1
|
Bernal-Valle S, Monteiro de Mello Mares-Guia MA, Vieira Santos de Abreu F, Souza Campos F, de Oliveira CH, Veloso Ramos AV, Pereira Lordelo R, De Vleeschouwer K, de Carvalho Oliveira L, Ferraz Fehlberg H, Bispo Filippis AM, Morais Ribeiro B, Roehe PM, da Paixão Sevá A, Simonini-Teixeira D, Rego Albuquerque G. Natural exposure to Chikungunya virus in golden-headed lion tamarin (Leontopithecus chrysomelas, Kuhl, 1820) from non-protected areas in southern Bahia, Brazil: Implications and significance. PLoS Negl Trop Dis 2025; 19:e0012695. [PMID: 39854566 PMCID: PMC11761120 DOI: 10.1371/journal.pntd.0012695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/13/2024] [Indexed: 01/26/2025] Open
Abstract
Chikungunya virus (CHIKV) is primarily associated with non-human-primates (NHPs) in Africa, which also infect humans. Since its introduction to Brazil in 2014, CHIKV has predominantly thrived in urban cycles, involving Aedes aegypti mosquitoes. Limited knowledge exists regarding CHIKV occurrence and implications in rural and sylvatic cycles where neotropical NHPs are potential hosts, from which we highlight Leontopithecus chrysomelas (Kuhl, 1820), the golden-headed lion tamarin (GHLT), an endangered species endemic to the Atlantic Forest (AF) in Southern Bahia State, Brazil. The present study investigated wild GHLT groups across two municipalities, Ilhéus and Una, Bahia. Surveys were conducted in three groups within cocoa agroforests (cabrucas) in Ilhéus, and four groups in anthropized forest and agroforestry fragments in Una, between 2021 and 2022. Thirty-two GHLT specimens were captured and chemically immobilized, examined and submitted to blood sample collection; nine specimens were later recaptured in 2022, totaling 41 samples. CHIKV viremia was not detected in any specimens (as assayed by RT-qPCR). Plaque reduction neutralization test (PRNT90) detected CHIKV antibodies in two (6.3%) GHLTs, with 10-20 antibody titers. Seroprevalence in 2021 was 5.6% and in 2022 was 8.7% with an incidence of 4.5%, whereas, a male adult tested seropositive in both years, suggesting either natural re-exposure and antibody maintenance over time. All samples tested seronegative for Mayaro Virus. Eight mosquito species from the Culicidae family were collected, identified and assayed for CHIKV genomes, showing negative results. This study provides the first evidence of natural CHIKV exposure among free-living GHLTs in Brazil, emphasizing their susceptibility and potential role as reservoirs. These findings underscore the possible consequences of anthropic disturbances in the Brazilian AF, without a seroprevalence difference between non-protected forest formations, agroforest fragments and various mosaic farming landscapes in South Bahia, and highlight the importance of conservation efforts for this endemic and endangered primate species.
Collapse
Affiliation(s)
- Sofía Bernal-Valle
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- Núcleo de Atendimento e Pesquisa de Animais Silvestres (NAPAS), Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- CENIBiot Laboratory, The National Center of High Technology (CeNAT-CONARE), San José, Costa Rica
| | | | | | - Fabrício Souza Campos
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cirilo Henrique de Oliveira
- Insect Behavior Laboratory (LACOI), Instituto Federal do Norte de Minas Gerais, Salinas, Minas Gerais, Brazil
| | - Antônio Victor Veloso Ramos
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- Núcleo de Atendimento e Pesquisa de Animais Silvestres (NAPAS), Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Reizane Pereira Lordelo
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Leonardo de Carvalho Oliveira
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade—PPGECB, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- Bicho do Mato Instituto de Pesquisa, Belo Horizonte, Minas Gerais, Brazil
| | - Hllytchaikra Ferraz Fehlberg
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Ana Maria Bispo Filippis
- Laboratory of arboviroses and hemorrhagic viruses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bergmann Morais Ribeiro
- Baculovirus Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Federal District, Brazil
| | - Paulo Michel Roehe
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Anaiá da Paixão Sevá
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Danilo Simonini-Teixeira
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- Núcleo de Atendimento e Pesquisa de Animais Silvestres (NAPAS), Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - George Rego Albuquerque
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
2
|
Wei LLL, Tom R, Kim YC. Mayaro Virus: An Emerging Alphavirus in the Americas. Viruses 2024; 16:1297. [PMID: 39205271 PMCID: PMC11359717 DOI: 10.3390/v16081297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Mayaro virus (MAYV) is an arbovirus first isolated in Trinidad and Tobago in 1954. MAYV is the causative agent of Mayaro fever, which is characterised by high fever, maculopapular rash, myalgia and arthralgia. The potential for chronic arthralgia is of particular clinical concern. Currently, MAYV outbreaks are restricted to South and Central America, with some cases reported in Africa as well as several imported cases in Europe. However, in recent years, MAYV has become a growing global concern due to its potential to emerge into urban transmission cycles. Challenges faced with diagnostics, as well as a lack of specific antivirals or licensed vaccines further exacerbate the potential global health threat posed by MAYV. In this review, we discuss this emerging arboviral threat with a particular focus on the current treatment and vaccine development efforts. Overall, MAYV remains a neglected arbovirus due to its limited area of transmission. However, with the potential of its urbanisation and expanding circulation, the threat MAYV poses to global health cannot be overlooked. Further research into the improvement of current diagnostics, as well as the development of efficacious antivirals and vaccines will be crucial to help prevent and manage potential MAYV outbreaks.
Collapse
Affiliation(s)
- Lily Li Lin Wei
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK; (L.L.L.W.); (R.T.)
| | - Rufaro Tom
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK; (L.L.L.W.); (R.T.)
| | - Young Chan Kim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK
- Centre for Human Genetics, Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
3
|
Marinho MDS, Ferreira GM, Grosche VR, Nicolau-Junior N, Campos TDL, Santos IA, Jardim ACG. Evolutionary Profile of Mayaro Virus in the Americas: An Update into Genome Variability. Viruses 2024; 16:809. [PMID: 38793690 PMCID: PMC11126029 DOI: 10.3390/v16050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024] Open
Abstract
The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.
Collapse
Affiliation(s)
- Mikaela dos Santos Marinho
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
| | - Giulia Magalhães Ferreira
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
| | - Victória Riquena Grosche
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto 15054-000, SP, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil;
| | - Túlio de Lima Campos
- Aggeu Magalhães Institute (Fiocruz), Bioinformatics Core Facility, Recife 50740-465, PE, Brazil;
| | - Igor Andrade Santos
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
4
|
da Silva SJR, Krokovsky L. Clinical and laboratory diagnosis of Mayaro virus (MAYV): Current status and opportunities for further development. Rev Med Virol 2024; 34:e2528. [PMID: 38497839 DOI: 10.1002/rmv.2528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
The recent outbreaks related to Mayaro virus (MAYV) infection in the Americas have brought this neglected virus as a potential threat to global public health. Given the range of symptoms that can be associated with MAYV infection, it can be challenging to diagnose individuals based on clinical signs, especially in countries with simultaneous circulation of other mosquito-borne viruses, such as dengue virus (DENV) and chikungunya virus (CHIKV). With this challenge in mind, laboratory-based diagnosis assumes a critical role in the introduction of measures to help prevent virus dissemination and to adequately treat patients. In this review, we provide an overview of the clinical features reported in infected patients and currently available laboratory tools that are used for MAYV diagnosis, discussing their advances, advantages, and limitations to apply in the field. Moreover, we explore novel point-of-care (PoC) diagnostic platforms that can provide de-centralised diagnostics for use in areas with limited laboratory infrastructure.
