2059-2072. [PMID: 29932177 DOI: 10.1039/c8bm00356d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Non-viral vector gene delivery is generally limited by its potential toxicity problems, poor transfection abilities, serum stability, or relatively complex construction processes of modified polyplexes. Thus, we develop an efficient and stable polyplex system through convenient construction methods. Here, polyethyleneimine (PEI) 1.8 kDa and glutaraldehyde (GA) are used to construct a novel twice-condensed pDNA polyplex system using a one-pot construction method, including pH-responsive C[double bond, length as m-dash]N linkages by which different PEI molecules on one single polyplex can link with each other. In this system, smaller particle sizes, higher zeta potentials and better serum stabilities are achieved without PEGylation or other chemical modifications using lyophobic segments, but via pH-responsive linkages that ensure the escape of nucleic acids. This polyplex system is used to deliver the pDNA of vascular endothelial growth factor (VEGF) whose half-life period in vivo is only around 30 minutes. Compared with polyplexes prepared using PEI 25 kDa, cells and rats treated with twice-condensed VEGF pDNA polyplexes express significantly more VEGF or myelin basic protein (MBP), and this new polyplex system showed fewer adverse effects in vitro and in vivo. In addition, revascularization and neurogenesis are also discovered in the rat sciatic nerve crush injury model.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan RD, Shanghai 200240, China.
| | | | | | | | | |
Collapse
|
42
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018. [PMID: 29507865 DOI: 10.1155/2018/8917804]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in "distant" pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
43
|
Chen X, Zhao L, Kang Y, He Z, Xiong F, Ling X, Wu J. Significant Suppression of Non-small-cell Lung Cancer by Hydrophobic Poly(ester amide) Nanoparticles with High Docetaxel Loading. Front Pharmacol 2018; 9:118. [PMID: 29541026 PMCID: PMC5835838 DOI: 10.3389/fphar.2018.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for over 85% of clinical lung cancer cases, which is the leading cause of cancer-related death. To develop new therapeutic strategy for NSCLC, a library of L-phenylalanine-based poly(ester amide) (Phe-PEA) polymers was synthesized and assembled with docetaxel (Dtxl) to form Dtxl-loaded Phe-PEA nanoparticles (NPs). The hydrophobic Phe-PEA polymers were able to form NPs by nanoprecipitation method and the characterization results showed that the screened Dtxl-8P4 NPs have small particle size (∼100 nm) and high Dtxl loading (∼20 wt%). In vitro experiments showed that Dtxl-8P4 NPs were rapidly trafficked into cancer cells, then effectively escaped from lysosomal degradation and achieved significant tumor cell inhibition. In vivo results demonstrated that Dtxl-8P4 NPs with prolonged blood circulation could efficiently deliver Dtxl to A549 tumor sites, leading to reduced cell proliferation, block metastasis, and increase apoptosis, then persistent inhibition of tumor growth. Therefore, Phe-PEA NPs are able to load high amount of hydrophobic drugs and could be a promising therapeutic approach for NSCLC and other cancer treatments.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lili Zhao
- Digestive Endoscopy Center, Jiangsu Province Hospital, Nanjing, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhiyu He
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Fei Xiong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiang Ling
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
HO-1 hi patrolling monocytes protect against vaso-occlusion in sickle cell disease. Blood 2018; 131:1600-1610. [PMID: 29437594 DOI: 10.1182/blood-2017-12-819870] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
Patients with sickle cell disease (SCD) suffer from intravascular hemolysis associated with vascular injury and dysfunction in mouse models, and painful vaso-occlusive crisis (VOC) involving increased attachment of sickle erythrocytes and activated leukocytes to damaged vascular endothelium. Patrolling monocytes, which normally scavenge damaged cells and debris from the vasculature, express higher levels of anti-inflammatory heme oxygenase 1 (HO-1), a heme degrading enzyme. Here, we show that HO-1-expressing patrolling monocytes protect SCD vasculature from ongoing hemolytic insult and vaso-occlusion. We found that a mean 37% of patrolling monocytes from SCD patients express very high levels of HO-1 (HO-1hi) vs 6% in healthy controls and demonstrated that HO-1hi expression was dependent on uptake of heme-exposed endothelium. SCD patients with a recent VOC episode had lower numbers of HO-1hi patrolling monocytes. Heme-mediated vaso-occlusion by mouse SCD red blood cells was exacerbated in mice lacking patrolling monocytes, and reversed following transfer of patrolling monocytes. Altogether, these data indicate that SCD patrolling monocytes remove hemolysis-damaged endothelial cells, resulting in HO-1 upregulation and dampening of VOC, and that perturbation in patrolling monocyte numbers resulting in lower numbers of HO-1hi patrolling monocyte may predispose SCD patients to VOC. These data suggest that HO-1hi patrolling monocytes are key players in VOC pathophysiology and have potential as therapeutic targets for VOC.
