1
|
Kura Y, De Velasco MA, Sakai K, Uemura H, Fujita K, Nishio K. Exploring the relationship between ulcerative colitis, colorectal cancer, and prostate cancer. Hum Cell 2024; 37:1706-1718. [PMID: 39162974 DOI: 10.1007/s13577-024-01118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Chronic systemic inflammation caused by diseases such as ulcerative colitis (UC) and Crohn's disease (CD) increases the risk of developing colorectal cancer (CRC). Recent evidence indicates that patients with UC are more susceptible to prostate cancer (PCa), and individuals with PCa may also be at a higher risk of developing CRC. However, these relationships are not well defined. A better understanding of this phenomenon could improve the identification of high-risk populations. In this study, we characterized these relationships with experiments using preclinical mouse models of dextran sulfate sodium (DSS)-induced colitis (DSS-UC) and DSS/azoxymethane (AOM)-induced CRC (DSS/AOM-CRC) in wild-type and conditional transgenic mice of PCa. We showed that DSS-induced UC was more severe in mice with PCa and resulted in the development of CRC in the absence of AOM. We further showed that PCa-free mice that developed DSS-induced UC also showed histological changes in the normal prostate that resembled proliferative inflammatory atrophy. Finally, we used immunohistochemical immune profiling to show that mice with PCa-induced chronic systemic inflammation accumulated Gr1+ myeloid cells in the normal colon and exposure to DSS further enriched these cells in active colitis regions and colon tumors. Our study provides evidence to support a link between systemic chronic inflammation and cancer.
Collapse
Affiliation(s)
- Yurie Kura
- Department of Genome Biology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Marco A De Velasco
- Department of Genome Biology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hirotsugu Uemura
- Department of Urology, Faculty of Medicine, Kindai University, 377-2 Ohno-Hiashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kazutoshi Fujita
- Department of Urology, Faculty of Medicine, Kindai University, 377-2 Ohno-Hiashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
2
|
DEBELEÇ BÜTÜNER B, ERTUNÇ HASBAL N, İŞEL E, ROGGENBUCK D, KORKMAZ KS. Androgen receptor contributes to repairing DNA damage induced by inflammation and oxidative stress in prostate cancer. Turk J Biol 2023; 47:325-335. [PMID: 38155939 PMCID: PMC10752373 DOI: 10.55730/1300-0152.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 12/30/2023] Open
Abstract
Background Androgen deprivation therapy remains the first-line therapy option for prostate cancer, mostly resulting in the transition of the disease to a castration-resistant state. The lack of androgen signaling during therapy affects various cellular processes, which sometimes paradoxically contributes to cancer progression. As androgen receptor (AR) signaling is known to contribute to oxidative stress regulation, loss of AR may also affect DNA damage level and the response mechanism in oxidant and inflammatory conditions of the prostate tumor microenvironment. Therefore, this study aimed to investigate the role of AR and AR-regulated tumor suppressor NKX3.1 upon oxidative stress-induced DNA damage response (DDR) in the inflammatory tumor microenvironment of the prostate. Materials and methods Intracellular reactive oxygen species (ROS) level was induced by either inflammatory conditioned media obtained from lipopolysaccharide-induced macrophages or oxidants and measured by dichlorodihydrofluorescein diacetate. In addition to this, DNA damage was subsequently quantified by counting gH2AX foci using an immunofluorescence-based Aklides platform. Altered expression of proteins function in DDR detected by western blotting. Results Cellular levels of ROS and ROS-induced DNA double-strand break damage were analyzed in the absence and presence of AR signaling upon treatment of prostate cancer cells by either oxidants or inflammatory microenvironment exposure. The results showed that AR suppresses intracellular ROS and contributes to DNA damage recognition under oxidant conditions. Besides, increased DNA damage due to loss of NKX3.1 under inflammatory conditions was alleviated by its overexpression. Moreover, the activation of the DDR mediators caused by AR and NKX3.1 activation in androgen-responsive and castration-resistant prostate cancer cells indicated that the androgen receptor function is essential both in controlling oxidative stress and in activating the ROS-induced DDR. Conclusion Taken together, it is concluded that the regulatory function of androgen receptor signaling has a vital function in the balance between antioxidant response and DDR activation.
Collapse
Affiliation(s)
- Bilge DEBELEÇ BÜTÜNER
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Nurşah ERTUNÇ HASBAL
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, İzmir,
Turkiye
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6,
Canada
| | - Elif İŞEL
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Dirk ROGGENBUCK
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg,
Germany
- Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg,
Germany
| | - Kemal Sami KORKMAZ
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, İzmir,
Turkiye
| |
Collapse
|
3
|
Molgora BM, Mukherjee SK, Baumel-Alterzon S, Santiago FM, Muratore KA, Sisk AE, Mercer F, Johnson PJ. Trichomonas vaginalis adherence phenotypes and extracellular vesicles impact parasite survival in a novel in vivo model of pathogenesis. PLoS Negl Trop Dis 2023; 17:e0011693. [PMID: 37871037 PMCID: PMC10621976 DOI: 10.1371/journal.pntd.0011693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Trichomonas vaginalis is a human infective parasite responsible for trichomoniasis-the most common, non-viral, sexually transmitted infection worldwide. T. vaginalis resides exclusively in the urogenital tract of both men and women. In women, T. vaginalis has been found colonizing the cervix and vaginal tract while in men it has been identified in the upper and lower urogenital tract and in secreted fluids such as semen, urethral discharge, urine, and prostatic fluid. Despite the over 270 million cases of trichomoniasis annually worldwide, T. vaginalis continues to be a highly neglected organism and thus poorly studied. Here we have developed a male mouse model for studying T. vaginalis pathogenesis in vivo by delivering parasites into the murine urogenital tract (MUT) via transurethral catheterization. Parasite burden was assessed ex-vivo using a nanoluciferase-based gene expression assay which allowed quantification of parasites pre- and post-inoculation. Using this model and read-out approach, we show that T. vaginalis can be found within MUT tissue up to 72 hrs post-inoculation. Furthermore, we also demonstrate that parasites that exhibit increased parasite adherence in vitro also have higher parasite burden in mice in vivo. These data provide evidence that parasite adherence to host cells aids in parasite persistence in vivo and molecular determinants found to correlate with host cell adherence in vitro are applicable to infection in vivo. Finally, we show that co-inoculation of T. vaginalis extracellular vesicles (TvEVs) and parasites results in higher parasite burden in vivo. These findings confirm our previous in vitro-based predictions that TvEVs assist the parasite in colonizing the host. The establishment of this pathogenesis model for T. vaginalis sets the stage for identifying and examining parasite factors that contribute to and influence infection outcomes.
Collapse
Affiliation(s)
- Brenda M. Molgora
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sandip Kumar Mukherjee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sharon Baumel-Alterzon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Fernanda M. Santiago
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Katherine A. Muratore
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Anthony E. Sisk
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, California, United States of America
| | - Patricia J. Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Saydullaeva I, Butuner BD, Korkmaz KS. NKX3.1 Expression Contributes to Epithelial-Mesenchymal Transition of Prostate Cancer Cells. ACS OMEGA 2023; 8:32580-32592. [PMID: 37720744 PMCID: PMC10500679 DOI: 10.1021/acsomega.3c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Studies demonstrate that inflammation synergizes with high-grade aggressive prostate tumor development and ultimately metastatic spread, in which a lot of work has been done in recent years. However, the clear mechanism of inflammation inciting prostate cancer remains largely uncharacterized. Our previous study has shown that the conditioned media (CM)-mediated LNCaP cell migration is partially correlated with the loss of expression of the tumor suppressor NKX3.1. Here, we continue to investigate the inflammation-mediated migration of prostate cancer cells, and the role of NKX3.1 in this process to gain insights into cell migration-related changes comprehensively. Earlier, the model of inflammation in the tumor microenvironment have been optimized by our research group; here, we continue to investigate the time-dependent effect of CM exposure together with NKX3.1 changes, in which we observed that these changes play important roles in gaining heterogeneous epithelial-to-mesenchymal transition (EMT) phenotype. Hence, this is an important parameter of tumor progression; we depleted NKX3.1 expression using the CRISPR/Cas9 system and examined the migrating cell clusters after exposure to inflammatory cytokines. We found that the migrated cells clearly demonstrate reversible loss of E-cadherin expression, which is consistent with subsequent vimentin expression alterations in comparison to control cells. Moreover, the data suggest that the AR-mediated transcriptional program also contributes to mesenchymal-to-epithelial transition (MET) in prostate cancer progression. Furthermore, the quantitative proteomic analysis showed that migrated subpopulations from the same cell line presented different phenotypes in which the proteins overexpressed are involved in cell metabolism and RNA processing. According to KEGG pathway analysis, the ABC transporters were found to be the most significant. Thus, the dynamic process of cellular migration favors diverse genetic compositions under changing tumor microenvironments. The different levels of invasiveness are supported by shifting the cells in between these EMT and MET phenotypes.
Collapse
Affiliation(s)
- Iroda Saydullaeva
- Faculty
of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Bilge Debelec Butuner
- Faculty
of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir 35040, Turkey
| | - Kemal Sami Korkmaz
- Faculty
of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| |
Collapse
|
5
|
Fox JJ, Hashimoto T, Navarro HI, Garcia AJ, Shou BL, Goldstein AS. Highly multiplexed immune profiling throughout adulthood reveals kinetics of lymphocyte infiltration in the aging mouse prostate. Aging (Albany NY) 2023; 15:3356-3380. [PMID: 37179121 PMCID: PMC10449296 DOI: 10.18632/aging.204708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Aging is a significant risk factor for disease in several tissues, including the prostate. Defining the kinetics of age-related changes in these tissues is critical for identifying regulators of aging and evaluating interventions to slow the aging process and reduce disease risk. An altered immune microenvironment is characteristic of prostatic aging in mice, but whether features of aging in the prostate emerge predominantly in old age or earlier in adulthood has not previously been established. Using highly multiplexed immune profiling and time-course analysis, we tracked the abundance of 29 immune cell clusters in the aging mouse prostate. Early in adulthood, myeloid cells comprise the vast majority of immune cells in the 3-month-old mouse prostate. Between 6 and 12 months of age, there is a profound shift towards a T and B lymphocyte-dominant mouse prostate immune microenvironment. Comparing the prostate to other urogenital tissues, we found similar features of age-related inflammation in the mouse bladder but not the kidney. In summary, our study offers new insight into the kinetics of prostatic inflammaging and the window when interventions to slow down age-related changes may be most effective.