Collapse
Affiliation(s)
| | - Larissa Krokovsky
- Department of Entomology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
5
|
Anestino TA, Queiroz-Junior CM, Cruz AMF, Souza DG, Madeira MFM. The impact of arthritogenic viruses in oral tissues. J Appl Microbiol 2024; 135:lxae029. [PMID: 38323434 DOI: 10.1093/jambio/lxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Arthritis and periodontitis are inflammatory diseases that share several immunopathogenic features. The expansion in the study of virus-induced arthritis has shed light on how this condition could impact other parts of the human body, including the mouth. Viral arthritis is an inflammatory joint disease caused by several viruses, most notably the alphaviruses Chikungunya virus (CHIKV), Sindbis virus (SINV), Ross River virus (RRV), Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV). These viruses can induce an upsurge of matrix metalloproteinases and immune-inflammatory mediators such as Interleukin-6 (IL6), IL-1β, tumor necrosis factor, chemokine ligand 2, and receptor activator of nuclear factor kappa-B ligand in the joint and serum of infected individuals. This can lead to the influx of inflammatory cells to the joints and associated muscles as well as osteoclast activation and differentiation, culminating in clinical signs of swelling, pain, and bone resorption. Moreover, several data indicate that these viral infections can affect other sites of the body, including the mouth. The human oral cavity is a rich and diverse microbial ecosystem, and viral infection can disrupt the balance of microbial species, causing local dysbiosis. Such events can result in oral mucosal damage and gingival bleeding, which are indicative of periodontitis. Additionally, infection by RRV, CHIKV, SINV, MAYV, or ONNV can trigger the formation of osteoclasts and upregulate pro-osteoclastogenic inflammatory mediators, interfering with osteoclast activation. As a result, these viruses may be linked to systemic conditions, including oral manifestations. Therefore, this review focuses on the involvement of alphavirus infections in joint and oral health, acting as potential agents associated with oral mucosal inflammation and alveolar bone loss. The findings of this review demonstrate how alphavirus infections could be linked to the comorbidity between arthritis and periodontitis and may provide a better understanding of potential therapeutic management for both conditions.
Collapse
Affiliation(s)
- Thales Augusto Anestino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Amanda Medeiros Frota Cruz
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Mila Fernandes Moreira Madeira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
- Department of Oral Biology, Biomedical Research Institute, University at Buffalo, Buffalo, NY, 14203, United States
| |
Collapse
|
6
|
Nunes DADF, Lopes GFM, Nizer WSDC, Aguilar MGD, Santos FRDS, Sousa GFD, Ferraz AC, Duarte LP, Brandão GC, Vieira-Filho SA, Magalhães CLDB, Ferreira JMS, de Magalhães JC. Virucidal antiviral activity of Maytenus quadrangulata extract against Mayaro virus: Evidence for the presence of catechins. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116436. [PMID: 37003399 DOI: 10.1016/j.jep.2023.116436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS The leaves (LAE; EC50 12.0 μg/mL) and branches (TAE; EC50 101.0 μg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.
Collapse
Affiliation(s)
| | | | | | - Mariana G de Aguilar
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Ariane Coelho Ferraz
- Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | - José Carlos de Magalhães
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil.
| |
Collapse
|
7
|
Celone M, Potter AM, Han BA, Beeman SP, Okech B, Forshey B, Dunford J, Rutherford G, Mita-Mendoza NK, Estallo EL, Khouri R, de Siqueira IC, Petersen K, Maves RC, Anyamba A, Pollett S. A geopositioned and evidence-graded pan-species compendium of Mayaro virus occurrence. Sci Data 2023; 10:460. [PMID: 37452060 PMCID: PMC10349107 DOI: 10.1038/s41597-023-02302-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Mayaro Virus (MAYV) is an emerging health threat in the Americas that can cause febrile illness as well as debilitating arthralgia or arthritis. To better understand the geographic distribution of MAYV risk, we developed a georeferenced database of MAYV occurrence based on peer-reviewed literature and unpublished reports. Here we present this compendium, which includes both point and polygon locations linked to occurrence data documented from its discovery in 1954 until 2022. We describe all methods used to develop the database including data collection, georeferencing, management and quality-control. We also describe a customized grading system used to assess the quality of each study included in our review. The result is a comprehensive, evidence-graded database of confirmed MAYV occurrence in humans, non-human animals, and arthropods to-date, containing 262 geo-positioned occurrences in total. This database - which can be updated over time - may be useful for local spill-over risk assessment, epidemiological modelling to understand key transmission dynamics and drivers of MAYV spread, as well as identification of major surveillance gaps.
Collapse
Affiliation(s)
- Michael Celone
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, Maryland, 20814, USA.
| | - Alexander M Potter
- Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910, USA
- Walter Reed Biosystematics Unit, Suitland, Maryland, 20746, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, New York, 12545, USA
| | - Sean P Beeman
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, Maryland, 20814, USA
| | - Bernard Okech
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, Maryland, 20814, USA
| | - Brett Forshey
- Armed Forces Health Surveillance Division, Silver Spring, Maryland, 20904, USA
| | - James Dunford
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, Maryland, 20814, USA
| | - George Rutherford
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, California, 94158, USA
| | | | - Elizabet Lilia Estallo
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ricardo Khouri
- Instituto Gonçalo Moniz-Fiocruz, R. Waldemar Falcão, Salvador-BA, Brazil
| | | | - Kyle Petersen
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, Maryland, 20814, USA
| | - Ryan C Maves
- Section of Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Assaf Anyamba
- Geospatial Science and Human Security Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee, 37830, USA
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA.
| |
Collapse
|
8
|
Fernández D, Yun R, Zhou J, Parise PL, Mosso-González C, Villasante-Tezanos A, Weaver SC, Pando-Robles V, Aguilar PV. Differential Susceptibility of Aedes aegypti and Aedes albopictus Mosquitoes to Infection by Mayaro Virus Strains. Am J Trop Med Hyg 2023; 109:115-122. [PMID: 37253447 PMCID: PMC10323988 DOI: 10.4269/ajtmh.22-0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 06/01/2023] Open
Abstract
Mayaro virus (MAYV) is an arthropod-borne virus (arbovirus) belonging to the family Togaviridae, genus Alphavirus. In recent years, the geographic distribution of MAYV may have expanded north from South and Central America into the Caribbean Islands. Although Haemagogus janthinomys is considered the main vector for MAYV, the virus has also been isolated from other mosquitoes, including Aedes aegypti, a widespread species that serves as the main vector for highly epidemic viruses. Given the possible expansion and outbreaks of MAYV in Latin America, it is possible that MAYV might be adapting to be efficiently transmitted by urban vectors. Therefore, to investigate this possibility, we evaluated the vector competence of Ae. aegypti and Ae. albopictus mosquitoes to transmit MAYV isolated during a year of low or high MAYV transmission. Adult Ae. aegypti and Ae. albopictus were orally infected with the MAYV strains, and the infection, dissemination, and transmission rates were calculated to evaluate their vector competence. Overall, we found higher infection, dissemination, and transmission rates in both Ae. aegypti and Ae. albopictus mosquitoes infected with the strain isolated during a MAYV outbreak, whereas low/no transmission was detected with the strain isolated during a year of low MAYV activity. Our results confirmed that both Ae. aegypti and Ae. albopictus are competent vectors for the emergent MAYV. Our data suggest that strains isolated during MAYV outbreaks might be better fit to infect and be transmitted by urban vectors, raising serious concern about the epidemic potential of MAYV.
