1
|
El-Shimi BI, Mohareb RM, Ahmed HH, Abohashem RS, Mahmoud KF, Hanna DH. Panax ginseng nanoemulsion for counteracting male infertility via modulating sex hormones and oxidative stress in a rat model. Sci Rep 2024; 14:29239. [PMID: 39587216 PMCID: PMC11589876 DOI: 10.1038/s41598-024-79388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
This study end to develop nanoemulsions of Panax ginseng dry extract and to evaluate the potential impact of these nanoemulsions versus free Panax ginseng dry extract and Vit.E in recovering male infertility induced in rats. Nanoemulsions of Panax ginseng dry extract were prepared by oil in water method. The designed samples were characterized by TEM, zeta sizer, FTIR, and TGA. The in vitro study included DPPH assay to estimate the free radical scavenging activity of the suggested treatments. The in vivo study included 100 adult male Wistar rats which were assigned into 10 equal groups; five groups of young rats weighting (150-200 g) and five groups of aged rats weighting (350-400 g). Group I, negative control. Group II, bisphenol-A (BPA). Group III, BPA+ Panax ginseng dry extract nanoemulsion. Group IV, BPA+ free Panax ginseng dry extract. Group V, BPA +Vit.E. After 40 days, serum total testosterone, free testosterone, MDA, 8-OHdG and AGEs were estimated. Besides, the histological investigation of testicular tissue sections was performed. TEM imaging of Panax ginseng dry extract nanoemulsions indicated spherical shape with diameter range from 2 to 50 nm, and the size distribution was in the range from 62 to 123 d.nm. The zeta potential of the designed nanoemulsions was -32.8 to -38.9 mV. FTIR spectra revealed the common active groups in the prepared nanoemulsions. The thermal stability of the nanoemulsions was up to 207 ºC. The in vitro results of DPPH assay showed % inhibition of DPPH free radical for Panax ginseng nanoemulsions samples was 49.38% (for young-treated group Sample A) and 72.28% (for aged-treated group Sample B), while for free Panax ginseng dry extract samples was 30.27% (for young-treated group Sample C) and 56.76% (for aged-treated group Sample D), for Vit.E samples was 32.36% (for young-treated group Sample E) and 36.39% (for aged-treated group Sample F).Thus the nanoemulsions exhibit free radicals scavenging activity more than free Panax ginseng dry extract and Vit.E. The in vivo findings elucidated that Panax ginseng dry extract nanoemulsions and Vit.E successfully revers the progressive insult of BPA on male fertility by significantly enhance total testosterone (2.87±0.318) and free testosterone (1.63±0.033) serum levels, and significantly decrease MDA (2.77±0.018), 8-OHdG (6.76±0.174) and AGEs (92.60±1.701) serum levels. Interestingly, the most promising outcomes were recorded upon the treatment with Panax ginseng dry extract nanoemulsions. In conclusion the developed Panax ginseng dry extract nanoemulsion could be used as a promising strategy in improving potential male infertility defects by rescuing male sex hormones, neutralizing oxidative stress and retrieving the structural organization of the testes.
Collapse
Affiliation(s)
- Basma I El-Shimi
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
- Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
- Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Khaled F Mahmoud
- Food Technology Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Orkusz A, Bogueva D. Children's Diets and Planetary Health: A Study in Wroclaw, Poland, and Sydney, Australia. Foods 2024; 13:3536. [PMID: 39593952 PMCID: PMC11592964 DOI: 10.3390/foods13223536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Meals served to children should not only satisfy hunger and taste preferences but also be nutritionally adequate. Nutrition in early childhood is critical, as children spend a significant portion of their day in kindergarten or preschool, making these settings key contributors to their overall dietary intake. With the rising prevalence of nutrition-related health conditions among children, early interventions are essential for developing and establishing lifelong healthy eating habits. This study assessed the nutritional value and quality of children's diets in two distinct settings: kindergartens in Wroclaw, Poland, and preschools in Sydney, Australia, evaluating their alignment with the planetary health diet. The research analysed 10-day menu cycles from five kindergartens in Wroclaw and the contents of lunchboxes from five preschools in Sydney's Upper North Shore area. A total of 100 menus were reviewed in Poland, while 100 children's lunchboxes were assessed in Australia. Different analytical methods were employed: the Diet 6D software program for the Polish menus and the Food Consumption Score for the Australian lunchboxes. Both methods revealed dietary imbalances, such as excessive intake of protein, vitamin A, salt, and sugar, alongside deficiencies in calcium, vitamin C, and vitamin D. The study concluded that children's diets should adhere to nutritional guidelines, meeting both Polish and Australian standards, and align with the principles of the planetary health diet. To achieve this, nutritional education is essential for kindergarten staff in Poland, while targeted educational interventions are needed for parents and children in both Poland and Australia, promoting health and environmental sustainability through better nutrition.
Collapse
Affiliation(s)
- Agnieszka Orkusz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Diana Bogueva
- Curtin University Sustainability Policy Institute, Curtin University, Perth 6102, Australia;
| |
Collapse
|
3
|
Zhao Y, Luo X, Hu J, Panga MJ, Appiah C, Du Z, Zhu L, Retyunskiy V, Gao X, Ma B, Zhang Q. Syringin alleviates bisphenol A-induced spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish. Int Immunopharmacol 2024; 131:111830. [PMID: 38520788 DOI: 10.1016/j.intimp.2024.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Syringin (SRG) is a bioactive principle possessing extensive activities including scavenging of free radicals, inhibition of apoptosis, and anti-inflammatory properties. However, its effects on spermatogenic defects and testicular injury as well as the underlying mechanisms are still unclear. This study aims to investigate the protective effect of SRG on testis damage in zebrafish and explore its potential molecular events. Zebrafish testicular injury was induced by exposure to bisphenol A (BPA) (3000 μg/L) for two weeks. Fish were treated with intraperitoneal injection of SRG at different doses (5 and 50 mg/kg bodyweight) for two more weeks under BPA induction. Subsequently, the testis and sperm were collected for morphological, histological, biochemical and gene expression examination. It was found that the administration of SRG resulted in a significant protection from BPA-caused impact on sperm concentration, morphology, motility, fertility rate, testosterone level, spermatogenic dysfunction and resulted in increased apoptotic and reactive oxygen species' levels. Furthermore, testicular transcriptional profiling alterations revealed that the regulation of inflammatory response and oxidative stress were generally enriched in differentially expressed genes (DEGs) after SRG treatment. Additionally, it was identified that SRG prevented BPA-induced zebrafish testis injury through upregulation of fn1a, krt17, fabp10a, serpina1l and ctss2. These results indicate that SRG alleviated spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhanxiang Du
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qi Zhang
- School of Food Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Peña-Corona SI, Chávez-Corona JI, Pérez-Caltzontzin LE, Vargas-Estrada D, Mendoza-Rodríguez CA, Ramos-Martínez E, Cerbón-Gutiérrez JL, Herrera-Barragán JA, Quintanar-Guerrero D, Leyva-Gómez G. Melatonin and Vitamins as Protectors against the Reproductive Toxicity of Bisphenols: Which Is the Most Effective? A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:14930. [PMID: 37834378 PMCID: PMC10573514 DOI: 10.3390/ijms241914930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.