Collapse
Affiliation(s)
- Jonathan J. Fox
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Current Address: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Current Address: Keck School of Medicine, University of Southern California, Los Angeles, CA 90095, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Héctor I. Navarro
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
| | - Alejandro J. Garcia
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Benjamin L. Shou
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Current Address: Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S. Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Zhu Z, Yu S, Niu K, Wang P. LGR5 promotes invasion and migration by regulating YAP activity in hypopharyngeal squamous cell carcinoma cells under inflammatory condition. PLoS One 2022; 17:e0275679. [PMID: 36288272 PMCID: PMC9604011 DOI: 10.1371/journal.pone.0275679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
High leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) expression caused by an inflammatory condition was reported to promote tumor proliferation and the epithelial-mesenchymal transition (EMT) in various malignant tumors, but those effects have not been studied in hypopharyngeal squamous cell carcinoma (HSCC) and the molecular mechanism remains unclear. This study was aimed to determine whether YAP/TAZ is involved in the regulation of LGR5 expression in the inflammatory condition. Human hypopharyngeal carcinoma FaDu cells were stimulated with inflammatory medium. The cell invasion ability were evaluated through wound healing assay and transwell invasion assay. The expression levels of EMT-related proteins, LGR5, and p-YAP were detected by real time PCR, western blotting, and immunofluorescence. The results showed that LGR5 expression and the EMT process were significantly enhanced under inflammatory condition. The expression of EMT-related proteins was up-regulated, while that of p-YAP was decreased. After inhibiting the high LGR5 expression with short interfering RNA, the expression of EMT-related proteins was also down-regulated, while that of p-YAP was significantly increased. The use of verteporfin (VP), an inhibitor of YAP activity that promotes YAP phosphorylation, did not affect LGR5 expression. In conclusion, we suggest that the inflammatory condition leads to high LGR5 expression, which up-regulating the expression of EMT-related proteins by inhibiting the YAP phosphorylation.
Collapse
Affiliation(s)
- Zijia Zhu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Breast Surgery, Jilin University, Changchun, Jilin, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai Niu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
7
|
Bleeker J, Wang ZA. Applications of Vertebrate Models in Studying Prostatitis and Inflammation-Associated Prostatic Diseases. Front Mol Biosci 2022; 9:898871. [PMID: 35865005 PMCID: PMC9294738 DOI: 10.3389/fmolb.2022.898871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
It has long been postulated that the inflammatory environment favors cell proliferation, and is conducive to diseases such as cancer. In the prostate gland, clinical data implicate important roles of prostatitis in the progression of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). However, their causal relationships have not been firmly established yet due to unresolved molecular and cellular mechanisms. By accurately mimicking human disease, vertebrate animals provide essential in vivo models to address this question. Here, we review the vertebrate prostatitis models that have been developed and discuss how they may reveal possible mechanisms by which prostate inflammation promotes BPH and PCa. Recent studies, particularly those involving genetically engineered mouse models (GEMMs), suggest that such mechanisms are multifaceted, which include epithelium barrier disruption, DNA damage and cell proliferation induced by paracrine signals, and expansion of potential cells of origin for cancer. Future research using rodent prostatitis models should aim to distinguish the etiologies of BPH and PCa, and facilitate the development of novel clinical approaches for prostatic disease prevention.
Collapse
|
8
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Kwon OJ, Zhang B, Jia D, Zhang L, Wei X, Zhou Z, Liu D, Huynh KT, Zhang K, Zhang Y, Labhart P, Sboner A, Barbieri C, Haffner MC, Creighton CJ, Xin L. Elevated expression of the colony-stimulating factor 1 (CSF1) induces prostatic intraepithelial neoplasia dependent of epithelial-Gp130. Oncogene 2022; 41:1309-1323. [PMID: 34999736 PMCID: PMC8882147 DOI: 10.1038/s41388-021-02169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
Macrophages are increased in human benign prostatic hyperplasia and prostate cancer. We generate a Pb-Csf1 mouse model with prostate-specific overexpression of macrophage colony-stimulating factor (M-Csf/Csf1). Csf1 overexpression promotes immune cell infiltration into the prostate, modulates the macrophage polarity in a lobe-specific manner, and induces senescence and low-grade prostatic intraepithelial neoplasia (PIN). The Pb-Csf1 prostate luminal cells exhibit increased stem cell features and undergo an epithelial-to-mesenchymal transition. Human prostate cancer patients with high CSF-1 expression display similar transcriptional alterations with the Pb-Csf1 model. P53 knockout alleviates senescence but fails to progress PIN lesions. Ablating epithelial Gp130 but not Il1r1 substantially blocks PIN lesion formation. The androgen receptor (AR) is downregulated in Pb-Csf1 mice. ChIP-Seq analysis reveals altered AR binding in 2482 genes although there is no significant widespread change in global AR transcriptional activity. Collectively, our study demonstrates that increased macrophage infiltration causes PIN formation but fails to transform prostate cells.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Boyu Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deyong Jia
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Xing Wei
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Zhicheng Zhou
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Deli Liu
- Sandra and Edward Meyer Cancer Center and Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Khoi Trung Huynh
- Department of Biology, University of Washington, Seattle, WA, 98109, USA
| | - Kai Zhang
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Andrea Sboner
- Sandra and Edward Meyer Cancer Center and Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Chris Barbieri
- Sandra and Edward Meyer Cancer Center and Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Michael C Haffner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, WA, 98109, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
10
|
Abstract
NKX3.1 is a multifaceted protein with roles in prostate development and protection from oxidative stress. Acting as a pioneer factor, NKX3.1 interacts with chromatin at enhancers to help integrate androgen regulated signalling. In prostate cancer, NKX3.1 activity is frequently reduced through a combination of mutational and post-translational events. Owing to its specificity for prostate tissue, NKX3.1 has found use as an immunohistochemical marker in routine histopathology practice.
Collapse
Affiliation(s)
- Jon Griffin
- Histopathology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK .,Healthy Lifespan and Neuroscience Institute, Department of Biosciences, The University of Sheffield, Sheffield, UK
| | - Yuqing Chen
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - James W F Catto
- Academic Urology Unit, The University of Sheffield, Sheffield, UK.,Urology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sherif El-Khamisy
- Healthy Lifespan and Neuroscience Institute, Department of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Papachristodoulou A, Rodriguez-Calero A, Panja S, Margolskee E, Virk RK, Milner TA, Martina LP, Kim JY, Di Bernardo M, Williams AB, Maliza EA, Caputo JM, Haas C, Wang V, De Castro GJ, Wenske S, Hibshoosh H, McKiernan JM, Shen MM, Rubin MA, Mitrofanova A, Dutta A, Abate-Shen C. NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation. Cancer Discov 2021; 11:2316-2333. [PMID: 33893149 PMCID: PMC7611624 DOI: 10.1158/2159-8290.cd-20-1765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Mitochondria provide the first line of defense against the tumor-promoting effects of oxidative stress. Here we show that the prostate-specific homeoprotein NKX3.1 suppresses prostate cancer initiation by protecting mitochondria from oxidative stress. Integrating analyses of genetically engineered mouse models, human prostate cancer cells, and human prostate cancer organotypic cultures, we find that, in response to oxidative stress, NKX3.1 is imported to mitochondria via the chaperone protein HSPA9, where it regulates transcription of mitochondrial-encoded electron transport chain (ETC) genes, thereby restoring oxidative phosphorylation and preventing cancer initiation. Germline polymorphisms of NKX3.1 associated with increased cancer risk fail to protect from oxidative stress or suppress tumorigenicity. Low expression levels of NKX3.1 combined with low expression of mitochondrial ETC genes are associated with adverse clinical outcome, whereas high levels of mitochondrial NKX3.1 protein are associated with favorable outcome. This work reveals an extranuclear role for NKX3.1 in suppression of prostate cancer by protecting mitochondrial function. SIGNIFICANCE: Our findings uncover a nonnuclear function for NKX3.1 that is a key mechanism for suppression of prostate cancer. Analyses of the expression levels and subcellular localization of NKX3.1 in patients at risk of cancer progression may improve risk assessment in a precision prevention paradigm, particularly for men undergoing active surveillance.See related commentary by Finch and Baena, p. 2132.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Alexandros Papachristodoulou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Antonio Rodriguez-Calero
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Institute of Pathology, University of Bern and Inselspital, Bern, Switzerland
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Elizabeth Margolskee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Luis Pina Martina
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jaime Y Kim
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Matteo Di Bernardo
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Alanna B Williams
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Elvis A Maliza
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Joseph M Caputo
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Christopher Haas
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Vinson Wang
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Guarionex Joel De Castro
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Sven Wenske
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - James M McKiernan
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Michael M Shen
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Mark A Rubin
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Aditya Dutta
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
12
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
13
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
14
|
Langston ME, Sfanos KS, Khan S, Nguyen TQ, De Marzo AM, Platz EA, Sutcliffe S. Why Do Epidemiologic Studies Find an Inverse Association Between Intraprostatic Inflammation and Prostate Cancer: A Possible Role for Colliding Bias? Cancer Epidemiol Biomarkers Prev 2021; 30:255-259. [PMID: 33547143 DOI: 10.1158/1055-9965.epi-20-1009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
Inflammation is an emerging risk factor for prostate cancer based largely on evidence from animal models and histopathologic observations. However, findings from patho-epidemiologic studies of intraprostatic inflammation and prostate cancer have been less supportive, with inverse associations observed in many studies of intraprostatic inflammation and prostate cancer diagnosis. Here, we propose collider stratification bias as a potential methodologic explanation for these inverse findings and provide strategies for conducting future etiologic studies of intraprostatic inflammation and prostate cancer.
Collapse
Affiliation(s)
- Marvin E Langston
- Division of Research, Kaiser Permanente Northern California, Oakland, California.
