1
|
Fang H, Yu E, Liu C, Eapen C, Cheng C, Hu T. Metabolic landscape and rewiring in normal hematopoiesis, leukemia and aging. Semin Cancer Biol 2025; 111:1-15. [PMID: 39933639 DOI: 10.1016/j.semcancer.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/06/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Recent advancements in metabolism research have demonstrated its critical roles in a lot of critical biological processes, including stemness maintenance, cell differentiation, proliferation, and function. Hematopoiesis is the fundamental cell differentiation process with the production of millions of red blood cells per second in carrying oxygen and white blood cells in fighting infection and cancers. The differentiation processes of hematopoietic stem and progenitor cells (HSPCs) are accompanied by significant metabolic reprogramming. In hematological malignancy, metabolic reprogramming is also essential to the malignant hematopoiesis processes. The metabolic rewiring is driven by distinct molecular mechanisms that meet the specific demands of different target cells. Leukemic cells, for instance, adopt unique metabolic profiles to support their heightened energy needs for survival and proliferation. Moreover, aging HSPCs exhibit altered energy consumption compared to their younger counterparts, often triggering protective mechanisms at the cellular level. In this review, we provide a comprehensive analysis of the metabolic processes involved in hematopoiesis and the metabolic rewiring that occurs under adverse conditions. In addition, we highlight current research directions and discuss the potential of targeting metabolic pathways for the management of hematological malignancies and aging.
Collapse
Affiliation(s)
- Hui Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Enze Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macao
| | - Chang Liu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Christy Eapen
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Chunming Cheng
- Stephenson Cancer Center at Oklahoma University, Oklahoma City, OK 73104, United States.
| | - Tianxiang Hu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States.
| |
Collapse
|
2
|
Liu X, Lin Y, Zhuang Q, Deng H, Liu A, Sun J. BTK inhibitors resistance in B cell malignancies: Mechanisms and potential therapeutic strategies. Blood Rev 2025; 71:101273. [PMID: 40000280 DOI: 10.1016/j.blre.2025.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Bruton tyrosine kinase inhibitors (BTKi) have shown prominent clinical efficacy in patients with B cell malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B cell lymphoma, and Waldenström's macroglobulinemia. Nevertheless, numerous factors contribute to BTKi resistance, encompassing genetic mutations, chromosomal aberrations, dysregulation of protein expression, tumor microenvironment, and metabolic reprogramming. Accordingly, potential therapeutic strategies have been explored to surmount BTKi resistance, including noncovalent BTKi, BTK proteolysis-targeting chimeras, and combination therapies. Herein, we summarize the mechanisms responsible for BTKi resistance as well as the current preclinical and clinical strategies to address BTKi resistance in B cell malignancies treatment.
Collapse
Affiliation(s)
- Xin Liu
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yufan Lin
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiqi Zhuang
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoren Deng
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Jie Sun
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.
| |
Collapse
|
3
|
Omezzolli G, Iannello A, Vallone FE, Brandimarte L, Micillo M, Bertola N, Lavarello C, Grinovero N, Ferrero G, Mellert K, Möller P, Bruno S, Furman RR, Allan JN, Petretto A, Deaglio S, Ravera S, Vaisitti T. Complementary approaches define the metabolic features that accompany Richter syndrome transformation. Cell Mol Life Sci 2025; 82:152. [PMID: 40204982 PMCID: PMC11982009 DOI: 10.1007/s00018-025-05670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade lymphoma with previously unknown metabolic features. Transcriptomic data from primary CLL and RS samples, as well as RS-patient-derived xenografts, highlighted cellular metabolism as one of the most significant differentially expressed processes. Activity assays of key enzymes confirmed the intense metabolic rewiring of RS cells, which is characterized by an elevated rate of Krebs cycle, oxidative phosphorylation, and glutamine metabolism. These pathways were sustained by increased uptake of glucose and glutamine, two critical substrates for these cells. Moreover, RS cells showed activation of anabolic processes that resulted in the synthesis of nucleotides and lipids necessary to support their high proliferation. Exposure to drugs targeting PI3K and NF-kB, two master regulators of cellular metabolism, resulted in the shutdown of ATP production and glycolysis. Overall, these data suggest that metabolic rewiring characterizes the transformation of CLL into RS, presenting new translational opportunities.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Animals
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/genetics
- Glycolysis
- Citric Acid Cycle
- Mice
- Oxidative Phosphorylation
- Glucose/metabolism
- Glutamine/metabolism
- NF-kappa B/metabolism
- NF-kappa B/antagonists & inhibitors
- Phosphatidylinositol 3-Kinases/metabolism
Collapse
Affiliation(s)
- Giulia Omezzolli
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Andrea Iannello
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Francesco E Vallone
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Lorenzo Brandimarte
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Matilde Micillo
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Nadia Bertola
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Nicole Grinovero
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Richard R Furman
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - John N Allan
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
4
|
Martinis E, Tonon S, Colamatteo A, La Cava A, Matarese G, Pucillo CEM. B cell immunometabolism in health and disease. Nat Immunol 2025; 26:366-377. [PMID: 39984733 DOI: 10.1038/s41590-025-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
B cells have crucial roles in the initiation and progression of many pathological conditions, and several therapeutic strategies have targeted the function of these cells. The advent of immunometabolism has provided compelling evidence that the metabolic reprogramming of immune cells can dramatically alter physiopathological immune activities. A better knowledge of the metabolic profiles of B cells can provide valuable means for developing therapies tuning defined cell pathways. Here we review the cellular and molecular mechanisms by which immunometabolism controls the physiology and pathophysiology of B cells and discuss the experimental evidence linking B cell metabolism to health, autoimmunity, and cancer. Considering that several metabolic pathways in B cells are involved differently, or even in opposite ways, in health and disease, we discuss how targeted modulation of B cell immunometabolism could be exploited mechanistically to rebalance abnormal B cell functions that have become altered in disease states.
Collapse
Affiliation(s)
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
| | - Antonio La Cava
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy.
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale 'G. Salvatore' - Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.
| | | |
Collapse
|
5
|
Hindes MT, McElligott AM, Best OG, Ward MP, Selemidis S, Miles MA, Nturubika BD, Gregory PA, Anderson PH, Logan JM, Butler LM, Waugh DJ, O'Leary JJ, Hickey SM, Thurgood LA, Brooks DA. Metabolic reprogramming, malignant transformation and metastasis: Lessons from chronic lymphocytic leukaemia and prostate cancer. Cancer Lett 2025; 611:217441. [PMID: 39755364 DOI: 10.1016/j.canlet.2025.217441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis. This review considers glucose and lipid metabolism in CLL and prostate cancer, exploring their roles in healthy and malignant states and during disease progression. In CLL, lipid metabolism supports cell survival and migration, with aggressive disease characterised by increased fatty acid oxidation and altered sphingolipids. Richter's transformation and aggressive lymphoma, however, exhibit a metabolic shift towards increased glycolysis. Similarly, prostate cell metabolism is unique, relying on citrate production in the healthy state and undergoing metabolic reprogramming during malignant transformation. Early-stage prostate cancer cells increase lipid synthesis and uptake, and decrease glycolysis, whereas metastatic cells re-adopt glucose metabolism, likely driven by interactions with the tumour microenvironment. Genetic drivers including TP53 and ATM mutations connect metabolic alterations to disease severity in these two malignancies. The bone microenvironment supports the metabolic demands of these malignancies, serving as an initiation niche for CLL and a homing site for prostate cancer metastases. By comparing these malignancies, this review underscores the importance of metabolic plasticity in cancer progression and highlights how CLL and prostate cancer may be models of circulating and solid tumours more broadly. The metabolic phenotypes throughout cancer cell transformation and metastasis, and the microenvironment in which these processes occur, present opportunities for interventions that could disrupt metastatic processes and improve patient outcomes.
