1
|
Dutta S, Chatterjee N, Gallina NLF, Kar S, Koley H, Nanda PK, Biswas O, Das AK, Biswas S, Bhunia AK, Dhar P. Diet, microbiome, and probiotics establish a crucial link in vaccine efficacy. Crit Rev Microbiol 2025:1-26. [PMID: 40110742 DOI: 10.1080/1040841x.2025.2480230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Vaccination plays a critical role in public health by reducing the incidence and prevalence of infectious diseases. The efficacy of a vaccine has numerous determinants, which include age, sex, genetics, environment, geographic location, nutritional status, maternal antibodies, and prior exposure to pathogens. However, little is known about the role of gut microbiome in vaccine efficacy and how it can be targeted through dietary interventions to improve immunological responses. Unveiling this link is imperative, particularly in the post-pandemic world, considering impaired COVID-19 vaccine response observed in dysbiotic individuals. Therefore, this article aims to comprehensively review how diet and probiotics can modulate gut microbiome composition, which is linked to vaccine efficacy. Dietary fiber and polyphenolic compounds derived from plant-based foods improve gut microbial diversity and vaccine efficacy by promoting the growth of short-chain fatty acids-producing microbes. On the other hand, animal-based foods have mixed effects - whey protein and fish oil promote gut eubiosis and vaccine efficacy. In contrast, lard and red meat have adverse effects. Studies further indicate that probiotic supplements exert varied effects, mostly strain and dosage-specific. Interlinking diet, microbiome, probiotics, and vaccines will reveal opportunities for newer research on diet-induced microbiome-manipulated precision vaccination strategies against infectious diseases.
Collapse
Affiliation(s)
- Soumam Dutta
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Sanjukta Kar
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| |
Collapse
|
2
|
Mojgani N, Ashique S, Moradi M, Bagheri M, Garg A, Kaushik M, Hussain MS, Yasmin S, Ansari MY. Gut Microbiota and Postbiotic Metabolites: Biotic Intervention for Enhancing Vaccine Responses and Personalized Medicine for Disease Prevention. Probiotics Antimicrob Proteins 2025. [DOI: 10.1007/s12602-025-10477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 05/04/2025]
|
3
|
Brown JA, Bashir H, Zeng MY. Lifelong partners: Gut microbiota-immune cell interactions from infancy to old age. Mucosal Immunol 2025:S1933-0219(25)00006-6. [PMID: 39862964 DOI: 10.1016/j.mucimm.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Our immune system and gut microbiota are intricately coupled from birth, both going through maturation during early life and senescence during aging almost in a synchronized fashion. The symbiotic relationship between the human host and microbiota is critically dependent on a healthy immune system to keep our microbiota in check, while the microbiota provides essential functions to promote the development and fitness of our immune system. The partnership between our immune system and microbiota is particularly important during early life, when microbial ligands and metabolites shape the development of the immune cells and immune tolerance; during aging, having sufficient beneficial gut bacteria is critical for the maintenance of intact mucosal barriers, immune metabolic fitness, and strong immunity against pathogens. The immune system during childhood is programmed, with the support of the microbiota, to develop robust immune tolerance, and limit autoimmunity and metabolic dysregulation, which are prevalent during aging. This review comprehensively explores the mechanistic underpinnings of gut microbiota-immune cell interactions during infancy and old age, with the goal to gain a better understanding of potential strategies to leverage the gut microbiota to combat age-related immune decline.
Collapse
Affiliation(s)
- Julia A Brown
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Hilal Bashir
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Melody Y Zeng
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, United States.
| |
Collapse
|
4
|
Eftekhari Z, Doroud D, Tajabadi-Ebrahimi M, Kazemi-Lomedasht F. Improving Vaccine Response through Probiotics and Micronutrient Supplementation: Evaluating the Role of TLR5 in Adult Female BALB/c Mice. Curr Pharm Des 2025; 31:233-242. [PMID: 39257145 DOI: 10.2174/0113816128310203240823053538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The role of probiotics and micronutrients in improving immune system function and response to vaccination has been proven. Hence, this study aimed to investigate the effects of probiotics enriched with micronutrients on the immunogenicity of PastoCovac® vaccine. METHODS The probiotic supplement BioBoost® and PastoCovac® vaccine, which contain six expressed Receptor- binding Domains (RBD) and conjugated with tetanus toxin, were administered concurrently. The safety and efficacy were assessed by determining Immunoglobulin G (IgG) antibody titers to RBD and cytokines, mRNA expression of Toll-like Receptors (TLRs) 5, and clinical symptoms. RESULTS Results revealed that the administration of the probiotics enriched with micronutrients and vitamins for 14 days before the first vaccine dose, followed by continued supplementation for 14 days after the first dose, and in conjunction with the second vaccine dose, yielded the most significant elevation in Interleukin 4 (IL-4), Tumor Necrosis Factor-alpha (TNF alpha), Interferon-gamma (IFN-gamma), and anti-SARS-CoV-2 RBD IgG levels within the supernatant samples collected from spleen cultures with the highest expression of TLR5 genes in intestinal samples, compared to the control group. CONCLUSION Our results indicated that the inclusion of probiotics enriched with micronutrients and vitamins significantly enhanced the immunogenicity of the PastoCovac® vaccine. Based on the recommendation to administer third and fourth vaccine doses, particularly for vulnerable and elderly individuals, the utilization of supplements containing probiotics is expected to favorably influence immune responses.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Delaram Doroud
- Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Venom and Bio-therapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Arioz Tunc H, Childs CE, Swann JR, Calder PC. The effect of oral probiotics on response to vaccination in older adults: a systematic review of randomised controlled trials. Age Ageing 2024; 53:ii70-ii79. [PMID: 38745493 DOI: 10.1093/ageing/afae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 05/16/2024] Open
Abstract
This systematic review evaluated the impact of oral probiotics on the immune response to vaccination in older people. A literature search was performed in three electronic databases up to January 2023. Randomised controlled trials (RCTs) conducted in older people (age ≥ 60 years) investigating oral probiotics and vaccine response outcomes were included. Characteristics and outcome data of the included studies were extracted and analysed and study quality was assessed using the Cochrane Risk of Bias Tool for randomised trials. Ten RCTs involving 1,560 participants, reported in 9 papers, were included. Nine studies involved the seasonal influenza vaccine and one a COVID-19 vaccine. All studies used lactobacilli, some in combination with bifidobacteria. Studies reported outcomes including anti-vaccine antibody titres or concentrations, seroconversion and seroprotection. When comparing antibody titres, seroprotection rate and seroconversion rate between probiotic and placebo groups expressed as a response ratio, the weighted mean values were 1.29, 1.16 and 2.00, respectively. Meta-analysis showed that probiotics increase seroconversion rates to all three strains of the seasonal influenza vaccine: odds ratio (95% confidence interval) 2.74 (1.31, 5.70; P = 0.007) for the H1N1 strain; 1.90 (1.04, 3.44; P = 0.04) for the H3N2 strain; 1.72 (1.05, 2.80; P = 0.03) for the B strain. There was a low level of heterogeneity in these findings. Several studies were at high risk of bias due to missing outcome data. Lactobacilli may improve the vaccine response, but further research is needed to be more certain of this.
Collapse
Affiliation(s)
- Hediye Arioz Tunc
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Caroline E Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
Li Y, Aoki T, Iwabuchi S, Arai S, Iwabuchi N, Motobayashi H, Tanaka M, Hashimoto S. Immunomodulatory activity of heat-killed Lacticaseibacillus paracaseiMCC1849 based on the activation of plasmacytoid dendritic cells in the peripheral blood of healthy adults. Food Sci Nutr 2024; 12:3452-3460. [PMID: 38726445 PMCID: PMC11077237 DOI: 10.1002/fsn3.4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 05/12/2024] Open
Abstract
Probiotics are widely used in food for their health benefits to the host. Inactivated probiotics also reportedly improve the intestinal environment and immune regulation. Our previous studies showed that heat-killed Lacticaseibacillus paracasei MCC1849 (hk-MCC1849) effectively induced IL-12 production in mouse spleen cells and significantly reduced cold symptoms in clinical trial subjects. To further elucidate the mechanism of host immune regulation by hk-MCC1849, human peripheral blood mononuclear cells (PBMCs) were cocultured with hk-MCC1849. The Toll-like receptor 9 ligands CpG-ODN 2216 and hk-MCC1849 and the heat-killed Lacticaseibacillus rhamnosus ATCC53103 were used as positive and negative controls, respectively. The results showed that, compared with the control, hk-MCC1849 significantly increased the expression of the plasmacytoid dendritic cell (pDC) marker CD86 (p < .0001) and the pDC marker HLA-DR (p < .001) in PBMCs. The expression levels of the IL-12p40, IFNα, IFNα1, IFNγ, and ISG15 genes were significantly increased after coculture with hk-MCC1849 (p < .05, p < .05, p < .05, p < .05, and p < .05, respectively, vs. control). Furthermore, to confirm whether hk-MCC1849 directly interacted with pDCs, DCs were enriched with PBMCs following 24 h of coculture with hk-MCC1849. Phagocytosis of fluorescently labeled hk-MCC1849 by pDCs was observed, and there were significant increases in CD86 (p < .05) and HLA-DR (p < .0001) expression in pDCs. These results suggest that hk-MCC1849 exerts a potential immunomodulatory effect on the host through the activation of peripheral pDCs.