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saira Khan
- Epidemiology Program, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Trang Q Nguyen
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A Platz
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Siobhan Sutcliffe
- Division of Public Health Sciences, Department of Surgery, Alvin J. Siteman Cancer Center, and Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
15
|
Bowen C, Shibata M, Zhang H, Bergren SK, Shen MM, Gelmann EP. CRISPR/Cas9-Mediated Point Mutation in Nkx3.1 Prolongs Protein Half-Life and Reverses Effects Nkx3.1 Allelic Loss. Cancer Res 2020; 80:4805-4814. [PMID: 32943441 PMCID: PMC7642110 DOI: 10.1158/0008-5472.can-20-1742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
NKX3.1 is the most commonly deleted gene in prostate cancer and is a gatekeeper suppressor. NKX3.1 is haploinsufficient, and pathogenic reduction in protein levels may result from genetic loss, decreased transcription, and increased protein degradation caused by inflammation or PTEN loss. NKX3.1 acts by retarding proliferation, activating antioxidants, and enhancing DNA repair. DYRK1B-mediated phosphorylation at serine 185 of NKX3.1 leads to its polyubiquitination and proteasomal degradation. Because NKX3.1 protein levels are reduced, but never entirely lost, in prostate adenocarcinoma, enhancement of NKX3.1 protein levels represents a potential therapeutic strategy. As a proof of principle, we used CRISPR/Cas9-mediated editing to engineer in vivo a point mutation in murine Nkx3.1 to code for a serine to alanine missense at amino acid 186, the target for Dyrk1b phosphorylation. Nkx3.1S186A/-, Nkx3.1+/- , and Nkx3.1+/+ mice were analyzed over one year to determine the levels of Nkx3.1 expression and effects of the mutant protein on the prostate. Allelic loss of Nkx3.1 caused reduced levels of Nkx3.1 protein, increased proliferation, and prostate hyperplasia and dysplasia, whereas Nkx3.1S186A/- mouse prostates had increased levels of Nkx3.1 protein, reduced prostate size, normal histology, reduced proliferation, and increased DNA end labeling. At 2 months of age, when all mice had normal prostate histology, Nkx3.1+/- mice demonstrated indices of metabolic activation, DNA damage response, and stress response. These data suggest that modulation of Nkx3.1 levels alone can exert long-term control over premalignant changes and susceptibility to DNA damage in the prostate. SIGNIFICANCE: These findings show that prolonging the half-life of Nkx3.1 reduces proliferation, enhances DNA end-labeling, and protects from DNA damage, ultimately blocking the proneoplastic effects of Nkx3.1 allelic loss.
Collapse
Affiliation(s)
- Cai Bowen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Maho Shibata
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Hailan Zhang
- Division of Hematology/Oncology, University of Arizona Medical Center, Tucson, Arizona
| | - Sarah K Bergren
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Michael M Shen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Edward P Gelmann
- Division of Hematology/Oncology, University of Arizona Medical Center, Tucson, Arizona.
| |
Collapse
|
16
|
Aljohani OS. Phytochemical evaluation of Cucumis prophetarum: protective effects against carrageenan-induced prostatitis in rats. Drug Chem Toxicol 2020; 45:1461-1469. [PMID: 33092416 DOI: 10.1080/01480545.2020.1838538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phytochemical study of the MeOH extract of Cucumis prophetarum fruits (family Cucurbitaceae) by using different chromatographic techniques led to the isolation of three metabolites; spinasterol (1), cucurbitacin B (2), and 2-O-β-D-glucopyranosylcucurbitacin E (3). Their chemical structures were created on the basis of physical, chemical, spectroscopic data 1D (1H and 13C NMR), and 2D NMR (HSQC and HMBC), as well as similarity with literature data. Cucurbitacin B (Cu-B) (2) was found to be the major constituent. Potential protective activities of MeOH extract, CHCl3, and EtOAc fractions and Cu-B were evaluated against carrageenan-induced prostatic inflammation in rats. Acute toxicity was assessed by evaluating LD50. Pretreatment with CHCl3 fraction and Cu-B ameliorated the rise in the prostate index and obviously protected against histopathological changes. Further, MeOH, extract, CHCl3, and EtOAc fractions as well as Cu-B significantly protected against oxidative stress in prostatic tissues. The anti-inflammatory activities of the extract, fractions and Cu-B were confirmed by ameliorating the rise in prostatic content of the inflammatory mediators TNF-α, IL-1β, COX-2, and iNOS induced by carrageenan. In addition, the rise in the chemotactic factors were myeloperoxidase (MPO), F4-80, and monocyte chemoattractant protein-1 (MCP-1) was significantly hampered. In conclusion, three known compounds (1-3) were isolated from Cucumis prophetarum fruits. Cu-B (2) was the major identified compound. Particularly, CHCl3 fraction and isolated Cu-B exhibited potent anti-inflammatory activity against carrageenan-induced prostatitis. The anti-inflammatory activity can be attributed, at least partly, to inhibition of neutrophil and macrophage infiltration into prostatic tissues.
Collapse
Affiliation(s)
- Omar Saad Aljohani
- Faculty of Pharmacy, Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
de Bono JS, Guo C, Gurel B, De Marzo AM, Sfanos KS, Mani RS, Gil J, Drake CG, Alimonti A. Prostate carcinogenesis: inflammatory storms. Nat Rev Cancer 2020; 20:455-469. [PMID: 32546840 DOI: 10.1038/s41568-020-0267-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer is a major cause of cancer morbidity and mortality. Intra-prostatic inflammation is a risk factor for prostate carcinogenesis, with diet, chemical injury and an altered microbiome being causally implicated. Intra-prostatic inflammatory cell recruitment and expansion can ultimately promote DNA double-strand breaks and androgen receptor activation in prostate epithelial cells. The activation of the senescence-associated secretory phenotype fuels further 'inflammatory storms', with free radicals leading to further DNA damage. This drives the overexpression of DNA repair and tumour suppressor genes, rendering these genes susceptible to mutagenic insults, with carcinogenesis accelerated by germline DNA repair gene defects. We provide updates on recent advances in elucidating prostate carcinogenesis and explore novel therapeutic and prevention strategies harnessing these discoveries.
Collapse
Affiliation(s)
- Johann S de Bono
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, Sutton, UK.
| | - Christina Guo
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | - Karen S Sfanos
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ram S Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | | | - Andrea Alimonti
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
18
|
Santos PB, Patel H, Henrique R, Félix A. Can epigenetic and inflammatory biomarkers identify clinically aggressive prostate cancer? World J Clin Oncol 2020; 11:43-52. [PMID: 32133274 PMCID: PMC7046922 DOI: 10.5306/wjco.v11.i2.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is a highly prevalent malignancy and constitutes a major cause of cancer-related morbidity and mortality. It emerges through the acquisition of genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications and microRNA deregulation. These generate heritable transformations in the expression of genes but do not change the DNA sequence. Alterations in DNA methylation (hypo and hypermethylation) are the most characterized in PCa. They lead to genomic instability and inadequate gene expression. Major and minor-specific modifications in chromatin recasting are involved in PCa, with signs suggesting a dysfunction of enzymes modified by histones. MicroRNA deregulation also contributes to the initiation of PCa, including involvement in androgen receptor signalization and apoptosis. The influence of inflammation on prostate tumor carcinogenesis is currently much better known. Recent discoveries about microbial species resident in the urinary tract suggest that these are the initiators of chronic inflammation, promoting prostate inflammatory atrophy and eventually leading to PCa. Complete characterization of the relationship between the urinary microbiome and prostatic chronic inflammation will be crucial to develop plans for the prevention of PCa. The prevalent nature of epigenetic and inflammatory alterations may provide potential biomarkers for PCa diagnosis, treatment decisions, evaluation of prognosis and posttreatment surveillance.
Collapse
Affiliation(s)
- Pedro Bargão Santos
- Department of Urology, Prof. Doutor Fernando Fonseca Hospital, Amadora 2720-276, Portugal
| | - Hitendra Patel
- Department of Urology, University Hospital North Norway, Tromsø 9019, Norway
- Department of Urology, St George’s University Hospitals, Tooting, London SW17 0QT, United Kingdom
| | - Rui Henrique
- Departments of Pathology and Cancer Biology and Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto, Porto 4200-072, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4099-002, Portugal
| | - Ana Félix
- Department of Pathology, Portuguese Oncology Institute of Lisbon, Lisbon 1099-023, Portugal
- Department of Pathology, NOVA Medical School, Lisbon 1169-056, Portugal
| |
Collapse
|
19
|
Huang T, Wang G, Hu Y, Shi H, Wang K, Yin L, Peng B. Structural and functional abnormalities of penile cavernous endothelial cells result in erectile dysfunction at experimental autoimmune prostatitis rat. JOURNAL OF INFLAMMATION-LONDON 2019; 16:20. [PMID: 31372097 PMCID: PMC6659287 DOI: 10.1186/s12950-019-0224-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023]
Abstract
Background There is growing recognition of the association of CP/CPPS accompany with ED. However, the specific mechanism of action remains unclear. The aim of this study was to investigate structural and functional abnormalities of cavernous endothelial cells in EAP rat, which may result in the ED. Methods we use rat prostate protein extract supplemented with immunoadjuvant to induce EAP rat, ICP and MAP were measured and inflammatory factor infiltration, Akt, eNOS, AR, nNOS and iNOS in the corpus cavernosum were tested. Subsequently, the normal rat and EAP rat cavernosum endothelial cells were purified by MACS, and the metabolism, oxidative stress, MMP, Akt, eNOS, AR and iNOS were evaluated. Results The EAP rat model was successfully constructed. The ratio of max ICP/MAP in EAP rat was significantly lower and TNF-α infiltration in corpus cavernosum was significantly higher than normal rats. Besides, Akt, eNOS and AR were decreased, iNOS was significantly increased. The growth and metabolism of endothelial cells in the EAP rats corpus cavernosum decreased and inflammatory factor mRNA was increased and intracellular oxidative stress was also increased significantly. The MMP of EAP rats cavernosum endothelial cells decreased and the expression of Akt, eNOS and AR were also significantly decreased, iNOS was significantly increased. Conclusion The prostate suffer local inflammatory infiltrate and promotes cytokines infiltrated into corpus cavernosum caused the oxidative stress increases and the metabolism or MMP decreases. In addition, AR, Akt and eNOS expression and phosphorylation are also reduced, thereby inhibiting the diastolic function of the corpus cavernosum, resulting in decreased erectile function.