Collapse
Affiliation(s)
- Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Anthony M McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Oliver G Best
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Mark A Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Bukuru D Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Paul H Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia; Solid Tumour Program, Precision Cancer Medicine theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David J Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lauren A Thurgood
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
6
|
Lu L, Hu X, Han Y, Wang H, Tian Z, Zhang Y, Wang X. ENPP2 promotes progression and lipid accumulation via AMPK/SREBP1/FAS pathway in chronic lymphocytic leukemia. Cell Mol Biol Lett 2024; 29:159. [PMID: 39731014 DOI: 10.1186/s11658-024-00675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Disorders of lipid metabolism are critical factors in the progression of chronic lymphocytic leukemia (CLL). However, the characteristics of lipid metabolism and related regulatory mechanisms of CLL remain unclear. METHODS Hence, we identified altered metabolites and aberrant lipid metabolism pathways in patients with CLL by ultra-high-performance liquid chromatography-mass spectrometry-based non-targeted lipidomics. A combination of transcriptomics and lipidomics was used to mine relevant target molecule and downstream signaling pathway. In vitro cellular assays, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, fluorescent staining, RNA sequencing, and coimmunoprecipitation were used to monitor the molecular levels as well as to explore the underlying mechanisms. RESULTS Significant differences in the content of 52 lipid species were identified in CLL samples and healthy controls. Functional analysis revealed that alterations in glycerolipid metabolism, glycerophospholipid metabolism, sphingolipid metabolism, and metabolic pathways had the greatest impact on CLL. On the basis of the area under the curve value, a combination of three metabolites (phosphatidylcholine O-24:2_18:2, phosphatidylcholine O-35:3, and lysophosphatidylcholine 34:3) potentially served as a biomarker for the diagnosis of CLL. Furthermore, utilizing integrated lipidomic, transcriptomic, and molecular studies, we reveal that ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) plays a crucial role in regulating oncogenic lipogenesis. ENPP2 expression was significantly elevated in patients with CLL compared with normal cells and was validated in an independent cohort. Moreover, ENPP2 knockdown and targeted inhibitor PF-8380 treatment exerted an antitumor effect by regulating cell viability, proliferation, apoptosis, cell cycle, and enhanced the drug sensitivity to ibrutinib. Mechanistically, ENPP2 inhibited AMP-activated protein kinase (AMPK) phosphorylation and promoted lipogenesis through the sterol regulatory element-binding transcription factor 1 (SREBP-1)/fatty acid synthase (FAS) signaling pathway to promote lipogenesis. CONCLUSIONS Taken together, our findings unravel the lipid metabolism characteristics of CLL. Moreover, we demonstrate a previously unidentified role and mechanism of ENPP2 in regulation of lipid metabolism, providing a novel therapeutic target for CLL treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Phosphoric Diester Hydrolases/metabolism
- Phosphoric Diester Hydrolases/genetics
- Lipid Metabolism/genetics
- Signal Transduction/genetics
- AMP-Activated Protein Kinases/metabolism
- AMP-Activated Protein Kinases/genetics
- Sterol Regulatory Element Binding Protein 1/metabolism
- Sterol Regulatory Element Binding Protein 1/genetics
- Male
- Female
- Disease Progression
- Cell Line, Tumor
- Middle Aged
- Aged
Collapse
Affiliation(s)
- Liyan Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Add: No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Add: No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Add: No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Hua Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Add: No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Zheng Tian
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Add: No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Add: No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
7
|
Goleij P, Khazeei Tabari MA, Ahmed ARD, Mohamed LME, Saleh GAH, Abdu Hassan MTM, Moahmmednoor AGM, Khan H. Molecular Secrets Revealed: How Diabetes may be Paving the Way for Leukemia. Curr Treat Options Oncol 2024; 25:1563-1579. [PMID: 39585587 DOI: 10.1007/s11864-024-01281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
OPINION STATEMENT Type 2 Diabetes Mellitus (T2DM) and leukemia are two major global health concerns, both contributing significantly to morbidity and mortality. Epidemiological evidence demonstrates a strong correlation between T2DM and an increased risk of leukemia, particularly driven by insulin resistance, hyperglycemia, and the resultant metabolic dysregulation. Key shared risk factors, including obesity and chronic inflammation, create a conducive environment for leukemogenesis, intensifying cancer cell proliferation and resistance to standard therapies. Insulin resistance, in particular, triggers oncogenic pathways such as PI3K/AKT and MAPK, exacerbating the aggressive phenotype seen in leukemia patients with T2DM. Additionally, clonal hematopoiesis of indeterminate potential (CHIP) is implicated in the higher leukemia risk observed in diabetic populations, especially among the elderly. Molecular mechanisms like the insulin-like growth factor (IGF) system further highlight the intricate link between these diseases, promoting survival and proliferation of leukemia cells. The coexistence of T2DM in leukemia patients is associated with poorer prognostic outcomes, including increased susceptibility to infections, reduced survival, and greater treatment resistance. Antidiabetic agents, notably metformin and pioglitazone, show promise in enhancing chemotherapy efficacy and improving patient outcomes by targeting metabolic pathways. These results highlight the need for comprehensive treatment approaches that target both metabolic abnormalities and cancer-related mechanisms in patients suffering from both T2DM and leukemia.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
| | | | | | | | | | | | | | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
8
|
Li Y, Wang L, Wang J, Xin Y, Lyu X. Relationship between adipocytes and hematological tumors in the bone marrow microenvironment: a literature review. Transl Cancer Res 2024; 13:5691-5701. [PMID: 39525009 PMCID: PMC11543051 DOI: 10.21037/tcr-24-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective The bone marrow microenvironment is closely related to normal hematopoiesis and hematologic tumors. Adipocytes are an important part of the bone marrow microenvironment, in which they can release free fatty acids (FFAs) through lipolysis and secrete adipocytokines, etc., and participate in normal hematopoiesis, which is closely related to the occurrence and treatment of hematological tumors. In this review, we aim to discuss how bone marrow adipocytes (BMAs) can influence the proliferation, apoptosis, and chemotherapy resistance of cancer cells by reprogramming lipid metabolism and the secretion of various adipocytokines. Methods Studies from 2000 to July 2024 were reviewed from PubMed, Springer Link, and the Web of Science using the keywords bone marrow microenvironment, adipocytes, lipid metabolism, adipocytokines, hematological tumor, cancer, and their combinations. Unreliable articles such as those that are old and have a low impact factor are excluded, and there is no restriction on language. Key Content and Findings Adipocytes can regulate the proliferation and differentiation of hematopoietic stem cells (HSCs) by secreting inflammatory factors and adipocytokines to maintain hematopoietic homeostasis. Adipocytes can also stimulate and accelerate the occurrence and progression of hematological tumors by secreting adipocytokines and mediating the reprogramming of lipid metabolism. Moreover, abundant adipocytes in bone marrow can protect tumor cells by physically blocking and/or secreting cytokines, leading to chemotherapy resistance. Conclusions Therefore, the targeted inhibition of related lipid metabolism pathways and adipocytokines might be a potential therapeutic target for hematological tumors, which would be helpful to inhibit tumor growth and correct chemotherapy resistance.
Collapse
Affiliation(s)
- Yuchun Li
- Central Laboratory, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Linlin Wang
- Central Laboratory, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jingyu Wang
- Central Laboratory, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yaping Xin
- Department of Endocrinology and Metabolic Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodong Lyu
- Central Laboratory, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Paradoski BT, Hou S, Mejia EM, Olayinka-Adefemi F, Fowke D, Hatch GM, Saleem A, Banerji V, Hay N, Zeng H, Marshall AJ. PI3K-dependent reprogramming of hexokinase isoforms controls glucose metabolism and functional responses of B lymphocytes. iScience 2024; 27:110939. [PMID: 39635128 PMCID: PMC11615188 DOI: 10.1016/j.isci.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/12/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024] Open
Abstract
B lymphocyte activation triggers metabolic reprogramming essential for B cell differentiation and mounting a healthy immune response. Here, we investigate the regulation and function of glucose-phosphorylating enzyme hexokinase 2 (HK2) in B cells. We report that both activation-dependent expression and mitochondrial localization of HK2 are regulated by the phosphatidylinositol 3-kinase (PI3K) signaling pathway. B cell-specific deletion of HK2 in mice caused mild perturbations in B cell development. HK2-deficient B cells show impaired functional responses in vitro and adapt to become less dependent on glucose and more dependent on glutamine. HK2 deficiency impairs glycolysis, alters metabolite profiles, and alters flux of labeled glucose carbons into downstream pathways. Upon immunization, HK2-deficient mice exhibit impaired germinal center, plasmablast, and antibody responses. HK2 expression in primary human chronic lymphocytic leukemia (CLL) cells was associated with recent proliferation and could be reduced by PI3K inhibition. Our study implicates PI3K-dependent modulation of HK2 in B cell metabolic reprogramming.
Collapse
Affiliation(s)
| | - Sen Hou
- Departments of Immunology, University of Manitoba, Winnipeg, Canada
| | - Edgard M. Mejia
- Departments of Immunology, University of Manitoba, Winnipeg, Canada
| | | | - Danielle Fowke
- Departments of Immunology, University of Manitoba, Winnipeg, Canada
| | - Grant M. Hatch
- Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
- The Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Ayesha Saleem
- The Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
| | - Versha Banerji
- Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, Canada
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Hu Zeng
- Department of Immunology and Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Aaron J. Marshall
- Departments of Immunology, University of Manitoba, Winnipeg, Canada
- Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
- Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Vainer N, Rotbain Curovic V, Niemann CU, Slager SL, Rotbain EC. Understanding the interplay between chronic lymphocytic leukemia and type 2 diabetes. Expert Rev Hematol 2024; 17:617-629. [PMID: 39041465 DOI: 10.1080/17474086.2024.2383417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Comorbidities play an important role in the management of chronic lymphocytic leukemia (CLL) and may influence survival and treatment outcomes. Considering the aging general population and increasing incidence of type 2 diabetes (T2D), a comprehensive understanding of the interplay between CLL and T2D is essential for optimizing care and outcomes. AREAS COVERED We present current knowledge on co-existing CLL and T2D including prevalence, shared etiology and risk factors and how the conditions and treatment hereof may influence the outcome of one another. A literature search was performed using PubMed with the cutoff date on 1 February 2024. EXPERT OPINION The increased mortality observed in persons with CLL who have co-existing T2D is partially ascribed to infections, prompting physicians managing individuals with both conditions to consider closer monitoring during instances of infection and individualized prophylaxis. People with CLL and T2D should be managed for CLL in accordance with the international working group on CLL criteria, and we recommend that physicians exercise particular care not to delay treatment for these individuals. Multidisciplinary approaches with involvement of several specialties may be required for optimal supportive care of co-occurring T2D and CLL.
