1
|
Sharma AK, Ismail N. Non-Canonical Inflammasome Pathway: The Role of Cell Death and Inflammation in Ehrlichiosis. Cells 2023; 12:2597. [PMID: 37998332 PMCID: PMC10670716 DOI: 10.3390/cells12222597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Activating inflammatory caspases and releasing pro-inflammatory mediators are two essential functions of inflammasomes which are triggered in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). The canonical inflammasome pathway involves the activation of inflammasome and its downstream pathway via the adaptor ASC protein, which causes caspase 1 activation and, eventually, the cleavage of pro-IL-1b and pro-IL-18. The non-canonical inflammasome pathway is induced upon detecting cytosolic lipopolysaccharide (LPS) by NLRP3 inflammasome in Gram-negative bacteria. The activation of NLRP3 triggers the cleavage of murine caspase 11 (human caspase 4 or caspase 5), which results in the formation of pores (via gasdermin) to cause pyroptosis. Ehrlichia is an obligately intracellular bacterium which is responsible for causing human monocytic ehrlichiosis (HME), a potentially lethal disease similar to toxic shock syndrome and septic shock syndrome. Several studies have indicated that canonical and non-canonical inflammasome activation is a crucial pathogenic mechanism that induces dysregulated inflammation and host cellular death in the pathophysiology of HME. Mechanistically, the activation of canonical and non-canonical inflammasome pathways affected by virulent Ehrlichia infection is due to a block in autophagy. This review aims to explore the significance of non-canonical inflammasomes in ehrlichiosis, and how the pathways involving caspases (with the exception of caspase 1) contribute to the pathophysiology of severe and fatal ehrlichiosis. Improving our understanding of the non-canonical inflammatory pathway that cause cell death and inflammation in ehrlichiosis will help the advancement of innovative therapeutic, preventative, and diagnostic approaches to the treatment of ehrlichiosis.
Collapse
Affiliation(s)
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
2
|
Efficacy and Immune Correlates of OMP-1B and VirB2-4 Vaccines for Protection of Dogs from Tick Transmission of Ehrlichia chaffeensis. mBio 2022; 13:e0214022. [PMID: 36342170 PMCID: PMC9765013 DOI: 10.1128/mbio.02140-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ehrlichia chaffeensis, an obligatory intracellular bacterium, causes human monocytic ehrlichiosis, an emerging disease transmitted by the Lone Star tick, Amblyomma americanum. Here, we investigated the vaccine potential of OMP-1B and VirB2-4. Among the highly expressed and immunodominant E. chaffeensis porin P28s/OMP-1s, OMP-1B is predominantly expressed by E. chaffeensis in A. americanum ticks, whereas VirB2-4 is a pilus protein of the type IV secretion system essential for E. chaffeensis infection of host cells. Immunization with recombinant OMP-1B (rOMP-1B) or recombinant VirB2-4 (rVirB2-4) protected mice from E. chaffeensis infection as effectively as Entry-triggering protein of Ehrlichia immunization. Dogs vaccinated with a nanoparticle vaccine composed of rOMP-1B or rVirB2-4 and an immunostimulating complex developed high antibody titers against the respective antigen. Upon challenge with E. chaffeensis-infected A. americanum ticks, E. chaffeensis was undetectable in the blood of rOMP-1B or rVirB2-4 immunized dogs on day 3 or 6 post-tick attachment and for the duration of the experiment, whereas dogs sham-vaccinated with the complex alone were persistently infected for the duration of the experiment. E. chaffeensis exponentially replicates in blood-feeding ticks to facilitate transmission. Previously infected ticks removed from OMP-1B-immunized dogs showed significantly lower bacterial load relative to ticks removed from sham-immunized dogs, suggesting in-tick neutralization. Peripheral blood leukocytes from rVirB2-4-vaccinated dogs secreted significantly elevated amounts of interferon-γ soon after tick attachment by ELISpot assay and reverse transcription-quantitative PCR, suggesting interferon-γ-mediated Ehrlichia inhibition. Thus, Ehrlichia surface-exposed proteins OMP-1B and VirB2-4 represent new potential vaccine candidates for blocking tick-borne ehrlichial transmission. IMPORTANCE Ehrlichia are tick-borne pathogens that cause a potentially fatal illness-ehrlichiosis-in animals and humans worldwide. Currently, no vaccine is available for ehrlichiosis, and treatment options are limited. Ticks are biological vectors of Ehrlichia, i.e., Ehrlichia exponentially replicates in blood-sucking ticks before infecting animals. Ticks also inoculate immunomodulatory substances into animals. Thus, it is important to study effects of candidate vaccines on Ehrlichia infection in both animals and ticks and the immune responses of animals shortly after infected tick challenge. Here, we investigated the efficacy of vaccination with functionality-defined two surface-exposed outer membrane proteins of Ehrlichia chaffeensis, OMP-1B and VirB2-4, in a mouse infection model and then in a dog-tick transmission model. Our results begin to fill gaps in our understanding of Ehrlichia-derived protective antigens against tick-transmission and immune correlates and mechanisms that could help future development of vaccines for immunization of humans and animals to counter tick-transmitted ehrlichiosis.
Collapse
|
3
|
Ismail N, Sharma A, Soong L, Walker DH. Review: Protective Immunity and Immunopathology of Ehrlichiosis. ZOONOSES (BURLINGTON, MASS.) 2022; 2:10.15212/zoonoses-2022-0009. [PMID: 35876763 PMCID: PMC9300479 DOI: 10.15212/zoonoses-2022-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human monocytic ehrlichiosis, a tick transmitted infection, ranges in severity from apparently subclinical to a fatal toxic shock-like fatal disease. Models in immunocompetent mice range from an abortive infection to uniformly lethal depending on the infecting Ehrlichia species, dose of inoculum, and route of inoculation. Effective immunity is mediated by CD4+ T lymphocytes and gamma interferon. Lethal infection occurs with early overproduction of proinflammatory cytokines and overproduction of TNF alpha and IL-10 by CD8+ T lymphocytes. Furthermore, fatal ehrlichiosis is associated with signaling via TLR 9/MyD88 with upregulation of several inflammasome complexes and secretion of IL-1 beta, IL-1 alpha, and IL-18 by hepatic mononuclear cells, suggesting activation of canonical and noncanonical inflammasome pathways, a deleterious role for IL-18, and the protective role for caspase 1. Autophagy promotes ehrlichial infection, and MyD88 signaling hinders ehrlichial infection by inhibiting autophagy induction and flux. Activation of caspase 11 during infection of hepatocytes by the lethal ehrlichial species after interferon alpha receptor signaling results in the production of inflammasome-dependent IL-1 beta, extracellular secretion of HMGB1, and pyroptosis. The high level of HMGB1 in lethal ehrlichiosis suggests a role in toxic shock. Studies of primary bone marrow-derived macrophages infected by highly avirulent or mildly avirulent ehrlichiae reveal divergent M1 and M2 macrophage polarization that links with generation of pathogenic CD8 T cells, neutrophils, and excessive inflammation or with strong expansion of protective Th1 and NKT cells, resolution of inflammation and clearance of infection, respectively.