Collapse
Affiliation(s)
- Sheila I. Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Juan I. Chávez-Corona
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Luis E. Pérez-Caltzontzin
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - C. Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
| | - Edgar Ramos-Martínez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 04510, Mexico
| | - Jose L. Cerbón-Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José A. Herrera-Barragán
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico;
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| |
Collapse
|
5
|
Bashir DW, Ahmed YH, El-Sakhawy MA. Ameliorative effect of vitamin E and selenium against bisphenol A-induced toxicity in spinal cord and submandibular salivary glands of adult male albino rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:993-1009. [PMID: 35451911 DOI: 10.1080/09603123.2022.2067327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) used in plastic industry. This study evaluate ameliorative effect of vitamin E and selenium in combating BPA toxicity in spinal cord (SC) and submandibular glands (SMGs). Thirty rats divided into three groups [Group I, controls; Group II, BPA orally (25 mg/kg) three times a week, 60 days; Group III, BPA (25 mg/kg) plus vitamin E and selenium in water (1 ml/L/day)]. By histopathological, immunohistochemical, and biochemical investigations. Bisphenol A group showed degenerative alterations. SC gray matter showed pyknotic nuclei and white matter revealed neuropil degeneration. Myelinated fibers showed dispersed myelin. SMGs, exhibited vacuolated cytoplasm in acinar cells. Intense glial fibrillary acidic protein in SC and strong proliferating cell nuclear antigen in acinar and ductal cell nuclei of SMGs. Malondialdehyde elevated in SC and catalase decreased in SMG. Group III, SC and SMG revealed partial recovery. Vitamin E and selenium displayed protective effects against BPA toxicity in SC and SMGs.
Collapse
Affiliation(s)
- Dina W Bashir
- Department of Cytology and Histology, Faculty of Vet Med, Cairo University, Cairo, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Vet Med, Cairo University, Cairo, Egypt
| | - Mohamed A El-Sakhawy
- Department of Cytology and Histology, Faculty of Vet Med, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Peña-Corona SI, Vargas-Estrada D, Chávez-Corona JI, Mendoza-Rodríguez CA, Caballero-Chacón S, Pedraza-Chaverri J, Gracia-Mora MI, Galván-Vela DP, García-Rodríguez H, Sánchez-Bartez F, Vergara-Onofre M, Leyva-Gómez G. Vitamin E (α-Tocopherol) Does Not Ameliorate the Toxic Effect of Bisphenol S on the Metabolic Analytes and Pancreas Histoarchitecture of Diabetic Rats. TOXICS 2023; 11:626. [PMID: 37505591 PMCID: PMC10383361 DOI: 10.3390/toxics11070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
This study investigated whether the coadministration of vitamin E (VitE) diminishes the harmful effects provoked by plasticizer bisphenol S (BPS) in the serum metabolites related to hepatic and renal metabolism, as well as the endocrine pancreatic function in diabetic male Wistar rats. Rats were divided into five groups (n = 5-6); the first group was healthy rats (Ctrl group). The other four groups were diabetic rats induced with 45 mg/kg bw of streptozotocin: Ctrl-D (diabetic control); VitE-D (100 mg/kg bw/d of VitE); BPS-D (100 mg/kg bw/d of BPS); The animals from the VitE + BPS-D group were administered 100 mg/kg bw/d of VitE + 100 mg/kg bw/d of BPS. All compounds were administered orally for 30 days. Body weight, biochemical assays, urinalysis, glucose tolerance test, pancreas histopathology, proximate chemical analysis in feces, and the activity of antioxidants in rat serum were assessed. The coadministration of VitE + BPS produced weight losses, increases in 14 serum analytes, and degeneration in the pancreas. Therefore, the VitE + BPS coadministration did not have a protective effect versus the harmful impact of BPS or the diabetic metabolic state; on the contrary, it partially aggravated the damage produced by the BPS. VitE is likely to have an additive effect on the toxicity of BPS.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan I Chávez-Corona
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Caballero-Chacón
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Diana Patricia Galván-Vela
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Helena García-Rodríguez
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Sánchez-Bartez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marcela Vergara-Onofre
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
7
|
de Almeida W, Matei JC, Akiyama Kitamura RS, Gomes MP, Leme DM, Silva de Assis HC, Vicari T, Cestari MM. Alkylphenols cause cytotoxicity and genotoxicity induced by oxidative stress in RTG-2 cell line. CHEMOSPHERE 2023; 313:137387. [PMID: 36436576 DOI: 10.1016/j.chemosphere.2022.137387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Alkylphenols ethoxylates are industrial surfactants, and the release in the environmental matrices produces degraded products, of which nonylphenol (NP) and octylphenol (OP) were the most common. They can be classified as endocrine disruptors since the estrogenic potential is widely recognized, but some others toxic aspects are in discussion. This study aimed to evaluate the toxicity of NP, OP, and mixtures of both through cellular, biochemical and genetic biomarkers in fish gonadal cell line RTG-2 exposed to nominal concentrations of 0.05; 0.5; 5; 50, and 100 μg mL-1 of each chemical and their mixtures of 0.05, 0.5; 5 μg mL-1 concentrations. After 24 h, the cells were collected for cytotoxic (neutral red - NR; crystal violet - CV, resazurin assay - RA and lactate-dehydrogenase - LDH), antioxidant system (glutathione-s-transferase - GST; superoxide-dismutase - SOD; glutathione-peroxidase - GPx and malondialdehyde - MDA) and genotoxic assays (alkaline comet assay and Fpg-modified alkaline comet assay). The chemicals and their mixtures were cytotoxic at 50 and 100 μg mL-1, in general aspect, but LDH showed cytotoxicity since 0.05 μg mL-1. The GST and SOD showed an activity increase trend in most tested groups, while GPx decreased at 5 μg mL-1 of the mixture. The MDA increase in all groups resulted in lipid peroxidation. The reactive oxygen species caused DNA damage for all groups. The tested chemicals and concentrations have been found in the freshwater systems. They can induce cell toxicity in several parameters that could impair the gonadal tissues considering the RTG-2 responses.
Collapse
Affiliation(s)
- William de Almeida
- Ecology and Conservation Program, Federal University of Paraná, Brazil; Genetics Department, Federal University of Paraná, Brazil.
| | | | - Rafael Shinji Akiyama Kitamura
- Ecology and Conservation Program, Federal University of Paraná, Brazil; Pharmacology Department, Federal University of Paraná, Brazil; Botany Department, Federal University of Paraná, Brazil
| | | | | | | | - Taynah Vicari
- Ecology and Conservation Program, Federal University of Paraná, Brazil; Genetics Department, Federal University of Paraná, Brazil
| | - Marta Margarete Cestari
- Ecology and Conservation Program, Federal University of Paraná, Brazil; Genetics Department, Federal University of Paraná, Brazil
| |
Collapse
|
8
|
ETYEMEZ M, GÜLAY MŞ. The effects of safranal against bisphenol AF on some reproductive parameters in male new zealand rabbits. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.24880/maeuvfd.1138340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Bisphenol AF (BPAF) is used as an analog of the endocrine disruptor BPA, whereas safranal is a powerful antioxidant obtained from the saffron plant. In the current study, the possible effects of BPAF and Safranal on some spermatological parameters, reproductive hormones, oxidant/antioxidant enzymes, and histopathological parameters were investigated. A total of 24 male New Zealand rabbits were divided into 4 groups (n= 6 for each group). The groups and the treatments they received by oral gavage for 9 weeks are as follows: The control group received 1 ml/day of corn oil, the BPAF group received 20 mg/kg/day of bisphenol AF, the Safranal group received 100 mg/kg/day safranal, and the treatment group received 20 mg/kg/day bisphenol AF and 100 mg/kg/day safranal. Although the spermatological parameters prior to the experiment revealed no differences among the groups, BPAF treatment reduced sperm quantity and motility, and elevated seminal plasma estrogen levels at the end of the study. BPAF treatments also had a negative impact on testicular MDA and GSH levels. It also caused seminiferous tubule degeneration in testicular tissue. On the other hand, the administration of safranal with BPAF decreased estrogen levels while increasing sperm concentration and motility to control group levels. Thus, the results suggested that safranal could have a beneficial effect in reducing BPAF-induced tissue damage. In conclusion, BPAF may have potentially harmful to the male reproductive system and safranal may exhibit a protective effect against BPAF exposure.