Collapse
Affiliation(s)
- Noomi Vainer
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Hematology Group, Danish Cancer Institute, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Carsten Utoft Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Emelie Curovic Rotbain
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Hematology Group, Danish Cancer Institute, Copenhagen, Denmark
| |
Collapse
|
11
|
Nisco A, Tolomeo M, Scalise M, Zanier K, Barile M. Exploring the impact of flavin homeostasis on cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2024; 1879:189149. [PMID: 38971209 DOI: 10.1016/j.bbcan.2024.189149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Flavins and their associated proteins have recently emerged as compelling players in the landscape of cancer biology. Flavins, encompassing flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), serve as coenzymes in a multitude of cellular processes, such as metabolism, apoptosis, and cell proliferation. Their involvement in oxidative phosphorylation, redox homeostasis, and enzymatic reactions has long been recognized. However, recent research has unveiled an extended role for flavins in the context of cancer. In parallel, riboflavin transporters (RFVTs), FAD synthase (FADS), and riboflavin kinase (RFK) have gained prominence in cancer research. These proteins, responsible for riboflavin uptake, FAD biosynthesis, and FMN generation, are integral components of the cellular machinery that governs flavin homeostasis. Dysregulation in the expression/function of these proteins has been associated with various cancers, underscoring their potential as diagnostic markers, therapeutic targets, and key determinants of cancer cell behavior. This review embarks on a comprehensive exploration of the multifaceted role of flavins and of the flavoproteins involved in nucleus-mitochondria crosstalk in cancer. We journey through the influence of flavins on cancer cell energetics, the modulation of RFVTs in malignant transformation, the diagnostic and prognostic significance of FADS, and the implications of RFK in drug resistance and apoptosis. This review also underscores the potential of these molecules and processes as targets for novel diagnostic and therapeutic strategies, offering new avenues for the battle against this relentless disease.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy; Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Katia Zanier
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy.
| |
Collapse
|
12
|
Abir AH, Weckwerth L, Wilhelm A, Thomas J, Reichardt CM, Munoz L, Völkl S, Appelt U, Mroz M, Niesner R, Hauser A, Sophie Fischer R, Pracht K, Jäck HM, Schett G, Krönke G, Mielenz D. Metabolic profiling of single cells by exploiting NADH and FAD fluorescence via flow cytometry. Mol Metab 2024; 87:101981. [PMID: 38971403 PMCID: PMC11300934 DOI: 10.1016/j.molmet.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE The metabolism of different cells within the same microenvironment can differ and dictate physiological or pathological adaptions. Current single-cell analysis methods of metabolism are not label-free. METHODS The study introduces a label-free, live-cell analysis method assessing endogenous fluorescence of NAD(P)H and FAD in surface-stained cells by flow cytometry. RESULTS OxPhos inhibition, mitochondrial uncoupling, glucose exposure, genetic inactivation of glucose uptake and mitochondrial respiration alter the optical redox ratios of FAD and NAD(P)H as measured by flow cytometry. Those alterations correlate strongly with measurements obtained by extracellular flux analysis. Consequently, metabolically distinct live B-cell populations can be resolved, showing that human memory B-cells from peripheral blood exhibit a higher glycolytic flexibility than naïve B cells. Moreover, the comparison of blood-derived B- and T-lymphocytes from healthy donors and rheumatoid arthritis patients unleashes rheumatoid arthritis-associated metabolic traits in human naïve and memory B-lymphocytes. CONCLUSIONS Taken together, these data show that the optical redox ratio can depict metabolic differences in distinct cell populations by flow cytometry.
Collapse
Affiliation(s)
- Ariful Haque Abir
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Artur Wilhelm
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Clara M Reichardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Uwe Appelt
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Markus Mroz
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Raluca Niesner
- Deutsches Rheumaforschungszentrum Berlin, Biophysikalische Analytik, Charitéplatz 1, 10117 Berlin, Germany; Freie Universität Berlin, Dynamisches und funktionelles in vivo Imaging, Adresse: Oertzenweg 19b, 14163 Berlin, Germany
| | - Anja Hauser
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Deutsches Rheumaforschungszentrum Berlin, Immundynamik, Charitéplatz 1, 10117 Berlin, Germany
| | - Rebecca Sophie Fischer
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany.
| |
Collapse
|
13
|
Mavridou D, Psatha K, Aivaliotis M. Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia. J Pers Med 2024; 14:831. [PMID: 39202022 PMCID: PMC11355716 DOI: 10.3390/jpm14080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most common B-cell malignancy in the Western world, characterized by frequent relapses despite temporary remissions. Our study integrated publicly available proteomic, transcriptomic, and patient survival datasets to identify key differences between healthy and CLL samples. We exposed approximately 1000 proteins that differentiate healthy from cancerous cells, with 608 upregulated and 415 downregulated in CLL cases. Notable upregulated proteins include YEATS2 (an epigenetic regulator), PIGR (Polymeric immunoglobulin receptor), and SNRPA (a splicing factor), which may serve as prognostic biomarkers for this disease. Key pathways implicated in CLL progression involve RNA processing, stress resistance, and immune response deficits. Furthermore, we identified three existing drugs-Bosutinib, Vorinostat, and Panobinostat-for potential further investigation in drug repurposing in CLL. We also found limited correlation between transcriptomic and proteomic data, emphasizing the importance of proteomics in understanding gene expression regulation mechanisms. This generally known disparity highlights once again that mRNA levels do not accurately predict protein abundance due to many regulatory factors, such as protein degradation, post-transcriptional modifications, and differing rates of translation. These results demonstrate the value of integrating omics data to uncover deregulated proteins and pathways in cancer and suggest new therapeutic avenues for CLL.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Medical Biology—Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Marković I, Debeljak Ž, Dobrošević B, Lukić M, Mrđenović S, Kotris A, Bošnjak B, Dmitrović B. Metabolic profiling of CD19+ cells in chronic lymphocytic leukemia by single-cell mass spectrometry imaging. Clin Chim Acta 2024; 561:119758. [PMID: 38848898 DOI: 10.1016/j.cca.2024.119758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND AIMS Modern mass spectrometry imaging (MSI) enables single cells' metabolism exploration. Aims of this study were development of the single-cell MSI of human CD19+ lymphocytes and metabolic profiling of chronic lymphocytic leukemia (CLL). MATERIALS AND METHODS Blood donor (BD) samples were used for the optimization of CD19+ lymphocyte isolation and single-cell matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) MSI. Independent set of 200 CD19+ lymphocytes coming from 5 CLL patients and 5 BD was used for the CD19+ lymphocytes classification assessment and the untargeted metabolic profiling. CLL vs BD lymphocyte classification was performed using partial least squares-discriminant analysis (PLS-DA) using normalized single-cell mass spectra recorded in 300-600 and 600-950 Da ranges was applied. RESULTS Accuracy assessed by 10-fold cross-validation of CD19+ lymphocyte PLS-DA classification reached >90.0 %. Volcano plots showed 106 significantly altered m/z signals in CLL of which 9 were tentatively annotated. Among tentatively annotated m/z signals formaldehyde and glutathione metabolites and tetrahydrofolate stand out. CONCLUSION A method for single-cell MALDI TOF MSI of CD19+ lymphocytes was successfully developed. The method confirmed the significance of oxidative stress and single-carbon metabolism, pyruvate and fatty acid metabolism and apoptosis in CLL and it provided metabolic candidates for diagnostic applications.
Collapse
MESH Headings
- Humans
- Antigens, CD19/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/metabolism
- Metabolomics/methods
- Single-Cell Analysis
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Ivana Marković
- Clinical Institute of Laboratory Diagnostics, University Hospital Centre Osijek, J. Huttlera 4, 31 000 Osijek, Croatia; Faculty of Medicine Osijek, JJ Strossmayer University of Osijek, J. Huttlera 4, 31 000 Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, University Hospital Centre Osijek, J. Huttlera 4, 31 000 Osijek, Croatia; Faculty of Medicine Osijek, JJ Strossmayer University of Osijek, J. Huttlera 4, 31 000 Osijek, Croatia.
| | - Blaženka Dobrošević
- Clinical Institute of Laboratory Diagnostics, University Hospital Centre Osijek, J. Huttlera 4, 31 000 Osijek, Croatia; Faculty of Medicine Osijek, JJ Strossmayer University of Osijek, J. Huttlera 4, 31 000 Osijek, Croatia
| | - Maja Lukić
- Clinical Institute of Laboratory Diagnostics, University Hospital Centre Osijek, J. Huttlera 4, 31 000 Osijek, Croatia; Faculty of Medicine Osijek, JJ Strossmayer University of Osijek, J. Huttlera 4, 31 000 Osijek, Croatia
| | - Stefan Mrđenović
- Faculty of Medicine Osijek, JJ Strossmayer University of Osijek, J. Huttlera 4, 31 000 Osijek, Croatia; Department of Hematology, Internal Medicine Clinic, University Hospital Centre Osijek, J. Huttlera 4, 31 000 Osijek, Croatia
| | - Ana Kotris
- Faculty of Medicine Osijek, JJ Strossmayer University of Osijek, J. Huttlera 4, 31 000 Osijek, Croatia; Department of Hematology, Internal Medicine Clinic, University Hospital Centre Osijek, J. Huttlera 4, 31 000 Osijek, Croatia
| | - Bojana Bošnjak
- Clinical Institute of Transfusion Medicine, University Hospital Centre Osijek, J. Huttlera 4, 31 000 Osijek, Croatia
| | - Branko Dmitrović
- Department for Pathology and Forensic Medicine, University Hospital Centre Osijek, J. Huttlera 4, 31 000 Osijek, Croatia; Department of Anatomy, Histology, Embryology, Pathological Anatomy and Pathological Histology, Faculty of Dental Medicine and Health, JJ Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| |
Collapse
|
15
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- R01 CA222007 NCI NIH HHS
- R01 GM122775 NIGMS NIH HHS
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- R01 CA182905 NCI NIH HHS
- P50 CA127001 NCI NIH HHS
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Mirabilii S, Piedimonte M, Conte E, Mirabilii D, Rossi FM, Bomben R, Zucchetto A, Gattei V, Tafuri A, Ricciardi MR. Low Cell Bioenergetic Metabolism Characterizes Chronic Lymphocytic Leukemia Patients with Unfavorable Genetic Factors and with a Better Response to BTK Inhibition. Curr Issues Mol Biol 2024; 46:5085-5099. [PMID: 38920977 PMCID: PMC11202558 DOI: 10.3390/cimb46060305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is an indolent malignancy characterized by the accumulation of quiescent mature B cells. However, these cells are transcriptionally and translationally active, implicating an active metabolism. The recent literature suggests that CLL cells have an oxidative-type phenotype. Given the role of cell metabolism, which is able to influence the outcome of treatments, in other neoplasms, we aimed to assess its prognostic role in CLL patients by determining the ex vivo bioenergetic metabolic profile of CLL cells, evaluating the correlation with the patient clinical/biological characteristics and the in vivo response to BTK inhibitor treatment. Clustering analysis of primary samples identified two groups, characterized by low (CLL low) or high (CLL high) bioenergetic metabolic rates. Compared to the CLL high, CLL with lower bioenergetic metabolic rates belonged to patients characterized by a statistically significant higher white blood cell count and by unfavorable molecular genetics. More importantly, patients in the CLL low cluster displayed a better and more durable response to the BTK inhibitor ibrutinib, thus defining a bioenergetic metabolic subgroup that can benefit the most from this therapy.