Collapse
Affiliation(s)
- Nahed Ismail
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Aditya Sharma
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - David H. Walker
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
4
|
Effect of GP19 Peptide Hyperimmune Antiserum on Activated Macrophage during Ehrlichia canis Infection in Canine Macrophage-like Cells. Animals (Basel) 2021; 11:ani11082310. [PMID: 34438767 PMCID: PMC8388390 DOI: 10.3390/ani11082310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
In terms of its veterinary importance, vaccine development against Ehrlichia canis is needed. However, the effect of developing vaccines on humoral immune response against E. canis infection is still unknown. Novel GP194-43 was synthesized according to E. canis GP19 epitope prediction. To restrict any loss and/or illness in the host animal, rabbits were used in this study to produce GP194-43 hyperimmune sera. The effect of GP194-43 hyperimmune sera on neutralization was examined in vitro by determining the inhibition of E. canis infection of the macrophage-like cell line (DH82) in the presence of the sera. Four groups of DH82 cells received differing treatments. These included E. canis experimentally infected DH82 cells, E. canis-infected DH82 cells with control rabbit serum (untreated group), E. canis-infected DH82 cells with GP194-43 rabbit antiserum (treated group) and uninfected cells (negative control group), respectively. The treated group developed a decrease (p < 0.01) in the percentage of E. canis infected cells after 3 days post-infection at 48.57 ± 1.28. In addition, real-time PCR analyses of cytokine mRNA expression involved with the macrophage, humoral, and cellular immune responses were conducted. The findings revealed an upregulated expression of IFNG in the treated group during the infection. This study demonstrated neutralization in the GP194-43 peptide hyperimmune sera of immunized rabbits. Notably, IFN-γ production could be effectively promoted in canine macrophages in relation to the activation of macrophages and adaptive immune responses. The results of this study indicate the potential for the use of this immunogen in further investigations involving immunized and infected dogs as E. canis host species.
Collapse
|
5
|
Lin M, Xiong Q, Chung M, Daugherty SC, Nagaraj S, Sengamalay N, Ott S, Godinez A, Tallon LJ, Sadzewicz L, Fraser C, Dunning Hotopp JC, Rikihisa Y. Comparative Analysis of Genome of Ehrlichia sp. HF, a Model Bacterium to Study Fatal Human Ehrlichiosis. BMC Genomics 2021; 22:11. [PMID: 33407096 PMCID: PMC7789307 DOI: 10.1186/s12864-020-07309-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| | - Qingming Xiong
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Al Godinez
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Claire Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Torina A, Blanda V, Villari S, Piazza A, La Russa F, Grippi F, La Manna MP, Di Liberto D, de la Fuente J, Sireci G. Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. Int J Mol Sci 2020; 21:ijms21228813. [PMID: 33233869 PMCID: PMC7699928 DOI: 10.3390/ijms21228813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tick-transmitted pathogens cause infectious diseases in both humans and animals. Different types of adaptive immune mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen antigens or indirectly through soluble factors, such as cytokines and/or chemokines, secreted by host cells as response. Adaptive immunity effectors, such as antibody secretion and cytotoxic and/or T helper cell responses, are mainly involved in the late and long-lasting protective immune response. Proteins and/or epitopes derived from pathogens and tick vectors have been isolated and characterized for the immune response induced in different hosts. This review was focused on the interactions between tick-borne pathogenic hemoparasites and different host effector mechanisms of T- and/or B cell-mediated adaptive immunity, describing the efforts to define immunodominant proteins or epitopes for vaccine development and/or immunotherapeutic purposes. A better understanding of these mechanisms of host immunity could lead to the assessment of possible new immunotherapies for these pathogens as well as to the prediction of possible new candidate vaccine antigens.
Collapse
Affiliation(s)
- Alessandra Torina
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.T.); (F.G.)
- Laboratorio di Riferimento OIE Theileriosi, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Valeria Blanda
- Laboratorio di Riferimento OIE Theileriosi, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
- Correspondence:
| | - Sara Villari
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Antonio Piazza
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Francesco La Russa
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Francesca Grippi
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.T.); (F.G.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| |
Collapse
|
7
|
Haloul M, Oliveira ERA, Kader M, Wells JZ, Tominello TR, El Andaloussi A, Yates CC, Ismail N. mTORC1-mediated polarization of M1 macrophages and their accumulation in the liver correlate with immunopathology in fatal ehrlichiosis. Sci Rep 2019; 9:14050. [PMID: 31575880 PMCID: PMC6773708 DOI: 10.1038/s41598-019-50320-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
A polarized macrophage response into inflammatory (M1) or regenerative/anti-inflammatory (M2) phenotypes is critical in host response to multiple intracellular bacterial infections. Ehrlichia is an obligate Gram-negative intracellular bacterium that causes human monocytic ehrlichiosis (HME): a febrile illness that may progress to fatal sepsis with multi-organ failure. We have shown that liver injury and Ehrlichia-induced sepsis occur due to dysregulated inflammation. Here, we investigated the contribution of macrophages to Ehrlichia-induced sepsis using murine models of mild and fatal ehrlichiosis. Lethally-infected mice showed accumulation of M1 macrophages (iNOS-positive) in the liver. In contrast, non-lethally infected mice showed polarization of M2 macrophages and their accumulation in peritoneum, but not in the liver. Predominance of M1 macrophages in lethally-infected mice was associated with expansion of IL-17-producing T, NK, and NKT cells. Consistent with the in vivo data, infection of bone marrow-derived macrophages (BMM) with lethal Ehrlichia polarized M0 macrophages into M1 phenotype under an mTORC1-dependent manner, while infection with non-lethal Ehrlichia polarized these cells into M2 types. This work highlights that mTORC1-mediated polarization of macrophages towards M1 phenotype may contribute to induction of pathogenic immune responses during fatal ehrlichiosis. Targeting mTORC1 pathway may provide a novel aproach for treatment of HME.