Collapse
Affiliation(s)
- Tianrun Huang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Yangyang Hu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Heng Shi
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO 301 Yanchang Road, Shanghai, 200072 People's Republic of China
| |
Collapse
|
20
|
Ashok A, Keener R, Rubenstein M, Stookey S, Bajpai S, Hicks J, Alme AK, Drake CG, Zheng Q, Trabzonlu L, Yegnasubramanian S, De Marzo AM, Bieberich CJ. Consequences of interleukin 1β-triggered chronic inflammation in the mouse prostate gland: Altered architecture associated with prolonged CD4 + infiltration mimics human proliferative inflammatory atrophy. Prostate 2019; 79:732-745. [PMID: 30900284 DOI: 10.1002/pros.23784] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Elevated expression of the proinflammatory cytokine interleukin 1β (IL-1β) has been observed in expressed prostatic secretions of patients with chronic prostatitis/chronic pelvic pain syndrome, and genetic polymorphisms associated with the IL1B gene are linked to increased risk for aggressive prostate cancer. METHODS To study the role of IL-1β expression in prostate inflammation, we examined IL1B expression in human prostatic proliferative inflammatory atrophy (PIA) lesions and developed a tetracycline-regulated human IL1B transgene in the mouse prostate. RESULTS Here, we demonstrate that IL1B expression is a common finding in human PIA lesions, which harbored focal IL1B expression in epithelial and stromal compartments. Human IL1B expression in the mouse prostate elicited acute and chronic inflammation. Penetrance and expressivity were variable and tunable by altering transgene dosage and the presence of an exogenous inducible marker antigen (green fluorescent protein). Inflammation was characterized by infiltration of CD4+ T cells, demonstrating an adaptive immune response. Chronic inflammation persisted after doxycycline (Dox) withdrawal. Reactive epithelia increased expression of downstream cytokines, and altered glandular architecture was observed upon sustained induction of IL1B. Immunohistochemical analyses revealed a higher proliferative index and decreased Nkx3.1 expression in inflamed mouse prostates. CONCLUSIONS These data implicate IL-1β in human prostate pathology and this model provides a versatile platform to interrogate molecular mechanisms of inflammation-associated prostate pathologies associated with episodic or sustained IL-1β expression.
Collapse
Affiliation(s)
- Arya Ashok
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Rebecca Keener
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Michael Rubenstein
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Stephanie Stookey
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Sagar Bajpai
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Jessica Hicks
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Angela K Alme
- Department of Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Qizhi Zheng
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Levent Trabzonlu
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland
| |
Collapse
|
21
|
Ubiquitination and SUMOylation in the chronic inflammatory tumor microenvironment. Biochim Biophys Acta Rev Cancer 2018; 1870:165-175. [DOI: 10.1016/j.bbcan.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
|
22
|
Le Magnen C, Virk RK, Dutta A, Kim JY, Panja S, Lopez-Bujanda ZA, Califano A, Drake CG, Mitrofanova A, Abate-Shen C. Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation. Dis Model Mech 2018; 11:dmm035139. [PMID: 30266798 PMCID: PMC6262819 DOI: 10.1242/dmm.035139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
Although it is known that inflammation plays a critical role in prostate tumorigenesis, the underlying processes are not well understood. Based on analysis of genetically engineered mouse models combined with correlative analysis of expression profiling data from human prostate tumors, we demonstrate a reciprocal relationship between inflammation and the status of the NKX3.1 homeobox gene associated with prostate cancer initiation. We find that cancer initiation in aged Nkx3.1 mutant mice correlates with enrichment of specific immune populations and increased expression of immunoregulatory genes. Furthermore, expression of these immunoregulatory genes is similarly increased in human prostate tumors having low levels of NKX3.1 expression. We further show that induction of prostatitis in Nkx3.1 mutant mice accelerates prostate cancer initiation, which is coincident with aberrant cellular plasticity and differentiation. Correspondingly, human prostate tumors having low levels of NKX3.1 have de-regulated expression of genes associated with these cellular processes. We propose that loss of function of NKX3.1 accelerates inflammation-driven prostate cancer initiation potentially via aberrant cellular plasticity and impairment of cellular differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Clémentine Le Magnen
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Medical Center, NY 10032, USA
| | - Aditya Dutta
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaime Yeji Kim
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
| | - Zoila A Lopez-Bujanda
- Graduate Program in Pathobiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Columbia Center for Translational Immunology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles G Drake
- Department of Medicine, Columbia Center for Translational Immunology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Pathology & Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
23
|
Paulis G. Inflammatory mechanisms and oxidative stress in prostatitis: the possible role of antioxidant therapy. Res Rep Urol 2018; 10:75-87. [PMID: 30271757 PMCID: PMC6149977 DOI: 10.2147/rru.s170400] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article focuses on the role that oxidative stress plays in chronic prostatitis, not only with respect to the known impact on symptoms and fertility but also especially in relation to possible prostate cancer development. Prostatitis is the most common urologic disease in adult males younger than 50 years and the third most common urologic diagnosis in males older than 50 years. If the germ-causing acute prostatitis is not eliminated, the inflammatory process becomes chronic. Persistent inflammation causes ongoing production of large quantities of pro-inflammatory cytokines and both oxygen and nitrogen reactive species, with consequent activation of transcription factor nuclear factor-kappa B (NF-κB) and genes encoding for further production of pro-inflammatory cytokines, chemotactic factors, and growth factors. Confirming the role of oxidative stress in chronic prostatitis, several studies have demonstrated the presence of oxidative stress markers in the genital secretions of patients suffering from the disease. Antioxidants can therefore play an essential role in the treatment of chronic bacterial and non-bacterial prostatitis; in the case of bacterial inflammation, they can be associated with antibiotic therapy. Moreover, due to their anti-inflammatory properties, antioxidants hinder the progression of inflammation and the possible development of prostate cancer.
Collapse
Affiliation(s)
- Gianni Paulis
- Andrology Center, Villa Benedetta Clinic, Rome, Italy,
- Department of Uro-Andrology, Castelfidardo Medical Team, Rome, Italy,
| |
Collapse
|
24
|
Aykan S, Temiz MZ, Yilmaz M, Ulus I, Yuruk E, Muslumanoglu AY. Association between male accesory gland infections and prostate cancer in Turkish men: A case-control study. Andrologia 2018; 50:e13038. [PMID: 29740844 DOI: 10.1111/and.13038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 02/05/2023] Open
Abstract
It is well known that chronic inflammation contributes to several forms of human cancer. Although several studies have investigated the association between prostatitis and prostate cancer, there is a lack of specifically designed study about male accessory gland infections (MAGI) and prostate cancer co-occurrence. We aimed to investigate this association with a case-control study in Turkish men. A total of 155 patients were enrolled to the study. After the pathological examination of the transrectal ultrasound-guided prostate biopsy specimens, patients were divided the two groups as control and prostate cancer and the presence of MAGI was determined. Of 155 patients, 145 met inclusion criteria. In the prostate cancer group, MAGI diagnose was determined in 18 of 31 patients (58.06%), while it was determined in 25 of 114 (21.93%) patients in the control group (p = .001). A significant correlation between MAGI and pathological Gleason score also revealed (p = .0001). We demonstrated that men with MAGI have increased risk for the development of prostate cancer. Moreover, in this population, most of the prostate cancers tend to be clinically significant or high grade.
Collapse
Affiliation(s)
- S Aykan
- Department of Urology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - M Z Temiz
- Department of Urology, Catalca State Hospital, Istanbul, Turkey
| | - M Yilmaz
- Department of Urology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - I Ulus
- Department of Urology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - E Yuruk
- Department of Urology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - A Y Muslumanoglu
- Department of Urology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
25
|
Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M, Międzybrodzki R, Weber-Dąbrowska B, Borysowski J, Letkiewicz S, Bagińska N, Sfanos KS. Phage Therapy in Prostatitis: Recent Prospects. Front Microbiol 2018; 9:1434. [PMID: 30008710 PMCID: PMC6034095 DOI: 10.3389/fmicb.2018.01434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
Prostatitis has various etiology including bacterial infection and dysregulated immunity; some of its forms remain a serious therapeutic challenge. Inflammation occurs in all forms of this disorder and is proposed to predispose to the development of prostate cancer (PC). There are reports that phage therapy is effective in chronic bacterial prostatitis. Recent findings suggest that phages not only eliminate bacteria, but also mediate immunomodulating (for example, anti-inflammatory) functions. The immunomodulating effects of phages could be beneficial in treating all forms of prostatitis and play some role in the prevention of the development of PC. As the etiological factors contributing to the majority of prostatitis cases remains largely unknown, and management options are often likewise limited, phage therapy merits further research as an attractive therapeutic option given its immunomodulating effects irrespective of the underlying causative factor(s).
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Medical Sciences Institute, Katowice School of Economics, Katowice, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, School of Medicine, Baltimore, MD, United States.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
The role of prostatic inflammation in the development and progression of benign and malignant diseases. Curr Opin Urol 2018; 27:99-106. [PMID: 27906778 DOI: 10.1097/mou.0000000000000369] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To evaluate the role of prostatic inflammation in the development and progression of benign and malignant prostatic diseases. RECENT FINDINGS Preclinical studies demonstrate that the activation of a chronic inflammatory prostatic response plays an important role in the pathogenesis and progression of benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Approximately 40-70% of patients with BPH-related lower urinary tract symptoms harbour chronic inflammation at pathologic evaluation. These individuals should be considered at increased risk of symptom progression and acute urinary retention. Although currently available drugs approved for the treatment of BPH do not have an anti-inflammatory activity, the development of novel molecules that target the inflammatory pathway represents a promising area in the pharmacological treatment of BPH. Preclinical evidences support a potential role of chronic prostatic inflammation in the malignant transformation of prostatic cells. However, clinical investigations on the association between prostatic inflammation and the risk of PCa report conflicting results. SUMMARY Men with BPH-related lower urinary tract symptoms and chronic prostatic inflammation should be considered at increased risk of symptom progression and acute urinary retention during follow-up. Although preclinical studies provide a biological rationale for the relationship between inflammation and the risk of PCa, clinical investigations report conflicting results and the direct relationship between inflammation and malignant transformation in the human prostate is still debated.