Collapse
Affiliation(s)
- Simone Mirabilii
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| | - Monica Piedimonte
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| | - Esmeralda Conte
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| | | | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., 33081 Aviano, Italy; (F.M.R.); (R.B.); (A.Z.); (V.G.)
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., 33081 Aviano, Italy; (F.M.R.); (R.B.); (A.Z.); (V.G.)
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., 33081 Aviano, Italy; (F.M.R.); (R.B.); (A.Z.); (V.G.)
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., 33081 Aviano, Italy; (F.M.R.); (R.B.); (A.Z.); (V.G.)
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| | - Maria Rosaria Ricciardi
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| |
Collapse
|
17
|
Raucci F, Vernieri C, Di Tano M, Ligorio F, Blaževitš O, Lazzeri S, Shmahala A, Fragale G, Salvadori G, Varano G, Casola S, Buono R, Visco E, de Braud F, Longo VD. Cyclic Fasting-Mimicking Diet Plus Bortezomib and Rituximab Is an Effective Treatment for Chronic Lymphocytic Leukemia. Cancer Res 2024; 84:1133-1148. [PMID: 38241703 PMCID: PMC10982641 DOI: 10.1158/0008-5472.can-23-0295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 01/21/2024]
Abstract
Cyclic fasting-mimicking diet (FMD) is an experimental nutritional intervention with potent antitumor activity in preclinical models of solid malignancies. FMD cycles are also safe and active metabolically and immunologically in cancer patients. Here, we reported on the outcome of FMD cycles in two patients with chronic lymphocytic leukemia (CLL) and investigated the effects of fasting and FMD cycles in preclinical CLL models. Fasting-mimicking conditions in murine CLL models had mild cytotoxic effects, which resulted in apoptosis activation mediated in part by lowered insulin and IGF1 concentrations. In CLL cells, fasting conditions promoted an increase in proteasome activity that served as a starvation escape pathway. Pharmacologic inhibition of this escape mechanism with the proteasome inhibitor bortezomib resulted in a strong enhancement of the proapoptotic effects of starvation conditions in vitro. In mouse CLL models, combining cyclic fasting/FMD with bortezomib and rituximab, an anti-CD20 antibody, delayed CLL progression and resulted in significant prolongation of mouse survival. Overall, the effect of proteasome inhibition in combination with FMD cycles in promoting CLL death supports the targeting of starvation escape pathways as an effective treatment strategy that should be tested in clinical trials. SIGNIFICANCE Chronic lymphocytic leukemia cells resist fasting-mimicking diet by inducing proteasome activation to escape starvation, which can be targeted using proteasome inhibition by bortezomib treatment to impede leukemia progression and prolong survival.
Collapse
Affiliation(s)
- Franca Raucci
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Claudio Vernieri
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maira Di Tano
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Weill Cornell Medical College, Department of Medicine, Cornell University, New York, New York
| | - Francesca Ligorio
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Olga Blaževitš
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Samuel Lazzeri
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Giuseppe Fragale
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giulia Salvadori
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Gabriele Varano
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Casola
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Roberta Buono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Euplio Visco
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valter D. Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
18
|
Pan B, Xu Z, Du K, Gao R, Zhang J, Yin H, Shen H, Liang J, Li Y, Wang L, Li J, Xu W, Wu J. Investigation of fatty acid metabolism in chronic lymphocytic leukemia to guide clinical outcome and therapy. Ann Hematol 2024; 103:1241-1254. [PMID: 38150112 DOI: 10.1007/s00277-023-05590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the West. With CLL's heterogeneity, some people still develop disease refractory and relapse despite advances in treatment. Thus, early diagnosis and treatment of high-risk CLL patients is critical. Fatty acid (FA) metabolism contributes to tumorigenesis, progression, and therapy resistance through enhanced lipid synthesis, storage, and catabolism. In this study, we aimed to construct a prognostic model to improve the risk stratification of CLL and reveal the link between FA metabolism and CLL. The differentially expressed FA metabolism-related genes (FMGs) in CLL were filtered through univariate Cox regression analysis based on public databases. Functional enrichment was examined using prognostic FA metabolism-related gene enrichment analysis. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) estimated immune infiltration score and immune-related pathways. Pearson's correlation analysis investigated FA metabolism-related genes and drug sensitivity. A novel prognostic model was built using least absolute shrinkage and selection operator (LASSO) Cox algorithms. This validation cohort included 36 CLL patients from our center. We obtained CLL RNA microarray profiles from public databases and identified 15 prognostic-related FMGs. CLL patients were divided into two molecular clusters based on the expression of FMGs. The Kaplan-Meier analysis revealed a significant difference in TFS (P < 0.001) and OS (P < 0.001) between the two clusters. KEGG functional analysis showed that several pathways were enriched, including the chemokine and immune-related signaling pathways. In the training and validation cohorts, patients with higher FA metabolism-related prognostic index (FAPI) levels had worse outcomes. Finally, a novel nomogram prognostic model including CLL international prognostic index (CLL-IPI) was constructed, exhibiting reliable effectiveness and accuracy. In conclusion, we established a reliable predictive signature based on FA metabolism-related genes and constructed a novel nomogram prognostic model, supporting the potential preclinical implications of FA metabolism in CLL research.
Collapse
Affiliation(s)
- Bihui Pan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Zhangdi Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Kaixin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Rui Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiale Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hua Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Haorui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jinhua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Jiazhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
19
|
Gao R, Du K, Liang J, Xia Y, Wu J, Li Y, Pan B, Wang L, Li J, Xu W. Low Serum Cholesterol Level Is a Significant Prognostic Factor That Improves CLL-IPI in Chronic Lymphocytic Leukaemia. Int J Mol Sci 2023; 24:ijms24087396. [PMID: 37108556 PMCID: PMC10138885 DOI: 10.3390/ijms24087396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Hypocholesterolaemia is associated with elevated cancer risk and mortality, yet the relation between chronic lymphocytic leukaemia (CLL) and serum lipid profile remains unclear. Our study aims to evaluate the prognostic value of cholesterol levels in CLL and develop a prognostic nomogram that incorporates lipid metabolism. We enrolled 761 newly diagnosed CLL patients and separated them into either derivation (n = 507) or validation (n = 254) cohorts. The prognostic nomogram was constructed through multivariate Cox regression analyses, with performance evaluated using C-index, the area under the curve, calibration, and decision curve analyses. Decreased total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) at diagnosis were significantly associated with worse time to first treatment (TTFT) and cancer-specific survival (CSS), and simultaneously, low HDL-C with low LDL-C was identified as an independent prognostic indicator for both TTFT and CSS. CLL patients achieving complete or partial remission post-chemotherapy had significantly increased TC, HDL-C, and LDL-C levels compared with the baseline, and post-therapeutic HDL-C and LDL-C elevation correlated with favourable survival. The prognostic nomogram augmenting the CLL international prognostic index with low cholesterol levels yielded higher predictive accuracy and discrimination capacity for both 3-year and 5-year CSS. In conclusion, cholesterol profiles can be used as a cheap and readily accessible tool for predicting prognosis in CLL practice.
Collapse
Affiliation(s)
- Rui Gao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Kaixin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jinhua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yi Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jiazhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Bihui Pan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| |
Collapse
|
20
|
Alfaifi A, Refai MY, Alsaadi M, Bahashwan S, Malhan H, Al-Kahiry W, Dammag E, Ageel A, Mahzary A, Albiheyri R, Almehdar H, Qadri I. Metabolomics: A New Era in the Diagnosis or Prognosis of B-Cell Non-Hodgkin's Lymphoma. Diagnostics (Basel) 2023; 13:861. [PMID: 36900005 PMCID: PMC10000528 DOI: 10.3390/diagnostics13050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin's lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin's lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called "metabolomics." A patient's phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin's lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin's lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin's lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin's lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Enas Dammag
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ageel Ageel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Amjed Mahzary
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Zeng X, Wang YP, Man CH. Metabolism in Hematopoiesis and Its Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:45-64. [PMID: 38228958 DOI: 10.1007/978-981-99-7471-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Zeng
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
22
|
Advances in Understanding of Metabolism of B-Cell Lymphoma: Implications for Therapy. Cancers (Basel) 2022; 14:cancers14225552. [PMID: 36428647 PMCID: PMC9688663 DOI: 10.3390/cancers14225552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
There have been significant recent advances in the understanding of the role of metabolism in normal and malignant B-cell biology. Previous research has focused on the role of MYC and mammalian target of rapamycin (mTOR) and how these interact with B-cell receptor signaling and hypoxia to regulate glycolysis, glutaminolysis, oxidative phosphorylation (OXPHOS) and related metabolic pathways in germinal centers. Many of the commonest forms of lymphoma arise from germinal center B-cells, reflecting the physiological attenuation of normal DNA damage checkpoints to facilitate somatic hypermutation of the immunoglobulin genes. As a result, these lymphomas can inherit the metabolic state of their cell-of-origin. There is increasing interest in the potential of targeting metabolic pathways for anti-cancer therapy. Some metabolic inhibitors such as methotrexate have been used to treat lymphoma for decades, with several new agents being recently licensed such as inhibitors of phosphoinositide-3-kinase. Several other inhibitors are in development including those blocking mTOR, glutaminase, OXPHOS and monocarboxylate transporters. In addition, recent work has highlighted the importance of the interaction between diet and cancer, with particular focus on dietary modifications that restrict carbohydrates and specific amino acids. This article will review the current state of this field and discuss future developments.