Collapse
Affiliation(s)
- Mohamed Haloul
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Children's Cancer Hospital Egypt, 57357, Cairo, Egypt
| | - Edson R A Oliveira
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Muhamuda Kader
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jakob Z Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tyler R Tominello
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abdeljabar El Andaloussi
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Cecelia C Yates
- Nursing School, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Tominello TR, Oliveira ERA, Hussain SS, Elfert A, Wells J, Golden B, Ismail N. Emerging Roles of Autophagy and Inflammasome in Ehrlichiosis. Front Immunol 2019; 10:1011. [PMID: 31134081 PMCID: PMC6517498 DOI: 10.3389/fimmu.2019.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Human monocytic ehrlichiosis (HME) is a potentially life-threatening tick-borne rickettsial disease (TBRD) caused by the obligate intracellular Gram-negative bacteria, Ehrlichia. Fatal HME presents with acute ailments of sepsis and toxic shock-like symptoms that can evolve to multi-organ failure and death. Early clinical and laboratory diagnosis of HME are problematic due to non-specific flu-like symptoms and limitations in the current diagnostic testing. Several studies in murine models showed that cell-mediated immunity acts as a “double-edged sword” in fatal ehrlichiosis. Protective components are mainly formed by CD4 Th1 and NKT cells, in contrast to deleterious effects originated from neutrophils and TNF-α-producing CD8 T cells. Recent research has highlighted the central role of the inflammasome and autophagy as part of innate immune responses also leading to protective or pathogenic scenarios. Recognition of pathogen-associated molecular patterns (PAMPS) or damage-associated molecular patterns (DAMPS) triggers the assembly of the inflammasome complex that leads to multiple outcomes. Recognition of PAMPs or DAMPs by such complexes can result in activation of caspase-1 and -11, secretion of the pro-inflammatory cytokines IL-1β and IL-18 culminating into dysregulated inflammation, and inflammatory cell death known as pyroptosis. The precise functions of inflammasomes and autophagy remain unexplored in infections with obligate intracellular rickettsial pathogens, such as Ehrlichia. In this review, we discuss the intracellular innate immune surveillance in ehrlichiosis involving the regulation of inflammasome and autophagy, and how this response influences the innate and adaptive immune responses against Ehrlichia. Understanding such mechanisms would pave the way in research for novel diagnostic, preventative and therapeutic approaches against Ehrlichia and other rickettsial diseases.
Collapse
Affiliation(s)
- Tyler R Tominello
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edson R A Oliveira
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shah S Hussain
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Amr Elfert
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jakob Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon Golden
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Smith JNP, Zhang Y, Li JJ, McCabe A, Jo HJ, Maloney J, MacNamara KC. Type I IFNs drive hematopoietic stem and progenitor cell collapse via impaired proliferation and increased RIPK1-dependent cell death during shock-like ehrlichial infection. PLoS Pathog 2018; 14:e1007234. [PMID: 30080899 PMCID: PMC6095620 DOI: 10.1371/journal.ppat.1007234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 07/20/2018] [Indexed: 11/18/2022] Open
Abstract
Type I interferons (IFNα/β) regulate diverse aspects of host defense, but their impact on hematopoietic stem and progenitor cells (HSC/HSPCs) during infection remains unclear. Hematologic impairment can occur in severe infections, thus we sought to investigate the impact of type I IFNs on hematopoiesis in a tick-borne infection with a virulent ehrlichial pathogen that causes shock-like disease. During infection, IFNα/β induced severe bone marrow (BM) loss, blunted infection-induced emergency myelopoiesis, and reduced phenotypic HSPCs and HSCs. In the absence of type I IFN signaling, BM and splenic hematopoiesis were increased, and HSCs derived from Ifnar1-deficient mice were functionally superior in competitive BM transplants. Type I IFNs impaired hematopoiesis during infection by both limiting HSC/HSPC proliferation and increasing HSPC death. Using mixed BM chimeras we determined that type I IFNs restricted proliferation indirectly, whereas HSPC death occurred via direct IFNαR -mediated signaling. IFNαR-dependent signals resulted in reduced caspase 8 expression and activity, and reduced cleavage of RIPK1 and RIPK3, relative to Ifnar1-deficient mice. RIPK1 antagonism with Necrostatin-1s rescued HSPC and HSC numbers during infection. Early antibiotic treatment is required for mouse survival, however antibiotic-treated survivors had severely reduced HSPCs and HSCs. Combination therapy with antibiotics and Necrostatin-1s improved HSPC and HSC numbers in surviving mice, compared to antibiotic treatment alone. We reveal two mechanisms whereby type I IFNs drive hematopoietic collapse during severe infection: direct sensitization of HSPCs to undergo cell death and enhanced HSC quiescence. Our studies reveal a strategy to ameliorate the type I IFN-dependent loss of HSCs and HSPCs during infection, which may be relevant to other infections wherein type I IFNs cause hematopoietic dysfunction. The Ehrlichiae are important emerging, tick-borne pathogens that cause immune suppression and cytopenias, though the underlying mechanisms are unclear. In a model of shock-like illness caused by Ixodes ovatus ehrlichia, type I interferons (IFNs) induce hematopoietic dysfunction by reducing hematopoietic stem cell (HSC) proliferation and driving cell death of hematopoietic progenitors (HSPCs). Using mixed bone marrow chimeras, we demonstrate that HSPC loss occurs via intrinsic type I IFN signaling, whereas HSC proliferation is regulated via an extrinsic mechanism. In contrast to sterile inflammation, infection-induced type I IFNs induced RIPK1-dependent loss of hematopoietic progenitors. HSPCs were rescued during infection by inhibiting RIPK1 with Necrostatin-1s. While antibiotic treatment protected against otherwise lethal infection, mice recovering from infection exhibited significantly reduced HSCs and HSPCs. Co-treatment with both antibiotics and Necrostatin-1s significantly increased HSPC frequencies and the number of HSCs compared to antibiotics alone. Blood production is essential for life and necessary for host defense, thus our work reveals a therapeutic strategy to rescue and improve hematopoiesis in patients recovering from serious infectious disease.