Collapse
|
27
|
Debeleç Bütüner B, Öztürk MB. Use of Non-steroidal Anti-inflammatory Drugs for Chemoprevention of Inflammation-induced Prostate Cancer. Turk J Pharm Sci 2017; 14:274-279. [PMID: 32454624 DOI: 10.4274/tjps.41636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/26/2017] [Indexed: 12/01/2022]
Abstract
Objectives Chronic inflammation has been known as one of the major causes of cancer progression and 25% of cancer cases initiate due to chronic inflammation according to epidemiologic data. It has been determined that chronic inflammation induces carcinogenesis through the abrogation of cell proliferation, apoptosis, and angiogenesis mechanisms. Therefore, it is believed that inhibition of inflammation-induced carcinogenic mechanisms is an efficient therapeutic strategy in drug development studies of cancer chemoprevention. It has also been observed that use of anti-inflammatory drugs reduces the incidence of cancer, and the risk of developing prostate cancer decreases 15-20% with regular use of aspirin and non-steroidal anti-inflammatory drugs (NSAID). Materials and Methods In this study, we investigated the effects of some clinically used NSAIDs on cellular mechanisms that play a role in inflammation-induced prostate carcinogenesis. Inhibition activities on the nuclear factor kappa-B signaling pathway, which activates tumorigenic mechanisms, as well as alterations on androgen receptor signaling, which regulates the proliferation of prostate cells, were investigated. In addition, protein kinase B (Akt) activation, which is stimulated a the inflammatory microenvironment, was examined. Results The results showed that anti-inflammatory agents alter the protein levels of androgen receptors as well as tumor suppressor NKX3.1, and might trigger an unexpected increase in Akt(S473) level, which induces tumorigenesis. Conclusion It is suggested that inflammatory pathways and prostate carcinogenesis-specific mechanisms should be taken into account for the use of anti-inflammatory drugs for chemoprevention of inflammation-induced prostate cancer.
Collapse
Affiliation(s)
- Bilge Debeleç Bütüner
- Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Turkey
| | - Mert Burak Öztürk
- Ege University, Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, İzmir, Turkey
| |
Collapse
|
28
|
Liu X, Grogan TR, Hieronymus H, Hashimoto T, Mottahedeh J, Cheng D, Zhang L, Huang K, Stoyanova T, Park JW, Shkhyan RO, Nowroozizadeh B, Rettig MB, Sawyers CL, Elashoff D, Horvath S, Huang J, Witte ON, Goldstein AS. Low CD38 Identifies Progenitor-like Inflammation-Associated Luminal Cells that Can Initiate Human Prostate Cancer and Predict Poor Outcome. Cell Rep 2017; 17:2596-2606. [PMID: 27926864 PMCID: PMC5367888 DOI: 10.1016/j.celrep.2016.11.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/27/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a risk factor for prostate cancer, but the mechanisms by which inflammation increases that risk are poorly understood. Here, we demonstrate that low expression of CD38 identifies a progenitor-like subset of luminal cells in the human prostate. CD38lo luminal cells are enriched in glands adjacent to inflammatory cells and exhibit epithelial nuclear factor κB (NF-κB) signaling. In response to oncogenic transformation, CD38lo luminal cells can initiate human prostate cancer in an in vivo tissue-regeneration assay. Finally, the CD38lo luminal phenotype and gene signature are associated with disease progression and poor outcome in prostate cancer. Our results suggest that prostate inflammation expands the pool of progenitor-like target cells susceptible to tumorigenesis.
Collapse
Affiliation(s)
- Xian Liu
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haley Hieronymus
- Programs in Human Oncology and Pathogenesis, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Takao Hashimoto
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jack Mottahedeh
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lijun Zhang
- Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Huang
- Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tanya Stoyanova
- Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jung Wook Park
- Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ruzanna O Shkhyan
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Behdokht Nowroozizadeh
- Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew B Rettig
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90024, USA; Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Charles L Sawyers
- Programs in Human Oncology and Pathogenesis, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaoti Huang
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Owen N Witte
- Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew S Goldstein
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 2017; 15:11-24. [PMID: 29089606 DOI: 10.1038/nrurol.2017.167] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inflammation promotes the development of several types of solid cancers and might contribute to prostate carcinogenesis. This hypothesis partly originates in the frequent observation of inflammatory cells in the prostate microenvironment of adult men. Inflammation is associated with putative prostate cancer precursor lesions, termed proliferative inflammatory atrophy. Inflammation might drive prostate carcinogenesis via oxidative stress and generation of reactive oxygen species that induce mutagenesis. Additionally, inflammatory stress might cause epigenetic alterations that promote neoplastic transformation. Proliferative inflammatory atrophy is enriched for proliferative luminal epithelial cells of intermediate phenotype that might be prone to genomic alterations leading to prostatic intraepithelial neoplasia and prostate cancer. Studies in animals suggest that inflammatory changes in the prostate microenvironment contribute to reprogramming of prostate epithelial cells, a possible step in tumour initiation. Prostatic infection, concurrent with epithelial barrier disruption, might be a key driver of an inflammatory microenvironment; the discovery of a urinary microbiome indicates a potential source of frequent exposure of the prostate to a diverse number of microorganisms. Hence, current evidence suggests that inflammation and atrophy are involved in prostate carcinogenesis and suggests a role for the microbiome in establishing an inflammatory prostate microenvironment that might promote prostate cancer development and progression.
Collapse
Affiliation(s)
- Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| |
Collapse
|
30
|
Jiang J, Liu Z, Ge C, Chen C, Zhao F, Li H, Chen T, Yao M, Li J. NK3 homeobox 1 (NKX3.1) up-regulates forkhead box O1 expression in hepatocellular carcinoma and thereby suppresses tumor proliferation and invasion. J Biol Chem 2017; 292:19146-19159. [PMID: 28972178 DOI: 10.1074/jbc.m117.793760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/22/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality in China, and the molecular mechanism of uncontrolled HCC progression remains to be explored. NK3 homeobox 1 (NKX3.1), an androgen-regulated prostate-specific transcription factor, suppresses tumors in prostate cancer, but its role in HCC is unknown, especially in hepatocellular carcinoma. In the present study, the differential expression analyses in HCC tissues and matched adjacent noncancerous liver tissues revealed that NKX3.1 is frequently down-regulated in human primary HCC tissues compared with matched adjacent noncancerous liver tissues. We also noted that NKX3.1 significantly inhibits proliferation and mobility of HCC cells both in vitro and in vivo Furthermore, NKX3.1 overexpression resulted in cell cycle arrest at the G1/S phase via direct binding to the promoter of forkhead box O1 (FOXO1) and up-regulation of expression. Of note, FOXO1 silencing in NKX3.1-overexpressing cells reversed the inhibitory effects of NKX3.1 on HCC cell proliferation and invasion. Consistently, both FOXO1 and NKX3.1 were down-regulated in human HCC tissues, and their expression was significantly and positively correlated with each other. These results suggest that NKX3.1 functions as a tumor suppressor in HCC cells through directly up-regulating FOXO1 expression.
Collapse
Affiliation(s)
- Jingyi Jiang
- From the Shanghai Medical College, Fudan University, Shanghai 200032.,the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Zheng Liu
- From the Shanghai Medical College, Fudan University, Shanghai 200032.,the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Chao Ge
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Cong Chen
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Fangyu Zhao
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Hong Li
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Taoyang Chen
- the Qi Dong Liver Cancer Institute, Qi Dong 226200, China
| | - Ming Yao
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Jinjun Li
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| |
Collapse
|
31
|
Noyon C, Roumeguère T, Delporte C, Dufour D, Cortese M, Desmet JM, Lelubre C, Rousseau A, Poelvoorde P, Nève J, Vanhamme L, Boudjeltia KZ, Van Antwerpen P. The presence of modified nucleosides in extracellular fluids leads to the specific incorporation of 5-chlorocytidine into RNA and modulates the transcription and translation. Mol Cell Biochem 2017; 429:59-71. [PMID: 28074342 DOI: 10.1007/s11010-016-2936-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
Myeloperoxidase (MPO) is able to promote several kinds of damage and is involved in mechanisms leading to various diseases such as atherosclerosis or cancers. An example of these damages is the chlorination of nucleic acids, which is considered as a specific marker of the MPO activity. Since 5-chlorocytidine has been recently shown in healthy donor plasmas, this study aimed at discovering if these circulating modified nucleosides could be incorporated into RNA and DNA and if their presence impacts the ability of enzymes involved in the incorporation, transcription, and translation processes. Experimentations, which were carried out in vitro with endothelial and prostatic cells, showed a large penetration of all chloronucleosides but an exclusive incorporation of 5-chlorocytidine into RNA. However, no incorporation into DNA was observed. This specific incorporation is accompanied by an important reduction of translation yield. Although, in vitro, DNA polymerase processed in the presence of chloronucleosides but more slowly than in control conditions, ribonucleotide reductase could not reduce chloronucleotides prior to the replication. This reduction seems to be a limiting step, protecting DNA from chloronucleoside incorporation. This study shows the capacity of transcription enzyme to specifically incorporate 5-chlorocytidine into RNA and the loss of capacity-complete or partial-of different enzymes, involved in replication, transcription or translation, in the presence of chloronucleosides. Questions remain about the long-term impact of such specific incorporation in the RNA and such decrease of protein production on the cell viability and function.
Collapse
Affiliation(s)
- Caroline Noyon
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Thierry Roumeguère
- Department of Urology, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Cédric Delporte
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium.,Analytical Platform of the Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP205/5, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Damien Dufour
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Melissa Cortese
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium.,Analytical Platform of the Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP205/5, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Jean-Marc Desmet
- Unit of Dialysis, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110, Montigny-le-Tilleul, Belgium
| | - Christophe Lelubre
- Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110, Montigny-le-Tilleul, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110, Montigny-le-Tilleul, Belgium
| | - Philippe Poelvoorde
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Jean Nève
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium. .,Analytical Platform of the Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP205/5, Boulevard du Triomphe, Brussels, 1050, Belgium.