Collapse
|
23
|
Wu Z, Gu D, Wang R, Zuo X, Zhu H, Wang L, Lu X, Xia Y, Qin S, Zhang W, Xu W, Fan L, Li J, Jin H. CircRIC8B regulates the lipid metabolism of chronic lymphocytic leukemia through miR199b-5p/LPL axis. Exp Hematol Oncol 2022; 11:51. [PMID: 36064433 PMCID: PMC9442988 DOI: 10.1186/s40164-022-00302-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Circular RNAs (circRNAs) play a critical role in the modulation of tumor metabolism. However, the expression patterns and metabolic function of circRNAs in chronic lymphocytic leukemia (CLL) remain largely unknown. This study aimed to elucidate the role of circRNAs in the lipid metabolism of CLL. Methods The expression and metabolic patterns of circRNAs in a cohort of 53 patients with CLL were investigated using whole transcriptome sequencing. Cell viability, liquid chromatography with tandem mass spectrometry (LC–MS/MS) analysis, lipid analysis, Nile red staining as well as triglyceride (TG) assay were used to evaluate the biological function of circRIC8B in CLL. The regulatory mechanisms of circRIC8B/miR-199b-5p/lipoprotein lipase (LPL) axis were explored by luciferase assay, RNA immunoprecipitation (RIP), qRT-PCR, and fluorescence in situ hybridization (FISH). CCK-8 and flow cytometry were used to verify the inhibition role of cholesterol absorption inhibitor, ezetimibe, in CLL cells. Results Increased circRIC8B expression was positively correlated with advanced progression and poor prognosis. Knockdown of circRIC8B significantly suppressed the proliferation and lipid accumulation of CLL cells. In contrast, the upregulation of circRIC8B exerted opposite effects. Mechanistically, circRIC8B acted as a sponge of miR-199b-5p and prevented it from decreasing the level of LPL mRNA, and this promotes lipid metabolism alteration and facilitates the progression of CLL. What’s more, ezetimibe suppressed the expression of LPL mRNA and inhibited the growth of CLL cells. Conclusions In this study, the expressional and metabolic patterns of circRNAs in CLL was illustrated for the 1st time. Our findings revealed that circRIC8B regulates the lipid metabolism abnormalities in and development of CLL through the miR-199b-5p/LPL axis. CircRIC8B may serve as a promising prognostic marker and therapeutic target, which enhances the sensitivity to ezetimibe in CLL. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00302-0.
Collapse
Affiliation(s)
- Zijuan Wu
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Danling Gu
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ruixin Wang
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoling Zuo
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Huayuan Zhu
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Luqiao Wang
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Xueying Lu
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yi Xia
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Shuchao Qin
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Wei Zhang
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China. .,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Jianyong Li
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China. .,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Hui Jin
- Department of Hematology, Pukou CLL Center, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China. .,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
24
|
Sitlinger A, Deal MA, Garcia E, Connelly M, Thompson D, Stewart T, Macdonald G, Hanson ED, Neely M, Neely B, Artese A, Weinberg JB, Brander D, Bartlett DB. Associations of clinical and circulating metabolic biomarkers with low physical fitness and function in adults with chronic lymphocytic leukemia. Front Oncol 2022; 12:933619. [PMID: 35992862 PMCID: PMC9381973 DOI: 10.3389/fonc.2022.933619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Many patients with chronic lymphocytic leukemia (CLL) experience physical dysfunction and low overall fitness. It remains unknown what factors drive CLL physical dysfunction. We assessed physical function and metabolic lipoprotein panels in 106 patients with CLL. In univariate analyses of clinical factors, a longer time since diagnosis was associated with a higher likelihood of dysfunctional aerobic fitness (OR = 3.56, 95% CI: 1.37–9.22; p = 0.002) and physical performance (SPPB: OR = 2.03, 95% CI: 1.20–3.44; p = 0.004). Having received treatment was associated with a higher likelihood of dysfunctional aerobic fitness (OR = 1.57, 95% CI: 1.02–2.40; p = 0.036), SPPB (OR = 1.85, 95% CI: 1.13–3.03; p = 0.011) and grip strength (OR = 1.67, 95% CI: 1.10–2.55; p = 0.015). We found that several small HDL particle parameters, higher levels of citrate (OR = 2.01, 95% CI: 1.22–3.31; p = 0.030), and lower levels of hemoglobin (OR = 0.50, 95% CI: 0.31–0.82; p = 0.030) were associated with a higher likelihood of dysfunctional aerobic fitness. Multivariable least absolute shrinkage and selection operator (LASSO)-penalized regression analyses using variable importance measures (VIM) showed that 7.8-nm HDL particles (VIM = 1.000) and total HDL particle levels (VIM = 1.000) were more informative than clinical measures for the odds of dysfunctional aerobic fitness and 6-min walk functional fitness, respectively, while 10.3-nm HDL particles (VIM = 0.383) were more informative for grip strength. Time since diagnosis (VIM = 0.680) and having received treatment (VIM = 0.490) were more informative than lipoprotein measures for the odds of having dysfunctional SPPB. Taken together, we establish significant relationships between clinical and metabolic factors and physical characteristics that might prompt early use of ancillary support services.
Collapse
Affiliation(s)
- Andrea Sitlinger
- Hematologic Malignancies and Cellular Therapies, Duke University Medical Center, Durham, NC, United States
| | - Michael A. Deal
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, NC, United States
| | - Margery Connelly
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, NC, United States
| | - Dana Thompson
- Division of Hematology, Duke University Medical Center and VA Medical Center, Durham, NC, United States
| | - Tiffany Stewart
- Division of Hematology, Duke University Medical Center and VA Medical Center, Durham, NC, United States
| | - Grace Macdonald
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Erik D. Hanson
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, United States
| | - Megan Neely
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Ben Neely
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Ashley Artese
- Duke University Aging Center, Duke University Medical Center, Durham, NC, United States
| | - J. Brice Weinberg
- Division of Hematology, Duke University Medical Center and VA Medical Center, Durham, NC, United States
| | - Danielle Brander
- Hematologic Malignancies and Cellular Therapies, Duke University Medical Center, Durham, NC, United States
| | - David B. Bartlett
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke University Aging Center, Duke University Medical Center, Durham, NC, United States
- School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
- *Correspondence: David B. Bartlett,
| |
Collapse
|
25
|
Zuo F, Yu J, He X. Single-Cell Metabolomics in Hematopoiesis and Hematological Malignancies. Front Oncol 2022; 12:931393. [PMID: 35912231 PMCID: PMC9326066 DOI: 10.3389/fonc.2022.931393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant metabolism contributes to tumor initiation, progression, metastasis, and drug resistance. Metabolic dysregulation has emerged as a hallmark of several hematologic malignancies. Decoding the molecular mechanism underlying metabolic rewiring in hematological malignancies would provide promising avenues for novel therapeutic interventions. Single-cell metabolic analysis can directly offer a meaningful readout of the cellular phenotype, allowing us to comprehensively dissect cellular states and access biological information unobtainable from bulk analysis. In this review, we first highlight the unique metabolic properties of hematologic malignancies and underscore potential metabolic vulnerabilities. We then emphasize the emerging single-cell metabolomics techniques, aiming to provide a guide to interrogating metabolism at single-cell resolution. Furthermore, we summarize recent studies demonstrating the power of single-cell metabolomics to uncover the roles of metabolic rewiring in tumor biology, cellular heterogeneity, immunometabolism, and therapeutic resistance. Meanwhile, we describe a practical view of the potential applications of single-cell metabolomics in hematopoiesis and hematological malignancies. Finally, we present the challenges and perspectives of single-cell metabolomics development.
Collapse
|
26
|
Wu Z, Wang L, Fan L, Tang H, Zuo X, Gu D, Lu X, Li Y, Wu J, Qin S, Xia Y, Zhu H, Wang L, Xu W, Li J, Jin H. Exploring the significance of PAK1 through chromosome conformation signatures in ibrutinib-resistant chronic lymphocytic leukaemia. Mol Oncol 2022; 16:2920-2935. [PMID: 35811334 PMCID: PMC9394240 DOI: 10.1002/1878-0261.13281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Ibrutinib exerts promising anticancer effects in chronic lymphocytic leukaemia (CLL). However, acquired resistance occurs during treatment, necessitating the exploration of underlying mechanisms. Although three‐dimensional genome organization has been identified as a major player in the development and progression of cancer, including drug resistance, little is known regarding its role in CLL. Therefore, we investigated the molecular mechanisms underlying ibrutinib resistance through multi‐omics analysis, including high‐throughput chromosome conformation capture (Hi‐C) technology. We demonstrated that the therapeutic response to ibrutinib is associated with the expression of p21‐activated kinase 1 (PAK1). PAK1, which was up‐regulated in CLL and associated with patients' survival, was involved in cell proliferation, glycolysis and oxidative phosphorylation. Furthermore, the PAK1 inhibitor IPA‐3 exerted an anti‐tumour effect and its combination with ibrutinib exhibited a synergistic effect in ibrutinib‐sensitive and ‐resistant cells. These findings suggest the oncogenic role of PAK1 in CLL progression and drug resistance, highlighting PAK1 as a potential diagnostic marker and therapeutic target in CLL including ibrutinib‐resistant CLL.