Collapse
Affiliation(s)
- Yiran Li
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd.ZamaKanagawaJapan
| | - Takahiro Aoki
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd.ZamaKanagawaJapan
| | - Sadahiro Iwabuchi
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaWakayamaJapan
| | - Satoshi Arai
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd.ZamaKanagawaJapan
| | - Noriyuki Iwabuchi
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd.ZamaKanagawaJapan
| | - Hideki Motobayashi
- Second Department of SurgeryWakayama Medical UniversityWakayamaWakayamaJapan
| | - Miyuki Tanaka
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd.ZamaKanagawaJapan
| | - Shinichi Hashimoto
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaWakayamaJapan
| |
Collapse
|
8
|
Wada Y, Matsuzaki Tada A, Yokoyama M, Tanaka M, Kondo K. Prevention of Age-Related-Increases in the Risks of Incident Functional Disability and Dementia by Home-Delivered Functional Dairy Product Consumption in Japanese Older Adults. J Nutr Sci Vitaminol (Tokyo) 2024; 70:344-351. [PMID: 39218696 DOI: 10.3177/jnsv.70.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Dairy products formulated with bioactives are widely distributed in Japan, but it remains to be clear whether a regular consumption of these products would help reduce the risks of incidental functional disability and dementia in older adults. This study aimed to investigate Japanese subjects aged ≥65 y (n=629) that routinely consumed three functional dairy products, a calcium-enriched milk supplemented with Bifidobacterium longum BB536, a yogurt supplemented with lactoferrin, B. longum BB536 and heat-killed Lacticaseibacillus paracasei MCC1849, and a drinkable yogurt supplemented with lactoferrin, B. longum BB536 and heat-killed L. paracasei MCC1849, through a home delivery service. Intake frequency and intake duration of these functional dairy products were compared with the risk scores of incident functional disability and dementia, developed by the Japan Gerontological Evaluation Study. In the participants aged <75 y, the incident functional disability risk was significantly maintained or decreased in the participants with the long intake duration level compared with the short intake duration level (OR, 95% CI: 0.48, 0.25-0.93). In the participants aged ≥75 y, the dementia risk was significantly maintained or decreased in the participants with the high intake frequency level compared with the low intake frequency level (OR, 95% CI: 0.46, 0.22-0.95). A high intake frequency or long term duration of these functional dairy products may be effective in preventing an aging-related increase in the risks of incident functional disability and dementia in older adults, but this warrants further investigation using different products containing different bioactives.
Collapse
Affiliation(s)
- Yasuaki Wada
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd
| | | | - Meiko Yokoyama
- Department of Social Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd
| | - Katsunori Kondo
- Department of Social Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University
| |
Collapse
|
9
|
Kanauchi O, Low ZX, Jounai K, Tsuji R, AbuBakar S. Overview of anti-viral effects of probiotics via immune cells in pre-, mid- and post-SARS-CoV2 era. Front Immunol 2023; 14:1280680. [PMID: 38116008 PMCID: PMC10728489 DOI: 10.3389/fimmu.2023.1280680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The COVID-19 outbreak has caused significant global changes and increased public awareness of SARS-CoV-2. Substantial progress in developing vaccines, enhancing sanitation practices, and implementing various measures to combat the virus, including the utilization of probiotics has been made. This comprehensive review examined the medical impact of clinically proven probiotics on infectious diseases, considering three crucial time periods: before (pre-), during (mid-), and after (post-) COVID-19 pandemic era. This review also showed a perspective on the use of probiotics to stimulate the innate immune system and prevent infectious diseases. In pre-COVID-19 era, several probiotic strains were found to be clinically effective in addressing gastrointestinal infectious diseases, the common cold and flu. However, the mechanism by which probiotics exerted their antiviral effects remained relatively unclear during that period. Nevertheless, probiotics, Lactococcus lactis strain Plasma (LC-Plasma), and others have gained attention for their unique ability to modulate the immune system and demonstrate antiviral properties. While some probiotics have shown promise in alleviating gastrointestinal symptoms linked to COVID-19, their direct effectiveness in treating or preventing COVID-19 progression has not yet been conclusively established. As we transition into the post-COVID-19 era, the relationship between COVID-19 and plasmacytoid dendritic cells (pDCs), a vital component of the innate immune system, has been gradually elucidated. These findings are now being applied in developing novel vaccines and treatments involving interferons and in immune activation research using probiotics as adjuvants, comparable to CpG-DNA through TLR9. The role of the local innate immune system, including pDCs, as the first line of defense against viral infections has gained increasing interest. Moving forward, insight of the immune system and the crosstalk between probiotics and the innate immune system is expected to highlight the role of probiotics in adjunctive immunoregulatory therapy. In combination with drug treatments, probiotics may play a more substantial role in enhancing immune responses. The immunoregulatory approach using probiotics such as LC-Plasma, which can induce anti-infectious factors such as interferons, holds promise as a viable therapeutic and prophylactic option against viral infectious diseases due to their good safety profile and protective efficacy.
Collapse
Affiliation(s)
- Osamu Kanauchi
- Tropical Infectious Disease Research and Education Centre (TIDREC), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Health Sciences, Kirin Holdings Co., Ltd., Fujisawa, Japan
| | - Zhao Xuan Low
- Tropical Infectious Disease Research and Education Centre (TIDREC), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Kenta Jounai
- Institute of Health Sciences, Kirin Holdings Co., Ltd., Fujisawa, Japan
| | - Ryohei Tsuji
- Institute of Health Sciences, Kirin Holdings Co., Ltd., Fujisawa, Japan
| | - Sazaly AbuBakar
- Tropical Infectious Disease Research and Education Centre (TIDREC), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Ponziani FR, Coppola G, Rio P, Caldarelli M, Borriello R, Gambassi G, Gasbarrini A, Cianci R. Factors Influencing Microbiota in Modulating Vaccine Immune Response: A Long Way to Go. Vaccines (Basel) 2023; 11:1609. [PMID: 37897011 PMCID: PMC10611107 DOI: 10.3390/vaccines11101609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Vaccine immunogenicity still represents an unmet need in specific populations, such as people from developing countries and "edge populations". Both intrinsic and extrinsic factors, such as the environment, age, and dietary habits, influence cellular and humoral immune responses. The human microbiota represents a potential key to understanding how these factors impact the immune response to vaccination, with its modulation being a potential step to address vaccine immunogenicity. The aim of this narrative review is to explore the intricate interactions between the microbiota and the immune system in response to vaccines, highlighting the state of the art in gut microbiota modulation as a novel therapeutic approach to enhancing vaccine immunogenicity and laying the foundation for future, more solid data for its translation to the clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy (G.C.); (P.R.); (M.C.); (R.B.); (G.G.); (A.G.)
| |
Collapse
|
11
|
Antony MA, Patel S, Verma V, Kant R. The Role of Gut Microbiome Supplementation in COVID-19 Management. Cureus 2023. [DOI: https:/doi.org/10.7759/cureus.46960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
|
12
|
Antony MA, Patel S, Verma V, Kant R. The Role of Gut Microbiome Supplementation in COVID-19 Management. Cureus 2023; 15:e46960. [PMID: 38021562 PMCID: PMC10640765 DOI: 10.7759/cureus.46960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
COVID-19, which is caused by the RNA virus, SARS-CoV-2, mainly affects the respiratory system and has a varied clinical presentation. However, several studies have shown that COVID-19 can also affect the gastrointestinal (GI) system. Patients can experience various GI symptoms, such as vomiting and diarrhea, and the virus has been detected in the stool samples of patients hospitalized with COVID-19. There have also been rare reports of COVID-19 presenting with isolated GI symptoms and lack of respiratory symptoms, and the virus has also been detected for prolonged periods in the fecal samples of COVID-19 patients. Major alterations in the gut microbiome in the form of depletion of beneficial organisms and an abundance of pathogenic organisms have been reported in the fecal samples of hospitalized COVID-19 patients. Although the US FDA has approved several drugs to manage COVID-19, their efficacy remains modest. So, there is a constant ongoing effort to investigate novel treatment options for COVID-19. Health supplements like probiotics, prebiotics, postbiotics, and synbiotics have been popularly known for their various health benefits. In this review, we have summarized the current literature, which shows the potential benefit of these health supplements to mitigate and/or prevent the clinical presentation of COVID-19.
Collapse
Affiliation(s)
- Mc Anto Antony
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, USA
| | - Siddharth Patel
- Department of Internal Medicine, Decatur Morgan Hospital, Decatur, USA
| | - Vipin Verma
- Department of Internal Medicine, Medical University of South Carolina, Anderson, USA
| | - Ravi Kant
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, USA
| |
Collapse
|
13
|
Sato S, Arai S, Iwabuchi N, Tanaka M, Hase R, Sakane N. Effects of Heat-Killed Lacticaseibacillus paracasei MCC1849 on the Maintenance of Physical Condition in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2023; 15:3450. [PMID: 37571384 PMCID: PMC10421150 DOI: 10.3390/nu15153450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
We previously reported that the intake of heat-killed Lacticaseibacillus paracasei MCC1849 suppressed the onset of cold-like symptoms in healthy young women who were susceptible to colds. This study aimed to investigate the effects of MCC1849 on subjective symptoms of physical condition in healthy adults of a wide age range. In this randomized, double-blind, placebo-controlled, parallel-group study, 200 healthy adults were randomly divided into the MCC1849 group or placebo group. The participants received test powder with 50 billion MCC1849 cells or placebo powder without MCC1849 for 24 weeks. Subjective symptoms were assessed by diary scores. Analysis was performed on 183 participants (MCC1849 group; n = 91, placebo group; n = 92) in the per-protocol set. The number of days of stuffy nose and cold-like symptoms was significantly reduced in the MCC1849 group compared with the placebo group. In addition, the duration of stuffy nose, sore throat and cold-like symptoms was significantly lower in the MCC1849 group. No side effects were observed. Therefore, oral intake of MCC1849 suppressed subjective symptoms in healthy adults of a wide age range. These data suggest that MCC1849 may help maintain physical condition.