Collapse
|
9
|
Ďurovcová I, Kyzek S, Fabová J, Makuková J, Gálová E, Ševčovičová A. Genotoxic potential of bisphenol A: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119346. [PMID: 35489531 DOI: 10.1016/j.envpol.2022.119346] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA), as a major component of some plastic products, is abundant environmental pollutant. Due to its ability to bind to several types of estrogen receptors, it can trigger multiple cellular responses, which can contribute to various manifestations at the organism level. The most studied effect of BPA is endocrine disruption, but recently its prooxidative potential has been confirmed. BPA ability to induce oxidative stress through increased ROS production, altered activity of antioxidant enzymes, or accumulation of oxidation products of biomacromolecules is observed in a wide range of organisms - estrogen receptor-positive and -negative. Subsequently, increased intracellular oxidation can lead to DNA damage induction, represented by oxidative damage, single- and double-strand DNA breaks. Importantly, BPA shows several mechanisms of action and can trigger adverse effects on all organisms inhabiting a wide variety of ecosystem types. Therefore, the main aim of this review is to summarize the genotoxic effects of BPA on organisms across all taxa.
Collapse
Affiliation(s)
- Ivana Ďurovcová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Fabová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Makuková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Eliška Gálová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
10
|
Histone deacetylase 2 inhibitor valproic acid attenuates bisphenol A-induced liver pathology in male mice. Sci Rep 2022; 12:10258. [PMID: 35715448 PMCID: PMC9205966 DOI: 10.1038/s41598-022-12937-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence indicates the role of endocrine disruptor bisphenol A (BPA) in many pathological conditions. Histone deacetylase (HDAC) inhibition has potential for the treatment of many diseases/abnormalities. Using a mouse BPA exposure model, this study investigated the hepatoprotective effects of the Food and Drug Administration–approved HDAC2 inhibitor valproic acid (VPA) against BPA-induced liver pathology. We randomly divided 30 adult male Swiss albino mice (8 weeks old; N = 6) into five groups: group 1, no treatment (sham control (SC)); group 2, only oral sterile corn oil (vehicle control (VC)); group 3, 4 mg/kg/day of oral BPA (single dose (BPA group)); group 4, 0.4% oral VPA (VPA group); and group 5, oral BPA + VPA (BPA + VPA group). At the age of 10 weeks, the mice were euthanized for biochemical and histological examinations. BPA promoted a significant decrease in the body weight (BW), an increase in the liver weight, and a significant increase in the levels of liver damage markers aspartate aminotransferase and alanine aminotransferase in the BPA group compared to SC, as well as pathological changes in liver tissue. We also found an increase in the rate of apoptosis among hepatocytes. In addition, BPA significantly increased the levels of oxidative stress indices, malondialdehyde, and protein carbonylation but decreased the levels of reduced glutathione (GSH) in the BPA group compared to SC. In contrast, treatment with the HDAC2 inhibitor VPA significantly attenuated liver pathology, oxidative stress, and apoptosis and also enhanced GSH levels in VPA group and BPA + VPA group. The HDAC2 inhibitor VPA protects mice against BPA-induced liver pathology, likely by inhibiting oxidative stress and enhancing the levels of antioxidant-reduced GSH.
Collapse
|
11
|
Ismail OI, El-Meligy MMS. Curcumin ameliorated low dose-Bisphenol A induced gastric toxicity in adult albino rats. Sci Rep 2022; 12:10201. [PMID: 35715475 PMCID: PMC9206026 DOI: 10.1038/s41598-022-14158-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is one of the most common worldwide chemicals involved in the industry of polycarbonate plastics, medical devices, and pharmaceuticals. Forty three-month-old albino rats were randomly classified into four groups. Group Ӏ received a daily corn oil dose (5 mL/kg/ body weight, BW) through a gastric tube for one month, Group ӀӀ received a daily dose of Curcumin (200 mg/kg body weight (B.W.) through a gastric tube for one month, Group ӀӀӀ received a daily dose of BPA (0.5 μg/kg B.W.) through a gastric tube for one month and Group ӀV received concomitant daily doses of Bisphenol A and Curcumin as the regimen described in groups ӀӀ and ӀӀӀ. The rats were sacrificed, and glandular portion of stomach was dissected and processed for light, immunohistochemical and ultrastructural study. BPA induced destructed gastric glands, dilated congested blood vessels, submucosal oedema, decreased PAS-positive reactivity, increased collagen fibres deposition, decrease in the positive BCL2 immunoexpression, increased positive PCNA immunoexpression, reduction in the gastric mucosal height and destructive changes in the enteroendocrine, chief and parietal cells. Curcumin coadministration provoked an obvious improvement in the gastric structure. BPA exposure has toxic effects on the glandular portion of the stomach in rats. Otherwise, Curcumin coadministration has exhibited protective impact on the architecture of the stomach.
Collapse
Affiliation(s)
- Omnia Ibrahim Ismail
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | |
Collapse
|
12
|
Mustari A, Alam M, Miah MA, Nooruzzaman M, Sujan KM, Chowdhury EH. Retrieval action of zinc and folic acid for the restoration of normal reproductive function in bisphenol-A exposed male albino mice. VET MED-CZECH 2022; 67:479-486. [PMID: 38715971 PMCID: PMC11071136 DOI: 10.17221/13/2022-vetmed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/28/2022] [Indexed: 01/10/2025] Open
Abstract
Bisphenol-A (BPA) has become a great concern due to its toxic effects. The present study investigated the retrieval action of zinc (Zn) and folic acid (FA) supplementation against BPA-induced reproductive toxicities in male albino mice. A total of seventy-five 25-28 day-old mice were divided into five equal groups (group A-E, 15 mice in each group). The mice were given normal rations (control, group A) or administered with daily doses of BPA at 50 mg/kg body weight (b.w.) (group B-E). The mice from groups C, D and E were supplemented with Zn (10 mg/kg b.w.), FA (3 mg/kg b.w.) and both in the feed, respectively, daily for 12 weeks. Blood samples were collected, and the sera were separated for biochemical and hormonal analyses. The standard method was followed to test the sperm motility and sperm count. The testis samples were processed for a routine histopathological study using haematoxylin and eosin staining. The sperm counts, motility, and serum testosterone significantly declined in the BPA-exposed animals, but dramatically increased after the Zn and FA supplementation. There was significant degeneration of the seminiferous tubules in the testes of the BPA-exposed mice, which was recovered moderately by the Zn and FA supplementation. The study shows the retrieval action of zinc and folic acid in the restoration of normal reproductive function in bisphenol-A exposed male mice.
Collapse
Affiliation(s)
- Afrina Mustari
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensigh, Bangladesh
| | - Mahabub Alam
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensigh, Bangladesh
| | - Mohammad Alam Miah
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensigh, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensigh, Bangladesh
| | - Khaled Mahmud Sujan
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensigh, Bangladesh
| | - Emdadul Hauqe Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensigh, Bangladesh
| |
Collapse
|
13
|
Villarreal-Reyes C, Díaz de León-Martínez L, Flores-Ramírez R, González-Lara F, Villarreal-Lucio S, Vargas-Berrones KX. Ecotoxicological impacts caused by high demand surfactants in Latin America and a technological and innovative perspective for their substitution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151661. [PMID: 34780823 DOI: 10.1016/j.scitotenv.2021.151661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, water pollution represents a great concern due to population growth, industrialization, and urbanization. Every day hazardous chemical products for humans and aquatic organisms are disposed of arbitrarily from homes and industries. Even though detergents are considered an essential market, there is evidence of environmental impacts caused by surfactants like nonylphenol ethoxylate (NPE) and linear alkylbenzene sulfonates (LAS). Regulations about maximum allowable concentrations in sewage, surface water, and drinking water are scarce or null, mostly in developing countries like Latin American countries. Therefore, this review explores these two common toxic surfactants (NPE and LAS) and proposes a technological, innovative, and ecological perspective on detergents. Also, it establishes a starting point for industries to minimize adverse effects on humans and environmental health caused by these compounds.