Collapse
Affiliation(s)
- Zijuan Wu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Luqiao Wang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Lei Fan
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Hanning Tang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Xiaoling Zuo
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Danling Gu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Xueying Lu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Yue Li
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Jiazhu Wu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Shuchao Qin
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Yi Xia
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Huayuan Zhu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Li Wang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Wei Xu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Jianyong Li
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Jin
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol 2022; 11:39. [PMID: 35761419 PMCID: PMC9235173 DOI: 10.1186/s40164-022-00292-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormalities mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summarized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting metabolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical potentiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on the reshaping metabolism of CLL cells.
Collapse
|
28
|
B-cell Receptor Signaling Induced Metabolic Alterations in Chronic Lymphocytic Leukemia Can Be Partially Bypassed by TP53 Abnormalities. Hemasphere 2022; 6:e722. [PMID: 35747847 PMCID: PMC9208879 DOI: 10.1097/hs9.0000000000000722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/14/2022] [Indexed: 11/01/2022] Open
Abstract
It has been unclear what role metabolism is playing in the pathophysiology of chronic lymphocytic leukemia (CLL). One reason is that the study of CLL metabolism is challenging due to the resting nature of circulating CLL cells. Also, it is not clear if any of the genomic aberrations observed in this disease have any impact on metabolism. Here, we demonstrate that CLL cells in proliferation centers exhibit upregulation of several molecules involved in glycolysis and mitochondrial metabolism. Comparison of CXCR4/CD5 intraclonal cell subpopulations showed that these changes are paralleled by increases in the metabolic activity of the CXCR4lowCD5high fraction that have recently egressed from the lymph nodes. Notably, anti-IgM stimulation of CLL cells recapitulates many of these metabolic alterations, including increased glucose uptake, increased lactate production, induction of glycolytic enzymes, and increased respiratory reserve. Treatment of CLL cells with inhibitors of B-cell receptor (BCR) signaling blocked these anti-IgM-induced changes in vitro, which was mirrored by decreases in hexokinase 2 expression in CLL cells from ibrutinib-treated patients in vivo. Interestingly, several samples from patients with 17p-deletion manifested increased spontaneous aerobic glycolysis in the unstimulated state suggestive of a BCR-independent metabolic phenotype. We conclude that the proliferative fraction of CLL cells found in lymphoid tissues or the peripheral blood of CLL patients exhibit increased metabolic activity when compared with the bulk CLL-cell population. Although this is due to microenvironmental stimulatory signals such as BCR-engagement in most cases, increases in resting metabolic activity can be observed in cases with 17p-deletion.
Collapse
|
29
|
Rojas Gil AP, Kodonis I, Ioannidis A, Nomikos T, Dimopoulos I, Kosmidis G, Katsa ME, Melliou E, Magiatis P. The Effect of Dietary Intervention With High-Oleocanthal and Oleacein Olive Oil in Patients With Early-Stage Chronic Lymphocytic Leukemia: A Pilot Randomized Trial. Front Oncol 2022; 11:810249. [PMID: 35127522 PMCID: PMC8814521 DOI: 10.3389/fonc.2021.810249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
AIM Oleocanthal and oleacein (OC/OL) have important in vitro and in vivo antitumor properties; however, there is no data about their anticancer activity in humans. The aim of this pilot study was to test if patients at early stage of chronic lymphocytic leukemia (CLL) could adhere to and tolerate an intervention with high OC/OL extra virgin olive oil (EVOO) and if this intervention could lead to any changes in markers related to the disease. METHODS A pilot dietary intervention (DI) was made in patients with CLL in Rai stages 0-II who did not follow any treatment (NCT04215367). In the first intervention (DI1), 20 CLL patients were included in a blind randomized study and were separated into two groups. One group (A) of 10 patients consumed 40 ml/day of high OC/OL-EVOO (416 mg/Kg OC and 284 mg/kg OL) for 3 months. A second group (B) of 10 patients consumed 40 ml/day of low OC/OL (82 mg/kg OC and 33 mg/kg OL) for 3 months. After a washout period of 9-12 months, a second intervention (DI2) only with High OC/OL-EVOO for 6 months was performed with 22 randomly selected patients (16 from the DI1 (8 from each group) and 6 new). Hematological, biochemical, and apoptotic markers were analyzed in the serum of the patients. In addition, cellular proliferation and apoptosis markers were studied in isolated proteins from peripheral blood mononuclear cells. RESULTS The results of the DI1 showed beneficial effects on hematological and apoptotic markers only with High OC/OL-EVOO. During the DI2, a decrease in the white blood cell and lymphocyte count was observed (p ≤0.05), comparing 3 months before the intervention and 6 months after it. After 3 and 6 months of DI2, an increase (p ≤0.05) was observed in the apoptotic markers ccK18 and Apo1-Fas, and also in the cell cycle negative regulator p21, and also a decrease in the antiapoptotic protein Survivin, and in the cellular proliferation marker Cyclin D. CONCLUSIONS This is the first clinical trial with High OC/OL-EVOO that indicates that it could be a promising dietary feature for the improvement of CLL inducing the apoptosis of their cancer cells and improving the metabolism of the patients. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04215367, identifier: NCT04215367.
Collapse
Affiliation(s)
- Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Ioannis Kodonis
- Hematology Department, General Hospital of Lakonia, Sparta, Greece
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | | | - Georgios Kosmidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Maria Efthymia Katsa
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Yang L, Song Z, Pan Y, Zhao T, Shi Y, Xing J, Ju A, Zhou L, Ye L. PM 2.5 promoted lipid accumulation in macrophage via inhibiting JAK2/STAT3 signaling pathways and aggravating the inflammatory reaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112872. [PMID: 34624536 DOI: 10.1016/j.ecoenv.2021.112872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Abnormal lipid accumulation in macrophages may lead to macrophages foaming, which is the most important pathological process of atherosclerosis. Atmospheric PM2.5 could enter the blood circulation and further affect the lipid metabolism of macrophages. But the underlying mechanism is not unclear. This study was undertaken to clarify the effect of PM2.5 on lipid metabolism in macrophages, and to explore the role of inflammatory reaction and JAK2/STAT3 signaling pathway in this process. METHOD Macrophages derived from THP-1 cells were exposed to PM2.5 (0,100,200,400 μg/mL) for 6 h and 12 h. STAT3 agonist ColivelinTFA is used to specifically excite STAT3. The survival rate of macrophages was detected by CCK-8. The lipid levels in macrophages were detected by colorimetry. The levels of inflammatory factors secreted by macrophages were detected by ELISA. Q-PCR was used to detect the mRNA expression levels, and Western Blot was used to detect the protein expression levels of JAK2/STAT3 pathway genes. RESULT The survival rate of macrophages was reduced by PM2.5, and the levels of TG, T-CHO and LDL-C of macrophages exposed to PM2.5 were increased. PM2.5 led to the increasing level of IL-6 and the decreasing level of IL-4, and the JAK2/STAT3 signaling pathway was inhibited by PM2.5. Colivelin TFA significantly decreased the increasing levels of TG, T-CHO and LDL-C levels, and increased the decreasing mRNA levels of IL-4, and LPL induced by PM2.5 (p < 0.05). DISCUSSION PM2.5 could cause the lipid accumulation of macrophages by inhibiting the JAK2/STAT3 signaling pathway, and inflammatory responses may be involved in this process.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Zikai Song
- Department of Cardiology, the First Hospital of Jilin University, Changchun, China.
| | - Yang Pan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China; The Provincial Center for Disease Control and Prevention (Jilin Provincial Institute of Public Health), Changchun, China.
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Yanbin Shi
- Jilin Cancer Hospital, Changchun, China.
| | - Jiqiang Xing
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Aipeng Ju
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
31
|
Soltani M, Zhao Y, Xia Z, Ganjalikhani Hakemi M, Bazhin AV. The Importance of Cellular Metabolic Pathways in Pathogenesis and Selective Treatments of Hematological Malignancies. Front Oncol 2021; 11:767026. [PMID: 34868994 PMCID: PMC8636012 DOI: 10.3389/fonc.2021.767026] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
Despite recent advancements in the treatment of hematologic malignancies and the emergence of newer and more sophisticated therapeutic approaches such as immunotherapy, long-term overall survival remains unsatisfactory. Metabolic alteration, as an important hallmark of cancer cells, not only contributes to the malignant transformation of cells, but also promotes tumor progression and metastasis. As an immune-escape mechanism, the metabolic adaptation of the bone marrow microenvironment and leukemic cells is a major player in the suppression of anti-leukemia immune responses. Therefore, metabolic rewiring in leukemia would provide promising opportunities for newer therapeutic interventions. Several therapeutic agents which affect essential bioenergetic pathways in cancer cells including glycolysis, β-oxidation of fatty acids and Krebs cycle, or anabolic pathways such as lipid biosynthesis and pentose phosphate pathway, are being tested in various types of cancers. So far, numerous preclinical or clinical trial studies using such metabolic agents alone or in combination with other remedies such as immunotherapy are in progress and have demonstrated promising outcomes. In this review, we aim to argue the importance of metabolic alterations and bioenergetic pathways in different types of leukemia and their vital roles in disease development. Designing treatments based on targeting leukemic cells vulnerabilities, particularly in nonresponsive leukemia patients, should be warranted.