Collapse
Affiliation(s)
- Soichiro Sato
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Satoshi Arai
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Noriyuki Iwabuchi
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Ryosuke Hase
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube 755-8505, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1, Fukakusa, Mukaihata-cho, Fushimi-ku, Kyoto 612-8555, Japan
| |
Collapse
|
14
|
Oh S, Seo H. Dietary intervention with functional foods modulating gut microbiota for improving the efficacy of COVID-19 vaccines. Heliyon 2023; 9:e15668. [PMID: 37124341 PMCID: PMC10121067 DOI: 10.1016/j.heliyon.2023.e15668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Dysbiosis of the gut microbiota with aging contributes to a reduction in important cross-feeding bacterial reactions in the gut and immunosenescence, which could contribute to a decrease in vaccine efficacy. Fever, cough, and fatigue are the main signs of coronavirus disease 2019 (COVID-19); however, some patients with COVID-19 present with gastrointestinal symptoms. COVID-19 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best measures to reduce SARS-CoV-2 infection rates and the severity of COVID-19. The immunogenicity of COVID-19 vaccines is influenced by the composition of the gut microbiota, and the immune response to COVID-19 vaccines decreases with age. In this review, we discuss gut microbiota dysbiosis and immunosenescence in the older adults, the role of gut microbiota in improving the efficacy of COVID-19 vaccines, and dietary interventions to improve the efficacy of COVID-19 vaccines in the older adults.
Collapse
Affiliation(s)
- Soyoung Oh
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| | - Haesook Seo
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| |
Collapse
|
15
|
Spacova I, Patusco R, Lebeer S, Jensen MG. Influence of biotic interventions on the immune response to vaccines in young and older adults. Clin Nutr 2023; 42:216-226. [PMID: 36657219 DOI: 10.1016/j.clnu.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Vaccination is the most effective way to confer potent and long-term protection from infectious diseases. However, poorer responses to immunization are common in young adults with sub-optimal immune health and the elderly because of immunosenescence and increased comorbidities. Recent mechanistic studies have highlighted that the microbiota and its compounds modulate many molecular pathways that can influence the host immune system. Consequently, altering the microbiota composition or activity with immunonutrition, specifically with biotic interventions (probiotics, prebiotics, synbiotics, or postbiotics), may enhance the immune response and vaccine efficacy. This review aims to examine the available data for these biotic strategies to provide clinicians, researchers, and vaccine developers with a mechanistically driven synthesis of how biotic interventions could modulate the immune responses to vaccination. The article describes some postulated mechanistic pathways involved in immunological responses to vaccines and immunomodulation with biotic interventions. Randomized clinical trials were also reviewed to evaluate the impact of specific biotic interventions on vaccination outcomes in different age groups. Few strains and formulations significantly increased antigen-specific antibody titers in individual of all ages. However, studies have also pointed to a substantial heterogeneity that can be attributed to the difference in biotic intervention, strain, dose, viability, type of vaccine antigen, study location, as well as duration, and timing of administration. Future investigations should focus on establishing optimal strains, doses, and timing of administration with respect to vaccination, especially in the elderly and children, where vaccine effectiveness and duration of immunization matter.
Collapse
Affiliation(s)
- Irina Spacova
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Belgium.
| | - Rachael Patusco
- Haleon (formerly GSK Consumer Healthcare Pvt Ltd), United States
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Belgium
| | | |
Collapse
|
16
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
17
|
Calder PC, Ortega EF, Meydani SN, Adkins Y, Stephensen CB, Thompson B, Zwickey H. Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Evidence on Micronutrients and on Modulation of the Gut Microbiota. Adv Nutr 2022; 13:S1-S26. [PMID: 36183242 PMCID: PMC9526826 DOI: 10.1093/advances/nmac052] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 01/28/2023] Open
Abstract
The immune system is key to host defense against pathogenic organisms. Aging is associated with changes in the immune system, with a decline in protective components (immunosenescence), increasing susceptibility to infectious disease, and a chronic elevation in low-grade inflammation (inflammaging), increasing the risk of multiple noncommunicable diseases. Nutrition is a determinant of immune cell function and of the gut microbiota. In turn, the gut microbiota shapes and controls the immune and inflammatory responses. Many older people show changes in the gut microbiota. Age-related changes in immune competence, low-grade inflammation, and gut dysbiosis may be interlinked and may relate, at least in part, to age-related changes in nutrition. A number of micronutrients (vitamins C, D, and E and zinc and selenium) play roles in supporting the function of many immune cell types. Some trials report that providing these micronutrients as individual supplements can reverse immune deficits in older people and/or in those with insufficient intakes. There is inconsistent evidence that this will reduce the risk or severity of infections including respiratory infections. Probiotic, prebiotic, or synbiotic strategies that modulate the gut microbiota, especially by promoting the colonization of lactobacilli and bifidobacteria, have been demonstrated to modulate some immune and inflammatory biomarkers in older people and, in some cases, to reduce the risk and severity of gastrointestinal and respiratory infections, although, again, the evidence is inconsistent. Further research with well-designed and well-powered trials in at-risk older populations is required to be more certain about the role of micronutrients and of strategies that modify the gut microbiota-host relationship in protecting against infection, especially respiratory infection.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Edwin Frank Ortega
- Nutritional Immunology Laboratory, Jean Mayer–USDA Human Nutrition Research on Aging at Tufts University, Boston, MA, USA
| | - Simin N Meydani
- Nutritional Immunology Laboratory, Jean Mayer–USDA Human Nutrition Research on Aging at Tufts University, Boston, MA, USA
| | - Yuriko Adkins
- USDA Western Human Nutrition Research Center, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Brice Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| |
Collapse
|
18
|
Abstract
The gut microbiome is a contributory factor in ageing-related health loss and in several non-communicable diseases in all age groups. Some age-linked and disease-linked compositional and functional changes overlap, while others are distinct. In this Review, we explore targeted studies of the gut microbiome of older individuals and general cohort studies across geographically distinct populations. We also address the promise of the targeted restoration of microorganisms associated with healthier ageing.
Collapse
Affiliation(s)
- Tarini Shankar Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
19
|
Wahab S, Almaghaslah D, Mahmood SE, Ahmad MF, Alsayegh AA, Abu Haddash YM, Rahman MA, Ahamd I, Ahmad W, Khalid M, Usmani S, Ahmad MP, Hani U. Pharmacological Efficacy of Probiotics in Respiratory Viral Infections: A Comprehensive Review. J Pers Med 2022; 12:1292. [PMID: 36013241 PMCID: PMC9409792 DOI: 10.3390/jpm12081292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/30/2023] Open
Abstract
Mortality and morbidity from influenza and other respiratory viruses are significant causes of concern worldwide. Infections in the respiratory tract are often underappreciated because they tend to be mild and incapacitated. On the other hand, these infections are regarded as a common concern in clinical practice. Antibiotics are used to treat bacterial infections, albeit this is becoming more challenging since many of the more prevalent infection causes have acquired a wide range of antimicrobial resistance. Resistance to frontline treatment medications is constantly rising, necessitating the development of new antiviral agents. Probiotics are one of several medications explored to treat respiratory viral infection (RVI). As a result, certain probiotics effectively prevent gastrointestinal dysbiosis and decrease the likelihood of secondary infections. Various probiotic bacterias and their metabolites have shown immunomodulating and antiviral properties. Unfortunately, the mechanisms by which probiotics are effective in the fight against viral infections are sometimes unclear. This comprehensive review has addressed probiotic strains, dosage regimens, production procedures, delivery systems, and pre-clinical and clinical research. In particular, novel probiotics' fight against RVIs is the impetus for this study. Finally, this review may explore the potential of probiotic bacterias and their metabolites to treat RVIs. It is expected that probiotic-based antiviral research would be benefitted from this review's findings.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Esam Mahmood
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Yahya M. Abu Haddash
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Irfan Ahamd
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Shazia Usmani
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, Uttar Pradesh, India
| | - Md Parwez Ahmad
- Department of Pharmacology, School of Medicine, Maldives National University, Male 20402, Maldives
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
20
|
Gonçalves JIB, Borges TJ, de Souza APD. Microbiota and the Response to Vaccines Against Respiratory Virus. Front Immunol 2022; 13:889945. [PMID: 35603203 PMCID: PMC9122122 DOI: 10.3389/fimmu.2022.889945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
This mini review describes the role of gut and lung microbiota during respiratory viral infection and discusses the implication of the microbiota composition on the immune responses generated by the vaccines designed to protect against these pathogens. This is a growing field and recent evidence supports that the composition and function of the microbiota can modulate the immune response of vaccination against respiratory viruses such as influenza and SARS-CoV-2. Recent studies have highlighted that molecules derived from the microbiome can have systemic effects, acting in distant organs. These molecules are recognized by the immune cells from the host and can trigger or modulate different responses, interfering with vaccination protection. Modulating the microbiota composition has been suggested as an approach to achieving more efficient protective immune responses. Studies in humans have reported associations between a better vaccine response and specific bacterial taxa. These associations vary among different vaccine strategies and are likely to be context-dependent. The use of prebiotics and probiotics in conjunction with vaccination demonstrated that bacterial components could act as adjuvants. Future microbiota-based interventions may potentially improve and optimize the responses of respiratory virus vaccines.