Collapse
Affiliation(s)
- Julianne N. P. Smith
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Yubin Zhang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jing Jing Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Amanda McCabe
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Hui Jin Jo
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jackson Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Katherine C. MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
McGill JL, Wang Y, Ganta CK, Boorgula GDY, Ganta RR. Antigen-Specific CD4 +CD8 + Double-Positive T Cells Are Increased in the Blood and Spleen During Ehrlichia chaffeensis Infection in the Canine Host. Front Immunol 2018; 9:1585. [PMID: 30050533 PMCID: PMC6050357 DOI: 10.3389/fimmu.2018.01585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium belonging to the order, Rickettsiales and is a frequent cause of severe and fatal tick-borne infection in people in North America. The reservoir host for E. chaffeensis is the white-tailed deer, while humans and dogs are regarded as common incidental hosts. In dogs, we and others have shown that E. chaffeensis establishes a chronic infection that persists for several weeks to months, while promoting the development of Th1 and Th17 cellular responses and pathogen-specific humoral immunity. We demonstrate here that vaccination with a live, attenuated clone of E. chaffeensis bearing a targeted mutation in the Ech_0230 gene neither promotes the development of long-lived cellular or humoral immunity, nor confers protection against secondary wild-type E. chaffeensis challenge. In dogs, a population of mature CD4+CD8+ double-positive (DP) T cells exists in the periphery that shares similarities with the DP T cell populations that have been described in humans and swine. Little is known about the function of these cells, particularly in the context of infectious diseases. Here, we demonstrate that canine DP T cells expand significantly in response to E. chaffeensis infection. Using in vitro antigen recall assays, we further demonstrate that canine DP T cells undergo clonal expansion, produce IFNγ and IL-17, and upregulate expression of granzyme B and granulysin. Together, our results demonstrate that DP T cells accumulate in the host during E. chaffeensis infection, and suggest that alternative lymphocyte populations may participate in the immune response to tick-borne infections in the incidental host.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ying Wang
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chanran K. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Gunavanthi D. Y. Boorgula
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
11
|
Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9:20891-20907. [PMID: 29755697 PMCID: PMC5945539 DOI: 10.18632/oncotarget.25058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are involved in the host immune response against infections due to viral, bacterial and fungal pathogens, all of which are a significant cause of morbidity and mortality in immunocompromised patients. Since the recovery of the immune system has a major impact on the outcome of an infectious complication, there is major interest in strengthening the host response in immunocompromised patients, either by using cytokines or growth factors or by adoptive cellular therapies transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, relatively little is known about the potential of adoptively transferring NK cells in immunocompromised patients with infectious complications, although the anti-cancer property of NK cells is already being investigated in the clinical setting. This review will focus on the antimicrobial properties of NK cells and the current standing and future perspectives of generating and using NK cells as immunotherapy in patients with infectious complications, an approach which is promising and might have an important clinical impact in the future.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
12
|
Kader M, Alaoui-EL-Azher M, Vorhauer J, Kode BB, Wells JZ, Stolz D, Michalopoulos G, Wells A, Scott M, Ismail N. MyD88-dependent inflammasome activation and autophagy inhibition contributes to Ehrlichia-induced liver injury and toxic shock. PLoS Pathog 2017; 13:e1006644. [PMID: 29049365 PMCID: PMC5663626 DOI: 10.1371/journal.ppat.1006644] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/31/2017] [Accepted: 09/11/2017] [Indexed: 01/19/2023] Open
Abstract
Severe hepatic inflammation is a common cause of acute liver injury following systemic infection with Ehrlichia, obligate Gram-negative intracellular bacteria that lack lipopolysaccharide (LPS). We have previously shown that type I IFN (IFN-I) and inflammasome activation are key host-pathogenic mediators that promote excessive inflammation and liver damage following fatal Ehrlichia infection. However, the underlying signals and mechanisms that regulate protective immunity and immunopathology during Ehrlichia infection are not well understood. To address this issue, we compared susceptibility to lethal Ixodes ovatus Ehrlichia (IOE) infection between wild type (WT) and MyD88-deficient (MyD88-/-) mice. We show here that MyD88-/- mice exhibited decreased inflammasome activation, attenuated liver injury, and were more resistant to lethal infection than WT mice, despite suppressed protective immunity and increased bacterial burden in the liver. MyD88-dependent inflammasome activation was also dependent on activation of the metabolic checkpoint kinase mammalian target of rapamycin complex 1 (mTORC1), inhibition of autophagic flux, and defective mitophagy in macrophages. Blocking mTORC1 signaling in infected WT mice and primary macrophages enhanced bacterial replication and attenuated inflammasome activation, suggesting autophagy promotes bacterial replication while inhibiting inflammasome activation. Finally, our data suggest TLR9 and IFN-I are upstream signaling mechanisms triggering MyD88-mediated mTORC1 and inflammasome activation in macrophages following Ehrlichia infection. This study reveals that Ehrlichia-induced liver injury and toxic shock are mediated by MyD88-dependent inflammasome activation and autophagy inhibition.
Collapse
MESH Headings
- Animals
- Autophagy/immunology
- Blotting, Western
- Disease Models, Animal
- Ehrlichia/immunology
- Ehrlichiosis/immunology
- Ehrlichiosis/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Fluorescent Antibody Technique
- Image Processing, Computer-Assisted
- In Situ Nick-End Labeling
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Liver Failure, Acute/immunology
- Liver Failure, Acute/metabolism
- Liver Failure, Acute/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Myeloid Differentiation Factor 88/immunology
- Myeloid Differentiation Factor 88/metabolism
- Real-Time Polymerase Chain Reaction
- Shock, Septic/immunology
- Shock, Septic/metabolism
Collapse
Affiliation(s)
- Muhamuda Kader
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mounia Alaoui-EL-Azher
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennie Vorhauer
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bhushan B Kode
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jakob Z. Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Donna Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - George Michalopoulos
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Melanie Scott
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Choreño Parra JA, Martínez Zúñiga N, Jiménez Zamudio LA, Jiménez Álvarez LA, Salinas Lara C, Zúñiga J. Memory of Natural Killer Cells: A New Chance against Mycobacterium tuberculosis? Front Immunol 2017; 8:967. [PMID: 28855906 PMCID: PMC5558047 DOI: 10.3389/fimmu.2017.00967] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system, which play an important role in the initial defense against a wide variety of pathogens, including viruses and intracellular bacteria. NK cells produce cytokines that enhance immune responses directed toward pathogens and also exert cytotoxic activity against infected cells, thereby eliminating the reservoir of infection. Their role in defense against Mycobacterium tuberculosis (Mtb) has been recently studied, and there is increasing evidence that highlight the importance of NK cell function during pulmonary tuberculosis (PTB), especially in the absence of optimal T-cell responses. Additionally, in the last years, it has been observed that NK cells mediate secondary responses against antigens to which they were previously exposed, an ability classically attributed to lymphocytes of the adaptive branch of immunity. This phenomenon, called “innate memory,” could have important implications in the efforts to develop therapies and vaccines to improve the initial phases of immune reactions against different microorganisms, especially those to which there is not yet available vaccines to prevent infection, as is the case for tuberculosis. Therefore, the possibility of inducing memory-like NK cells ready to act prior to contact with Mtb or during the earliest stages of infection becomes quite interesting. However, our understanding of the mechanisms of innate memory remains incomplete. Here, we review recent literature about the mechanisms involved in the formation and maintenance of NK cell memory and the role of these cells in the immune response during tuberculosis. Finally, we discuss if the current evidence is sufficient to substantiate that NK cells exert more rapid and robust secondary responses after consecutive encounters with Mtb.