Collapse
Affiliation(s)
- Mojdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yue Zhao
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Alexandr V. Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
32
|
Sudden death due to leukostasis in a subject with undiagnosed chronic lymphocytic leukemia. Forensic Sci Med Pathol 2021; 17:693-699. [PMID: 34415512 DOI: 10.1007/s12024-021-00406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Sudden death due to leukostasis and lymphocyte thrombi in patients with chronic hematologic malignancies is rare. Leukostasis is characterized by highly elevated leukemic cell count and decreased tissue perfusion symptoms, leading to severe complications and even death. Chronic lymphocytic leukemia (CLL) is a chronic lymphoproliferative disorder that shows a highly heterogeneous clinical course, ranging from indolent form to very aggressive disease. Due to its low metabolic and mitotic rate, there is a lower incidence of clinically significant leukostasis in patients with CLL. Two main theories have been proposed in the development of leukostasis: (1) increased blood viscosity due to large leukemic cell populations; (2) high metabolic activity and cytokine production by leukemic cells. Both mechanisms lead to local hypoxic damage.We present a case of a 70-year-old man who died suddenly in the absence of symptoms. Autopsy and histology examinations revealed findings consistent with CLL and diffuse leukostasis involving the major organs' vessels.In the presence of gross and/or microscopic findings suggesting a potential hematologic malignancy, undiagnosed or relapsing hematologic malignancies should be considered in the differential diagnosis of sudden deaths.
Collapse
|
33
|
Giannattasio S, Dri M, Merra G, Caparello G, Rampello T, Di Renzo L. Effects of Fatty Acids on Hematological Neoplasms: A Mini Review. Nutr Cancer 2021; 74:1538-1548. [PMID: 34355630 DOI: 10.1080/01635581.2021.1960389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hematological neoplasias are the fourth cause of death in the world. All of them are responsible of bad quality of life, due to heavy therapies administration and a lot of side effects correlated to. It arises a new concept of "multitherapy", in which fatty acids availment is used to contrast and reduce toxic effects and ameliorate chemotherapeutic agents asset. In Vitro studies have confirmed that fatty acids, in particular ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are able to help canonical therapies to contrast cancer cell expansion and proliferation. In clinical trials it is also almost clear that fatty acids are useful to build new personalized therapies for a better condition of life. In this review we have summarized most recent studies on cancer cell lines and clinical trials on patients with fatty acids supplementation in diet therapies. We have found that fatty acids could be useful to contrast side effects during chemotherapeutic drugs therapies; they are also able to block cancer cell metabolic pathways for proliferation and contrast adverse effects, even when they are used in combination with traditional therapies or innovative, like monoclonal antibodies or CAR-T therapy. These aspects are crucial for better health condition of patients.
Collapse
Affiliation(s)
- Silvia Giannattasio
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Maria Dri
- Doctoral School of Applied Medical and Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Caparello
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Tiziana Rampello
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
34
|
Metabolic Swifts Govern Normal and Malignant B Cell Lymphopoiesis. Int J Mol Sci 2021; 22:ijms22158269. [PMID: 34361035 PMCID: PMC8347747 DOI: 10.3390/ijms22158269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
B lymphocytes are an indispensable part of the human immune system. They are the effective mediators of adaptive immunity and memory. To accomplish specificity against an antigen, and to establish the related immunologic memory, B cells differentiate through a complicated and strenuous training program that is characterized by multiple drastic genomic modifications. In order to avoid malignant transformation, these events are tightly regulated by multiple checkpoints, the vast majority of them involving bioenergetic alterations. Despite this stringent control program, B cell malignancies are amongst the top ten most common worldwide. In an effort to better understand malignant pathobiology, in this review, we summarize the metabolic swifts that govern normal B cell lymphopoiesis. We also review the existent knowledge regarding malignant metabolism as a means to unravel new research goals and/or therapeutic targets.
Collapse
|
35
|
Yun X, Sun X, Hu X, Zhang H, Yin Z, Zhang X, Liu M, Zhang Y, Wang X. Prognostic and Therapeutic Value of Apolipoprotein A and a New Risk Scoring System Based on Apolipoprotein A and Adenosine Deaminase in Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:698572. [PMID: 34277446 PMCID: PMC8281891 DOI: 10.3389/fonc.2021.698572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism is related to lymphomagenesis, and is a novel therapeutic target in some hematologic tumors. Apolipoprotein A (ApoA), the major protein of high-density lipoprotein (HDL), plays a crucial role in lipid transportation and protecting against cardiovascular disease, and takes effect on anti-inflammation and anti-oxidation. It is correlated with the prognosis of some solid tumors. Yet, there is no investigation involving the role of ApoA plays in chronic lymphocytic leukemia (CLL). Our retrospective study focuses on the prognostic value of ApoA in CLL and its therapeutic potential for CLL patients. Herein, ApoA is a favorable independent prognostic factor for both overall survival (OS) and progression-free survival (PFS) of CLL patients. ApoA is negatively associated with β2-microglobulin (β2-MG) and advanced stage, which are poor prognostic factors in CLL. Age, Rai stage, ApoA, and adenosine deaminase (ADA) are included in a new risk scoring system named ARAA-score. It is capable of assessing OS and PFS of CLL patients. Furthermore, cell proliferation assays show that the ApoA-I mimetic L-4F can inhibit the proliferation of CLL cell lines and primary cells. In conclusion, ApoA is of prognostic value in CLL, and is a potential therapy for CLL patients. The ARAA-score may optimize the risk stratification of CLL patients.
Collapse
Affiliation(s)
- Xiaoya Yun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huimin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zixun Yin
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
36
|
Activation of Interferon Signaling in Chronic Lymphocytic Leukemia Cells Contributes to Apoptosis Resistance via a JAK-Src/STAT3/Mcl-1 Signaling Pathway. Biomedicines 2021; 9:biomedicines9020188. [PMID: 33668421 PMCID: PMC7918075 DOI: 10.3390/biomedicines9020188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
Besides their antiviral and immunomodulatory functions, type I (α/β) and II (γ) interferons (IFNs) exhibit either beneficial or detrimental effects on tumor progression. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of abnormal CD5+ B lymphocytes that escape death. Drug resistance and disease relapse still occur in CLL. The triggering of IFN receptors is believed to be involved in the survival of CLL cells, but the underlying molecular mechanisms are not yet characterized. We show here that both type I and II IFNs promote the survival of primary CLL cells by counteracting the mitochondrial (intrinsic) apoptosis pathway. The survival process was associated with the upregulation of signal transducer and activator of transcription-3 (STAT3) and its target anti-apoptotic Mcl-1. Furthermore, the blockade of the STAT3/Mcl-1 pathway by pharmacological inhibitors against STAT3, TYK2 (for type I IFN) or JAK2 (for type II IFN) markedly reduced IFN-mediated CLL cell survival. Similarly, the selective Src family kinase inhibitor PP2 notably blocked IFN-mediated CLL cell survival by downregulating the protein levels of STAT3 and Mcl-1. Our work reveals a novel mechanism of resistance to apoptosis promoted by IFNs in CLL cells, whereby JAKs (TYK2, JAK2) and Src kinases activate in concert a STAT3/Mcl-1 signaling pathway. In view of current clinical developments of potent STAT3 and Mcl-1 inhibitors, a combination of conventional treatments with these inhibitors might thus constitute a new therapeutic strategy in CLL.
Collapse
|
37
|
Eagle GL, Herbert JMJ, Zhuang J, Oates M, Khan UT, Kitteringham NR, Clarke K, Park BK, Pettitt AR, Jenkins RE, Falciani F. Assessing technical and biological variation in SWATH-MS-based proteomic analysis of chronic lymphocytic leukaemia cells. Sci Rep 2021; 11:2932. [PMID: 33536534 PMCID: PMC7858606 DOI: 10.1038/s41598-021-82609-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic lymphocytic leukaemia (CLL) exhibits variable clinical course and response to therapy, but the molecular basis of this variability remains incompletely understood. Data independent acquisition (DIA)-MS technologies, such as SWATH (Sequential Windowed Acquisition of all THeoretical fragments), provide an opportunity to study the pathophysiology of CLL at the proteome level. Here, a CLL-specific spectral library (7736 proteins) is described alongside an analysis of sample replication and data handling requirements for quantitative SWATH-MS analysis of clinical samples. The analysis was performed on 6 CLL samples, incorporating biological (IGHV mutational status), sample preparation and MS technical replicates. Quantitative information was obtained for 5169 proteins across 54 SWATH-MS acquisitions: the sources of variation and different computational approaches for batch correction were assessed. Functional enrichment analysis of proteins associated with IGHV mutational status showed significant overlap with previous studies based on gene expression profiling. Finally, an approach to perform statistical power analysis in proteomics studies was implemented. This study provides a valuable resource for researchers working on the proteomics of CLL. It also establishes a sound framework for the design of sufficiently powered clinical proteomics studies. Indeed, this study shows that it is possible to derive biologically plausible hypotheses from a relatively small dataset.