| |
Collapse
|
32
|
Zhang B, Kwon OJ, Henry G, Malewska A, Wei X, Zhang L, Brinkley W, Zhang Y, Castro PD, Titus M, Chen R, Sayeeduddin M, Raj GV, Mauck R, Roehrborn C, Creighton CJ, Strand DW, Ittmann MM, Xin L. Non-Cell-Autonomous Regulation of Prostate Epithelial Homeostasis by Androgen Receptor. Mol Cell 2016; 63:976-89. [PMID: 27594448 DOI: 10.1016/j.molcel.2016.07.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
Prostate inflammation has been suggested as an etiology for benign prostatic hyperplasia (BPH). We show that decreased expression of the androgen receptor (AR) in luminal cells of human BPH specimens correlates with a higher degree of regional prostatic inflammation. However, the cause-and-effect relationship between the two events remains unclear. We investigated specifically whether attenuating AR activity in prostate luminal cells induces inflammation. Disrupting luminal cell AR signaling in mouse models promotes cytokine production cell-autonomously, impairs epithelial barrier function, and induces immune cell infiltration, which further augments local production of cytokines and chemokines including Il-1 and Ccl2. This inflammatory microenvironment promotes AR-independent prostatic epithelial proliferation, which can be abolished by ablating IL-1 signaling or depleting its major cellular source, the macrophages. This study demonstrates that disrupting luminal AR signaling promotes prostate inflammation, which may serve as a mechanism for resistance to androgen-targeted therapy for prostate-related diseases.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oh-Joon Kwon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gervaise Henry
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alicia Malewska
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xing Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - William Brinkley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yiqun Zhang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia D Castro
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohammad Sayeeduddin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Mauck
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claus Roehrborn
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chad J Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Douglas W Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael M Ittmann
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Food Habits, Lifestyle Factors, and Risk of Prostate Cancer in Central Argentina: A Case Control Study Involving Self-Motivated Health Behavior Modifications after Diagnosis. Nutrients 2016; 8:nu8070419. [PMID: 27409631 PMCID: PMC4963895 DOI: 10.3390/nu8070419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/28/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most important non-communicable disease worldwide and disproportionately impacts low- to middle-income countries. Diet in combination with other lifestyle habits seems to modify the risk for some cancers but little is known about South Americans. Food habits of Argentinean men pre- and post-diagnosis of prostate cancer (n = 326) were assessed along with other lifestyle factors. We studied whether any of the behaviors and risk factors for prostate cancer were found in men with other cancers (n = 394), compared with control subjects (n = 629). Before diagnosis, both cases reported a greater mean consumption of meats and fats and lower intakes of fruits, green vegetables, cruciferous vegetables, legumes, nuts, seeds, and whole grains than the controls (all p < 0.001). After diagnosis, cases significantly reduced the intake of meats and fats, and reported other dietary modifications with increased consumption of fish, fruits (including red fruits in prostate cancer), cruciferous vegetables, legumes, nuts, and black tea (all p < 0.001). Additional lifestyle aspects significantly predominant in cases included a reduced quality of sleep, emotional stress, low physical activity, tobacco smoking, alcohol consumption, living in rural areas, and being exposed to environmental contaminants. Argentinian men were predisposed to modify their unhealthy dietary habits and other lifestyle factors after cancer diagnosis.
Collapse
|
34
|
Padmanabhan A, Rao V, De Marzo AM, Bieberich CJ. Regulating NKX3.1 stability and function: Post-translational modifications and structural determinants. Prostate 2016; 76:523-33. [PMID: 26841725 DOI: 10.1002/pros.23144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/15/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND The androgen-regulated homeodomain transcription factor NKX3.1 plays roles in early prostate development and functions as a prostate-specific tumor suppressor. Decreased expression of NKX3.1 protein is common in primary prostate cancer. Discordance between NKX3.1 mRNA and protein levels during prostate carcinogenesis suggested a key role for post-transcriptional modifications in regulating NKX3.1 protein levels in prostate epithelial cells. Subsequent studies revealed NKX3.1 to be modified post-translationally at multiple sites. METHODS We reviewed published literature to identify and summarize post-translational modifications and structural elements critical in regulating NKX3.1 stability and levels in prostate epithelial cells. RESULTS NKX3.1 is modified post-translationally at multiple sites by different protein kinases. These modifications together with several structural determinants were identified to play an important role in NKX3.1 stability and biology. CONCLUSIONS In this review, we provide a comprehensive overview of the known post-translational modifications and structural features that impact NKX3.1. Defining factors that regulate NKX3.1 in prostate epithelial cells will extend our understanding of molecular changes that may contribute to prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Varsha Rao
- Department of Genetics, Stanford University, Palo Alto, California
| | - Angelo M De Marzo
- Departments of Pathology, Oncology and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the Brady Urological Research Institute at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| |
Collapse
|
35
|
Zhang H, Zheng T, Chua CW, Shen M, Gelmann EP. Nkx3.1 controls the DNA repair response in the mouse prostate. Prostate 2016; 76:402-8. [PMID: 26660523 PMCID: PMC4738428 DOI: 10.1002/pros.23131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND The human prostate tumor suppressor NKX3.1 mediates the DNA repair response and interacts with the androgen receptor to assure faithful completion of transcription thereby protecting against TMPRSS2-ERG gene fusion. To determine directly the effect of Nkx3.1 in vivo we studied the DNA repair response in prostates of mice with targeted deletion of Nkx3.1. METHODS Using both drug-induced DNA damage and γ-irradiation, we assayed expression of γ-histone 2AX at time points up to 24 hr after induction of DNA damage. RESULTS We demonstrated that expression of Nkx3.1 influenced both the timing and magnitude of the DNA damage response in the prostate. CONCLUSIONS Nkx3.1 affects the DNA damage response in the murine prostate and is haploinsufficient for this phenotype.
Collapse
Affiliation(s)
- Hailan Zhang
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| | - Tian Zheng
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
- Department of StatisticsColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| | - Chee Wai Chua
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
- Department of Developmental and Cell BiologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| | - Michael Shen
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
- Department of Developmental and Cell BiologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| | - Edward P. Gelmann
- Department of Medicine and PathologyColumbia University Medical CenterHerbert Irving Comprehensive Cancer CenterColumbia UniversityNew York CityNew York
| |
Collapse
|
36
|
Lee SH, Shen MM. Cell types of origin for prostate cancer. Curr Opin Cell Biol 2015; 37:35-41. [PMID: 26506127 DOI: 10.1016/j.ceb.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022]
Abstract
Analyses of cell types of origin for prostate cancer should result in new insights into mechanisms of tumor initiation, and may lead to improved prognosis and selection of appropriate therapies. Here, we review studies using a range of methodologies to investigate the cell of origin for mouse and human prostate cancer. Notably, analyses using tissue recombination assays support basal epithelial cells as a cell of origin, whereas in vivo lineage-tracing studies in genetically-engineered mice implicate luminal cells. We describe how these results can be potentially reconciled by a conceptual distinction between cells of origin and cells of mutation, and outline how new experimental approaches can address the potential relationship between cell types of origin and disease outcome.
Collapse
Affiliation(s)
- Suk Hyung Lee
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
37
|
Wang H, Wang L, Jerde TJ, Chan B, Savran CA, Burcham GN, Crist S, Ratliff TL. Characterization of autoimmune inflammation induced prostate stem cell expansion. Prostate 2015; 75:1620-31. [PMID: 26174474 PMCID: PMC4720918 DOI: 10.1002/pros.23043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/02/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND The presence of inflammation in prostate cancer (PCa) and benign prostate hyperplasia (BPH) has been well described but the cellular mechanisms by which inflammation modulates the prostate are currently unclear. Prostate stem cells (PSC) not only maintain prostate homeostasis but also are considered to be the cell of origin of PCa and an important contributor to BPH. However, the impact of inflammation on PSC is not well understood. Therefore, we initiated studies to evaluate the effect of inflammation on PSC. METHOD Ovalbumin specific CD8(+) T cells were intravenously delivered to intact and castrated prostate ovalbumin expressing transgenic-3 (POET-3) mice to induce inflammation. Lin (CD45/CD31)(-) Sca1(+) CD49f(+) cells (LSC) and progenitor cells within LSC were determined by flow cytometry. Sorted LSC were subjected to a prostate sphere forming assay to evaluate PSC clonal propagation, proliferation, immediate differentiation, and self-renewal ability. Density of individual spheres was measured by a cantilever-based resonator weighing system. Morphology and characterization of prostate spheres was determined by hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC). Finally, immediate PSC differentiation in sphere formation was determined by immunofluorescence for epithelial cytokeratin markers cytokeratin (CK) 5 and CK8. RESULT Data presented here demonstrate a significant expansion of the proliferative (BrdU(+) ) LSC population, including CK5(+) , p63(+) , CK18(+) cells, as well as intermediate cells (CK5(+) /CK8(+) ) in inflamed prostates. Histological images reveal that PSC from inflamed prostates produce significantly larger spheres, indicating that the enhanced proliferation observed in LSC is sustained in vitro in the absence of inflammatory mediators. In addition, cultures from inflamed PSC yielded increased number of tubule-like spheres. These tube-like spheres grown from PSCs isolated from inflamed mice exhibited stratification of a CK8(+) luminal-like layer and a CK5(+) basal-like layer. Notably, the numbers of spheres formed by inflamed and non-inflamed PSC were equal, suggesting that even though proliferation is enhanced by inflammation, the homeostatic level of PSC is maintained. CONCLUSION Induction of inflammation promotes PSC expansion and immediate differentiation through highly proliferative progenitor cells while the homeostasis of PSC is maintained.
Collapse
Affiliation(s)
- Hsing‐Hui Wang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- Purdue University Center for Cancer Research201 S. University St.West LafayetteIndiana
| | - Liang Wang
- Department of Pharmacology and Toxicology and Department of UrologyIndiana UniversityIndianapolisIndiana
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology and Department of UrologyIndiana UniversityIndianapolisIndiana
| | - Bin‐Da Chan
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndiana
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIndiana
| | - Cagri A. Savran
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndiana
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIndiana
| | - Grant N. Burcham
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- College of Veterinary MedicineThe Heeke Animal Disease Diagnostic Laboratory, Purdue UniversityWest LafayetteIndiana
| | - Scott Crist
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- Purdue University Center for Cancer Research201 S. University St.West LafayetteIndiana
| | - Timothy L. Ratliff
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- Purdue University Center for Cancer Research201 S. University St.West LafayetteIndiana
| |
Collapse
|
38
|
Abstract
It is becoming increasingly clear that inflammation influences prostate cancer (PCa) development and that immune cells are among the primary drivers of this effect. This information has launched numerous clinical trials testing immunotherapy drugs in PCa patients. The results of these studies are promising but have yet to generate a complete response. Importantly, the precise immune profile that determines clinical outcome remains unresolved. Individual immune cell types are divided into various functional subsets whose effects on tumor development may differ depending on their particular phenotype and functional status, which is often shaped by the tumor microenvironment. Thus, this review aims to examine the current knowledge regarding the role of inflammation and specific immune cell types in mediating PCa progression to assist in directing and optimizing immunotherapy targets, regimens, and responses and to uncover areas in which further research is needed. Finally, a summary of ongoing immunotherapy clinical trials in PCa is provided.