Collapse
|
45
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018; 2018:8917804. [PMID: 29507865 PMCID: PMC5821995 DOI: 10.1155/2018/8917804] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
46
|
Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res 2018; 114:565-577. [DOI: 10.1093/cvr/cvx253] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Martin C Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| |
Collapse
|
47
|
Mitrofanova I, Zavyalova M, Riabov V, Cherdyntseva N, Kzhyshkowska J. The effect of neoadjuvant chemotherapy on the correlation of tumor-associated macrophages with CD31 and LYVE-1. Immunobiology 2017; 223:449-459. [PMID: 29459011 DOI: 10.1016/j.imbio.2017.10.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/21/2023]
Abstract
Angiogenesis and lymphangiogenesis play a crucial role in tumor growth, invasion and metastasis. Tumor-associated macrophages (TAM) induce both angiogenesis and lymphangiogenesis in mouse breast cancer models and positively correlate with these processes in human breast cancer patients. Neoadjuvant chemotherapy (NAC) is a widely used therapeutic option for cancer treatment. However, the effect of NAC on the distribution of TAM within intratumoral compartments and their correlation with angiogenesis and lymphangiogenesis remained unknown. In the present study we analyzed the effect of NAC on the distribution of CD68+ and stabilin-1+ TAM in five functionally distinct areas of human breast cancer and their correlations with microvessel density (MVD) and lymphatic microvessel density (LMVD), identified by CD31 and LYVE1, respectively. We found that NAC enhances blood vessel density in soft fibrous stroma and in coarse fibrous stroma. Without NAC the amount of CD68+ TAM in gaps of ductal tumor structures positively correlate with CD31+ microvessel density in soft fibrous stroma. NAC had enhancing effect on the amount of CD68+ TAM but not stabilin-1+ TAM in soft fibrous stroma. However, no correlation between TAM and CD31+ microvessel density was identified after NAC. NAC did not enhance the lymphatic microvessel density. But after NAC stabilin-1 expressing subpopulation of TAM positively correlated with expression of LYVE-1. We hypothesized that CD68+ TAM can support tumor angiogenesis primarily before NAC, while stabilin-1+ TAM can contribute to the maintenance of lymphatic microvessel density after NAC.
Collapse
Affiliation(s)
- Irina Mitrofanova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050, Tomsk, Russia; Tomsk National Research Medical Center of the Russian Academy of Sciences, Per. Kooperativny, 5, 634050, Tomsk, Russia
| | - Marina Zavyalova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050, Tomsk, Russia; Siberian State Medical University, Moskovskii Trakt, 2, 634050, Tomsk, Russia
| | - Vladimir Riabov
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050, Tomsk, Russia; Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050, Tomsk, Russia; Tomsk National Research Medical Center of the Russian Academy of Sciences, Per. Kooperativny, 5, 634050, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina, 36, 634050, Tomsk, Russia; Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
| |
Collapse
|
48
|
Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation. Biosci Rep 2017; 37:BSR20170002. [PMID: 28536311 PMCID: PMC5479018 DOI: 10.1042/bsr20170002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF165) displayed a high capability to alter their phenotype and function into ELCs in vitro. Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro. We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation.