Collapse
Affiliation(s)
- Diana Fernández
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Ruimei Yun
- Department of Microbiology, University of Texas Medical Branch, Galveston, Texas
| | - Jiehua Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Pierina L. Parise
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Clemente Mosso-González
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | | | - Scott C. Weaver
- Department of Microbiology, University of Texas Medical Branch, Galveston, Texas
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Victoria Pando-Robles
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
9
|
Webb EM, Compton A, Rai P, Chuong C, Paulson SL, Tu Z, Weger-Lucarelli J. Expression of anti-chikungunya single-domain antibodies in transgenic Aedes aegypti reduces vector competence for chikungunya virus and Mayaro virus. Front Microbiol 2023; 14:1189176. [PMID: 37378291 PMCID: PMC10291133 DOI: 10.3389/fmicb.2023.1189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related alphaviruses that cause acute febrile illness accompanied by an incapacitating polyarthralgia that can persist for years following initial infection. In conjunction with sporadic outbreaks throughout the sub-tropical regions of the Americas, increased global travel to CHIKV- and MAYV-endemic areas has resulted in imported cases of MAYV, as well as imported cases and autochthonous transmission of CHIKV, within the United States and Europe. With increasing prevalence of CHIKV worldwide and MAYV throughout the Americas within the last decade, a heavy focus has been placed on control and prevention programs. To date, the most effective means of controlling the spread of these viruses is through mosquito control programs. However, current programs have limitations in their effectiveness; therefore, novel approaches are necessary to control the spread of these crippling pathogens and lessen their disease burden. We have previously identified and characterized an anti-CHIKV single-domain antibody (sdAb) that potently neutralizes several alphaviruses including Ross River virus and Mayaro virus. Given the close antigenic relationship between MAYV and CHIKV, we formulated a single defense strategy to combat both emerging arboviruses: we generated transgenic Aedes aegypti mosquitoes that express two camelid-derived anti-CHIKV sdAbs. Following an infectious bloodmeal, we observed significant reduction in CHIKV and MAYV replication and transmission potential in sdAb-expressing transgenic compared to wild-type mosquitoes; thus, this strategy provides a novel approach to controlling and preventing outbreaks of these pathogens that reduce quality of life throughout the tropical regions of the world.
Collapse
Affiliation(s)
- Emily M. Webb
- Department of Entomology, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Austin Compton
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Christina Chuong
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sally L. Paulson
- Department of Entomology, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Zhijian Tu
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Entomology, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
10
|
Host Feeding Patterns of Mansonia (Diptera, Culicidae) in Rural Settlements near Porto Velho, State of Rondonia, Brazil. Biomolecules 2023; 13:biom13030553. [PMID: 36979487 PMCID: PMC10046320 DOI: 10.3390/biom13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Mosquito females of the genus Mansonia (Blanchard) can be a nuisance to humans and animals since they are voraciously hematophagous and feed on the blood of a variety of vertebrates. Despite their relevance, there is a lack of investigation into the blood-feeding patterns of the Mansonia species. Knowledge of the host preference is crucial in establishing the public health importance of a mosquito species and its potential to be involved in the transmission dynamics of pathogens. Species that are primarily anthropophilic can be more effective in spreading vector-borne pathogens to humans. In this study, we used an Illumina Nextera sequencing protocol and the QIIME2 workflow to assess the diversity of DNA sequences extracted in the ingested blood of mosquito species to evaluate the overall and local host choices for three species: Ma. titillans, Ma. Amazonensis, and Ma. humeralis, in rural areas alongside the Madeira River in the vicinities of the Santo Antonio Energia (SAE) reservoir in the municipality of Porto Velho, Rondônia, Western Brazil. By performing our analysis pipeline, we have found that host diversity per collection site showed a significant heterogeneity across the sample sites. In addition, in rural areas, Ma. amazonensis present a high affinity for B. taurus, Ma. humeralis shows an overall preference for C. familiaris and B. taurus, but also H. sapiens and E. caballus in urban areas, and Ma. titillans showed more opportunistic behavior in rural areas, feeding on wild animals and G. gallus, though with an overall preference for H. sapiens.
Collapse
|
11
|
In Vitro and In Vivo Coinfection and Superinfection Dynamics of Mayaro and Zika Viruses in Mosquito and Vertebrate Backgrounds. J Virol 2023; 97:e0177822. [PMID: 36598200 PMCID: PMC9888278 DOI: 10.1128/jvi.01778-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Globalization and climate change have contributed to the simultaneous increase and spread of arboviral diseases. Cocirculation of several arboviruses in the same geographic region provides an impetus to study the impacts of multiple concurrent infections within an individual vector mosquito. Here, we describe coinfection and superinfection with the Mayaro virus (Togaviridae, Alphavirus) and Zika virus (Flaviviridae, Flavivirus) in vertebrate and mosquito cells, as well as Aedes aegypti adult mosquitoes, to understand the interaction dynamics of these pathogens and effects on viral infection, dissemination, and transmission. Aedes aegypti mosquitoes were able to be infected with and transmit both pathogens simultaneously. However, whereas Mayaro virus was largely unaffected by coinfection, it had a negative impact on infection and dissemination rates for Zika virus compared to single infection scenarios. Superinfection of Mayaro virus atop a previous Zika virus infection resulted in increased Mayaro virus infection rates. At the cellular level, we found that mosquito and vertebrate cells were also capable of being simultaneously infected with both pathogens. Similar to our findings in vivo, Mayaro virus negatively affected Zika virus replication in vertebrate cells, displaying complete blocking under certain conditions. Viral interference did not occur in mosquito cells. IMPORTANCE Epidemiological and clinical studies indicate that multiple arboviruses are cocirculating in human populations, leading to some individuals carrying more than one arbovirus at the same time. In turn, mosquitoes can become infected with multiple pathogens simultaneously (coinfection) or sequentially (superinfection). Coinfection and superinfection can have synergistic, neutral, or antagonistic effects on viral infection dynamics and ultimately have impacts on human health. Here we investigate the interaction between Zika virus and Mayaro virus, two emerging mosquito-borne pathogens currently circulating together in Latin America and the Caribbean. We find a major mosquito vector of these viruses-Aedes aegypti-can carry and transmit both arboviruses at the same time. Our findings emphasize the importance of considering co- and superinfection dynamics during vector-pathogen interaction studies, surveillance programs, and risk assessment efforts in epidemic areas.
Collapse
|
12
|
Wiltz P. Identifying and Managing Vector-Borne Diseases in Migrants and Recent Travelers in the Emergency Department. CURRENT EMERGENCY AND HOSPITAL MEDICINE REPORTS 2023; 11:58-65. [PMID: 37213267 PMCID: PMC10131502 DOI: 10.1007/s40138-023-00265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/23/2023]
Abstract
Purpose of Review Recognition and treatment of neglected tropical and vector-borne diseases is paramount as travel and immigration resume after a brief lull during the COVID-19 pandemic. These patients often present initially to the emergency department, and increasing physician knowledge of symptoms and treatment can reduce morbidity and mortality. This paper aims to summarize typical presentations of common tropical diseases, both neglected and vector borne, and provide the emergency physician with a diagnostic pathway based on current recommendations. Recent Findings Co-circulation of ZIKV, CHIKV, and DENV is increasingly common in many countries throughout Caribbean and the Americas, requiring that patients be tested for each virus upon presentation. Dengvaxia is now approved as a vaccine against dengue in pediatric and young adult patients. A malaria vaccine, RTS,S/AS01, is currently in phase 3 trials and has been approved as a short-term vaccine by WHO for children in regions with high transmission risk after showing a 30% reduction in severe malaria. Mayaro is currently a neglected arbovirus that presents similarly to Chikungunya and is continuing to spread throughout the Americas at a rapid rate, gaining more attention after the 2016 Zika outbreak. Summary Emergency physicians should consider internationally acquired illnesses to appropriately identify which patients require admission among well-appearing febrile immigrants or recent travelers presenting to the emergency department. Identifying symptomatology and understanding the appropriate workup and treatment for tropically acquired diseases will assist in recognizing severe complications with prompt treatment.