Collapse
Affiliation(s)
- Amy Strasner
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego School of Medicine , La Jolla, CA , USA ; Laboratory of Gene Regulation and Signal Transduction, Department of Pathology, University of California San Diego School of Medicine , La Jolla, CA , USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego School of Medicine , La Jolla, CA , USA ; Laboratory of Gene Regulation and Signal Transduction, Department of Pathology, University of California San Diego School of Medicine , La Jolla, CA , USA
| |
Collapse
|
39
|
Sfanos KS, Canene-Adams K, Hempel H, Yu SH, Simons BW, Schaeffer AJ, Schaeffer EM, Nelson WG, De Marzo AM. Bacterial Prostatitis Enhances 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine (PhIP)-Induced Cancer at Multiple Sites. Cancer Prev Res (Phila) 2015; 8:683-92. [PMID: 25990088 DOI: 10.1158/1940-6207.capr-15-0090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/14/2015] [Indexed: 12/20/2022]
Abstract
Dietary carcinogens, such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and chronic inflammation have each been implicated as etiologic agents in prostate cancer. We hypothesized that bacterial prostatitis would accelerate PhIP-induced preinvasive lesions in the rat prostate. Male Fischer 344 rats were assigned into 4 groups: Control (untreated), PhIP (200 ppm in the diet for 20 weeks), Escherichia coli (E. coli, prostatic inoculation in week 10), or PhIP + E. coli. Study animals were monitored for a total of 52 weeks and were euthanized as necessary based on strict criteria for health status and tumor burden. Animals treated with E. coli initially developed acute and chronic inflammation in all lobes of the prostate, whereas inflammation was observed predominantly in the ventral lobe at time of death. PhIP + E. coli-treated animals exhibited a marked decrease in survival compared with PhIP-alone-treated animals as a result of an increase in the number of invasive cancers that developed at multiple sites, including the skin, small intestine, and Zymbal's gland. Despite their earlier mortality, PhIP + E. coli-treated animals developed an increased average number of precancerous lesions within the prostate compared with PhIP-treated animals, with a significantly increased Ki-67 index. Multiplexed serum cytokine analysis indicated an increase in the level of circulating IL6 and IL12 in PhIP + E. coli-treated animals. Elevated serum IL6 levels correlated with the development of precancerous lesions within the prostate. These results suggest that bacterial infections and dietary carcinogens, two conceivably preventable cancer risk factors, may synergistically promote tumorigenesis.
Collapse
Affiliation(s)
- Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Kirstie Canene-Adams
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Heidi Hempel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shu-Han Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian W Simons
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anthony J Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Edward M Schaeffer
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Bowen C, Zheng T, Gelmann EP. NKX3.1 Suppresses TMPRSS2-ERG Gene Rearrangement and Mediates Repair of Androgen Receptor-Induced DNA Damage. Cancer Res 2015; 75:2686-98. [PMID: 25977336 DOI: 10.1158/0008-5472.can-14-3387] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/17/2015] [Indexed: 02/02/2023]
Abstract
TMPRSS2 gene rearrangements occur at DNA breaks formed during androgen receptor-mediated transcription and activate expression of ETS transcription factors at the early stages of more than half of prostate cancers. NKX3.1, a prostate tumor suppressor that accelerates the DNA repair response, binds to androgen receptor at the ERG gene breakpoint and inhibits both the juxtaposition of the TMPRSS2 and ERG gene loci and also their recombination. NKX3.1 acts by accelerating DNA repair after androgen-induced transcriptional activation. NKX3.1 influences the recruitment of proteins that promote homology-directed DNA repair. Loss of NKX3.1 favors recruitment to the ERG gene breakpoint of proteins that promote error-prone nonhomologous end-joining. Analysis of prostate cancer tissues showed that the presence of a TMPRSS2-ERG rearrangement was highly correlated with lower levels of NKX3.1 expression consistent with the role of NKX3.1 as a suppressor of the pathogenic gene rearrangement.
Collapse
Affiliation(s)
- Cai Bowen
- Department of Medicine, Columbia University, Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Tian Zheng
- Department of Statistics, Columbia University, Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Edward P Gelmann
- Department of Medicine, Columbia University, Herbert Irving Comprehensive Cancer Center, New York, New York. Department of Pathology, Columbia University, Herbert Irving Comprehensive Cancer Center, New York, New York.
| |
Collapse
|
41
|
Simons BW, Durham NM, Bruno TC, Grosso JF, Schaeffer AJ, Ross AE, Hurley PJ, Berman DM, Drake CG, Thumbikat P, Schaeffer EM. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J Pathol 2015; 235:478-89. [PMID: 25348195 DOI: 10.1002/path.4472] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 10/14/2014] [Accepted: 10/22/2014] [Indexed: 01/10/2023]
Abstract
Inflammation is associated with several diseases of the prostate including benign enlargement and cancer, but a causal relationship has not been established. Our objective was to characterize the prostate inflammatory microenvironment after infection with a human prostate-derived bacterial strain and to determine the effect of inflammation on prostate cancer progression. To this end, we mimicked typical human prostate infection with retrograde urethral instillation of CP1, a human prostatic isolate of Escherichia coli. CP1 bacteria were tropic for the accessory sex glands and induced acute inflammation in the prostate and seminal vesicles, with chronic inflammation lasting at least 1 year. Compared to controls, infection induced both acute and chronic inflammation with epithelial hyperplasia, stromal hyperplasia, and inflammatory cell infiltrates. In areas of inflammation, epithelial proliferation and hyperplasia often persist, despite decreased expression of androgen receptor (AR). Inflammatory cells in the prostates of CP1-infected mice were characterized at 8 weeks post-infection by flow cytometry, which showed an increase in macrophages and lymphocytes, particularly Th17 cells. Inflammation was additionally assessed in the context of carcinogenesis. Multiplex cytokine profiles of inflamed prostates showed that distinct inflammatory cytokines were expressed during prostate inflammation and cancer, with a subset of cytokines synergistically increased during concurrent inflammation and cancer. Furthermore, CP1 infection in the Hi-Myc mouse model of prostate cancer accelerated the development of invasive prostate adenocarcinoma, with 70% more mice developing cancer by 4.5 months of age. This study provides direct evidence that prostate inflammation accelerates prostate cancer progression and gives insight into the microenvironment changes induced by inflammation that may accelerate tumour initiation or progression.
Collapse
Affiliation(s)
- Brian W Simons
- The Brady Urological Institute, Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Debelec-Butuner B, Ertunc N, Korkmaz KS. Inflammation contributes to NKX3.1 loss and augments DNA damage but does not alter the DNA damage response via increased SIRT1 expression. JOURNAL OF INFLAMMATION-LONDON 2015; 12:12. [PMID: 25705129 PMCID: PMC4336697 DOI: 10.1186/s12950-015-0057-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023]
Abstract
The oxidative stress response is a cellular defense mechanism that protects cells from oxidative damage and cancer development. The exact molecular mechanism by which reactive oxygen species (ROS) contribute to DNA damage and increase genome instability in prostate cancer merits further investigation. Here, we aimed to determine the effects of NKX3.1 loss on antioxidant defense in response to acute and chronic inflammation in an in vitro model. Oxidative stress-induced DNA damage resulted in increased H2AX(S139) phosphorylation (a hallmark of DNA damage), along with the degradation of the androgen receptor (AR), p53 and NKX3.1, upon treatment with conditioned medium (CM) obtained from activated macrophages or H2O2. Furthermore, the expression and stability of SIRT1 were increased by CM treatment but not by H2O2 treatment, although the level of ATM(S1981) phosphorylation was not changed compared with controls. Moreover, the deregulated antioxidant response resulted in upregulation of the pro-oxidant QSCN6 and the antioxidant GPX2 and downregulation of the antioxidant GPX3 after CM treatment. Consistently, the intracellular ROS level increased after chronic treatment, leading to a dose-dependent increase in the ability of LNCaP cells to tolerate oxidative damage. These data suggest that the inflammatory microenvironment is a major factor contributing to DNA damage and the deregulation of the oxidative stress response, which may be the underlying cause of the increased genetic heterogeneity during prostate tumor progression.
Collapse
Affiliation(s)
- Bilge Debelec-Butuner
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey ; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, 35100 Turkey
| | - Nursah Ertunc
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
43
|
TNFα-mediated loss of β-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells. PLoS One 2014; 9:e109868. [PMID: 25360740 PMCID: PMC4215977 DOI: 10.1371/journal.pone.0109868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022] Open
Abstract
Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered β-catenin signaling upon TNFα exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of β-catenin following increased phosphorylation of Akt(S473) and GSK3β(S9). Consistently, we observed that subsequent increase in β-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the β-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of β-catenin by inhibiting Akt(S473) phosphorylation, therefore, partially rescued the disrupted β-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of β-catenin at the cell membrane as well as increased Akt(S308) priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA), high-grade prostatic intraepithelial neoplasia (H-PIN) and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the β-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology.