Collapse
Affiliation(s)
- José Alberto Choreño Parra
- Laboratory of Clinical Immunology I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas, Mexico City, Mexico
| | - Nayeli Martínez Zúñiga
- Brain Bank, Department of National Laboratories of Experimental Services, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Antonio Jiménez Zamudio
- Laboratory of Clinical Immunology I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Armando Jiménez Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas, Mexico City, Mexico
| | - Citlaltepetl Salinas Lara
- Department of Pathology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
14
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne infectious diseases caused by various members from the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis is the major etiologic agent of human monocytotropic ehrlichiosis (HME), while Anaplasma phagocytophilum is the major cause of human granulocytic anaplasmosis (HGA). The clinical manifestations of HME and HGA ranges from subclinical to potentially life-threatening diseases associated with multi-organ failure. Macrophages and neutrophils are the major target cells for Ehrlichia and Anaplasma, respectively. The threat to public health is increasing with newly emerging ehrlichial and anaplasma agents, yet vaccines for human ehrlichioses and anaplasmosis are not available, and therapeutic options are limited. This article reviews recent advances in the understanding of HME and HGA.
Collapse
|
15
|
Abstract
Ehrlichia chaffeensis is an obligatory intracellular and cholesterol-dependent bacterium that has evolved special proteins and functions to proliferate inside leukocytes and cause disease. E. chaffeensis has a multigene family of major outer membrane proteins with porin activity and induces infectious entry using its entry-triggering protein to bind the human cell surface protein DNase X. During intracellular replication, three functional pairs of two-component systems are sequentially expressed to regulate metabolism, aggregation, and the development of stress-resistance traits for transmission. A type IV secretion effector of E. chaffeensis blocks mitochondrion-mediated host cell apoptosis. Several type I secretion proteins are secreted at the Ehrlichia-host interface. E. chaffeensis strains induce strikingly variable inflammation in mice. The central role of MyD88, but not Toll-like receptors, suggests that Ehrlichia species have unique inflammatory molecules. A recent report about transient targeted mutagenesis and random transposon mutagenesis suggests that stable targeted knockouts may become feasible in Ehrlichia.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
16
|
Habib S, El Andaloussi A, Hisham A, Ismail N. NK Cell-Mediated Regulation of Protective Memory Responses against Intracellular Ehrlichial Pathogens. PLoS One 2016; 11:e0153223. [PMID: 27092553 PMCID: PMC4836677 DOI: 10.1371/journal.pone.0153223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
Ehrlichiae are gram-negative obligate intracellular bacteria that cause potentially fatal human monocytic ehrlichiosis. We previously showed that natural killer (NK) cells play a critical role in host defense against Ehrlichia during primary infection. However, the contribution of NK cells to the memory response against Ehrlichia remains elusive. Primary infection of C57BL/6 mice with Ehrlichia muris provides long-term protection against a second challenge with the highly virulent Ixodes ovatus Ehrlichia (IOE), which ordinarily causes fatal disease in naïve mice. Here, we show that the depletion of NK cells in E. muris-primed mice abrogates the protective memory response against IOE. Approximately, 80% of NK cell-depleted E. muris-primed mice succumbed to lethal IOE infection on days 8-10 after IOE infection, similar to naïve mice infected with the same dose of IOE. The lack of a recall response in NK cell-depleted mice correlated with an increased bacterial burden, extensive liver injury, decreased frequency of Ehrlichia-specific IFN-γ-producing memory CD4+ and CD8+ T-cells, and a low titer of Ehrlichia-specific antibodies. Intraperitoneal infection of mice with E. muris resulted in the production of IL-15, IL-12, and IFN-γ as well as an expansion of activated NKG2D+ NK cells. The adoptive transfer of purified E. muris-primed hepatic and splenic NK cells into Rag2-/-Il2rg-/- recipient mice provided protective immunity against challenge with E. muris. Together, these data suggest that E. muris-induced memory-like NK cells, which contribute to the protective, recall response against Ehrlichia.
Collapse
Affiliation(s)
- Samar Habib
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Abdeljabar El Andaloussi
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Ahmed Hisham
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Prognostic markers among Egyptian children with sepsis in the Intensive Care Units, Cairo University Hospitals. Allergol Immunopathol (Madr) 2016; 44:46-53. [PMID: 26657169 DOI: 10.1016/j.aller.2015.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/29/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Early identification of septic patients at risk of mortality is important in their prognosis. OBJECTIVE Identification of septic patients at risk of mortality in Pediatric Intensive Care Units (PICUs) at Cairo University Hospitals, through measuring the levels of certain immunological parameters. METHODS A hospital-based prospective cohort study was conducted in two PICUs at Cairo University Hospitals; all patients with diagnosis of severe sepsis or septic shock on admission were included. A total of 57 patients were prospectively followed at the selected PICUs and their demographic and clinical data were recorded. Microbiological and immunological workup (at days 1 and 7) was conducted for all patients to detect the causative organism of sepsis and to measure the levels of immunoglobulins (IgG, IgM and IgA), complement factors (C3 and C4), mature lymphocyte subpopulations (CD3+) and natural killer (NK) cells (CD3-CD16+CD56+), respectively. RESULTS Mortality rate was 24.6%; the most frequent causes of death were multi-organ dysfunction and refractory shock. PELOD and PRISM III scores were significantly higher among non-survivors. At day 1, non-survivors had significantly higher levels of IgG, C4 and NK cells than survivors. However, from day 1 to day 7, survivors had a progressive increase in most of the immunological parameters (IgG, IgM, C4and CD3+ T lymphocytes). Survival curve analysis revealed the significant predictive ability of NK cells to detect early mortality. CONCLUSION Monitoring the levels of cellular and humoral immunological parameters together with assessing PELOD and PRISM III scores can significantly affect prognosis and survival of septic children.
Collapse
|
18
|
NK and NKT Cell Depletion Alters the Outcome of Experimental Pneumococcal Pneumonia: Relationship with Regulation of Interferon-γ Production. J Immunol Res 2015; 2015:532717. [PMID: 26114123 PMCID: PMC4465773 DOI: 10.1155/2015/532717] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/29/2015] [Accepted: 05/03/2015] [Indexed: 12/31/2022] Open
Abstract
Background. Natural killer (NK) and natural killer T (NKT) cells contribute to the innate host defense but their role in bacterial sepsis remains controversial. Methods. C57BL/6 mice were infected intratracheally with 5 × 10(5) cfu of Streptococcus pneumoniae. Animals were divided into sham group (Sham); pretreated with isotype control antibody (CON) group; pretreated with anti-asialo GM1 antibody (NKd) group; and pretreated with anti-CD1d monoclonal antibody (NKTd) group before bacterial challenge. Serum and tissue samples were analyzed for bacterial load, cytokine levels, splenocyte apoptosis rates, and cell characteristics by flow cytometry. Splenocyte miRNA expression was also analyzed and survival was assessed. Results. NK cell depletion prolonged survival. Upon inhibition of NKT cell activation, spleen NK (CD3-/NK1.1+) cells increased compared to all other groups. Inhibition of NKT cell activation led to higher bacterial loads and increased levels of serum and splenocyte IFN-γ. Splenocyte miRNA analysis showed that miR-200c and miR-29a were downregulated, while miR-125a-5p was upregulated, in anti-CD1d treated animals. These changes were moderate after NK cell depletion. Conclusions. NK cells appear to contribute to mortality in pneumococcal pneumonia. Inhibition of NKT cell activation resulted in an increase in spleen NK (CD3-/NK1.1+) cells and a higher IFN-γ production, while altering splenocyte miRNA expression.