Collapse
Affiliation(s)
- João I. B. Gonçalves
- Laboratory of Clinical and Experimental Immunology, Health and Life Science School - Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Thiago J. Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Health and Life Science School - Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
21
|
Lin TL, Fan YH, Chang YL, Ho HJ, Liang LL, Chen YJ, Wu CY. Early-Life Antibiotic Exposure Associated With Varicella Occurrence and Breakthrough Infections: Evidence From Nationwide Pre-Vaccination and Post-Vaccination Cohorts. Front Immunol 2022; 13:848835. [PMID: 35432330 PMCID: PMC9011717 DOI: 10.3389/fimmu.2022.848835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Antibiotic-driven dysbiosis may impair immune function and reduce vaccine-induced antibody titers. Objectives This study aims to investigate the impacts of early-life antibiotic exposure on subsequent varicella and breakthrough infections. Methods This is a nationwide matched cohort study. From Taiwan’s National Health Insurance Research Database, we initially enrolled 187,921 children born from 1997 to 2010. Since 2003, the Taiwan government has implemented a one-dose universal varicella vaccination program for children aged 1 year. We identified 82,716 children born during the period 1997 to 2003 (pre-vaccination era) and 48,254 children born from July 1, 2004, to 2009 (vaccination era). In the pre-vaccination era, 4,246 children exposed to antibiotics for at least 7 days within the first 2 years of life (Unvaccinated A-cohort) were compared with reference children not exposed to antibiotics (Unvaccinated R-cohort), with 1:1 matching for gender, propensity score, and non-antibiotic microbiota-altering medications. Using the same process, 9,531 children in the Vaccinated A-cohort and Vaccinated R-cohort were enrolled from the vaccination era and compared. The primary outcome was varicella. In each era, demographic characteristics were compared, and cumulative incidences of varicella were calculated. Cox proportional hazards model was used to examine associations. Results In the pre-vaccination era, the 5-year cumulative incidence of varicella in the Unvaccinated A-cohort (23.45%, 95% CI 22.20% to 24.70%) was significantly higher than in the Unvaccinated R-cohort (16.72%, 95% CI 15.62% to 17.82%) (p<.001). In the vaccination era, a significantly higher 5-year cumulative incidence of varicella was observed in the Vaccinated A-cohort (1.63%, 95% 1.32% to 1.93%) than in the Vaccinated R-cohort (1.19%, 95% CI 0.90% to 0.45%) (p=0.006). On multivariate analyses, early-life antibiotic exposure was an independent risk factor for varicella occurrence in the pre-vaccination (adjusted hazard ratio [aHR] 1.92, 95% CI 1.74 to 2.12) and vaccination eras (aHR 1.66, 95% CI 1.24 to 2.23). The use of penicillins, cephalosporins, macrolides, or sulfonamides in infancy was all positively associated with childhood varicella regardless of vaccine administration. Conclusions Antibiotic exposure in early life is associated with varicella occurrence and breakthrough infections.
Collapse
Affiliation(s)
- Teng-Li Lin
- Department of Dermatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Hsuan Fan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ling Chang
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiu J Ho
- Institute of Biomedical Informatics and Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Lin Liang
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Life Sciences, National Chung-Hsing University, Taichung, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ying Wu
- Institute of Biomedical Informatics and Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan.,National Institute of Cancer Research and Institute of Population Health Science, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
22
|
Sandionigi A, De Giani A, Tursi F, Michelotti A, Cestone E, Giardina S, Zampolli J, Di Gennaro P. Effectiveness of Multistrain Probiotic Formulation on Common Infectious Disease Symptoms and Gut Microbiota Modulation in Flu-Vaccinated Healthy Elderly Subjects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3860896. [PMID: 35127941 PMCID: PMC8814717 DOI: 10.1155/2022/3860896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The decline of the immune system with aging leads elderly people to be more susceptible to infections, posing high risk for their health. Vaccination is thus important to cope with this risk, even though not always effective. As a strategy to improve protection, adjuvants are used in concomitance with vaccines, however, occasionally producing important side effects. The use of probiotics has been proposed as an alternative to adjuvants due to their efficacy in reducing the risk of common infections through the interactions with the immune system and the gut microbiota. A placebo-controlled, randomized, double-blind, clinical trial was carried out on fifty elderly subjects, vaccinated for influenza, to determine the efficacy of a probiotic mixture in reducing common infection symptoms. The incidence of symptoms was evaluated after 28 days of probiotic intake (namely, T28) and after further 28 days of follow-up (namely, T56). The number of subjects, as well as the number of days with symptoms, was remarkably reduced at T28, and even more at T56 in the probiotic group. Furthermore, the influence of probiotics on immunological parameters was investigated, showing a significant positive improvement of total antioxidant capacity and β-defensin2 levels. Finally, faecal samples collected from participants were used to assess variations in the gut microbiota composition during the study, showing that probiotic intake enhanced the presence of genera related to a healthy status. Therefore, the collected results suggested that the treatment with the selected probiotic mixture could help in reducing common infectious disease symptom incidence through the stimulation of the immune system, improving vaccine efficacy, and modulating the composition of the resident gut microbiota by enhancing beneficial genera.
Collapse
Affiliation(s)
- Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | | | - Enza Cestone
- Complife Italia Srl, San Martino Siccomario (PV), Italy
| | | | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
23
|
Lynn DJ, Benson SC, Lynn MA, Pulendran B. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat Rev Immunol 2022; 22:33-46. [PMID: 34002068 PMCID: PMC8127454 DOI: 10.1038/s41577-021-00554-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
The need for highly effective vaccines that induce robust and long-lasting immunity has never been more apparent. However, for reasons that are still poorly understood, immune responses to vaccination are highly variable between different individuals and different populations. Furthermore, vaccine immunogenicity is frequently suboptimal in the very populations who are at most risk from infectious disease, including infants, the elderly, and those living in low-income and middle-income countries. Although many factors have the potential to influence vaccine immunogenicity and therefore vaccine effectiveness, increasing evidence from clinical studies and animal models now suggests that the composition and function of the gut microbiota are crucial factors modulating immune responses to vaccination. In this Review, we synthesize this evidence, discuss the immunological mechanisms that potentially mediate these effects and consider the potential of microbiota-targeted interventions to optimize vaccine effectiveness.
Collapse
Affiliation(s)
- David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia.
| | - Saoirse C Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Bali Pulendran
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
25
|
Mirashrafi S, Moravejolahkami AR, Balouch Zehi Z, Hojjati Kermani MA, Bahreini-Esfahani N, Haratian M, Ganjali Dashti M, Pourhossein M. The efficacy of probiotics on virus titres and antibody production in virus diseases: A systematic review on recent evidence for COVID-19 treatment. Clin Nutr ESPEN 2021; 46:1-8. [PMID: 34857182 PMCID: PMC8539817 DOI: 10.1016/j.clnesp.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS There are some studies indicating the effects of probiotic-containing foods or supplements on viral diseases. We aimed to conduct a rapid review of probiotics with specific emphasis on their potential for early administration in patients at greater risk of SARS-CoV-2 infection. METHODS We searched on PubMed, EMBASE, Google Scholar, Science Direct, Scopus and Web of Science up to February 2021 to identify interventional and observational studies documenting the effects of probiotics strains on interleukins, virus titers, and antibody production with a focus on probiotic-containing foods (PROSPERO Registration ID. CRD42020181453) RESULTS: From a total of 163 records, 21 studies were classified into three domains based on the efficacy of probiotics on 1) the level of interleukins (n = 7), 2) virus titers (n = 2), and 3) interferon (IFN) and antibody production (n = 12). The suppuration of pro-inflammatory interleukins and type I INF production seemed to be the main anti-viral effect of probiotics. Nine studies also indicated the beneficial effects of probiotics and fermented foods on viral diseases. CONCLUSION Based on evidence, some probiotic strains may be useful in viral infections; randomized trials are needed to confirm these findings.