Collapse
|
44
|
Kwon OJ, Xin L. Prostate epithelial stem and progenitor cells. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:209-218. [PMID: 25374923 PMCID: PMC4219311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/30/2014] [Indexed: 06/04/2023]
Abstract
The classic androgen ablation and replacement experiment demonstrates that prostate epithelia possess extensive regenerative capacities and implies the existence of the prostate stem/progenitor cells. These cells may serve as the cells of origin for prostate cancer and their intrinsic property may dictate the clinical behaviors of the resulting diseases. Therefore, detailed characterization of these cells will potentially benefit disease prevention, diagnosis and prognosis. In this review, we describe several major in vitro and in vivo approaches that have been employed in the studies of the prostate stem cell activities, summarize the major progress that has been made during the last two decades regarding the identity of prostate stem/progenitor cells and their niches, and discuss some remaining outstanding questions in the field.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Molecular and Cellular Biology, Baylor College of MedicineUSA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of MedicineUSA
- Department of Pathology and Immunology, Baylor College of MedicineUSA
- Dan L. Duncan Cancer Center, Baylor College of MedicineUSA
- Baylor College of MedicineOne Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
45
|
Martinez EE, Darke AK, Tangen CM, Goodman PJ, Fowke JH, Klein EA, Abdulkadir SA. A functional variant in NKX3.1 associated with prostate cancer risk in the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Cancer Prev Res (Phila) 2014; 7:950-7. [PMID: 24894197 DOI: 10.1158/1940-6207.capr-14-0075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NKX3.1 is an androgen-regulated prostate tumor suppressor protein. We previously found that antioxidant administration (N-acetylcysteine) in the Nkx3.1 knockout mouse model promoted prostate epithelial proliferation, suggesting that NKX3.1 activity modifies the effect of antioxidant administration on prostate carcinogenesis. Interestingly, administration of the antioxidant vitamin E significantly increased prostate cancer risk in the Selenium and Vitamin E Cancer Prevention Trial (SELECT), suggesting that our animal experiments may be relevant to humans. To determine whether NKX3.1 played a role in increased human prostate cancer risk associated with antioxidant administration in SELECT, we investigated the joint risk of antioxidant administration and NKX3.1 genotypes previously found to be associated with decreased NKX3.1 mRNA expression (rs11781886) or DNA-binding activity in vitro (rs2228013) in the SELECT biomarker case-cohort substudy (1,866 cases; 3,135 non-cases). Multivariable COX regression models were developed to determine the joint association of NKX3.1 genotypes with administration of vitamin E, selenium, or the combination, compared with placebo. The CC genotype at rs11781886 combined with selenium administration was associated with increased overall prostate cancer risk [HR, 1.676; 95% confidence interval (CI), 1.011-2.777; P = 0.045] and low-grade prostate cancer risk (HR, 1.811; 95% CI, 1.016-3.228; P = 0.0441). Similarly, the rs11781886 minor allele (CC+CT) combined with vitamin E administration was significantly associated with increased prostate cancer risk (HR, 1.450; 95% CI, 1.117-1.882; P = 0.0052). Our results indicate that variation in NKX3.1 expression combined with selenium or vitamin E treatment modifies the risk of prostate cancer. Genetic background may modulate the effects of antioxidant supplementation thought to act as chemoprevention agents.
Collapse
Affiliation(s)
| | - Amy K Darke
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jay H Fowke
- Surgical Urology, Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric A Klein
- Cleveland Clinic Foundation, Cleveland, Ohio; and
| | - Sarki A Abdulkadir
- Departments of Pathology, Microbiology and Immunology, Cancer Biology, and Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
46
|
Thangapazham R, Saenz F, Katta S, Mohamed AA, Tan SH, Petrovics G, Srivastava S, Dobi A. Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer. BMC Cancer 2014; 14:16. [PMID: 24418414 PMCID: PMC3897978 DOI: 10.1186/1471-2407-14-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In normal prostate epithelium the TMPRSS2 gene encoding a type II serine protease is directly regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although, the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context. METHODS Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses were performed by the Genomatix Software. NKX3.1 and ERG genes expressions were evaluated by immunoblot or by quantitative Real-Time PCR (qRT-PCR) assays in response to siRNA knockdown or heterologous expression. QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was monitored by Chromatin Immunoprecipitation assay. RESULTS Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the conservation of binding sites for the androgen inducible NKX3.1 tumor suppressor. Defects of NKX3.1, such as, allelic loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in prostate tumorigenesis. We found that NKX3.1 directly binds to TMPRSS2 upstream sequences and negatively regulates the expression of the ERG protooncogene through the TMPRSS2-ERG gene fusion. CONCLUSIONS These observations imply that the frequently noted loss-of-function of NKX3.1 cooperates with the activation of TMPRSS2-ERG fusions in prostate tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Albert Dobi
- Center for Prostate Disease Research, Uniform Services University of the Health Sciences, 1530 East Jefferson Street, Rockville, Maryland 20852, USA.
| |
Collapse
|
47
|
Acupuncture and Traditional Chinese Medicine for the management of a 35-year-old man with chronic prostatitis with chronic pelvic pain syndrome. J Chiropr Med 2014; 12:182-90. [PMID: 24396319 DOI: 10.1016/j.jcm.2013.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/27/2013] [Accepted: 05/14/2013] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The purpose of this case report is to describe the resolution of pain in a patient with chronic prostatitis and chronic pelvic pain syndrome after receiving a course of management using acupuncture and Chinese herbal medicine. CLINICAL FEATURES A 35-year-old man presented with chronic prostatitis with chronic pelvic pain syndrome. He scored 38 out of a possible 43 on the National Institutes of Health/Chronic Prostatitis Symptom Index (NIH/CPSI) that rates pain, urinary symptoms, and quality of life impact, indicating severe symptoms. The patient had experienced recurrent episodes of nonbacterial prostatitis over a 3-year period, and this was the most severe. INTERVENTION AND OUTCOME After 8 acupuncture treatments over an 8-week period and daily use of Ba Zheng San and Yi Guan Jian, the patient scored his symptoms 9 on the NIH/CPSI. The patient was then put on a supportive anti-inflammatory regimen of green tea. He rated his symptoms 4 on the NIH/CPSI 4 months later, 2 on the NIH/CPSI 8 months later, and 0 on the NIH/CPSI 1 year later. CONCLUSION This case demonstrated that the patient experienced long-lasting relief from chronic prostatitis with chronic pelvic pain syndrome after a course of 8 treatments of acupuncture and Chinese herbs.
Collapse
|
48
|
Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc Natl Acad Sci U S A 2013; 111:E592-600. [PMID: 24367088 DOI: 10.1073/pnas.1318157111] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic inflammation has been shown to promote the initiation and progression of diverse malignancies by inducing genetic and epigenetic alterations. In this study, we investigate an alternative mechanism through which inflammation promotes the initiation of prostate cancer. Adult murine prostate epithelia are composed predominantly of basal and luminal cells. Previous studies revealed that the two lineages are largely self-sustained when residing in their native microenvironment. To interrogate whether tissue inflammation alters the differentiation program of basal cells, we conducted lineage tracing of basal cells using a K14-CreER;mTmG model in concert with a murine model of prostatitis induced by infection from the uropathogenic bacteria CP9. We show that acute prostatitis causes tissue damage and creates a tissue microenvironment that induces the differentiation of basal cells into luminal cells, an alteration that rarely occurs under normal physiological conditions. Previously we showed that a mouse model with prostate basal cell-specific deletion of Phosphatase and tensin homolog (K14-CreER;Pten(fl/fl)) develops prostate cancer with a long latency, because disease initiation in this model requires and is limited by the differentiation of transformation-resistant basal cells into transformation-competent luminal cells. Here, we show that CP9-induced prostatitis significantly accelerates the initiation of prostatic intraepithelial neoplasia in this model. Our results demonstrate that inflammation results in a tissue microenvironment that alters the normal prostate epithelial cell differentiation program and that through this cellular process inflammation accelerates the initiation of prostate cancer with a basal cell origin.
Collapse
|
49
|
Bowen C, Ju JH, Lee JH, Paull TT, Gelmann EP. Functional activation of ATM by the prostate cancer suppressor NKX3.1. Cell Rep 2013; 4:516-29. [PMID: 23890999 DOI: 10.1016/j.celrep.2013.06.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/29/2013] [Accepted: 06/25/2013] [Indexed: 01/21/2023] Open
Abstract
The prostate tumor suppressor NKX3.1 augments response to DNA damage and enhances survival after DNA damage. Within minutes of DNA damage, NKX3.1 undergoes phosphorylation at tyrosine 222, which is required for a functional interaction with ataxia telangiectasia mutated (ATM) kinase. NKX3.1 binds to the N-terminal region of ATM, accelerates ATM activation, and hastens the formation of γhistone2AX. NKX3.1 enhances DNA-dependent ATM kinase activation by both the MRN complex and H2O2 in a DNA-damage-independent manner. ATM, bound to the NKX3.1 homeodomain, phosphorylates NKX3.1, leading to ubiquitination and degradation. Thus, NKX3.1 and ATM have a functional interaction leading to ATM activation and then NKX3.1 degradation in a tightly regulated DNA damage response specific to prostate epithelial cells. These findings demonstrate a mechanism for the tumor-suppressor properties of NKX3.1, demonstrate how NKX3.1 may enhance DNA integrity in prostate stem cells and may help to explain how cells differ in their sensitivity to DNA damage.
Collapse
Affiliation(s)
- Cai Bowen
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University, 177 Fort Washington Avenue, MHB 6N-435, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
50
|
Shinohara DB, Vaghasia AM, Yu SH, Mak TN, Brüggemann H, Nelson WG, De Marzo AM, Yegnasubramanian S, Sfanos KS. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 2013; 73:1007-15. [PMID: 23389852 PMCID: PMC3991131 DOI: 10.1002/pros.22648] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/08/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND Prostatic inflammation has been linked to a number of prostatic diseases such as benign prostatic hyperplasia (BPH), prostatitis syndromes, and prostate cancer. Major unanswered questions include what pathogenic mechanisms, such as bacterial infections, may drive the accumulation of inflammatory infiltrates in the human prostate, and how inflammation might contribute to disease. To study this potential link in an in vivo system, we developed a mouse model of long-term bacteria-induced chronic inflammation of the prostate using a human prostatectomy-derived strain of Propionibacterium acnes. METHODS C57BL/6J mice were inoculated, via urethral catheterization, with vehicle control or a prostatectomy-derived strain of P. acnes (PA2). Animals were assessed at 2 days, 1, 2, or 8 weeks post-inoculation via histology and immunohistochemistry (IHC). RESULTS PA2 inoculation resulted in severe acute and chronic inflammation confined to the dorsal lobe of the prostate. Chronic inflammation persisted for at least 8 weeks post-inoculation. Inflammatory lesions were associated with an increase in the Ki-67 proliferative index, and diminished Nkx3.1 and androgen receptor (AR) production. Interestingly, the observed response required live bacteria and both IHC and in situ hybridization assays for P. acnes indicated a potential intracellular presence of P. acnes in prostate epithelial cells. CONCLUSIONS To our knowledge, this is the first mouse model of long-term prostatic inflammation induced by P. acnes, and more generally, any prostatectomy-derived bacterial isolate. This model may serve as a valuable preclinical model of chronic prostatic inflammation that can be used to mechanistically study the link between inflammation and prostatic disease.
Collapse
Affiliation(s)
- Debika Biswal Shinohara
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ajay M. Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shu-Han Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tim N. Mak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - William G. Nelson
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M. De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen S. Sfanos
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Correspondence to: Karen S. Sfanos, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRBII 1M43, Baltimore, MD 21287.
| |
Collapse
|