Collapse
Affiliation(s)
- Pauline Wiltz
- Emergency Medicine, University Hospital Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH 44106 USA
| |
Collapse
|
13
|
Generation of Multiple Arbovirus-like Particles Using a Rapid Recombinant Vaccinia Virus Expression Platform. Pathogens 2022; 11:pathogens11121505. [PMID: 36558839 PMCID: PMC9785247 DOI: 10.3390/pathogens11121505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
As demonstrated by the 2015 Zika virus outbreak in the Americas, emerging and re-emerging arboviruses are public health threats that warrant research investment for the development of effective prophylactics and therapeutics. Many arboviral diseases are underreported, neglected, or of low prevalence, yet they all have the potential to cause outbreaks of local and international concern. Here, we show the production of virus-like particles (VLPs) using a rapid and efficient recombinant vaccinia virus (VACV) expression system for five tick- and mosquito-borne arboviruses: Powassan virus (POWV), Heartland virus (HRTV), severe fever with thrombocytopenia syndrome virus (SFTSV), Bourbon virus (BRBV) and Mayaro virus (MAYV). We detected the expression of arbovirus genes of interest by Western blot and observed the expression of VLPs that resemble native virions under transmission electron microscopy. We were also able to improve the secretion of POWV VLPs by modifying the signal sequence within the capsid gene. This study describes the use of a rapid VACV platform for the production and purification of arbovirus VLPs that can be used as subunit or vectored vaccines, and provides insights into the selection of arbovirus genes for VLP formation and genetic modifications to improve VLP secretion and yield.
Collapse
|
14
|
Lopes GFM, Lima WG, Santos FRS, Nunes DAF, Passos MJF, Fernandes SOA, de Magalhães JC, Dos Santos LL, Ferreira JMS. Anti-Mayaro virus activity of a hydroethanolic extract from Fridericia chica (Bonpl.) L. G. Lohmann leaves. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115685. [PMID: 36067840 DOI: 10.1016/j.jep.2022.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mayaro fever is a neglected tropical disease. The region of the most significant circulation of the Mayaro virus (MAYV) is the Amazon rainforest, situated in remote areas that are difficult to access and where medicine is scarce. Thus, the regional population uses plants as an alternative for the treatment of various diseases. Fridericia chica is an endemic plant of tropical regions used in traditional medicine to treat fever, malaise, inflammation, and infectious diseases such as hepatitis B. However, its antiviral activity is poorly understood. AIM OF THE STUDY This study aimed to investigate the anti-MAYV activity of the hydroethanolic extract of the leaves of Fridericia chica (HEFc) in mammalian cells and its possible mechanism of action. MATERIALS AND METHODS The antiviral activity of HEFc was studied using Vero cell lines against MAYV. The cytotoxicity and antiviral activity of the extract were evaluated by the 3-(4, 5- dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The overall antiviral activity was confirmed by the plaque forming units (PFU) method. Then, the effects of HEFc on MAYV multiplication kinetics, virus adsorption, penetration, and post-penetration, and its virucidal activity were determined in Vero cells using standard experimental procedures. RESULTS HEFc exerted a effect against viral infection in Vero cells at a non-cytotoxic concentration, and no virion was detected in the supernatant in a dose-dependent and selective manner. HEFc inhibited MAYV in the early and late stages of the viral multiplication cycle. The extract showed significant virucidal activity at low concentrations and did not affect adsorption or viral internalization stages. In addition, HEFc reduced virions at all post-infection times investigated. CONCLUSIONS HEFc has good antiviral activity against MAYV, acting directly on the viral particles. This plant extract possesses an excellent and promising potential for developing effective herbal antiviral drugs.
Collapse
Affiliation(s)
- Gabriela F M Lopes
- Medical Microbiology Laboratory, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil; Molecular Biology Laboratory, Universidade Federal de São João Del Rei (UFSJ), Divinópolis, Minas Gerais, Brazil.
| | - Willam G Lima
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe R S Santos
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Damiana A F Nunes
- Medical Microbiology Laboratory, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Maria J F Passos
- Multi-User Analytical Center, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Simone O A Fernandes
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José C de Magalhães
- Laboratory of Virology and Cell Technology, Universidade Federal de São João del-Rei (UFSJ), Ouro Branco, Minas Gerais, Brazil
| | - Luciana L Dos Santos
- Molecular Biology Laboratory, Universidade Federal de São João Del Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Jaqueline M S Ferreira
- Medical Microbiology Laboratory, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
15
|
Honokiol and Alpha-Mangostin Inhibit Mayaro Virus Replication through Different Mechanisms. Molecules 2022; 27:molecules27217362. [DOI: 10.3390/molecules27217362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus with an increasing circulation across the Americas. In the present study, we evaluated the potential antiviral activity of the following natural compounds against MAYV and other arboviruses: Sanguinarine, (R)-Shikonin, Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin. Sanguinarine and Shikonin showed significant cytotoxicity, whereas Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin were well tolerated in all the cell lines tested. Honokiol and α-Mangostin treatment protected Vero-E6 cells against MAYV-induced damage and resulted in a dose-dependent reduction in viral progeny yields for each of the MAYV strains and human cell lines assessed. These compounds also reduced MAYV viral RNA replication in HeLa cells. In addition, Honokiol and α-Mangostin disrupted MAYV infection at different stages of the virus life cycle. Moreover, Honokiol and α-Mangostin decreased Una, Chikungunya, and Zika viral titers and downmodulated the expression of E1 and nsP1 viral proteins from MAYV, Una, and Chikungunya. Finally, in Honokiol- and α-Mangostin-treated HeLa cells, we observed an upregulation in the expression of type I interferon and specific interferon-stimulated genes, including IFNα, IFNβ, MxA, ISG15, OAS2, MDA-5, TNFα, and IL-1β, which may promote an antiviral cellular state. Our results indicate that Honokiol and α-Mangostin present potential broad-spectrum activity against different arboviruses through different mechanisms.
Collapse
|
16
|
Del Carpio-Orantes L, Mejía-Ramos SG, Aguilar-Silva A. Seroprevalence of Mayaro virus infection in Veracruz, Mexico. Travel Med Infect Dis 2022; 50:102464. [PMID: 36155819 DOI: 10.1016/j.tmaid.2022.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
|
17
|
Dos Santos Souza Marinho R, Duro RLS, Bellini Caldeira D, Galinskas J, Oliveira Mota MT, Hunter J, Rodrigues Teles MDA, de Pádua Milagres FA, Sobhie Diaz R, Shinji Kawakubo F, Vasconcelos Komninakis S. Re-emergence of mayaro virus and coinfection with chikungunya during an outbreak in the state of Tocantins/Brazil. BMC Res Notes 2022; 15:271. [PMID: 35922804 PMCID: PMC9351195 DOI: 10.1186/s13104-022-06153-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/12/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE To perform a molecular screening to detect infections by the mayaro virus and possible coinfections with Chikungunya during an outbreak in the state of Tocantins/Brazil in 2017. RESULTS Of a total 102 samples analyzed in this study, 6 cases were identified with simultaneous infection between mayaro and chikungunya viruses (5.88%). In these 6 samples, the mean Cycle threshold (Ct) for CHIKV was 26.87 (SD ± 10.54) and for MAYV was 29.58 (SD ± 6.34). The mayaro sequences generated showed 95-100% identity to other Brazilian sequences of this virus and with other MAYV isolates obtained from human and arthropods in different regions of the world. The remaining samples were detected with CHIKV monoinfection (41 cases), DENV monoinfection (50 cases) and coinfection between CHIKV/DENV (5 cases). We did not detect MAYV monoinfections.