Collapse
Affiliation(s)
- Cecilia Villarreal-Reyes
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, Mexico
| | - Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, Mexico
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, Mexico
| | - Fabiola González-Lara
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, Mexico
| | - Samantha Villarreal-Lucio
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, Mexico
| | - Karla Ximena Vargas-Berrones
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, Mexico.
| |
Collapse
|
14
|
Balcı A, Özkemahlı G, Erkekoglu P, Zeybek D, Yersal N, Kocer-Gumusel B. Effects of prenatal and lactational bisphenol a and/or di(2-ethylhexyl) phthalate exposure on male reproductive system. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:902-915. [PMID: 32787440 DOI: 10.1080/09603123.2020.1805416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) and phthalates are abundantly used endocrine disrupting chemicals (EDCs). The aim of this study was to evaluate the effects of single and combined exposures to BPA and/or di(2-ethylhexyl) phthalate (DEHP) in prenatal and lactational period on rat male reproductive system in later stages of life. Pregnant Sprague-Dawley rats were divided randomly to four groups (n = 3/group): Control (corn oil); DEHP (30 mg/kg/day); BPA (50 mg/kg/day); and BPA+ DEHP (30 mg/kg/day DEHP and 50 mg/kg/day BPA). Groups exposed to EDCs through 6-21 gestational days and lactation period by intragastric lavage. Male offspring (n = 6/group) from each mother were fed till adulthood and were then euthanized. Later, reproductive hormones, sperm parameters, and oxidative stress parameters were determined. In conclusion, we can suggest that prenatal and lactational exposure to BPA and DEHP may cause adverse effects in male reproductive system in later stages of life especially after combined exposure.
Collapse
Affiliation(s)
- Aylin Balcı
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gizem Özkemahlı
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Pınar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgün Yersal
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
15
|
Quilaqueo N, Villegas JV. Endocrine disruptor chemicals. A review of their effects on male reproduction and antioxidants as a strategy to counter it. Andrologia 2021; 54:e14302. [PMID: 34761829 DOI: 10.1111/and.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Endocrine disruptor chemicals are exogenous molecules that generate adverse effects on human health by destabilizing the homeostasis of endocrine system and affecting directly human reproductive system by inhibiting or activating oestrogenic or androgenic receptors. Endocrine disruptor chemicals generate transgenerational epigenetic problems, besides being associated with male infertility. Epidemiological data indicate that the increase in reproductive problems in males in the last 50 years is correlated with the increase of endocrine disrupting chemicals in the environment, being associated with a decrease in semen quality and direct effects on spermatozoa, such as alterations in motility, viability and acrosomal reaction, due to the generation of oxidative stress, and have also been postulated as a possible cause of testicular dysgenesis syndrome. Diverse antioxidants, such as C and E vitamins, N-acetylcysteine, selenium and natural vegetable extracts, are among the alternatives under study to counter the effects of endocrine disruptor chemicals. In some cases, the usage of them has given positive results and the opposite in others. In this review, we summarize the recent information about the effects of endocrine disruptor chemicals on male reproduction, on sperm cells, and the results of studies that have tested antioxidants as a strategy to diminish their harmful effects.
Collapse
Affiliation(s)
- Nelson Quilaqueo
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco, Chile
| | - Juana V Villegas
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco, Chile.,Department of Internal Medicine, Faculty of Medicine, University of La Frontera, Temuco, Chile
| |
Collapse
|
16
|
Ren X, Zhang X, Chen X, Zhang T, Li G, Zhou X, Su S, Zhang W, Qin C, Wang S. Evaluation of post-adolescence exposure to bisphenol A on reproductive outcomes of male rodent models. Reprod Toxicol 2021; 101:124-136. [PMID: 33757772 DOI: 10.1016/j.reprotox.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 12/09/2022]
Abstract
The effect of post-adolescence bisphenol A (BPA) exposure on the reproductive system is not well-defined. We therefore performed this meta-analysis to elucidate the associations between post-adolescence BPA exposure and reproductive-related outcomes. A search was performed on the PubMed, EMBASE, and Web of science databases to identify relevant literature. The standardized mean differences (SMDs) and the 95 % confidence intervals (CIs) were measured by fixed-effects or random-effects models. Publication bias was assessed using funnel plots and Egger's regression test. A total of 40 studies were included in the final analysis. The results showed that post-adolescence BPA exposure was negatively associated with reproductive-related organ weighty (Testis weight: SMD: -0.61; 95 % Cl: -0.85, -0.36; epididymis weight; SMD: -0.43; 95 % Cl: -0.69, -0.17; seminal vesicles weight; SMD: -0.77; 95 % Cl: -1.05, -0.49) and sperm parameters (Sperm motility: SMD: -1.44; 95 % Cl: -1.95, -0.93; epididymal sperm concentration: SMD: -2.26; 95 % Cl: -2.79, -1.72; and abnormal sperm morphology: SMD: 2.41; 95 % Cl: 1.41, 2.86). Moreover, BPA exposure decreased the level of testosterone (T) and superoxide dismutase (SOD), but increased the ratio of serum estradiol (E2) to T. This systematic review demonstrates that post-adolescence exposure to BPA may adversely affect reproductive functions in male rodents.
Collapse
Affiliation(s)
- Xiaohan Ren
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Xu Zhang
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Xinglin Chen
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Tongtong Zhang
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Guangyao Li
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Xiang Zhou
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Shifeng Su
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Wei Zhang
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Chao Qin
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China.
| | - Shangqian Wang
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
17
|
Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10020289. [PMID: 33671960 PMCID: PMC7919053 DOI: 10.3390/antiox10020289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and polycarbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestradiol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. In this review, we briefly describe the effects of BPA on male reproductive health and discuss the use of antioxidants to prevent or revert the BPA-induced toxicity and infertility in men.
Collapse
|
18
|
Zhang X, Liu R. Advances in BPA-induced Oxidative Stress and Related Effects and Mechanisms in Liver, 1991-2017. Mini Rev Med Chem 2020; 20:432-443. [PMID: 30207228 DOI: 10.2174/1389557518666180912105345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a widely spreading environmental endocrine disruptor . Its characteristics, including small doses and frequent contact, make it easy to enter human body through drinking water, food, air and other pathways, leading to tumors, infertility, and liver damage. The present review summarizes the underlying mechanism of oxidative stress and its related effects induced by BPA in the liver. The progress of the mechanism for oxidative stress induced by BPA is summarized, including mitochondrial dysfunction, lipid peroxidation and inflammation reaction, liver dyslipidemia, apoptosis, and cell death mechanism. In the future, it is necessary to elucidate the molecular mechanisms and timing of oxidative stress to clarify the effects on different exposures to different genders and growth stages. Besides, studying the toxic effects on BPA surrogates, BPA metabolites and BPA combined with other pollutants in the environment is beneficial to clarify the environmental and human health effects of BPA and provide technical reference for the development of practical control measures.
Collapse
Affiliation(s)
- Xun Zhang
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100, China.,Department of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, China
| |
Collapse
|
19
|
Amjad S, Rahman MS, Pang MG. Role of Antioxidants in Alleviating Bisphenol A Toxicity. Biomolecules 2020; 10:biom10081105. [PMID: 32722388 PMCID: PMC7465987 DOI: 10.3390/biom10081105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Bisphenol A (BPA) is an oestrogenic endocrine disruptor widely used in the production of certain plastics, e.g., polycarbonate, hard and clear plastics, and epoxy resins that act as protective coating for food and beverage cans. Human exposure to this chemical is thought to be ubiquitous. BPA alters endocrine function, thereby causing many diseases in human and animals. In the last few decades, studies exploring the mechanism of BPA activity revealed a direct link between BPA-induced oxidative stress and disease pathogenesis. Antioxidants, reducing agents that prevent cellular oxidation reactions, can protect BPA toxicity. Although the important role of antioxidants in minimizing BPA stress has been demonstrated in many studies, a clear consensus on the associated mechanisms is needed, as well as the directives on their efficacy and safety. Herein, considering the distinct biochemical properties of BPA and antioxidants, we provide a framework for understanding how antioxidants alleviate BPA-associated stress. We summarize the current knowledge on the biological function of enzymatic and non-enzymatic antioxidants, and discuss their practical potential as BPA-detoxifying agents.