Collapse
|
19
|
Yang Q, Stevenson HL, Scott MJ, Ismail N. Type I interferon contributes to noncanonical inflammasome activation, mediates immunopathology, and impairs protective immunity during fatal infection with lipopolysaccharide-negative ehrlichiae. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:446-61. [PMID: 25481711 DOI: 10.1016/j.ajpath.2014.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Ehrlichia species are intracellular bacteria that cause fatal ehrlichiosis, mimicking toxic shock syndrome in humans and mice. Virulent ehrlichiae induce inflammasome activation leading to caspase-1 cleavage and IL-18 secretion, which contribute to development of fatal ehrlichiosis. We show that fatal infection triggers expression of inflammasome components, activates caspase-1 and caspase-11, and induces host-cell death and secretion of IL-1β, IL-1α, and type I interferon (IFN-I). Wild-type and Casp1(-/-) mice were highly susceptible to fatal ehrlichiosis, had overwhelming infection, and developed extensive tissue injury. Nlrp3(-/-) mice effectively cleared ehrlichiae, but displayed acute mortality and developed liver injury similar to wild-type mice. By contrast, Ifnar1(-/-) mice were highly resistant to fatal disease and had lower bacterial burden, attenuated pathology, and prolonged survival. Ifnar1(-/-) mice also had improved protective immune responses mediated by IFN-γ and CD4(+) Th1 and natural killer T cells, with lower IL-10 secretion by T cells. Importantly, heightened resistance of Ifnar1(-/-) mice correlated with improved autophagosome processing, and attenuated noncanonical inflammasome activation indicated by decreased activation of caspase-11 and decreased IL-1β, compared with other groups. Our findings demonstrate that IFN-I signaling promotes host susceptibility to fatal ehrlichiosis, because it mediates ehrlichia-induced immunopathology and supports bacterial replication, perhaps via activation of noncanonical inflammasomes, reduced autophagy, and suppression of protective CD4(+) T cells and natural killer T-cell responses against ehrlichiae.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Heather L Stevenson
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie J Scott
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nahed Ismail
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Tsuchiya K, Hara H, Fang R, Hernandez-Cuellar E, Sakai S, Daim S, Chen X, Dewamitta SR, Qu H, Mitsuyama M, Kawamura I. The adaptor ASC exacerbates lethal Listeria monocytogenes infection by mediating IL-18 production in an inflammasome-dependent and -independent manner. Eur J Immunol 2014; 44:3696-707. [PMID: 25251560 DOI: 10.1002/eji.201444673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/19/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
Abstract
Listeria monocytogenes induces the formation of inflammasomes and subsequent caspase-1 activation, and the adaptor apoptosis-associated speck-like protein containing a CARD (ASC) is crucial for this response. However, the role of ASC in L. monocytogenes infection in vivo is unclear. In this study, we demonstrate that ASC has a detrimental effect on host defense against L. monocytogenes infection at a lethal dose (10(6) CFU), but not at a sublethal dose (10(3) CFU). During lethal L. monocytogenes infection, serum levels of IL-18 and IL-10 were markedly elevated in WT mice, but not in ASC KO mice. IL-18 KO mice were more resistant to lethal L. monocytogenes infection than WT mice and had lower levels of serum IL-10. Furthermore, blockade of IL-10 receptor resulted in a reduction in bacterial counts, suggesting that ASC and IL-18 might exacerbate L. monocytogenes infection through induction of IL-10. We noticed that maturation of IL-18 during lethal infection was partially independent of caspase-1, but was critically dependent on ASC. ASC was required for the elevation of serum neutrophil serine protease activity, which correlated with caspase-1-independent IL-18 maturation and IL-10 production. Collectively, these results suggest that ASC plays a detrimental role in lethal L. monocytogenes infection through IL-18 production in an inflammasome-dependent and -independent manner.
Collapse
Affiliation(s)
- Kohsuke Tsuchiya
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
22
|
Beavers C, Rickard K, W. Snyder J, C. Hollensead S. Two fatal Ehrlichia cases with complete autopsies. JMM Case Rep 2014. [DOI: 10.1099/jmmcr.0.000349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Charles Beavers
- Department of Pathology and Laboratory Medicine, University of Louisville, 530 S. Jackson Street, Louisville, KY 40202, USA
| | - Kyle Rickard
- Department of Pathology and Laboratory Medicine, University of Louisville, 530 S. Jackson Street, Louisville, KY 40202, USA
| | - James W. Snyder
- Department of Pathology and Laboratory Medicine, University of Louisville, 530 S. Jackson Street, Louisville, KY 40202, USA
| | - Sandra C. Hollensead
- Department of Pathology and Laboratory Medicine, University of Louisville, 530 S. Jackson Street, Louisville, KY 40202, USA
| |
Collapse
|
23
|
Souza-Fonseca-Guimaraes F, Cavaillon JM, Adib-Conquy M. Bench-to-bedside review: Natural killer cells in sepsis - guilty or not guilty? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:235. [PMID: 23998530 PMCID: PMC4057064 DOI: 10.1186/cc12700] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial sepsis and septic shock are complex inflammatory disorders associated with a systemic inflammatory response syndrome. In the most severe cases of infection, an overzealous release of pro-inflammatory cytokines and inflammatory mediators by activated leukocytes, epithelial cells and endothelial cells, known as a 'cytokine storm', leads to deleterious effects such as organ dysfunction and even death. By the end of the 20th century, natural killer (NK) cells were for the first time identified as important players during sepsis. The role of this cell type was, however, double-edged, either 'angel' or 'devil' depending upon the bacterial infection model under study. Bacterial sensors (such as Toll-like receptors) have recently been shown to be expressed at the protein level in these cells. In addition, NK cells are important sources of interferon-γ and granulocyte-macrophage colony-stimulating factor, which are pro-inflammatory cytokines necessary to fight infection but can contribute to deleterious inflammation as well. Interestingly, an adaptative response occurs aimed to silence them, similar to the well-known phenomenon of endotoxin reprogramming.