Collapse
Affiliation(s)
- Shahrzad Mirashrafi
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author. Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Hezar-Jerib Ave, Isfahan, Iran. P.O. Box 81746-73461. Fax: +98(31)36681378
| | - Zakiyeh Balouch Zehi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nimah Bahreini-Esfahani
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Haratian
- Department of Nutrition, Vice Chancellor of Health, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Marjan Ganjali Dashti
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, USA
| | - Meraj Pourhossein
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author. Department of Food Science and Technology, Food Security Research Center, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Hezar-Jerib Ave, Isfahan, Iran. P.O. Box 81746-73461. Fax: +1 519 721. 7430
| |
Collapse
|
26
|
Induction of Immunogenic Response in BALB/c Mice by Live and Killed Form of Recombinant Lactococcus lactis Displaying EG95 of Echinococcus granulosus. IRANIAN BIOMEDICAL JOURNAL 2021; 25:284-96. [PMID: 34217159 PMCID: PMC8334390 DOI: 10.52547/ibj.25.4.284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: CE is a zoonotic parasitic infection caused by Echinococcus granulosus worldwide and is associated with economic losses among livestock animals. EG95 is an immunogenic antigen from the E. granulosus.Lactococcus lactis has been prested as a safe vehicle for antigen delivery. The goal of this study was to design a novel L. lactis strain displaying EG95 as a vaccine delivery system. Methods: The eg95 encoding gene fragment fused to the M6 anchoring protein was cloned into the pNZ7021 vector, and L. lactis NZ9000 displaying recombinant EG95 was constructed. The expression of an approximately 32-kDa EG95 protein was confirmed by Western blotting and immunofluorescence analysis. The immune responses were evaluated in BALB/c mice immunized orally and subcutaneously with the live and killed recombinant L. lactis, respectively. Results: Total IgG level in mice immunized with heat-killed recombinant L. lactis (pNZ7021-eg95) significantly increased compared to the control group. sIgA was significantly higher in mice received live recombinant L. lactis (pNZ7021-eg95) compared to the control mice. Splenic lymphocytes from immunized mice represented the high levels of IFN-γ and the low-levels of IL-4 and IL-10. Conclusion: Our results indicate that immunization with EG95-expressing L. lactis can induce both specific humoral and cellular immune responses in mice.
Collapse
|
27
|
Darbandi A, Asadi A, Ghanavati R, Afifirad R, Darb Emamie A, Kakanj M, Talebi M. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: Systemic review 2010-20. Int J Infect Dis 2021; 105:91-104. [PMID: 33578007 PMCID: PMC7871912 DOI: 10.1016/j.ijid.2021.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
To evaluate the effects of probiotics on respiratory tract infection (RTI) a systematic review of randomized controlled trials (RCTs) from January 2010 to January 2020 was conducted. The PubMed, Google Scholar, Embase, Scopus, Clinicaltrials.gov, and International Clinical Trials Registry Platform databases were systematically searched for the following keywords: respiratory tract infection, probiotics, viral infection, COVID-19, and clinical trial. A total of 27 clinical trials conducted on 9433 patients with RTI plus 10 ongoing clinical studies of probiotics intervention in Coronavirus disease 2019 (COVID-19) were reviewed. The review looked at the potency of probiotics for the hindrance and/or treatment of RTI diseases, this may also apply to COVID-19. The review found that probiotics could significantly increase the plasma levels of cytokines, the effect of influenza vaccine and quality of life, as well as reducing the titer of viruses and the incidence and duration of respiratory infections. These antiviral and immune-modulating activities and their ability to stimulate interferon production recommend the use of probiotics as an adjunctive therapy to prevent COVID-19. Based on this extensive review of RCTs we suggest that probiotics are a rational complementary treatment for RTI diseases and a viable option to support faster recovery.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Roghayeh Afifirad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administation, MOH&ME, Tehran, Iran.
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Maehata H, Arai S, Iwabuchi N, Abe F. Immuno-modulation by heat-killed Lacticaseibacillus paracasei MCC1849 and its application to food products. Int J Immunopathol Pharmacol 2021; 35:20587384211008291. [PMID: 33787390 PMCID: PMC8020404 DOI: 10.1177/20587384211008291] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Probiotics are microorganisms that confer health benefits to host. Well-known examples include Bifidobacterium and Lactobacillus species. In recent years, interest in promoting our health with probiotics has grown as life expectancy and health awareness has increased. However, some concerns for safety and stability exist for these live organisms. Thus, “postbiotics” and “paraprobiotics,” non-viable heat-killed microbial cells or cell fractions that retain health benefits, are increasingly favored. Unfortunately, little information on clinical efficacy and mechanisms of action is available compared with many available probiotics. Lacticaseibacillus (previous name Lactobacillus) paracasei MCC1849 is a commonly used lactic acid bacterial strain in Japan that displays immuno-modulatory effects in humans in non-viable heat-killed form. This review discusses health benefits of heat-killed L. paracasei MCC1849 immune modulation and offers a theoretical basis for its mechanisms of action. We also discuss the feasibility of using heat-killed probiotics for application in food products.
Collapse
Affiliation(s)
- Hazuki Maehata
- Food Ingredients and Technology Institute, Research and Development Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Satoshi Arai
- Food Ingredients and Technology Institute, Research and Development Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Noriyuki Iwabuchi
- Food Ingredients and Technology Institute, Research and Development Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Fumiaki Abe
- Food Ingredients and Technology Institute, Research and Development Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| |
Collapse
|
29
|
Horie K, Hossain MS, Kim Y, Akiko I, Kon R, Yamatsu A, Kishima M, Nishikimi T, Kim M. Effects of Banafine ® , a fermented green banana-derived acidic glycoconjugate, on influenza vaccine antibody titer in elderly patients receiving gastrostomy tube feeding. J Food Sci 2021; 86:1410-1417. [PMID: 33768522 DOI: 10.1111/1750-3841.15675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/23/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Immunosenescence can negatively affect cytokine production in elderly and may impair poor antibody responses to influenza vaccination and infection. Herein, the effects of Banafine® administration on influenza vaccine antibody titer in elderly patients (average age ∼80 years) receiving gastrostomy tube feeding were examined. In the double-blind, single-center, randomized clinical studies, 30 elderly bedridden patients were administered Banafine® or placebo for 8 weeks. At week 4, all patients received influenza vaccination against H1N1, H3N2, B/Yamagata, or B/Victoria. Blood biochemical indices and serum antibody titers were assessed. Banafine® administration significantly increased hemagglutination inhibition titers in response to vaccination against H1N1, H3N2, and B/Yamagata in the elderly patients (P < 0.05). Moreover, the seroconversion rate against H1N1 (47.1%) and H3N2 (29.4%) and seroprotection rate against H1N1 (71.4%) and both B strains (31.3% and 12.5%, respectively) were increased for the Banafine® group. These results suggest that Banafine® administration can increase antibody responses to influenza vaccination in bedridden hospitalized patients, and potentially modulate immune function in the elderly. PRACTICAL APPLICATION: Literature review suggested that most of the synbiotics are based on innate immunity, strain specific (probiotics), and are not consistently observed. Herein, in clinical studies we demonstrate that administration of Banafine® , a plant-based glycoconjugate, can increase antibody levels in bedridden hospitalized elderly patients following influenza vaccination.
Collapse
Affiliation(s)
- Kenji Horie
- Pharma Foods International Co., Ltd., Kyoto, Japan
| | | | - Yugweng Kim
- Pharma Foods International Co., Ltd., Kyoto, Japan
| | - Ishida Akiko
- Pharma Foods International Co., Ltd., Kyoto, Japan
| | - Ryoko Kon
- Pharma Foods International Co., Ltd., Kyoto, Japan
| | | | | | | | - Mujo Kim
- Pharma Foods International Co., Ltd., Kyoto, Japan
| |
Collapse
|
30
|
Ribeiro WR, Queiroz AG, Mendes E, Casaro MB, Nascimento CM, Coelho LSSF, Martins FS, Leite-Silva VR, Ferreira CM. Preventive oral supplementation with Bifidobacterium longum 5 1A alleviates oxazolone-induced allergic contact dermatitis-like skin inflammation in mice. Benef Microbes 2021; 12:199-209. [PMID: 33573507 DOI: 10.3920/bm2020.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allergic contact dermatitis (ACD) is a common allergic skin disease that affects individuals subjected to different antigen exposure conditions and significantly impacts the quality of life of those affected. Numerous studies have demonstrated that probiotics suppress inflammation through immunomodulatory effects. In this study, we aimed to evaluate the effect of the probiotic Bifidobacterium longum 51A as a preventive treatment for ACD using an oxazolone-induced murine model. We demonstrated that B. longum 51A exerted a prophylactic effect on oxazolone-induced ACD-like skin inflammation via reductions in ear and dermal thickness and leucocyte infiltration. The administration of inactivated B. longum 51A did not affect oxazolone-induced ACD-like skin inflammation, suggesting that the bacteria must be alive to be effective. Given that B. longum 51A is an acetate producer, we treated mice with acetate intraperitoneally, which also prevented ear and dermal thickening. Moreover, the tissue levels of the inflammatory cytokines and chemokines interleukin (IL)-10, IL-33, tumour necrosis factor-α, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein-1 and chemokine (C-C motif) ligand 5/RANTES were significantly reduced after probiotic treatment, but only IL-33 and IL-10 were reduced when the mice were treated with acetate. These results show that B. longum 51A exerted a potential prophylactic effect on skin inflammation and that acetate represents one potential mechanism. However, other factors are likely involved since these two treatments do not yield the same results.