Collapse
|
20
|
Aslanturk A, Uzunhisarcikli M. Protective potential of curcumin or taurine on nephrotoxicity caused by bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23994-24003. [PMID: 32304054 DOI: 10.1007/s11356-020-08716-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) received heightened attention in the recent years due to humans continuously being exposed to it. This study explores the effect of taurine or curcumin on subacute BPA treatment-induced nephrotoxicity in rats (Rattus norvegicus). Forty-two adult albino male rats were exposed to BPA (130 mg/kg daily) for 28 days by gastric gavage. BPA led to lipid peroxidation, inhibiting antioxidant enzyme activities like catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST). BPA exposure also induced histopathological changes like tubular and glomerular degeneration, vascular congestion, and interstitial cell infiltration in kidney tissue. Cotreatment with taurine (100 mg/kg daily) or curcumin (100 mg/kg daily) alleviated the lipid peroxidation level and antioxidant enzyme activities and histological alterations brought about by BPA. In this study, curcumin and taurine application provided protection against renal toxicity caused by BPA but did not prevent toxic effect completely.
Collapse
Affiliation(s)
- Ayse Aslanturk
- Vocational High School of Health Services, Gazi University, 06830, Golbasi, Ankara, Turkey.
| | - Meltem Uzunhisarcikli
- Vocational High School of Health Services, Gazi University, 06830, Golbasi, Ankara, Turkey
| |
Collapse
|
21
|
Güleş Ö, Kum Ş, Yıldız M, Boyacıoğlu M, Ahmad E, Naseer Z, Eren Ü. Protective effect of coenzyme Q10 against bisphenol-A-induced toxicity in the rat testes. Toxicol Ind Health 2020; 35:466-481. [PMID: 31364507 DOI: 10.1177/0748233719862475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study was conducted to investigate the antioxidant, histomorphometric, histochemical, immunohistochemical, biochemical, and cytological effects of coenzyme Q10 (CoQ10) against bisphenol-A (BPA)-induced testicular toxicity in rats. A total of 40 adult male Wistar rats were divided into five equal groups. The control group remained untreated. The vehicle control group was administered corn oil (2 ml/kg/day), the BPA group was given BPA (100 mg/kg/day), the CoQ10 group was supplemented with CoQ10 (10 mg/kg/day), and the rats in the CoQ10-BPA group received CoQ10 (10 mg/kg/day) followed by BPA (100 mg/kg/day) 1 h later. The treatments were administered by oral gavage for 14 days. Results showed that the seminiferous tubule diameters (STDs) and seminiferous epithelium heights (SEHs) at stages VII-VIII and XII-XIV, number of undifferentiated embryonic cell transcription factor-1 (UTF-1) positive cells per tubule, UTF-1 positive tubules (%), plasma glutathione (GSH), and serum superoxide dismutase activities, testicular GSH activity and sperm viability (%) decreased whereas the number of terminal dUTP nick end labeling (TUNEL) positive cells per tubule, TUNEL positive tubules (%), testicular and serum malondialdehyde (MDA) levels, and the rate of mid-piece sperm abnormality increased in the BPA administered group. However, while the STDs at stages VII-VIII and XII-XIV, SEHs at stages VII-VIII, plasma GSH, and serum SOD activities increased, serum MDA level decreased in the CoQ10-BPA group. In conclusion, these results suggest a protective effect of CoQ10 against BPA-induced testicular toxicity in rats.
Collapse
Affiliation(s)
- Özay Güleş
- 1 Department of Histology and Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Şadiye Kum
- 1 Department of Histology and Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Mustafa Yıldız
- 2 Department of Occupational Health and Safety, Çan School of Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Murat Boyacıoğlu
- 3 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - Ejaz Ahmad
- 4 Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Zahid Naseer
- 5 Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Ülker Eren
- 1 Department of Histology and Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
22
|
De Toni L, De Rocco Ponce M, Petre GC, Rtibi K, Di Nisio A, Foresta C. Bisphenols and Male Reproductive Health: From Toxicological Models to Therapeutic Hypotheses. Front Endocrinol (Lausanne) 2020; 11:301. [PMID: 32582021 PMCID: PMC7287019 DOI: 10.3389/fendo.2020.00301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Bisphenols, and in particular bisphenol A (BPA), have been widely used for the production of plastic manufacts in the last 50 years. Currently, BPA is present in a variety of daily use polycarbonate plastics and epoxy resins, and dietary ingestion is considered the main route of human exposure. Accordingly, BPA is the chemical pollutant with the widest exposure in humans, involving nearly 90% of general population, according to recent studies. Concerns about BPA effects on human health date back to 1930s, when severe impact on male sexual development was suggested. Now, the acknowledged biological effects of BPA are various. In regard to human fertility, BPA has been shown to disrupt hormone signaling even at low concentrations. Results from human epidemiological studies have reported BPA interference with follicle stimulating hormone, inhibin B, estradiol, testosterone levels, and sexual function in male subjects. Moreover, recent studies have reported an association between BPA levels and reduced sperm concentration, motility, normal morphology, sperm DNA damage, and altered epigenetic pattern, resulting in trans-generational legacy of BPA effects. In this review, the recognized effects of BPA on male reproductive health are described, from the most recent issues on experimental models to epidemiological data. In addition, the very recent interest about the use of nutraceutical remedies to counteract BPA effects are discussed.
Collapse
Affiliation(s)
- Luca De Toni
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | | | - Gabriel Cosmin Petre
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Kais Rtibi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Andrea Di Nisio
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
- *Correspondence: Carlo Foresta
| |
Collapse
|
23
|
Azizi M Sc P, Soleimani Mehranjani Ph D M. The effect of green tea extract on the sperm parameters and histological changes of testis in rats exposed to para-nonylphenol. Int J Reprod Biomed 2019; 17:717-726. [PMID: 31807720 PMCID: PMC6844286 DOI: 10.18502/ijrm.v17i10.5290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 01/20/2019] [Accepted: 07/07/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Para-nonylphenol (p-NP), an environmental contaminant, can generate free radicals that disturbs the reproductive properties. Green tea extract (GTE) is an antioxidant which may prevent the adverse effects of free radicals. Objective: The aim was to investigate the effect of GTE on sperm parameters and testis tissue in p-NP-treated rats. MATERIALS AND METHODS 24 adult male Wistar rats (215 ± 20 gr) were randomly divided into four groups (n = 6/each) - including control, p-NP (200 mg/kg/day), GTE (200 mg/kg/day), and p-NP + GTE - and orally treated for 56 days. The right testes and left caudal epididymis were used to evaluate selected parameters. In addition, the concentration of serum malondialdehyde was calculated. RESULTS A significant decrease in the sperm number, motility, viability and morphology (p < 0.001) was observed in the rats treated with p-NP compared to the control ones. The diameter of seminiferous tubules (p < 0.001), thickness of germinal epithelium (p = 0.018), total volume of testis (p = 0.009), volume of seminiferous tubules (p < 0.001), and testis weight (p = 0.017) decreased in the p-NP group in contrast with the other groups. Moreover, a significant increase of the malondialdehyde concentration was seen in the p-NP group when compared with the controls (p = 0.043). The majority of adverse effects of p-NP could be recovered following the administration of GTE. CONCLUSION It seems GTE can be used as a potent antioxidant in the case of p-NP toxication.