Collapse
Affiliation(s)
| | - Rodrigo Lopes Sanz Duro
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | - Débora Bellini Caldeira
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | - Juliana Galinskas
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | | | - James Hunter
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | | | - Flávio Augusto de Pádua Milagres
- Central Public Health Laboratory of Tocantins (LACEN/TO), Palmas City, Tocantins, 77016-330, Brazil.,Institute of Biological Sciences, Federal University of Tocantins, Palmas City, Tocantins, 77001-090, Brazil.,Tocantins Health Department, Palmas City, Tocantins, 77453-000, Brazil
| | - Ricardo Sobhie Diaz
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil
| | - Fernando Shinji Kawakubo
- Faculty of Philosophy, Letters and Human Sciences, University of São Paulo, São Paulo City, São Paulo, 05508-000, Brazil
| | - Shirley Vasconcelos Komninakis
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo City, São Paulo, 04039-032, Brazil. .,Faculty of Medicine (FMUSP), Institute of Tropical Medicine, University of São Paulo, São Paulo City, São Paulo, 05403-000, Brazil.
| |
Collapse
|
18
|
Blood feeding habits of mosquitoes: hardly a bite in South America. Parasitol Res 2022; 121:1829-1852. [PMID: 35562516 PMCID: PMC9106385 DOI: 10.1007/s00436-022-07537-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Mosquito blood feeding plays a key role in epidemiology. Despite its importance and large number of studies worldwide, less attention has been paid in South America. We summarized some general concepts and methodological issues related to the study of mosquito blood feeding habits, and compiled and analyzed all published information regarding the subject in the continent until 2020. Available literature comprised 152 scientific studies, that pursued different approaches: human landing catches (102 studies), baited trap (19), and blood meal analyses of collected specimens (38). Among the latter, 23 used serological and 15 molecular techniques. Species most frequently studied were those incriminated in malaria transmission, whereas relevant vectors such as Aedes aegypti, Ae. albopictus, and Haemagogus janthinomys were surprisingly neglected. Brazil was the leading country both in number of works and species studied. For over 70% of the species and three out of 13 South American countries there is no single information on mosquito blood feeding habits. Data from baited traps included 143 mosquito species, 83.9% of which were attracted to humans, either exclusively (10.5%) or in combination with other vertebrates (73.4%). Host blood identification of field collected specimens provided data on 102 mosquito species, and 60.8% of these fed on humans (55.9% combined with other vertebrates). Only 17 of the 73 species assessed by both methods yielded similar feeding patterns. Finally, supplementary tables are provided in a comprehensive summary of all information available and information gaps are highlighted for future research in the continent.
Collapse
|
19
|
Sugasti-Salazar M, Campos D, Valdés-Torres P, Galán-Jurado PE, González-Santamaría J. Targeting Host PIM Protein Kinases Reduces Mayaro Virus Replication. Viruses 2022; 14:v14020422. [PMID: 35216015 PMCID: PMC8878588 DOI: 10.3390/v14020422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Mayaro virus (MAYV) manipulates cell machinery to successfully replicate. Thus, identifying host proteins implicated in MAYV replication represents an opportunity to discover potential antiviral targets. PIM kinases are enzymes that regulate essential cell functions and also appear to be critical factors in the replication of certain viruses. In this study we explored the consequences of PIM kinase inhibition in the replication of MAYV and other arboviruses. Cytopathic effects or viral titers in samples from MAYV-, Chikungunya-, Una- or Zika-infected cells treated with PIM kinase inhibitors were evaluated using an inverted microscope or plaque-forming assays. The expression of viral proteins E1 and nsP1 in MAYV-infected cells was assessed using an immunofluorescence confocal microscope or Western blot. Our results revealed that PIM kinase inhibition partially prevented MAYV-induced cell damage and also promoted a decrease in viral titers for MAYV, UNAV and ZIKV. The inhibitory effect of PIM kinase blocking was observed for each of the MAYV strains tested and also occurred as late as 8 h post infection (hpi). Finally, PIM kinase inhibition suppressed the expression of MAYV E1 and nsP1 proteins. Taken together, these findings suggest that PIM kinases could represent an antiviral target for MAYV and other arboviruses.
Collapse
Affiliation(s)
- Madelaine Sugasti-Salazar
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
- Programa de Maestría en Microbiología Ambiental, Universidad de Panama, Panama City 3366, Panama
| | - Dalkiria Campos
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
| | - Patricia Valdés-Torres
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
| | - Paola Elaine Galán-Jurado
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
| | - José González-Santamaría
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
- Correspondence: ; Tel.: +507-527-4814
| |
Collapse
|
20
|
Wermelinger ED. Interdisciplinaridade na estratégia de controle dos vetores urbanos das arboviroses: uma dimensão necessária para o Brasil. CAD SAUDE PUBLICA 2022; 38:e00243321. [DOI: 10.1590/0102-311x00243321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
|
21
|
Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. INSECTS 2021; 13:20. [PMID: 35055864 PMCID: PMC8781098 DOI: 10.3390/insects13010020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Central America is a unique geographical region that connects North and South America, enclosed by the Caribbean Sea to the East, and the Pacific Ocean to the West. This region, encompassing Belize, Costa Rica, Guatemala, El Salvador, Honduras, Panama, and Nicaragua, is highly vulnerable to the emergence or resurgence of mosquito-borne and tick-borne diseases due to a combination of key ecological and socioeconomic determinants acting together, often in a synergistic fashion. Of particular interest are the effects of land use changes, such as deforestation-driven urbanization and forest degradation, on the incidence and prevalence of these diseases, which are not well understood. In recent years, parts of Central America have experienced social and economic improvements; however, the region still faces major challenges in developing effective strategies and significant investments in public health infrastructure to prevent and control these diseases. In this article, we review the current knowledge and potential impacts of deforestation, urbanization, and other land use changes on mosquito-borne and tick-borne disease transmission in Central America and how these anthropogenic drivers could affect the risk for disease emergence and resurgence in the region. These issues are addressed in the context of other interconnected environmental and social challenges.
Collapse
Affiliation(s)
- Diana I. Ortiz
- Biology Program, Westminster College, New Wilmington, PA 16172, USA
| | - Marta Piche-Ovares
- Laboratorio de Virología, Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Virología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Luis M. Romero-Vega
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Joseph Wagman
- Malaria and Neglected Tropical Diseases Program, Center for Malaria Control and Elimination, PATH, Washington, DC 20001, USA;
| | - Adriana Troyo
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
22
|
Nunes PS, Guimarães RA, Martelli CMT, de Souza WV, Turchi MD. Zika virus infection and microcephaly: spatial analysis and socio-environmental determinants in a region of high Aedes aegypti infestation in the Central-West Region of Brazil. BMC Infect Dis 2021; 21:1107. [PMID: 34706662 PMCID: PMC8549329 DOI: 10.1186/s12879-021-06805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
Background More than 5 years after the Zika virus (ZIKV) epidemic, Zika infection remains a major concern in regions with high Aedes infestation. The objectives of this study were (i) to identify clusters of ZIKV infection and microcephaly, and/or central nervous system (CNS) alterations associated with congenital infection during the epidemic peak in 2016 and subsequently, in 2017 and 2018; (ii) to measure the non-spatial correlation between ZIKV infection and microcephaly and/or CNS alterations associated with congenital infection; and (iii) to analyse the sociodemographic/economic, health, and environmental determinants associated with the incidence of ZIKV in a region of high infestation by Aedes aegypti in the Central-West Region of Brazil. Methods This ecological study analysed 246 municipalities in the state of Goiás (6.9 million inhabitants). The data were obtained from the Information System for Notifiable Diseases (ZIKV cases) and the Public Health Event Registry (microcephaly and/or CNS alterations associated with congenital infection). Incidence rates and prevalence of ZIKA infection were smoothed by an empirical Bayesian estimator (LEbayes), producing the local empirical Bayesian rate (LEBR). In the spatial analysis, ZIKV infection and microcephaly cases were georeferenced by the municipality of residence for 2016 and grouped for 2017 and 2018. Global Moran's I and the Hot Spot Analysis tool (Getis-Ord Gi* statistics) were used to analyse the spatial autocorrelation and clusters of ZIKV infection and microcephaly, respectively. A generalised linear model from the Poisson family was used to assess the association between ecological determinants and the smoothing incidence rate of ZIKV infection. Results A total of 9892 cases of acute ZIKV infection and 121 cases of microcephaly were confirmed. The mean LEBR of the ZIKV infection in the 246 municipalities was 22.3 cases/100,000 inhabitants in 2016, and 10.3 cases/100,000 inhabitants in 2017 and 2018. The LEBR of the prevalence rate of microcephaly and/or CNS alterations associated with congenital infection was 7 cases/10,000 live births in 2016 and 2 cases/10,000 live births during 2017–2018. Hotspots of ZIKV infection and microcephaly cases were identified in the capital and neighbouring municipalities in 2016, with new clusters in the following years. In a multiple regression Poisson analysis, ZIKV infection was associated with higher population density, the incidence of dengue, Aedes larvae infestation index, and average rainfall. The important determinant of ZIKV infection incidence reduction was the increase in households attended by endemic disease control agents. Conclusions Our analyses were able to capture, in a more granular way, aspects that make it possible to inform public managers of the sentinel areas identified in the post-epidemic hotspots. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06805-1.