Collapse
Affiliation(s)
- W R Ribeiro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - A G Queiroz
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - E Mendes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - M B Casaro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - C M Nascimento
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - L S S F Coelho
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - F S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos 6627, Campus Pampulha UFMG Belo Horizonte, MG 31970201, Brazil
| | - V R Leite-Silva
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil.,Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - C M Ferreira
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| |
Collapse
|
31
|
Akatsu H. Exploring the Effect of Probiotics, Prebiotics, and Postbiotics in Strengthening Immune Activity in the Elderly. Vaccines (Basel) 2021; 9:136. [PMID: 33567790 PMCID: PMC7915329 DOI: 10.3390/vaccines9020136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccination is the easiest way to stimulate the immune system to confer protection from disease. However, the inefficacy of vaccination in the elderly, especially those under nutritional control such as individuals receiving artificial nutrition after cerebral infarction or during dementia, has led to the search for an adjuvant to augment the acquired immune response in this population. The cross-talk between the gut microbiota and the host immune system is gaining attention as a potential adjuvant for vaccines. Probiotics, prebiotics, and postbiotics, which are commonly used to modulate gut health, may enhance the immune response and the effectiveness of vaccination in the elderly. This review summarizes the use of these gut modulators as adjuvants to boost both the innate and acquired immune responses in the elderly under nutritional control. Although the clinical evidence on this topic is limited and the initial findings await clarification through future studies with large sample sizes and proper study designs, they highlight the necessity for additional research in this field, especially in light of the ongoing COVID-19 pandemic, which is disproportionately affecting the elderly.
Collapse
Affiliation(s)
- Hiroyasu Akatsu
- Department of Community-Based Medical Education, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| |
Collapse
|
32
|
Bosco N, Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun 2021; 22:289-303. [PMID: 33875817 PMCID: PMC8054695 DOI: 10.1038/s41435-021-00126-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023]
Abstract
The microbiome plays a fundamental role in the maturation, function, and regulation of the host-immune system from birth to old age. In return, the immune system has co-evolved a mutualistic relationship with trillions of beneficial microbes residing our bodies while mounting efficient responses to fight invading pathogens. As we age, both the immune system and the gut microbiome undergo significant changes in composition and function that correlate with increased susceptibility to infectious diseases and reduced vaccination responses. Emerging studies suggest that targeting age-related dysbiosis can improve health- and lifespan, in part through reducing systemic low-grade inflammation and immunosenescence-two hallmarks of the aging process. However-a cause and effect relationship of age-related dysbiosis and associated functional declines in immune cell functioning have yet to be demonstrated in clinical settings. This review aims to (i) give an overview on hallmarks of the aging immune system and gut microbiome, (ii) discuss the impact of age-related changes in the gut commensal community structure (introduced as microb-aging) on host-immune fitness and health, and (iii) summarize prebiotic- and probiotic clinical intervention trials aiming to reinforce age-related declines in immune cell functioning through microbiome modulation or rejuvenation.
Collapse
Affiliation(s)
- Nabil Bosco
- grid.419905.00000 0001 0066 4948Nestlé Research, Nestlé Institute of Health Sciences, Department of Cell Biology, Cellular Metabolism, EPFL Innovation Park, Nestlé SA, Lausanne, Switzerland
| | - Mario Noti
- grid.419905.00000 0001 0066 4948Nestlé Research, Nestlé Institute of Health Sciences, Department of Gastrointestinal Health, Immunology, Vers-Chez-les-Blancs, Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
33
|
Kazemi A, Soltani S, Nasri F, Clark CCT, Kolahdouz-Mohammadi R. The effect of probiotics, parabiotics, synbiotics, fermented foods and other microbial forms on immunoglobulin production: a systematic review and meta-analysis of clinical trials. Int J Food Sci Nutr 2020; 72:632-649. [PMID: 33307904 DOI: 10.1080/09637486.2020.1857710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this systematic review and meta-analysis was to evaluate the effect of probiotics, parabiotics, synbiotics, fermented foods and other microbial forms on immunoglobulin production. We searched PubMed, Scopus, Web of Science, National Institute of Health Clinical Trials Register, and Cochrane Central Register of Clinical Trials, up to February 2020. All clinical trials that investigated the effects of oral intake of probiotics, parabiotics, synbiotics, fermented foods and other microbial forms on immunoglobulin (Ig)A, IgE, Japanese cedar pollen (JCP)-specific IgE, IgG, and IgM, for a duration of >7 days were included. Fifty-nine studies met the inclusion criteria, of these 54 studies were included in the analysis. The results indicated a significant increase in salivary IgA secretion rate (SMD = 0.21, 95% CI 0.02-0.39), while no significant effect was observed on other Igs. In conclusion, mentioned supplementation induced a small but significant effect on salivary secretion rate of IgA.
Collapse
Affiliation(s)
- Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Nasri
- Department Immunology, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cain C T Clark
- Centre Intelligent Healthcare, Coventry University, Coventry, CV15FB, UK
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Vedhara K, Royal S, Sunger K, Caldwell DM, Halliday V, Taylor CM, Fairclough L, Avery A, Welton NJ. Effects of non-pharmacological interventions as vaccine adjuvants in humans: a systematic review and network meta-analysis. Health Psychol Rev 2020; 15:245-271. [PMID: 33222621 DOI: 10.1080/17437199.2020.1854050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Psychological and behavioural may enhance vaccine effectiveness. We conducted a systematic review and network meta-analysis (NMA) to examine the effects of non-pharmacological adjuvants on vaccine effectiveness, as measured by antibody responses to vaccination. AREAS COVERED Electronic databases (EMBASE, Medline, PsychINFO, CINAHL) were searched from inception to 6th February 2018. This yielded 100 eligible papers, reporting 106 trials: 79 interventions associated with diet and/or nutrition; 12 physical activity interventions and 9 psychological interventions.Over half (58/106) of trials reported evidence of an enhanced antibody response to vaccination across one or more outcomes. The NMA considered the comparative effects between all intervention types, control and placebo for antibody titres (48 studies), seroconversion (25 studies) and seroprotection (23 studies) separately. The NMA provided weak evidence in support of nutritional formulae and probiotics in increasing antibody titres. EXPERT OPINION This review offers a comprehensive summary of the literature on non-pharmacological interventions as vaccine adjuvants. The evidence is characterised by considerable heterogeneity but provides early evidence in support of nutritional formulae and probiotic interventions. Psychological and exercise-based interventions were characterised by limited and unreliable evidence. Large, well-designed studies including consistent core outcomes and measures of intervention adherence and fidelity are required.
Collapse
Affiliation(s)
- Kavita Vedhara
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Simon Royal
- University of Nottingham Health Service, Cripps Health Centre, Nottingham, UK
| | - Kanchan Sunger
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Deborah M Caldwell
- School of Social & Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| | - Vanessa Halliday
- School of Health & Related Research, University of Sheffield, Sheffield, UK
| | - Caroline M Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lucy Fairclough
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anthony Avery
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Nicky J Welton
- School of Social & Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| |
Collapse
|
35
|
Vallejo-Cordoba B, Castro-López C, García HS, González-Córdova AF, Hernández-Mendoza A. Postbiotics and paraprobiotics: A review of current evidence and emerging trends. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:1-34. [PMID: 32892831 DOI: 10.1016/bs.afnr.2020.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, new probiotic-related concepts such as postbiotics and paraprobiotics have been coined to indicate that non-viable microorganisms or bacterial-free extracts may provide benefits to the host by offering additional bioactivities to probiotics, including but not limited to anti-inflammatory, immunomodulatory, anti-proliferative and antioxidant activities. Despite in vitro and in vivo studies that support the promising use of postbiotics and paraprobiotics as health promoters, the mechanism of action and the signaling pathway involved have not yet been fully elucidated. Therefore, the aim of this chapter is to provide an overview of novel probiotic-related concepts and the scientific evidence that supports their bioactivities as well as the possible mechanisms underlying their health-promoting effects. Additionally, current trends in food, feed, and pharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Veracruz, Veracruz, Mexico
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico.
| |
Collapse
|
36
|
Postbiotics and paraprobiotics: From concepts to applications. Food Res Int 2020; 136:109502. [PMID: 32846581 DOI: 10.1016/j.foodres.2020.109502] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
In recent years, new probiotic-related concepts such as postbiotics and paraprobiotics have been used to describe non-viable microorganisms or bacterial-free extracts that may provide benefits to the host by offering bioactivities additional to probiotics. However, several aspects related to these postbiotics and paraprobiotics bioactivities remain unexplored or are poorly understood. Therefore, the aim of this work is to provide an overview of the general aspects and emerging trends of postbiotics and paraprobiotics, such as conceptualization of terms, production, characterization, bioactivities, health-promoting effects, bioengineering approaches, and applications. In vitro and in vivo studies have demonstrated that some postbiotics and paraprobiotics exhibit bioactivities such as anti-inflammatory, immunomodulatory, anti-proliferative, antioxidant, and antimicrobial. These bioactivities could be involved in health-promoting effects observed in human and clinical trials, but despite the scientific evidence available, the mechanisms of action and the signaling pathways involved have not been fully elucidated. Nevertheless, paraprobiotics and postbiotics possess valuable potential for the development of biotechnological products with functional ingredients for the nutraceutical industry.