Collapse
|
49
|
Sass FA, Schmidt-Bleek K, Ellinghaus A, Filter S, Rose A, Preininger B, Reinke S, Geissler S, Volk HD, Duda GN, Dienelt A. CD31+ Cells From Peripheral Blood Facilitate Bone Regeneration in Biologically Impaired Conditions Through Combined Effects on Immunomodulation and Angiogenesis. J Bone Miner Res 2017; 32:902-912. [PMID: 27976803 DOI: 10.1002/jbmr.3062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022]
Abstract
Controlled revascularization and inflammation are key elements regulating endogenous regeneration after (bone) tissue trauma. Peripheral blood-derived cell subsets, such as regulatory T-helper cells and circulating (endothelial) progenitor cells, respectively, can support endogenous tissue healing, whereas effector T cells that are associated with an aged immune system can hinder bone regeneration. CD31 is expressed by diverse leukocytes and is well recognized as a marker of circulating endothelial (precursor) cells; however, CD31 is absent from the surface of differentiated effector T cells. Thus, we hypothesized that by separating the inhibitory fractions from the supportive fractions of circulating cells within the peripheral blood (PB) using the CD31 marker, bone regeneration in biologically compromised conditions, such as those observed in aged patients, could be improved. In support of our hypothesis, we detected an inverse correlation between CD31+ cells and effector T cells in the hematomas of human fracture patients, dependent on the age of the patient. Furthermore, we demonstrated the regenerative capacity of human PB-CD31+ cells in vitro. These findings were translated to a clinically relevant rat model of impaired bone healing. The transplantation of rat PB-CD31+ cells advanced bone tissue restoration in vivo and was associated with an early anti-inflammatory response, the stimulation of (re)vascularization, and reduced fibrosis. Interestingly, the depletion or enrichment of the highly abundant CD31+/14+ monocytes from the mixed CD31+ cell population diminished tissue regeneration at different levels, suggesting combined effects within the PB-CD31+ subsets. In summary, an intraoperative enrichment of PB-CD31+ cells might be a novel option to facilitate endogenous regeneration under biologically impaired situations by supporting immunomodulation and vascularization. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- F Andrea Sass
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Sebastian Filter
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexander Rose
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Bernd Preininger
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Simon Reinke
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Anke Dienelt
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
50
|
Medina RJ, Barber CL, Sabatier F, Dignat‐George F, Melero‐Martin JM, Khosrotehrani K, Ohneda O, Randi AM, Chan JK, Yamaguchi T, Van Hinsbergh VW, Yoder MC, Stitt AW. Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Transl Med 2017; 6:1316-1320. [PMID: 28296182 PMCID: PMC5442722 DOI: 10.1002/sctm.16-0360] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/17/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022] Open
Abstract
Endothelial progenitor cell (EPC) nomenclature remains ambiguous and there is a general lack of concordance in the stem cell field with many distinct cell subtypes continually grouped under the term "EPC." It would be highly advantageous to agree on standards to confirm an endothelial progenitor phenotype and this should include detailed immunophenotyping, potency assays, and clear separation from hematopoietic angiogenic cells which are not endothelial progenitors. In this review, we seek to discourage the indiscriminate use of "EPCs," and instead propose precise terminology based on defining cellular phenotype and function. Endothelial colony forming cells and myeloid angiogenic cells are examples of two distinct and well-defined cell types that have been considered EPCs because they both promote vascular repair, albeit by completely different mechanisms of action. It is acknowledged that scientific nomenclature should be a dynamic process driven by technological and conceptual advances; ergo the ongoing "EPC" nomenclature ought not to be permanent and should become more precise in the light of strong scientific evidence. This is especially important as these cells become recognized for their role in vascular repair in health and disease and, in some cases, progress toward use in cell therapy. Stem Cells Translational Medicine 2017;6:1316-1320.
Collapse
Affiliation(s)
- Reinhold J. Medina
- Centre for Experimental Medicine, Queen's University BelfastBelfastUnited Kingdom
| | - Chad L. Barber
- Department of Biology, California Lutheran UniversityThousand OaksCaliforniaUSA
| | - Florence Sabatier
- Vascular Research Centre Marseille, INSERM, Aix Marseille UniversitéMarseilleFrance
| | | | - Juan M. Melero‐Martin
- Department of Cardiac SurgeryBoston Children's HospitalMassachusettsUSA
- Department of SurgeryHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell InstituteCambridgeMassachusettsUSA
| | - Kiarash Khosrotehrani
- University of Queensland Centre for Clinical ResearchHerstonQueenslandAustralia
- University of Queensland Diamantina Institute, Translational Research InstituteWoolloongabbaQueenslandAustralia
| | - Osamu Ohneda
- Lab of Regenerative Medicine and Stem Cell BiologyUniversity of TsukubaTsukubaJapan
| | - Anna M. Randi
- National Heart and Lung Institute (NHLI) Vascular Sciences, Imperial College LondonLondonUnited Kingdom
| | - Jerry K.Y. Chan
- Department of Reproductive MedicineKK Women's and Children's HospitalSingapore
| | | | - Victor W.M. Van Hinsbergh
- Department of PhysiologyInstitute for Cardiovascular Research, VU University Medical CenterAmsterdamThe Netherlands
| | - Mervin C. Yoder
- Department of PediatricsIndiana University School of Medicine, IndianapolisIndianaUSA
| | - Alan W. Stitt
- Centre for Experimental Medicine, Queen's University BelfastBelfastUnited Kingdom
| |
Collapse
|