Collapse
Affiliation(s)
- Patrícia Silva Nunes
- Federal Institute of Education, Science and Technology of Goiás, Goiânia, Brazil. .,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| | - Rafael Alves Guimarães
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.,Faculty of Nursing, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Marília Dalva Turchi
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
23
|
Ferraz AC, Almeida LT, da Silva Caetano CC, da Silva Menegatto MB, Souza Lima RL, de Senna JPN, de Oliveira Cardoso JM, Perucci LO, Talvani A, Geraldo de Lima W, de Mello Silva B, Barbosa Reis A, de Magalhães JC, Lopes de Brito Magalhães C. Hepatoprotective, antioxidant, anti-inflammatory, and antiviral activities of silymarin against mayaro virus infection. Antiviral Res 2021; 194:105168. [PMID: 34437912 DOI: 10.1016/j.antiviral.2021.105168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Infection caused by Mayaro virus (MAYV) is responsible for causing acute nonspecific fever, in which the majority of patients develop incapacitating and persistent arthritis/arthralgia. Mayaro fever is a neglected and underreported disease without treatment or vaccine, which has gained attention in recent years after the competence of Aedes aegypti to transmit MAYV was observed in the laboratory, coupled with the fact that cases are being increasingly reported outside of endemic forest areas, calling attention to the potential of an urban cycle arising in the near future. Thus, to mitigate the lack of information about the pathological aspects of MAYV, we previously described the involvement of oxidative stress in MAYV infection in cultured cells and in a non-lethal mouse model. Additionally, we showed that silymarin, a natural compound, attenuated MAYV-induced oxidative stress and inhibited MAYV replication in cells. The antioxidant and anti-MAYV effects prompted us to determine whether silymarin could also reduce oxidative stress and MAYV replication after infection in an immunocompetent animal model. We show that infected mice exhibited reduced weight gain, hepatomegaly, splenomegaly, anaemia, thrombocytopenia, leukopenia, increased liver transaminases, increased pro-inflammatory cytokines and liver inflammation, increased oxidative damage biomarkers, and reduced antioxidant enzyme activity. However, in animals infected and treated with silymarin, all these parameters were reversed or significantly improved, and the detection of viral load in the liver, spleen, brain, thigh muscle, and footpad was significantly reduced. This work reinforces the potent hepatoprotective, antioxidant, anti-inflammatory, and antiviral effects of silymarin against MAYV infection, demonstrating its potential against Mayaro fever disease.
Collapse
Affiliation(s)
- Ariane Coelho Ferraz
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Letícia Trindade Almeida
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Camila Carla da Silva Caetano
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Joao Pinto Nelson de Senna
- Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Luiza Oliveira Perucci
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Biotecnologia, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Wanderson Geraldo de Lima
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Breno de Mello Silva
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Biotecnologia, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Alexandre Barbosa Reis
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - José Carlos de Magalhães
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João Del-Rei, Ouro Branco, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Napoleão-Pêgo P, Carneiro FRG, Durans AM, Gomes LR, Morel CM, Provance DW, De-Simone SG. Performance assessment of a multi-epitope chimeric antigen for the serological diagnosis of acute Mayaro fever. Sci Rep 2021; 11:15374. [PMID: 34321560 PMCID: PMC8319364 DOI: 10.1038/s41598-021-94817-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Mayaro virus (MAYV), which causes mayaro fever, is endemic to limited regions of South America that may expand due to the possible involvement of Aedes spp. mosquitoes in its transmission. Its effective control will require the accurate identification of infected individuals, which has been restricted to nucleic acid-based tests due to similarities with other emerging members of the Alphavirus genus of the Togaviridae family; both in structure and clinical symptoms. Serological tests have a more significant potential to expand testing at a reasonable cost, and their performance primarily reflects that of the antigen utilized to capture pathogen-specific antibodies. Here, we describe the assembly of a synthetic gene encoding multiple copies of antigenic determinants mapped from the nsP1, nsP2, E1, and E2 proteins of MAYV that readily expressed as a stable chimeric protein in bacteria. Its serological performance as the target in ELISAs revealed a high accuracy for detecting anti-MAYV IgM antibodies. No cross-reactivity was observed with serum from seropositive individuals for dengue, chikungunya, yellow fever, Zika, and other infectious diseases as well as healthy individuals. Our data suggest that this bioengineered antigen could be used to develop high-performance serological tests for MAYV infections.
Collapse
Affiliation(s)
- Paloma Napoleão-Pêgo
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Brazil Av 4365, Leonidas Deane Building, Room 309, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Flávia R G Carneiro
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Brazil Av 4365, Leonidas Deane Building, Room 309, Rio de Janeiro, RJ, 21040-900, Brazil.,Laboratory of Interdisplinary Medical Research (LIPMED), Oswaldo Cruz Institute (IOC), FIOCRUZ, Brazil Av 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Andressa M Durans
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Brazil Av 4365, Leonidas Deane Building, Room 309, Rio de Janeiro, RJ, 21040-900, Brazil.,Laboratory of Interdisplinary Medical Research (LIPMED), Oswaldo Cruz Institute (IOC), FIOCRUZ, Brazil Av 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Larissa R Gomes
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Brazil Av 4365, Leonidas Deane Building, Room 309, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Carlos M Morel
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Brazil Av 4365, Leonidas Deane Building, Room 309, Rio de Janeiro, RJ, 21040-900, Brazil
| | - David W Provance
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Brazil Av 4365, Leonidas Deane Building, Room 309, Rio de Janeiro, RJ, 21040-900, Brazil.,Laboratory of Interdisplinary Medical Research (LIPMED), Oswaldo Cruz Institute (IOC), FIOCRUZ, Brazil Av 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Salvatore G De-Simone
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Brazil Av 4365, Leonidas Deane Building, Room 309, Rio de Janeiro, RJ, 21040-900, Brazil. .,Biology Institute, Federal Fluminense University, Outeiro de São Joao Batista S/N, Niterói, RJ, 24020-141, Brazil.
| |
Collapse
|
25
|
Molecular epidemiological investigation of Mayaro virus in febrile patients from Goiania City, 2017-2018. INFECTION GENETICS AND EVOLUTION 2021; 95:104981. [PMID: 34197917 DOI: 10.1016/j.meegid.2021.104981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Mayaro virus (MAYV) has historically been associated with sylvatic transmission; however, urban outbreaks have been reported in Brazil, including cases of co-detection with dengue virus (DENV). Therefore, we performed a molecular survey to investigate MAYV circulation and cocirculation with DENV within Goiania, a major city in Central-West Brazil. Among 375 subjects with arbovirus-like symptoms, 259 were positive for DENV and 26 for MAYV. Of these, 17 were coinfected with DENV-2, suggesting co-transmission of the viruses. The most common complaints at the time of inclusion were myalgia, headache, fever, arthralgia, retro-orbital pain, and skin rash. No specific symptoms were associated with MAYV when either detected alone or co-detected with DENV, compared to that when DENV was detected alone. Most MAYV-infected subjects were women with no recent travel history to rural/sylvatic areas. Phylogenetic reconstruction indicated that the MAYV identified in this study is closely related with a lineage observed in Peru, belonging to genotype D. Our results corroborate the growing circulation of MAYV in urban environments in Brazil and reinforce the need to implement laboratory diagnosis in the Unified Health System, considering that the clinical manifestations of Mayaro fever are similar to those of other arboviruses, particularly dengue. Furthermore, most cases occurred in association with DENV-2. Further phylogenetic studies are needed to evaluate MAYV, which has not been widely examined.