Collapse
|
24
|
Viegas N, Andzinski L, Wu CF, Komoll RM, Gekara N, Dittmar KE, Weiss S, Jablonska J. IFN-γ production by CD27⁺ NK cells exacerbates Listeria monocytogenes infection in mice by inhibiting granulocyte mobilization. Eur J Immunol 2013; 43:2626-37. [PMID: 23818011 DOI: 10.1002/eji.201242937] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 06/07/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022]
Abstract
Natural killer (NK) cells are key components of the immune system involved in several immune reactions, including the clearance of intracellular pathogens. When activated, NK cells rapidly secrete particular cytokines that activate innate immunity and facilitate development of adaptive responses. Conflicting reports on the role of NK cells during infection by Listeria monocytogenes can be found in the literature. Here, we demonstrate that during lethal infection by L. monocytogenes, activation of NK cells via the costimulatory molecule CD27 leads to excessive IFN-γ production. This impairs innate anti-bacterial host defenses by inducing downregulation of CXCR2 on granulocytes and consequently inhibiting their recruitment to the sites of infection. The use of antibodies to block CD27 signaling or to deplete IFN-γ was sufficient to rescue mice from lethal challenge by L. monocytogenes. Our findings contribute to a better understanding of the importance of CD27 signaling in activation of NK cells and should provide new ways of interfering with infections.
Collapse
Affiliation(s)
- Nuno Viegas
- Molecular Immunology, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
TLR2 and Nod2 mediate resistance or susceptibility to fatal intracellular Ehrlichia infection in murine models of ehrlichiosis. PLoS One 2013; 8:e58514. [PMID: 23526993 PMCID: PMC3602367 DOI: 10.1371/journal.pone.0058514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/05/2013] [Indexed: 01/23/2023] Open
Abstract
Our murine models of human monocytic ehrlichiosis (HME) have shown that severe and fatal ehrlichiosis is due to generation of pathogenic T cell responses causing immunopathology and multi-organ failure. However, the early events in the liver, the main site of infection, are not well understood. In this study, we examined the liver transcriptome during the course of lethal and nonlethal infections caused by Ixodes ovatus Ehrlichia and Ehrlichia muris, respectively. On day 3 post-infection (p.i.), although most host genes were down regulated in the two groups of infected mice compared to naïve counterparts, lethal infection induced significantly higher expression of caspase 1, caspase 4, nucleotide binding oligomerization domain-containing proteins (Nod1), tumor necrosis factor-alpha, interleukin 10, and CCL7 compared to nonlethal infection. On day 7 p.i., lethal infection induced highly significant upregulation of type-1 interferon, several inflammatory cytokines and chemokines, which was associated with increased expression levels of Toll-like receptor-2 (TLR2), Nod2, MyD88, nuclear factor-kappa B (NF-kB), Caspase 4, NLRP1, NLRP12, Pycard, and IL-1β, suggesting enhanced TLR signals and inflammasomes activation. We next evaluated the participation of TLR2 and Nod2 in the host response during lethal Ehrlichia infection. Although lack of TLR2 impaired bacterial elimination and increased tissue necrosis, Nod2 deficiency attenuated pathology and enhanced bacterial clearance, which correlated with increased interferon-γ and interleukin-10 levels and a decreased frequency of pathogenic CD8(+) T cells in response to lethal infection. Thus, these data indicate that Nod2, but not TLR2, contributes to susceptibility to severe Ehrlichia-induced shock. Together, our studies provide, for the first time, insight into the diversity of host factors and novel molecular pathogenic mechanisms that may contribute to severe HME.
Collapse
|
26
|
Neutrophils mediate immunopathology and negatively regulate protective immune responses during fatal bacterial infection-induced toxic shock. Infect Immun 2013; 81:1751-63. [PMID: 23478316 DOI: 10.1128/iai.01409-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium that infects primarily monocytes and macrophages and causes potentially fatal human monocytic ehrlichiosis (HME) that mimics toxic-shock-like syndrome in immunocompetent hosts. Early recruitment of neutrophils to the sites of infection is critical for the control of bacterial infection and inflammatory responses. We recently observed rapid and sustained neutrophil recruitment at a primary site of infection (peritoneum) following lethal murine ehrlichial infection compared to innocuous ehrlichial infection. We examined here the contribution of neutrophils to protective immunity or immunopathology during infection with monocytic Ehrlichia. Unexpectedly, depletion of neutrophils from lethally infected mice enhanced bacterial elimination, decreased immune-mediated pathology, and prolonged survival. Furthermore, compared to lethally infected sham controls, neutrophil depletion in infected mice resulted in amelioration of pathogenic responses, as evidenced by a decreased number of tumor necrosis factor alpha (TNF-α)-producing CD8(+) T cells, which is known to mediate immunopathology and toxic shock in a murine model of fatal ehrlichiosis. Although neutrophil depletion did not influence the number of CD4(+) Th1 cells and NKT cells producing gamma interferon (IFN-γ), it increased the ratio of IFN-γ- to IL-10-producing NKT cells as well as the ratio of IFN-γ to interleukin 10 (IL-10) transcripts in the liver. This may ameliorate the net suppressive effect of IL-10 on IFN-γ-mediated activation of infected macrophages and thus may account for the enhanced bacterial elimination. Finally, transcriptional analysis of gene expression in the liver indicated that neutrophils contribute to overproduction of cytokines and chemokines during fatal ehrlichiosis. In conclusion, these results revealed an unexpected role of neutrophils in supporting bacterial replication indirectly and promoting immunopathology during severe infection with an intracellular bacterium.