Collapse
Affiliation(s)
- Parisa Azizi M Sc
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | | |
Collapse
|
24
|
Abdel-Maksoud FM, Ali FAZ, Akingbemi BT. Prenatal exposures to bisphenol A and di (2-ethylhexyl) phthalate disrupted seminiferous tubular development in growing male rats. Reprod Toxicol 2019; 88:85-90. [PMID: 31369804 DOI: 10.1016/j.reprotox.2019.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Endocrine-disrupting compounds (EDCs) are found in the environment due to their use in industrial and manufacturing activities. Exposure of the population to bisphenol A (BPA) and di (2-ethylhexyl) phthalate (DEHP) is significant because they are present in many consumer products. EDCs target the reproductive tract because they express high levels of steroid hormone receptors, which act as transcriptional factors to regulate reproductive development. In the present study, timed-pregnant Long-Evans female rats (n = 8-10) were administered BPA and DEHP by oral gavage at 2.5 or 25 μg/kg body weight and 5 or 50 μg/kg body weight, respectively. Exposures to chemicals were limited to the period between gestational days 12 and 21 followed by assessment of testicular development in male offspring in the postnatal period. Leydig cells and Sertoli cells are the two major somatic cells present in the testis. The 17β-hydroxysteroid dehydrogenase (17β-HSD) steroidogenic enzyme is a marker for Leydig cell maturation, whereas transferrin is a marker for Sertoli cell differentiation. At day 10 post-partum, testes were obtained from cohorts of control and chemical-exposed male rats and processed to measure 17β-HSD and transferrin expression levels in western blots. Compared to control, 17βHSD enzyme protein was increased in BPA-treated rats but levels were decreased in animals exposed to DEHP (P < 0.05). Transferrin protein was decreased in male rats exposed to both BPA and DEHP compared to control animals (P < 0.05). To assess qualitative cellular changes within the spermatogenic epithelium, testes were obtained from separate cohorts of male rats at 35 days of age and processed for histopathological analysis. Results showed that prenatal exposures of male rats to BPA and DEHP caused disruption of the spermatogenic epithelium evident as disorganization and atrophy of seminiferous tubules as well as desquamation of germ cells into the tubular lumen. Together, results from the present study support the view that developmental exposures to environmentally relevant levels of BPA and DEHP are associated with disruptions of testicular cell development, which have implications for endocrine and exocrine functions of testis.
Collapse
Affiliation(s)
- Fatma M Abdel-Maksoud
- Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, Auburn University, USA; Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical pathology, Faculty of Veterinary Medicine, Sohag University, Egypt
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, Auburn University, USA.
| |
Collapse
|
25
|
Bilgi A, Abalı R, Bilgi PT, Şahin M, Tunçdemir M, Boran AB. The apoptotic effects of bisphenol A exposure on the rat ovary: an experimental study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10198-10203. [PMID: 30758795 DOI: 10.1007/s11356-019-04487-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
Bisphenol A (BPA) is a key endocrine-disrupting chemical (EDC) in the manufacturing industry. It is found in the structure of compounds such as polycarbonate and epoxy in combination with other chemicals. Our objective was to investigate the effect of BPA on rat ovaries. A total of 32 female rats were divided into four equal groups: In group 1 (control), vehicle was administered; in group 2, BPA 50 μg/day was administered intraperitoneally; in group 3, BPA 100 mg/kg/day was administered intraperitoneally; and in group 4, BPA 100 mg/kg/day and vitamin C (50 mg/kg) were administered intraperitoneally, while vitamin E (50 mg/kg) was administered intramuscularly. Thirty days after the treatment, the effects of BPA on the ovaries were evaluated by terminal deoxynucleotidyltransferase [TdT]-mediated dUTP-biotin nick end labeling (TUNEL) assay. There was no difference in the number of apoptotic cells between group 2 and group 4. In addition, there was no significant difference between control group and group 2, 4. However, the number of apoptotic cells per unit area was significantly increased in group 3 compared with all groups (p < 0.01, p < 0.05). In conclusion, this study showed that high doses of BPA (100 mg/kg/day) have a toxic effect on the ovaries. The fact that the number of apoptotic cells in the group administered with high dose of BPA + 50 mg/kg/day vitamin C + 50 mg/kg/day vitamin E was lower than that of the high-dose BPA-administered group shows that these vitamins may have a protective effect.
Collapse
Affiliation(s)
- Ahmet Bilgi
- Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Mersin City Education and Research Hospital, Mersin, Turkey
| | - Remzi Abalı
- Clinic of Obstetrics and Gynecology, Bahçeci Fulya In Vitro Fertilization Center, Istanbul, Turkey
| | - Pınar Tonbaklar Bilgi
- Department of Medical Biochemistry, Mersin City Education and Research Hospital, Mersin, Turkey
| | - Mustafa Şahin
- Department of Medical Biochemistry, Erol Olçok Education and Research Hospital, Hitit University, 19040, Çorum, Turkey.
| | - Matem Tunçdemir
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ahmet Birtan Boran
- Department of Gynecology and Obstetrics, Istanbul Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
26
|
Khodayar MJ, Kalantari H, Mahdavinia M, Khorsandi L, Alboghobeish S, Samimi A, Alizadeh S, Zeidooni L. Protective effect of naringin against BPA-induced cardiotoxicity through prevention of oxidative stress in male Wistar rats. Drug Chem Toxicol 2018; 43:85-95. [PMID: 30264589 DOI: 10.1080/01480545.2018.1504958] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatollah Kalantari
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azin Samimi
- Department of Toxicology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Alizadeh
- Department of Toxicology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Department of Toxicology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
Gules O, Yildiz M, Naseer Z, Tatar M. Effects of folic acid on testicular toxicity induced by bisphenol-A in male Wistar rats. Biotech Histochem 2018; 94:26-35. [DOI: 10.1080/10520295.2018.1493222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- O Gules
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - M Yildiz
- Department of Occupational Health and Safety, Çan School of Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Z Naseer
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
| | - M Tatar
- Department of Veterinary, Burdur Food Agriculture and Livestock Vocational School, Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
28
|
Ahmed RG, Walaa GH, Asmaa FS. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicol Ind Health 2018; 34:397-407. [DOI: 10.1177/0748233718757082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this study was to assess the effects of neonatal bisphenol A (BPA) administration on neuroendocrine features (the thyroid–brain axis). BPA (20 or 40 µg/kg) was orally administered to juvenile male albino rats ( Rattus norvegicus) from postnatal days (PNDs) 15 to 30. Both doses resulted in lower serum thyroxine (T4), triiodothyronine (T3), and growth hormone levels and higher thyrotropin level than the control levels at PND 30. In the neonatal cerebellum and cerebrum, vacuolation, pyknosis, edema, degenerative changes, and reductions in the size and number of the cells were observed in both treated groups. Alternatively, elevations in oxidative markers (lipid peroxidation, nitric oxide, and hydrogen peroxide [H2O2]) at both dose levels were recorded at PND 30, along with decreased activities of antioxidant markers (ascorbic acid, total thiol [t-SH], glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and catalase) with respect to control levels. Thus, the BPA-induced hypothyroid state may disturb the neonatal thyroid–brain axis via production of free radicals, and this could damage the plasma membrane and cellular components, delaying cerebrum and cerebellum development.