Collapse
|
26
|
Inhibition of p38 Mitogen-Activated Protein Kinase Impairs Mayaro Virus Replication in Human Dermal Fibroblasts and HeLa Cells. Viruses 2021; 13:v13061156. [PMID: 34204188 PMCID: PMC8233896 DOI: 10.3390/v13061156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/31/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022] Open
Abstract
Mayaro virus (MAYV) hijacks the host’s cell machinery to effectively replicate. The mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK1/2 have emerged as crucial cellular factors implicated in different stages of the viral cycle. However, whether MAYV uses these MAPKs to competently replicate has not yet been determined. The aim of this study was to evaluate the impact of MAPK inhibition on MAYV replication using primary human dermal fibroblasts (HDFs) and HeLa cells. Viral yields in supernatants from MAYV-infected cells treated or untreated with inhibitors SB203580, SP600125, U0126, or Losmapimod were quantified using plaque assay. Additionally, viral protein expression was analyzed using immunoblot and immunofluorescence. Knockdown of p38⍺/p38β isoforms was performed in HDFs using the PROTACs molecule NR-7h. Our data demonstrated that HDFs are highly susceptible to MAYV infection. SB203580, a p38 inhibitor, reduced MAYV replication in a dose-dependent manner in both HDFs and HeLa cells. Additionally, SB203580 significantly decreased viral E1 protein expression. Similarly, knockdown or inhibition of p38⍺/p38β isoforms with NR-7h or Losmapimod, respectively, affected MAYV replication in a dose-dependent manner. Collectively, these findings suggest that p38 could play an important role in MAYV replication and could serve as a therapeutic target to control MAYV infection.
Collapse
|
27
|
Caicedo EY, Charniga K, Rueda A, Dorigatti I, Mendez Y, Hamlet A, Carrera JP, Cucunubá ZM. The epidemiology of Mayaro virus in the Americas: A systematic review and key parameter estimates for outbreak modelling. PLoS Negl Trop Dis 2021; 15:e0009418. [PMID: 34081717 PMCID: PMC8205173 DOI: 10.1371/journal.pntd.0009418] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/15/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Mayaro virus (MAYV) is an arbovirus that is endemic to tropical forests in Central and South America, particularly within the Amazon basin. In recent years, concern has increased regarding MAYV's ability to invade urban areas and cause epidemics across the region. We conducted a systematic literature review to characterise the evolutionary history of MAYV, its transmission potential, and exposure patterns to the virus. We analysed data from the literature on MAYV infection to produce estimates of key epidemiological parameters, including the generation time and the basic reproduction number, R0. We also estimated the force-of-infection (FOI) in epidemic and endemic settings. Seventy-six publications met our inclusion criteria. Evidence of MAYV infection in humans, animals, or vectors was reported in 14 Latin American countries. Nine countries reported evidence of acute infection in humans confirmed by viral isolation or reverse transcription-PCR (RT-PCR). We identified at least five MAYV outbreaks. Seroprevalence from population based cross-sectional studies ranged from 21% to 72%. The estimated mean generation time of MAYV was 15.2 days (95% CrI: 11.7-19.8) with a standard deviation of 6.3 days (95% CrI: 4.2-9.5). The per-capita risk of MAYV infection (FOI) ranged between 0.01 and 0.05 per year. The mean R0 estimates ranged between 2.1 and 2.9 in the Amazon basin areas and between 1.1 and 1.3 in the regions outside of the Amazon basin. Although MAYV has been identified in urban vectors, there is not yet evidence of sustained urban transmission. MAYV's enzootic cycle could become established in forested areas within cities similar to yellow fever virus.
Collapse
Affiliation(s)
| | - Kelly Charniga
- MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Imperial College London, London, United Kingdom
| | - Amanecer Rueda
- Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Imperial College London, London, United Kingdom
| | - Yardany Mendez
- Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Imperial College London, London, United Kingdom
| | - Jean-Paul Carrera
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Zulma M. Cucunubá
- MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
29
|
Suchowiecki K, Reid SP, Simon GL, Firestein GS, Chang A. Persistent Joint Pain Following Arthropod Virus Infections. Curr Rheumatol Rep 2021; 23:26. [PMID: 33847834 PMCID: PMC8042844 DOI: 10.1007/s11926-021-00987-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Persistent joint pain is a common manifestation of arthropod-borne viral infections and can cause long-term disability. We review the epidemiology, pathophysiology, diagnosis, and management of arthritogenic alphavirus infection. RECENT FINDINGS The global re-emergence of alphaviral outbreaks has led to an increase in virus-induced arthralgia and arthritis. Alphaviruses, including Chikungunya, O'nyong'nyong, Sindbis, Barmah Forest, Ross River, and Mayaro viruses, are associated with acute and/or chronic rheumatic symptoms. Identification of Mxra8 as a viral entry receptor in the alphaviral replication pathway creates opportunities for treatment and prevention. Recent evidence suggesting virus does not persist in synovial fluid during chronic chikungunya infection indicates that immunomodulators may be given safely. The etiology of persistent joint pain after alphavirus infection is still poorly understood. New diagnostic tools along and evidence-based treatment could significantly improve morbidity and long-term disability.
Collapse
Affiliation(s)
- Karol Suchowiecki
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - St. Patrick Reid
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Gary L. Simon
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - Gary S. Firestein
- UC San Diego Health Sciences, 9500 Gilman Drive #0602, La Jolla, CA 92093 USA
| | - Aileen Chang
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| |
Collapse
|
30
|
Repurposing Drugs for Mayaro Virus: Identification of EIDD-1931, Favipiravir and Suramin as Mayaro Virus Inhibitors. Microorganisms 2021; 9:microorganisms9040734. [PMID: 33807492 PMCID: PMC8065421 DOI: 10.3390/microorganisms9040734] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the emerging threat of the Mayaro virus (MAYV) in Central and South-America, there are no licensed antivirals or vaccines available for this neglected mosquito-borne virus. Here, we optimized a robust antiviral assay based on the inhibition of the cytopathogenic effect that could be used for high-throughput screening to identify MAYV inhibitors. We first evaluated different cell lines and virus inputs to determine the best conditions for a reliable and reproducible antiviral assay. Next, we used this assay to evaluate a panel of antiviral compounds with known activity against other arboviruses. Only three drugs were identified as inhibitors of MAYV: β-D-N4-hydroxycytidine (EIDD-1931), favipiravir and suramin. The in vitro anti-MAYV activity of these antiviral compounds was further confirmed in a virus yield assay. These antivirals can therefore serve as reference compounds for future anti-MAYV compound testing. In addition, it is of interest to further explore the activity of EIDD-1931 and its orally bioavailable pro-drug molnupiravir in animal infection models to determine whether it offers promise for the treatment of MAYV infection.
Collapse
|
31
|
Aguilar-Luis MA, Del Valle-Mendoza J, Sandoval I, Silva-Caso W, Mazulis F, Carrillo-Ng H, Tarazona-Castro Y, Martins-Luna J, Aquino-Ortega R, Peña-Tuesta I, Cornejo-Tapia A, Del Valle LJ. A silent public health threat: emergence of Mayaro virus and co-infection with Dengue in Peru. BMC Res Notes 2021; 14:29. [PMID: 33478539 PMCID: PMC7818721 DOI: 10.1186/s13104-021-05444-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To describe frequency and clinical characteristics of MAYV infection in Piura, as well as the association of this pathogen with DENV. RESULTS A total of 86/496 (17.3%) cases of MAYV were detected, of which 54 were MAYV mono-infection and 32 were co-infection with DENV, accounting for 10.9% and 6.4%, respectively. When evaluating monoinfection by MAYV the main groups were 18-39 and 40-59 years old, with 25.9% and 20.4% respectively. Co-infections were more common in the age group 18-39 and those > 60 years old, with 34.4% and 21.9%, respectively. The most frequent clinical presentation were headaches (94.4%, 51/54) followed by arthralgias (77.8%, 42/54). During the 8-month study period the most cases were identified in the months of May (29.1%) and June (50.0%).