Collapse
|
27
|
Evaluation of peripheral blood lymphocyte subsets in family-owned dogs naturally infected by Ehrlichia canis. Comp Immunol Microbiol Infect Dis 2012; 35:391-6. [DOI: 10.1016/j.cimid.2012.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/05/2012] [Accepted: 03/16/2012] [Indexed: 11/22/2022]
|
28
|
Ismail N, Walker DH, Ghose P, Tang YW. Immune mediators of protective and pathogenic immune responses in patients with mild and fatal human monocytotropic ehrlichiosis. BMC Immunol 2012; 13:26. [PMID: 22607204 PMCID: PMC3517396 DOI: 10.1186/1471-2172-13-26] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ehrlichia chaffeensis is a bacterial pathogen that causes fatal human monocytic ehrlichiosis (HME) that mimic toxic shock-like syndrome. Murine studies indicate that over activation of cellular immunity followed by immune suppression plays a central role in mediating tissue injury and organ failure during fatal HME. However, there are no human studies that examine the correlates of resistance or susceptibility to severe and fatal HME. RESULTS In this study, we compared the immune responses in two patients with mild/non fatal and severe/fatal HME who had marked lymphopenia, thrombocytopenia and elevated liver enzymes. The levels of different immunological factors in the blood of those patients were examined and compared to healthy controls. Our data showed that fatal HME is associated with defective production of Th1 cytokines such as ( IFNγ and IL-2), increased anti-inflammatory (IL-10 and IL-13) and pro-inflammatory (TNF-α, IL-1α, IL-1β, and IL-6) cytokines, increased levels of macrophages, T cells, and NK cells chemokines such as MCP-1, MIP-1α, MIP-1β, but not RANTES and IP-10, increased levels of neutrophils chemokine and growth factor (IL-8 and G-CSF), and elevated expression of tumor necrosis factor receptor (TNFR), and toll like receptors 2 and 4 compared to patients with non fatal HME and healthy controls. CONCLUSIONS Fatal Ehrlichia-induced toxic shock is associated with defective Th1 responses, possible immune suppression mediated by IL-10. In addition, marked leukopenia observed in patients with fatal disease could be attributed to enhanced apoptosis of leukocytes and/or elevated chemokine production that could promote migration of immune cells to sites of infection causing tissue injury.
Collapse
Affiliation(s)
- Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
29
|
Fang R, Ismail N, Walker DH. Contribution of NK cells to the innate phase of host protection against an intracellular bacterium targeting systemic endothelium. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:185-95. [PMID: 22617213 DOI: 10.1016/j.ajpath.2012.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/10/2012] [Accepted: 03/22/2012] [Indexed: 11/19/2022]
Abstract
We investigated the mechanisms by which natural killer (NK) cells mediate innate host defense against infection with an endothelium-targeting intracellular bacterium, Rickettsia. We found that a robust Rickettsia-induced innate response in resistant mice cleared the bacteria early in the infection and was associated with significantly higher frequencies of splenic interferon (IFN)-γ (+) CD8(+) T cells and cytotoxic NK cells compared with susceptible mice. More importantly, NK cell-deficient Rag(-/-)γc(-/-) animals displayed significantly increased susceptibility to Rickettsia infection compared with NK cell-sufficient Rag(-/-) mice, as evidenced by impaired bacterial clearance, early development of severe thrombosis in the liver, and a decreased serum level of IFN-γ. Furthermore, the lack of NK cells also impaired host resistance of CB-17 scid mice to Rickettsia, similar to what was observed in Rag(-/-)γc(-/-) mice. Interestingly, perforin deficiency in Rag(-/-)Prf1(-/-) mice resulted in greater thrombosis and insignificantly different systemic levels of IFN-γ compared with Rag(-/-) mice, suggesting that perforin, which is mainly produced by NK cells, is involved in the prevention of vascular damage. Together, these findings reveal that NK cells mediate the innate phase of host protection against infection with rickettsiae, most likely via IFN-γ production. Furthermore, NK cells are involved in preventing rickettsial infection-induced endothelial cell damage, possibly via perforin production.
Collapse
Affiliation(s)
- Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | |
Collapse
|
30
|
Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med 2012; 18:270-285. [PMID: 22105606 PMCID: PMC3324953 DOI: 10.2119/molmed.2011.00201] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances.
Collapse
Affiliation(s)
| | - Minou Adib-Conquy
- Institut Pasteur, Cytokines and Inflammation Unit, Department of Infection and Epidemiology, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Cytokines and Inflammation Unit, Department of Infection and Epidemiology, Paris, France
| |
Collapse
|
31
|
Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J Virol 2011; 86:2251-8. [PMID: 22171263 DOI: 10.1128/jvi.06209-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is known that respiratory syncytial virus (RSV) is the main cause of bronchiolitis and pneumonia in young children. RSV infection often leads to severe acute lung immunopathology, but the underlying immune mechanisms are not yet fully elucidated. Here, we found that RSV infection induced severe acute lung immune injury and promoted the accumulation and activation of lung natural killer (NK) cells at the early stage of infection in BALB/c mice. Activated lung NK cells highly expressed activating receptors NKG2D and CD27 and became functional NK cells by producing a large amount of gamma interferon (IFN-γ), which was responsible for acute lung immune injury. NK cell depletion significantly attenuated lung immune injury and reduced infiltration of total inflammatory cells and production of IFN-γ in bronchoalveolar lavage fluid (BALF). These data show that NK cells are involved in exacerbating the lung immune injury at the early stage of RSV infection via IFN-γ secretion.
Collapse
|
32
|
Ghose P, Ali AQ, Fang R, Forbes D, Ballard B, Ismail N. The interaction between IL-18 and IL-18 receptor limits the magnitude of protective immunity and enhances pathogenic responses following infection with intracellular bacteria. THE JOURNAL OF IMMUNOLOGY 2011; 187:1333-46. [PMID: 21715688 DOI: 10.4049/jimmunol.1100092] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The binding of IL-18 to IL-18Rα induces both proinflammatory and protective functions during infection, depending on the context in which it occurs. IL-18 is highly expressed in the liver of wild-type (WT) C57BL/6 mice following lethal infection with highly virulent Ixodes ovatus ehrlichia (IOE), an obligate intracellular bacterium that causes acute fatal toxic shock-like syndrome. In this study, we found that IOE infection of IL-18Rα(-/-) mice resulted in significantly less host cell apoptosis, decreased hepatic leukocyte recruitment, enhanced bacterial clearance, and prolonged survival compared with infected WT mice, suggesting a pathogenic role for IL-18/IL-18Rα in Ehrlichia-induced toxic shock. Although lack of IL-18R decreased the magnitude of IFN-γ producing type-1 immune response, enhanced resistance of IL-18Rα(-/-) mice against Ehrlichia correlated with increased proinflammatory cytokines at sites of infection, decreased systemic IL-10 production, increased frequency of protective NKT cells producing TNF-α and IFN-γ, and decreased frequency of pathogenic TNF-α-producing CD8(+) T cells. Adoptive transfer of immune WT CD8(+) T cells increased bacterial burden in IL-18Rα(-/-) mice following IOE infection. Furthermore, rIL-18 treatment of WT mice infected with mildly virulent Ehrlichia muris impaired bacterial clearance and enhanced liver injury. Finally, lack of IL-18R signal reduced dendritic cell maturation and their TNF-α production, suggesting that IL-18 might promote the adaptive pathogenic immune responses against Ehrlichia by influencing T cell priming functions of dendritic cells. Together, these results suggested that the presence or absence of IL-18R signals governs the pathogenic versus protective immunity in a model of Ehrlichia-induced immunopathology.
Collapse
Affiliation(s)
- Purnima Ghose
- Department of Pathology, Meharry Medical College, Nashville, TN 37028, USA
| | | | | | | | | | | |
Collapse
|