Collapse
Affiliation(s)
- RG Ahmed
- Anatomy and Embryology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - GH Walaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - FS Asmaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
29
|
Tiwari D, Vanage G. Bisphenol A Induces Oxidative Stress in Bone Marrow Cells, Lymphocytes, and Reproductive Organs of Holtzman Rats. Int J Toxicol 2017; 36:142-152. [DOI: 10.1177/1091581817691224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) is an estrogenic chemical used in the production of polycarbonate plastics and epoxy resins. Our earlier studies have demonstrated that BPA is a potent reproductive and genotoxic agent and affects the normal physiological functions. The objective of this study was to evaluate whether exposure to BPA induces oxidative stress. The male Holtzman rats were orally gavaged with BPA (0.01 mg and 5.0 mg/kg/bw) over the period of 6 days. Animals were euthanized by cervical dislocation at the end of the treatments; bone marrow cells and blood lymphocytes were aspirated; testis and epididymis were collected, immediately frozen in liquid nitrogen, and stored at −80°C. These samples were utilized for the determination of lipid peroxidation and various antioxidant enzymes such as superoxide dismutase, catalase, and nonenzymatic reduced glutathione. The results demonstrated that BPA caused an increase in lipid peroxidation and a decrease in activity of various enzymatic and nonenzymatic antioxidants in bone marrow cells, blood lymphocytes, and testicular and epididymal tissues. The findings of the current study suggest that BPA exposure induced oxidative stress, which could be one of the possible mechanisms causing reproductive and genetic toxicity.
Collapse
Affiliation(s)
- Dinesh Tiwari
- National Center for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), J.M. Street, Parel, Mumbai, India
| | - Geeta Vanage
- National Center for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), J.M. Street, Parel, Mumbai, India
| |
Collapse
|
30
|
Li X, Zhou L, Ni Y, Wang A, Hu M, Lin Y, Hong C, Wan J, Chen B, Fang L, Tong J, Tong X, Tao S, Tian H. Nonylphenol induces pancreatic damage in rats through mitochondrial dysfunction and oxidative stress. Toxicol Res (Camb) 2017; 6:353-360. [PMID: 30090504 DOI: 10.1039/c6tx00450d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/16/2017] [Indexed: 12/28/2022] Open
Abstract
The organic alkylphenol 4-nonylphenol (NP) is regarded to be an endocrine disrupting chemical (EDC), one of the widely diffused and stable environmental contaminants. Due to its hydrophobicity and long half-life, NP can easily accumulate in living organisms, including humans, where it displays a series of toxic effects. It has been widely reported that NP affects male reproduction. In addition, there is increasing evidence suggesting that NP is detrimental to various organs, including the pancreas. This study investigated the adverse effects of NP exposure on the pancreas. Sprague-Dawley rats were treated with different doses of NP for 90 consecutive days. The data suggested that the body weights of the rats treated with NP decreased, and the highest dose of NP treatment (180 mg kg-1) dramatically increased water consumption by rats. Meanwhile, H&E staining and immunohistochemistry indicated that islets in the pancreases shrunk when the rats were treated with the indicated doses of NP. TUNEL staining demonstrated that NP exposure up-regulated the level of apoptosis in the pancreases in a dose-dependent manner. Besides this, NP exposure inhibited the secretion of insulin and disrupted glucose tolerance. The levels of reactive oxygen species (ROS) and intracellular calcium ([Ca2+]i) in the islets were up-regulated in the groups of rats treated with NP, but the levels of Mitochondrial Membrane Potential (MMP) were down-regulated. These results suggest that NP-induced pancreatic damage in rats occurs through mitochondrial dysfunction and oxidative stress, which causes disruption of glucose tolerance and decrease in insulin secretion.
Collapse
Affiliation(s)
- Xueji Li
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070
| | - Liting Zhou
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070
| | - Yiping Ni
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070
| | - Aiqing Wang
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Mingjiang Hu
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Yao Lin
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Chengjiao Hong
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Jianmei Wan
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Bin Chen
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070
| | - Lijun Fang
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070
| | - Jian Tong
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070
| | - Xing Tong
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070
| | - Shasha Tao
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070
| | - Hailin Tian
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070
| |
Collapse
|
31
|
Noorimotlagh Z, Haghighi NJ, Ahmadimoghadam M, Rahim F. An updated systematic review on the possible effect of nonylphenol on male fertility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3298-3314. [PMID: 27826822 DOI: 10.1007/s11356-016-7960-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/20/2016] [Indexed: 05/20/2023]
Abstract
Diverse industries like detergents, resins and polymers, hair dyes, intravaginal spermicides, and pesticides produce endocrine disruptor (ED)-containing wastewaters that have hazardous effects on the environment and public health. Nonylphenol (NP) is a chemical substance that consists of a phenolic group and an attached lipophilic linear nonyl chain. NP has weak estrogenic activity and affects estrogen receptor (ER), as well as induces male infertility via a negative impact on spermatogenesis and sperm quality. The aim of this study was to comprehensively review all available literature about the side effects of NP on the male genital system. We systematically searched Scopus and PubMed using MeSH terms that include "Organic Chemicals," "Infertility," "Infertility, Male," "Nonylphenol", ("Infertility, Male"[Mesh]) OR "Nonylphenol" [Supplementary Concept]) OR "Prostate"[Mesh]) OR "Spermatozoa"[Mesh]) OR "Sertoli Cells"[Mesh]) OR "Leydig Cells"[Mesh] OR "Male accessory gland" OR "Epididym" OR "Reproductive toxicity"), and all other possible combinations from January 1, 1970, to September 15, 2016, with language limit. The initial search identified 117,742 potentially eligible studies, of which 33 met the established inclusion criteria and were included in the analysis. Thirty-three selected studies include animal model (n = 18), cell line (n = 15), human model (n = 1), morphology (n = 13), sperm quality (n = 17), and toxicity (n = 14). This review highlighted the evidence for the ED effect of NP that acts through interference with ER, discussing male reproductive tract perturbations. We critically discuss the available evidence on the effect of NP on sperm quality (such as motility, viability, sperm count, and sperm concentration), dramatic morphological changes (such as change of weights of testes and epididymis), and biochemical changes related to oxidative stress in testes. Finally, it is important to take caution with the continued use of NP that disrupts male reproductive health.
Collapse
Affiliation(s)
- Zahra Noorimotlagh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neemat Jaafarzadeh Haghighi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadimoghadam
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- PhD in Molecular Medicine, Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
32
|
Avci B, Bahadir A, Tuncel OK, Bilgici B. Influence of α-tocopherol and α-lipoic acid on bisphenol-A-induced oxidative damage in liver and ovarian tissue of rats. Toxicol Ind Health 2014; 32:1381-1390. [PMID: 25548375 DOI: 10.1177/0748233714563433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bisphenol A (BPA) is a commonly used material in daily life, and it is argued to cause oxidative stress in liver and ovarian tissue. α-Lipoic acid (ALA) and α-tocopherol (ATF), two of the most effective antioxidants, may play a role in preventing the toxic effect. Therefore, the purpose of this study was to examine the beneficial effects of ALA, ATF, and that of ALA + ATF combination on oxidative damage induced by BPA. Female Wistar rats were divided into five groups (control, BPA, BPA + ALA, BPA + ATF, and BPA + ALA + ATF). BPA (25 mg/kg/day), ALA (100 mg/kg/day), and ATF (20 mg/kg/day) were administered for 30 days. The levels of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), liver malondialdehyde (L-MDA) and glutathione peroxidase (L-GPx), and ovarian malondialdehyde (Ov-MDA) and nitric oxide (Ov-NO) were significantly higher in the BPA-treated groups compared with the control group. The levels of AST and ALT decreased in the BPA + ALA, BPA + ATF, and BPA + ALA + ATF groups compared with the BPA group. Similarly, BPA + ALA or BPA + ATF led to decreases in L-MDA and Ov-MDA levels compared with the BPA group. However, the BPA + ALA + ATF group showed a significant decrease in L-MDA levels compared with the BPA + ALA group and the BPA + ATF group. The levels of L-GPx decreased in the BPA + ATF and the BPA + ALA + ATF groups compared with the BPA group. The administration of ATF and ALA + ATF significantly decreased the Ov-NO levels. This study demonstrates that BPA causes oxidative damage in liver and ovarian tissues. ALA, ATF, or their combination were found to be beneficial in preventing BPA-induced oxidative stress.