Collapse
Affiliation(s)
- Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru. .,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| | - Isabel Sandoval
- Subregión Morropon Huancabamba, Dirección Regional de Salud de Piura (DIRESA), Piura, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Fernando Mazulis
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Hugo Carrillo-Ng
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Yordi Tarazona-Castro
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Escuela Profesional de Genética Y Biotecnología. Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Johanna Martins-Luna
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Ronald Aquino-Ortega
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Isaac Peña-Tuesta
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Angela Cornejo-Tapia
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Luis J Del Valle
- Barcelona Research Center for Multiscale Science and Engineering, Departament D'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
| |
Collapse
|
32
|
Petrone ME, Earnest R, Lourenço J, Kraemer MUG, Paulino-Ramirez R, Grubaugh ND, Tapia L. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nat Commun 2021; 12:151. [PMID: 33420058 PMCID: PMC7794562 DOI: 10.1038/s41467-020-20391-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Mosquito-borne viruses threaten the Caribbean due to the region's tropical climate and seasonal reception of international tourists. Outbreaks of chikungunya and Zika have demonstrated the rapidity with which these viruses can spread. Concurrently, dengue fever cases have climbed over the past decade. Sustainable disease control measures are urgently needed to quell virus transmission and prevent future outbreaks. Here, to improve upon current control methods, we analyze temporal and spatial patterns of chikungunya, Zika, and dengue outbreaks reported in the Dominican Republic between 2012 and 2018. The viruses that cause these outbreaks are transmitted by Aedes mosquitoes, which are sensitive to seasonal climatological variability. We evaluate whether climate and the spatio-temporal dynamics of dengue outbreaks could explain patterns of emerging disease outbreaks. We find that emerging disease outbreaks were robust to the climatological and spatio-temporal constraints defining seasonal dengue outbreak dynamics, indicating that constant surveillance is required to prevent future health crises.
Collapse
Affiliation(s)
- Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Robert Paulino-Ramirez
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, Santo Domingo, Dominican Republic
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Leandro Tapia
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, Santo Domingo, Dominican Republic.
| |
Collapse
|
33
|
Rate of exposure to Mayaro virus (MAYV) in Brazil between 1955 and 2018: a systematic review and meta-analysis. Arch Virol 2021; 166:347-361. [PMID: 33410995 DOI: 10.1007/s00705-020-04889-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/03/2020] [Indexed: 02/04/2023]
Abstract
Mayaro fever is an infection caused by Mayaro virus (MAYV) that stands out among the neglected diseases transmitted by arthropods. Brazil is the country with the highest number of confirmed cases of MAYV infection. However, epidemiological surveillance studies conducted in Brazil are decentralized and focus on small outbreaks and unconfirmed cases. Thus, the aim of this review was to determine the general epidemiological profile of MAYV infections in Brazil. Several medical databases (i.e., PUBMED/MEDLINE, Scopus, Cochrane Library, LILACS, SciELO, and Biblioteca Virtual em Saúde) were searched for studies reporting cases of MAYV infections in Brazilian patients. Then, the rate of exposure to MAYV in Brazil was analyzed using RStudio® Software. We identified 37 studies published from 1957 to 2019, containing data of 12,374 patients from 1955 to 2018. The general rate of exposure to MAYV in Brazil was 10% (95% CI; 0.04-0.22), with 1,304 reported cases. The highest incidence of MAYV infection was found in the northern region (13%; 95% CI; 0.05-0.29), with 1,142 cases (88% of all cases). Furthermore, autochthonous MAYV cases have also been reported in the Central West (8%; 95% CI; 0.03-0.18) and Southeast (0.4%; 95% CI; 0.00-0.28). The states with the highest number of cases are Amazonas (490 cases), Pará (276 cases), and Goiás (87 cases). In conclusion, the general rate of exposure to MAYV in Brazil between 1955 and 2018 was considerable, especially in the Legal Amazon, in which 93% of cases were reported.
Collapse
|
34
|
Mayaro Virus Infection: Clinical Features and Global Threat. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020; 8:E1167. [PMID: 32752150 PMCID: PMC7464724 DOI: 10.3390/microorganisms8081167] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.
Collapse
Affiliation(s)
- Sasha R. Azar
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Rafael K. Campos
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | | | - Vidyleison N. Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
36
|
Abstract
Alphaviruses, members of the enveloped, positive-sense, single-stranded RNA Togaviridae family, represent a reemerging public health threat as mosquito vectors expand into new geographic territories. The Old World alphaviruses, which include chikungunya virus, Ross River virus, and Sindbis virus, tend to cause a clinical syndrome characterized by fever, rash, and arthritis, whereas the New World alphaviruses, which consist of Venezuelan equine encephalitis virus, eastern equine encephalitis virus, and western equine encephalitis virus, induce encephalomyelitis. Following recovery from the acute phase of infection, many patients are left with debilitating persistent joint and neurological complications that can last for years. Clues from human cases and studies using animal models strongly suggest that much of the disease and pathology induced by alphavirus infection, particularly atypical and chronic manifestations, is mediated by the immune system rather than directly by the virus. This review discusses the current understanding of the immunopathogenesis of the arthritogenic and neurotropic alphaviruses accumulated through both natural infection of humans and experimental infection of animals, particularly mice. As treatment following alphavirus infection is currently limited to supportive care, understanding the contribution of the immune system to the disease process is critical to developing safe and effective therapies.
Collapse
Affiliation(s)
- Victoria K Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
37
|
Julia da Silva Pessoa Vieira C, José Ferreira da Silva D, Rigotti Kubiszeski J, Ceschini Machado L, Pena LJ, Vieira de Morais Bronzoni R, da Luz Wallau G. The Emergence of Chikungunya ECSA Lineage in a Mayaro Endemic Region on the Southern Border of the Amazon Forest. Trop Med Infect Dis 2020; 5:E105. [PMID: 32604785 PMCID: PMC7345197 DOI: 10.3390/tropicalmed5020105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Anthropic changes on the edges of the tropical forests may facilitate the emergence of new viruses from the sylvatic environment and the simultaneous circulation of sylvatic and urban viruses in the human population. In this study, we investigated the presence of arboviruses (arthropod-borne viruses) in the sera of 354 patients, sampled from February 2014 to October 2018 in Sinop city. We sequenced the complete genomes of one chikungunya virus (CHIKV)-positive and one out of the 33 Mayaro virus (MAYV)-positive samples. The CHIKV genome obtained here belongs to the East/Central/South African (ECSA) genotype and the MAYV genome belongs to the L genotype. These genomes clustered with other viral strains from different Brazilian states, but the CHIKV strain circulating in Sinop did not cluster with other genomes from the Mato Grosso state, suggesting that at least two independent introductions of this virus occurred in Mato Grosso. Interestingly, the arrival of CHIKV in Sinop seems to not have caused a surge in human cases in the following years, as observed in the rest of the state, suggesting that cross immunity from MAYV infection might be protecting the population from CHIKV infection. These findings reinforce the need for continued genomic surveillance in order to evaluate how simultaneously circulating alphaviruses infecting the human population will unfold.
Collapse
Affiliation(s)
- Carla Julia da Silva Pessoa Vieira
- Health Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (C.J.d.S.P.V.); (D.J.F.d.S.); (J.R.K.); (R.V.d.M.B.)
| | - David José Ferreira da Silva
- Health Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (C.J.d.S.P.V.); (D.J.F.d.S.); (J.R.K.); (R.V.d.M.B.)
| | - Janaína Rigotti Kubiszeski
- Health Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (C.J.d.S.P.V.); (D.J.F.d.S.); (J.R.K.); (R.V.d.M.B.)
| | - Laís Ceschini Machado
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, PE, Brazil; (L.C.M.); (L.J.P.)
| | - Lindomar José Pena
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, PE, Brazil; (L.C.M.); (L.J.P.)
| | - Roberta Vieira de Morais Bronzoni
- Health Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (C.J.d.S.P.V.); (D.J.F.d.S.); (J.R.K.); (R.V.d.M.B.)
| | - Gabriel da Luz Wallau
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, PE, Brazil; (L.C.M.); (L.J.P.)
| |
Collapse
|