Collapse
|
37
|
Gui Q, Wang A, Zhao X, Huang S, Tan Z, Xiao C, Yang Y. Effects of probiotic supplementation on natural killer cell function in healthy elderly individuals: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2020; 74:1630-1637. [PMID: 32514029 PMCID: PMC7279433 DOI: 10.1038/s41430-020-0670-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023]
Abstract
To evaluate evidence for the role of probiotic supplementation in enhancing natural killer (NK) cell function in healthy elderly individuals. Five electronic databases were searched, and references of included articles and eligible reviews up to December 2019, with English language and human subject restrictions, were examined. Two independent reviewers identified randomized control trials (RCTs) of probiotic supplementation influencing NK cell function in healthy elderly individuals, assessed the quality of every article, and extracted data for subsequent meta-analysis. We identified six eligible trials including 364 healthy elderly subjects. Trials were heterogeneous in study design and probiotic supplementation (including genus, strain, dose, and duration). Five trials used Lactobacillus interventions alone or in combination with Bifidobacterium. Only one trial focused on Bacillus coagulans. The duration of supplementation ranged from 3 to 12 weeks, and the doses, from 1 × 109 to 4 × 1010 colony-forming units. Pooling data of eligible trials showed that probiotics significantly (P < 0.05) increased NK cell activity in healthy elderly individuals (standardized mean difference = 0.777, 95% confidence interval: 0.187‒1.366, P = 0.01, I2 = 84.6%). Although we obtained a significant outcome, the data do not provide convincing evidence for associations between probiotic supplementation and enhancement of NK cell function, given the small final number and very large heterogeneity. More RCTs with sufficient sample sizes and long-term follow-up are needed to focus on optimal probiotic dose, species, and duration of supplementation for healthy elderly individuals.
Collapse
Affiliation(s)
- Qifeng Gui
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Ange Wang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Xinxiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Shunmei Huang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Zhongju Tan
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, PR China.
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China. .,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.
| |
Collapse
|
38
|
Kazemi A, Soltani S, Ghorabi S, Nasri F, Babajafari S, Mazloomi SM. Is Probiotic and Synbiotic Supplementation Effective on Immune Cells? A Systematic Review and Meta-analysis of Clinical Trials. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1710748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Asma Kazemi
- Nutrition research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular research center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sima Ghorabi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetic, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nasri
- Department immunology, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sivash Babajafari
- Nutrition research center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition research center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Suzuki T, Akiyama M, Sato Y, Okaue M, Murakami Y, Onishi M, Mizota Y, Ochi H, Koizumi R, Miyaji K, Ikeda M, Iwabuchi H. Flavor Compounds Affecting the Sensory Characteristics of a Lactobacillus-fermented Dairy Beverage during Two Weeks of Refrigerated Storage. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Kanauchi O, Andoh A, AbuBakar S, Yamamoto N. Probiotics and Paraprobiotics in Viral Infection: Clinical Application and Effects on the Innate and Acquired Immune Systems. Curr Pharm Des 2019; 24:710-717. [PMID: 29345577 PMCID: PMC6006794 DOI: 10.2174/1381612824666180116163411] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Recently, the risk of viral infection has dramatically increased owing to changes in human ecology such as global warming and an increased geographical movement of people and goods. However, the efficacy of vaccines and remedies for infectious diseases is limited by the high mutation rates of viruses, especially, RNA viruses. Here, we comprehensively review the effectiveness of several probiotics and paraprobiotics (sterilized probiotics) for the prevention or treatment of virally-induced infectious diseases. We discuss the unique roles of these agents in modulating the cross-talk between commensal bacteria and the mucosal immune system. In addition, we provide an overview of the unique mechanism by which viruses are eliminated through the stimulation of type 1 interferon production by probiotics and paraprobiotics via the activation of dendritic cells. Although further detailed research is necessary in the future, probiotics and/or paraprobiotics are expected to be among the rational adjunctive options for the treatment of various viral diseases.
Collapse
Affiliation(s)
- Osamu Kanauchi
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan.,Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., 1-13-5, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Level 4, Block N & O, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,WHO Collaborating Centre for Arbovirus Reference and Research (Dengue/Severe Dengue), Level 4, Block N & O, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Naoki Yamamoto
- National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.,Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
41
|
Murata M, Kondo J, Iwabuchi N, Takahashi S, Yamauchi K, Abe F, Miura K. Effects of paraprobiotic Lactobacillus paracasei MCC1849 supplementation on symptoms of the common cold and mood states in healthy adults. Benef Microbes 2018; 9:855-864. [PMID: 30099891 DOI: 10.3920/bm2017.0197] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated the effects of paraprobiotic Lactobacillus paracasei MCC1849 (LAC-Shield™) on symptoms of the common cold and mood states in healthy young adults. A total of 241 participants were randomised to receive 1×1010 heat-killed L. paracasei MCC1849 cell powder (10LP), 3×1010 heat-killed L. paracasei MCC1849 cell powder (30LP), or placebo powder without any L. paracasei cells once daily for 12 weeks based on the incidence of the common cold in the previous year, so that the risk of the incidence was equal among the groups. The incidence and severity of common cold symptoms were rated daily in a subject diary. Salivary secretory immunoglobulin A concentrations and saliva flow rates were analysed at 0 and 6 weeks. The Profile of Mood States (POMS) was assessed using POMS 2 0, 6, and 12 weeks after the intervention. No significant differences were observed in the incidence of the common cold among the groups. In a prespecified subgroup of subjects who had the common cold in the previous year, the incidence, total number of days of symptoms, and symptom scores of the common cold significantly improved in the 10LP-intake group, and were slightly lower in the 30LP-intake group than in the placebo group. The level of deterioration in the positive mood state caused by stress was less in the MCC1849-intake group than in the placebo group. These results indicate that L. paracasei MCC1849 has the potential to improve resistance to common cold infections in susceptible subjects and maintain a desirable mood state, even under mental stress conditions. Further randomised controlled trials are needed in order to investigate the possible beneficial effects of paraprobiotic L. paracasei MCC1849 on the common cold in susceptible populations.
Collapse
Affiliation(s)
- M Murata
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - J Kondo
- 2 Department of Food and Nutrition, Higashi Chikushi Junior College, 5-1-1, Shimoitouzu, Kokurakita-ku, 803-8511 Kitakyushu-city, Fukuoka, Japan
| | - N Iwabuchi
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - S Takahashi
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - K Yamauchi
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - F Abe
- 1 Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Zama-city, Kanagawa, Japan
| | - K Miura
- 3 Department of Nutrition, Faculty of Home Economics, Kyushu Women's University, 1-1-1, Jiyugaoka, Yahatanishi-ku, 807-8586 Kitakyushu-city, Fukuoka, Japan
| |
Collapse
|
42
|
Arai S, Iwabuchi N, Takahashi S, Xiao JZ, Abe F, Hachimura S. Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS One 2018; 13:e0199018. [PMID: 29897995 PMCID: PMC5999281 DOI: 10.1371/journal.pone.0199018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
Antigen-specific immunoglobulin (Ig) A plays a major role in host defense against infections in gut mucosal tissue. Follicular helper T (Tfh) cells are located in germinal centers and promote IgA production via interactions with germinal center B cells. Several studies have demonstrated that some lactic acid bacteria (LAB) strains activate the host’s acquired immune system, inducing IgA secretion in the intestine. However, the precise molecular mechanisms underlying the effects of LAB on IgA production and Tfh cells are not fully resolved. Lactobacillus paracasei MCC1849 is a probiotic strain isolated from the intestine of a healthy adult. In this study, we investigated the effects of orally administered heat-killed MCC1849 on IgA production in the intestine and on Tfh cell induction in vivo. We found that orally administered MCC1849 induced antigen-specific IgA production in the small intestine, serum and lungs. We also observed that MCC1849 increased the proportion of IgA+ B cells and Tfh cells in Peyer’s patches (PPs). In addition, MCC1849 increased the gene expression of IL-12p40, IL-10, IL-21, STAT4 and Bcl-6 associated with Tfh cell differentiation. These results suggest that orally administered MCC1849 enhances antigen-specific IgA production and likely affects Tfh cell differentiation in PPs.
Collapse
Affiliation(s)
- Satoshi Arai
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
- * E-mail:
| | - Noriyuki Iwabuchi
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
| | - Sachiko Takahashi
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
| | - Fumiaki Abe
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama-City, Kanagawa, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
43
|
Kimoto-Nira H. New lactic acid bacteria for skin health via oral intake of heat-killed or live cells. Anim Sci J 2018; 89:835-842. [PMID: 29696746 PMCID: PMC6001785 DOI: 10.1111/asj.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
Abstract
Lactic acid bacteria play an essential role in the food industry in the manufacture of many fermented products (cheese, yogurt, fermented vegetables, etc.). Application of these organisms is now being extended to the area of health improvement, as their probiotic activities become known. Probiotics are defined as viable microorganisms that exert a beneficial effect on the health of the host when they are ingested in sufficient quantity. Lactic acid bacteria and bifidobacteria isolated from the human intestine are the most common probiotics used for human consumption. The development of new probiotics with new beneficial effects is eagerly awaited in the food industry. This review introduces Lactococcus, which are one of the genera of lactic acid bacteria and are mainly isolated from dairy products and fermented vegetables, as new probiotics, focusing especially on Lactococcus lactis H61, which improves skin status in Japanese women with oral intake of heat‐killed or live cells. The deduced mechanisms associated with the beneficial effects of strain H61 are also discussed.