Collapse
Affiliation(s)
- Bahattin Avci
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Aysegul Bahadir
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ozgur Korhan Tuncel
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Birsen Bilgici
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
33
|
Abdel-Wahab WM. Thymoquinone attenuates toxicity and oxidative stress induced by bisphenol A in liver of male rats. Pak J Biol Sci 2014; 17:1152-1160. [PMID: 26027160 DOI: 10.3923/pjbs.2014.1152.1160] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bisphenol A (BPA) is a fairly ubiquitous compound which has a great concern to human health. The current study was designed to (1) Assess the adverse effect of oral administration of BPA on liver of male rats and (2) Evaluate the role of thymoquinone (TQ), the major bioactive ingredient in the oil of Nigella sativa seed, in alleviating the possible detrimental effects of BPA on the liver. Rats were divided into control group administered olive oil, BPA group administered 10 mg BPA kg(-1) day(-1), TQ group administered 10 mg TQ kg(-1) day(-1) and BPA-TQ group administered the same previous doses of both BPA and TQ. After 24 h of the last dose, rats were decapitated and blood and liver were collected to determine some oxidative stress and biochemical parameters. Bisphenol A elicited a significant elevation in lipid peroxidation concomitant with depletion of antioxidant defense system in hepatic tissue. It also induced liver dysfunction as indicated by altered liver function markers and biochemical parameters. The administration of TQ attenuated the BPA-induced oxidative stress, alleviated the antioxidative system and improved to a large extent the liver functioning. This data clearly indicates that TQ has the potential to be a protective agent against oxidative stress and liver injury.
Collapse
|
34
|
Adsorption of bisphenol A to a carbon nanotube reduced its endocrine disrupting effect in mice male offspring. Int J Mol Sci 2014; 15:15981-93. [PMID: 25210847 PMCID: PMC4200835 DOI: 10.3390/ijms150915981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/24/2022] Open
Abstract
Soluble carbon nanotubes (CNTs) have shown promise as materials for adsorption of environmental contaminants such as Bisphenol A (BPA), due to the high adsorption capacity and strong desorption hysteresis of BPA on CNTs. The adsorption of BPA to CNTs may change the properties of both BPA and CNTs, and induce different toxicity to human and living systems from that of BPA and CNTs alone. Herein, we report that oral exposure of BPA/MWCNT–COOH (carboxylated multi-walled carbon nantubes) adduct to mice during gestation and lactation period decreased the male offspring reproductive toxicity compared with those induced by BPA alone. The adduct decreased malondialdehyde (MDA) level in testis and follicle-stimulating hormone (FSH) in serum, but increased the level of serum testosterone in male offspring in comparison to BPA alone. Our investigations broadened the knowledge of nanotoxicity and provided important information on the safe application of CNTs.
Collapse
|
35
|
Morgan AM, El-Ballal SS, El-Bialy BE, El-Borai NB. Studies on the potential protective effect of cinnamon against bisphenol A- and octylphenol-induced oxidative stress in male albino rats. Toxicol Rep 2014; 1:92-101. [PMID: 28962230 PMCID: PMC5598475 DOI: 10.1016/j.toxrep.2014.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 01/20/2023] Open
Abstract
Among the numerous chemicals discharged into the surrounding environment, bisphenol A (BPA) and octylphenol (OP) have been shown to increase oxidative stress in body by disturbing the prooxidant/antioxidant balance of cells. Cinnamon aqueous extract (CAE) is a natural product rich in polyphenolic compounds that have antioxidant activity. This study was designed to investigate the protective efficacy of CAE against oxidative disorders induced by BPA and OP in male albino rats. Animals were divided into 6 groups (10 rats each) and treated orally, 3 times weekly for 50 days. Group 1: control vehicle (olive oil); group 2 (25 mg BPA/kg b.wt./day); group 3 (25 mg OP/kg b.wt./day); group 4 (200 mg CAE/kg b.wt./day); group 5 (CAE 2 h before BPA administration); and group 6 (CAE 2 h before OP administration). BPA- and OP-exposed groups showed insignificant elevation in the final body weight; weight gains and significant reduction only in the relative kidneys weight. Also, BPA and OP exposure resulted in significant increase in serum urea, creatinine and kidney, brain, testicular malondialdehyde (MDA) levels. Significant reduction in tissues reduced glutathione (GSH) contents; catalase (CAT) and superoxide dismutase (SOD) activities were also recorded in BPA and OP exposed animals compared to the control vehicle group. Pretreatment with CAE 2 h either before BPA or OP administration ameliorated the BPA- and OP-induced body weight; weight gains and relative organs weight changes and biochemical adverse effects. CAE pretreatment also protected against the recorded pathological changes in kidney, brain and testis. In conclusion, CAE could ameliorate the oxidative toxic effects of BPA and OP indicating its protective antioxidant effect.
Collapse
Affiliation(s)
- Ashraf M Morgan
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Salah S El-Ballal
- Pathology Department, Faculty of Veterinary Medicine, El-Sadat City University, Egypt
| | - Badre E El-Bialy
- Forensic Medicine & Toxicology Department, Faculty of Veterinary Medicine, El-Sadat City University, Egypt
| | - Nermeen B El-Borai
- Forensic Medicine & Toxicology Department, Faculty of Veterinary Medicine, El-Sadat City University, Egypt
| |
Collapse
|
36
|
Bisphenol A regulation of testicular endocrine function in male rats is affected by diet. Toxicol Lett 2014; 225:479-87. [DOI: 10.1016/j.toxlet.2014.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/21/2022]
|
37
|
Wu HJ, Liu C, Duan WX, Xu SC, He MD, Chen CH, Wang Y, Zhou Z, Yu ZP, Zhang L, Chen Y. Melatonin ameliorates bisphenol A-induced DNA damage in the germ cells of adult male rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 752:57-67. [DOI: 10.1016/j.mrgentox.2013.01.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/11/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
38
|
Bisphenol A induces hepatotoxicity through oxidative stress in rat model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:194829. [PMID: 22888396 PMCID: PMC3409570 DOI: 10.1155/2012/194829] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 04/27/2012] [Accepted: 06/06/2012] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are cytotoxic agents that lead to significant oxidative damage. Bisphenol A (BPA) is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to limited information concerning the effect of BPA on liver, this study investigates whether BPA causes hepatotoxicity by induction of oxidative stress in liver. Rats were divided into five groups: The first four groups, BPA (0.1, 1, 10, 50 mg/kg/day) were administrated orally to rats for four weeks. The fifth group was taken water with vehicle. The final body weights in the 0.1 mg group showed a significant decrease compared to control group. Significant decreased levels of reduced glutathione, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and catalase activity were found in the 50 mg BPA group compared to control groups. High dose of BPA (50 mg/kg) significantly increased the biochemical levels of ALT, ALP and total bilirubin. BPA effect on the activity of antioxidant genes was confirmed by real time PCR in which the expression levels of these genes in liver tissue were significantly decrease compared to control. Data from this study demonstrate that BPA generate ROS and reduce the antioxidant gene expression that causes hepatotoxicity.
Collapse
|
39
|
Dobrzyńska MM, Radzikowska J. Genotoxicity and reproductive toxicity of bisphenol A and X-ray/bisphenol A combination in male mice. Drug Chem Toxicol 2012; 36:19-26. [DOI: 10.3109/01480545.2011.644561] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Effect of bisphenol A on the cauda epididymis of adult male albino rats and the possible protective role of quercetin. ACTA ACUST UNITED AC 2011. [DOI: 10.1097/01.ehx.0000397468.63291.0c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Bibliography. Neonatology and perinatology. Current world literature. Curr Opin Pediatr 2011; 23:253-7. [PMID: 21412083 DOI: 10.1097/mop.0b013e3283454167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|