Collapse
Affiliation(s)
- Hiromi Kimoto-Nira
- NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
44
|
Yeh TL, Shih PC, Liu SJ, Lin CH, Liu JM, Lei WT, Lin CY. The influence of prebiotic or probiotic supplementation on antibody titers after influenza vaccination: a systematic review and meta-analysis of randomized controlled trials. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:217-230. [PMID: 29416317 PMCID: PMC5790137 DOI: 10.2147/dddt.s155110] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Influenza infection is a common disease with a huge disease burden. Influenza vaccination has been widely used, but concerns regarding vaccine efficacy exist, especially in the elderly. Probiotics are live microorganisms with immunomodulatory effects and may enhance the immune responses to influenza vaccination. Methods We conducted a systematic review and meta-analysis to determine the influence of prebiotics/probiotics/synbiotics supplementation on vaccine responses to influenza vaccination. Studies were systematically identified from electronic databases up to July 2017. Information regarding study population, influenza vaccination, components of supplements, and immune responses were extracted and analyzed. Twelve studies, investigating a total of 688 participants, were included in this review. Results Patients with prebiotics/probiotics supplements were found to have higher influenza hemagglutination inhibition antibody titers after vaccination (for A/H1N1, 42.89 vs 35.76, mean difference =7.14, 95% CI =2.73, 11.55, P=0.002; for A/H3N2, 105.4 vs 88.25, mean difference =17.19, 95% CI =3.39, 30.99, P=0.01; for B strain, 34.87 vs 30.73, mean difference =4.17, 95% CI =0.37, 7.96, P=0.03). Conclusion Supplementation with prebiotics or probiotics may enhance the influenza hemagglutination inhibition antibody titers in all A/H1N1, A/H3N2, and B strains (20%, 19.5%, and 13.6% increases, respectively). Concomitant prebiotics or probiotics supplementation with influenza vaccination may hold great promise for improving vaccine efficacy. However, high heterogeneity was observed and further studies are warranted.
Collapse
Affiliation(s)
- Tzu-Lin Yeh
- Department of Family Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Pei-Ching Shih
- Department of Family Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Shu-Jung Liu
- Department of Medical Library, MacKay Memorial Hospital, Tamsui Branch, New Taipei City
| | - Chao-Hsu Lin
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Jui-Ming Liu
- Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Te Lei
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Chien-Yu Lin
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu
| |
Collapse
|
45
|
Zimmermann P, Curtis N. The influence of probiotics on vaccine responses – A systematic review. Vaccine 2018; 36:207-213. [DOI: 10.1016/j.vaccine.2017.08.069] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
|
46
|
Akiyama M, Suzuki T, Murakami Y, Onishi M, Mizota Y, Miyaji K, Ikeda M, Iwabuchi H. Changes in Odor Compounds of a Lactobacillus-fermented Dairy Beverage during Two Weeks of Refrigerated Storage. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.1129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Vitetta L, Saltzman ET, Thomsen M, Nikov T, Hall S. Adjuvant Probiotics and the Intestinal Microbiome: Enhancing Vaccines and Immunotherapy Outcomes. Vaccines (Basel) 2017; 5:vaccines5040050. [PMID: 29232932 PMCID: PMC5748616 DOI: 10.3390/vaccines5040050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
Immune defence against pathogenic agents comprises the basic premise for the administration of vaccines. Vaccinations have hence prevented millions of infectious illnesses, hospitalizations and mortality. Acquired immunity comprises antibody and cell mediated responses and is characterized by its specificity and memory. Along a similar congruent yet diverse mode of disease prevention, the human host has negotiated from in utero and at birth with the intestinal commensal bacterial cohort to maintain local homeostasis in order to achieve immunological tolerance in the new born. The advent of the Human Microbiome Project has redefined an appreciation of the interactions between the host and bacteria in the intestines from one of a collection of toxic waste to one of a symbiotic existence. Probiotics comprise bacterial genera thought to provide a health benefit to the host. The intestinal microbiota has profound effects on local and extra-intestinal end organ physiology. As such, we further posit that the adjuvant administration of dedicated probiotic formulations can encourage the intestinal commensal cohort to beneficially participate in the intestinal microbiome-intestinal epithelia-innate-cell mediated immunity axes and cell mediated cellular immunity with vaccines aimed at preventing infectious diseases whilst conserving immunological tolerance. The strength of evidence for the positive effect of probiotic administration on acquired immune responses has come from various studies with viral and bacterial vaccines. We posit that the introduction early of probiotics may provide significant beneficial immune outcomes in neonates prior to commencing a vaccination schedule or in elderly adults prior to the administration of vaccinations against influenza viruses.
Collapse
Affiliation(s)
- Luis Vitetta
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Medlab Clinical Ltd., Sydney 2015, Australia.
| | - Emma Tali Saltzman
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Medlab Clinical Ltd., Sydney 2015, Australia.
| | - Michael Thomsen
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
| | - Tessa Nikov
- Medlab Clinical Ltd., Sydney 2015, Australia.
| | - Sean Hall
- Medlab Clinical Ltd., Sydney 2015, Australia.
| |
Collapse
|
48
|
Effect of Probiotics and Prebiotics on Immune Response to Influenza Vaccination in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2017; 9:nu9111175. [PMID: 29077061 PMCID: PMC5707647 DOI: 10.3390/nu9111175] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022] Open
Abstract
We conducted a meta-analysis to evaluate the effects of probiotics and prebiotics on the immune response to influenza vaccination in adults. We conducted a literature search of Pubmed, Embase, the Cochrane Library, the Cumulative Index to Nursing and Allied Health (CINAHL), Airiti Library, and PerioPath Index to Taiwan Periodical Literature in Taiwan. Databases were searched from inception to July 2017. We used the Cochrane Review risk of bias assessment tool to assess randomized controlled trial (RCT) quality. A total of 20 RCTs comprising 1979 adults were included in our systematic review. Nine RCTs including 623 participants had sufficient data to be pooled in a meta-analysis. Participants who took probiotics or prebiotics showed significant improvements in the H1N1 strain seroprotection rate (with an odds ratio (OR) of 1.83 and a 95% confidence interval (CI) of 1.19–2.82, p = 0.006, I2 = 0%), the H3N2 strain seroprotection rate (OR = 2.85, 95% CI = 1.59–5.10, p < 0.001, I2 = 0%), and the B strain seroconversion rate (OR = 2.11, 95% CI = 1.38–3.21, p < 0.001, I2 = 0%). This meta-analysis suggested that probiotics and prebiotics are effective in elevating immunogenicity by influencing seroconversion and seroprotection rates in adults inoculated with influenza vaccines.
Collapse
|
49
|
Kwak JY, Lamousé-Smith ESN. Can probiotics enhance vaccine-specific immunity in children and adults? Benef Microbes 2017; 8:657-670. [PMID: 28856905 DOI: 10.3920/bm2016.0147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The growing use of probiotics by the general public has heightened the interest in understanding the role of probiotics in promoting health and preventing disease. General practitioners and specialists often receive inquiries from their patients regarding probiotic products and their use to ward off systemic infection or intestinal maladies. Enhanced immune function is among the touted health benefits conferred by probiotics but has not yet been fully established. Results from recent clinical trials in adults suggest a potential role for probiotics in enhancing vaccine-specific immunity. Although almost all vaccinations are given during infancy and childhood, the numbers of and results from studies using probiotics in pediatric subjects are limited. This review evaluates recent clinical trials of probiotics used to enhance vaccine-specific immune responses in adults and infants. We highlight meaningful results and the implications of these findings for designing translational and clinical studies that will evaluate the potential clinical role for probiotics. We conclude that the touted health claims of probiotics for use in children to augment immunity warrant further investigation. In order to achieve this goal, a consensus should be reached on common study designs that apply similar treatment timelines, compare well-characterised probiotic strains and monitor effective responses against different classes of vaccines.
Collapse
Affiliation(s)
- J Y Kwak
- 1 Department of Pediatrics, Columbia University Medical Center, PH17-105G, 622 West 168th Street, New York, NY 10032, USA
| | - E S N Lamousé-Smith
- 1 Department of Pediatrics, Columbia University Medical Center, PH17-105G, 622 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
50
|
Sugahara H, Yao R, Odamaki T, Xiao J. Differences between live and heat-killed bifidobacteria in the regulation of immune function and the intestinal environment. Benef Microbes 2017; 8:463-472. [DOI: 10.3920/bm2016.0158] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Probiotics are live microorganisms that confer a health benefit on the host, such as improvement of the intestinal environment, modulation of immune function and energy metabolism. Heat-killed probiotic strains have also been known to exhibit some physiological functions; however, the differences between live and heat-killed probiotics have not been well elucidated. In this study, we investigated the differences between live and heat-killed Bifidobacterium breve M-16V, a probiotic strain, in the regulation of immune function, intestinal metabolism and intestinal gene expression of the host using gnotobiotic mouse model and omics approaches. Both live and heat-killed cells of B. breve M-16V showed immune-modulating effects that suppressed pro-inflammatory cytokine production in spleen cells and affected intestinal metabolism; however, live cells exhibited a more remarkable effect in the regulation of intestinal metabolism and intestinal gene expression involved in nutrient metabolism. Our findings are valuable for considering the health benefits of live and heat-killed bacteria and the usefulness of different forms of probiotics.
Collapse
Affiliation(s)
- H. Sugahara
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa, Japan
| | - R. Yao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa, Japan
| | - T. Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa, Japan
| | - J.Z. Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa, Japan
| |
Collapse
|