Collapse
Affiliation(s)
- Gina L Eagle
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John M J Herbert
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Jianguo Zhuang
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Melanie Oates
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Umair T Khan
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Haemato-Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Neil R Kitteringham
- Department Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Kim Clarke
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - B Kevin Park
- Department Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Haemato-Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Rosalind E Jenkins
- Department Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.
| | - Francesco Falciani
- Computational Biology Facility, University of Liverpool, Liverpool, UK. .,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
38
|
Antitumor Effects of PRIMA-1 and PRIMA-1 Met (APR246) in Hematological Malignancies: Still a Mutant P53-Dependent Affair? Cells 2021; 10:cells10010098. [PMID: 33430525 PMCID: PMC7827888 DOI: 10.3390/cells10010098] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Because of its role in the regulation of the cell cycle, DNA damage response, apoptosis, DNA repair, cell migration, autophagy, and cell metabolism, the TP53 tumor suppressor gene is a key player for cellular homeostasis. TP53 gene is mutated in more than 50% of human cancers, although its overall dysfunction may be even more frequent. TP53 mutations are detected in a lower percentage of hematological malignancies compared to solid tumors, but their frequency generally increases with disease progression, generating adverse effects such as resistance to chemotherapy. Due to the crucial role of P53 in therapy response, several molecules have been developed to re-establish the wild-type P53 function to mutant P53. PRIMA-1 and its methylated form PRIMA-1Met (also named APR246) are capable of restoring the wild-type conformation to mutant P53 and inducing apoptosis in cancer cells; however, they also possess mutant P53-independent properties. This review presents the activities of PRIMA-1 and PRIMA-1Met/APR246 and describes their potential use in hematological malignancies.
Collapse
|
39
|
Darwiche W, Gomila C, Ouled-Haddou H, Naudot M, Doualle C, Morel P, Nguyen-Khac F, Garçon L, Marolleau JP, Ghamlouch H. Ascorbic acid (vitamin C) synergistically enhances the therapeutic effect of targeted therapy in chronic lymphocytic leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:228. [PMID: 33115525 PMCID: PMC7594454 DOI: 10.1186/s13046-020-01738-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 02/17/2023]
Abstract
Background Novel, less toxic, cost-effective and safe therapeutic strategies are needed to improve treatment of chronic lymphocytic leukemia (CLL). Ascorbic acid (AA, vitamin C) has shown a potential anti-cancer therapeutic activity in several cancers. However, the anti-cancer effects of ascorbic acid on CLL B-cells have not been extensively studied. We aimed in this study to evaluate the in vitro therapeutic activity using clinically relevant conditions. Methods Primary CLL B-cells and two CLL cell lines were exposed to a dose that is clinically achievable by AA oral administration (250 μM), and cell death and potential mechanisms were assessed. The role of the protective CLL microenvironment was studied. Synergistic interaction between AA and CLL approved drugs (Ibrutinib, Idelalisib and Venetoclax) was also evaluated. Results Ascorbic acid is cytotoxic for CLL B-cells at low dose (250 μM) but spares healthy B-cells. Ascorbic-acid-induced cytotoxicity involved pro-oxidant damage through the generation of reactive oxygen species in the extracellular media and in CLL cells, and induced caspase-dependent apoptosis. We also found that AA treatment overcame the supportive survival effect provided by microenvironment including bone marrow mesenchymal stem cells, T-cell cues (CD40L + IL-4), cytokines and hypoxia. Our data suggest that resistance to AA could be mediated by the expression of the enzyme catalase in some CLL samples and by the glucose metabolite pyruvate. We also demonstrated that AA synergistically potentiates the cytotoxicity of targeted therapies used in or being developed for CLL. Conclusion These preclinical results point to AA as an adjuvant therapy with potential to further improve CLL treatments in combination with targeted therapies. Supplementary information Supplementary information accompanies this paper at 10.1186/s13046-020-01738-0.
Collapse
Affiliation(s)
- Walaa Darwiche
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Cathy Gomila
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Hakim Ouled-Haddou
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Marie Naudot
- EA 7516, CHIMERE, Université de Picardie Jules Verne, Amiens, France
| | - Cécile Doualle
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Pierre Morel
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France
| | - Florence Nguyen-Khac
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France.,Hôpital Pitié-Salpêtrière, Sorbonne Université, APHP, Service d'Hématologie Biologique, Paris, France
| | - Loïc Garçon
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France.,Service d'hématologie Biologique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Jean-Pierre Marolleau
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Hussein Ghamlouch
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,INSERM U1170, équipe labélisée Ligue Nationale Contre le Cancer, Gustave Roussy, 39 rue Camille Desmoulins, 94805, Villejuif Cedex, France.
| |
Collapse
|
40
|
LPL deletion is associated with poorer response to ibrutinib-based treatments and overall survival in TP53-deleted chronic lymphocytic leukemia. Ann Hematol 2020; 99:2343-2349. [DOI: 10.1007/s00277-020-04223-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/14/2020] [Indexed: 01/17/2023]
|
41
|
Lupien LE, Dunkley EM, Maloy MJ, Lehner IB, Foisey MG, Ouellette ME, Lewis LD, Pooler DB, Kinlaw WB, Baures PW. An Inhibitor of Fatty Acid Synthase Thioesterase Domain with Improved Cytotoxicity against Breast Cancer Cells and Stability in Plasma. J Pharmacol Exp Ther 2019; 371:171-185. [PMID: 31300609 PMCID: PMC7184194 DOI: 10.1124/jpet.119.258947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
It is well recognized that many cancers are addicted to a constant supply of fatty acids (FAs) and exhibit brisk de novo FA synthesis. Upregulation of a key lipogenic enzyme, fatty acid synthase (FASN), is a near-universal feature of human cancers and their precursor lesions, and has been associated with chemoresistance, tumor metastasis, and diminished patient survival. FASN inhibition has been shown to be effective in killing cancer cells, but progress in the field has been hindered by off-target effects and poor pharmaceutical properties of candidate compounds. Our initial hit (compound 1) was identified from a high-throughput screening effort by the Sanford-Burnham Center for Chemical Genomics using purified FASN thioesterase (FASN-TE) domain. Despite being a potent inhibitor of purified FASN-TE, compound 1 proved highly unstable in mouse plasma and only weakly cytotoxic to breast cancer (BC) cells in vitro. An iterative process of synthesis, cytotoxicity testing, and plasma stability assessment was used to identify a new lead (compound 41). This lead is more cytotoxic against multiple BC cell lines than tetrahydro-4-methylene-2S-octyl-5-oxo-3R-furancarboxylic acid (the literature standard for inhibiting FASN), is stable in mouse plasma, and shows negligible cytotoxic effects against nontumorigenic mammary epithelial cells. Compound 41 also has drug-like physical properties based on Lipinski's rules and is, therefore, a valuable new lead for targeting fatty acid synthesis to exploit the requirement of tumor cells for fatty acids. SIGNIFICANCE STATEMENT: An iterative process of synthesis and biological testing was used to identify a novel thioesterase domain FASN inhibitor that has drug-like properties, is more cytotoxic to breast cancer cells than the widely used tetrahydro-4-methylene-2S-octyl-5-oxo-3R-furancarboxylic acid, and has negligible effects on the growth and proliferation of noncancerous mammary epithelial cells. Our studies have confirmed the value of using potent and selective FASN inhibitors in the treatment of BC cells and have shown that the availability of exogenous lipoproteins may impact both cancer cell FA metabolism and survival.
Collapse
Affiliation(s)
- Leslie E Lupien
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Evan M Dunkley
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Margaret J Maloy
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Ian B Lehner
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Maxwell G Foisey
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Maddison E Ouellette
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Lionel D Lewis
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Darcy Bates Pooler
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - William B Kinlaw
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| | - Paul W Baures
- Division of Endocrinology and Metabolism, Department of Medicine, Norris Cotton Cancer Center (W.B.K.) and Section of Clinical Pharmacology & The Clinical Pharmacology Shared Resource (L.D.L., D.B.P.), The Geisel School of Medicine (L.E.L., W.B.K.), and Program in Experimental and Molecular Medicine, Dartmouth-Hitchcock Medical Center (L.E.L.), Dartmouth College, Lebanon, New Hampshire; and Department of Chemistry, Keene State College, Keene, New Hampshire (E.M.D., M.J.M., I.B.L., M.G.F., M.E.O., P.W.B.)
| |
Collapse
|
42
|
Tang Z, Ye W, Chen H, Kuang X, Guo J, Xiang M, Peng C, Chen X, Liu H. Role of purines in regulation of metabolic reprogramming. Purinergic Signal 2019; 15:423-438. [PMID: 31493132 DOI: 10.1007/s11302-019-09676-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Purines, among most influential molecules, are reported to have essential biological function by regulating various cell types. A large number of studies have led to the discovery of many biological functions of the purine nucleotides such as ATP, ADP, and adenosine, as signaling molecules that engage G protein-coupled or ligand-gated ion channel receptors. The role of purines in the regulation of cellular functions at the gene or protein level has been well documented. With the advances in multiomics, including those from metabolomic and bioinformatic analyses, metabolic reprogramming was identified as a key mechanism involved in the regulation of cellular function under physiological or pathological conditions. Recent studies suggest that purines or purine-derived products contribute to important regulatory functions in many fundamental biological and pathological processes related to metabolic reprogramming. Therefore, this review summarizes the role and potential mechanism of purines in the regulation of metabolic reprogramming. In particular, the molecular mechanisms of extracellular purine- and intracellular purine-mediated metabolic regulation in various cells during disease development are discussed. In summary, our review provides an extensive resource for studying the regulatory role of purines in metabolic reprogramming and sheds light on the utilization of the corresponding peptides or proteins for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Wenrui Ye
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Haotian Chen
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Xinwei Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minmin Xiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
43
|
Beielstein AC, Pallasch CP. Tumor Metabolism as a Regulator of Tumor-Host Interactions in the B-Cell Lymphoma Microenvironment-Fueling Progression and Novel Brakes for Therapy. Int J Mol Sci 2019; 20:E4158. [PMID: 31454887 PMCID: PMC6747254 DOI: 10.3390/ijms20174158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor metabolism and its specific alterations have become an integral part of understanding functional alterations leading to malignant transformation and maintaining cancer progression. Here, we review the metabolic changes in B-cell neoplasia, focusing on the effects of tumor metabolism on the tumor microenvironment (TME). Particularly, innate and adaptive immune responses are regulated by metabolites in the TME such as lactate. With steadily increasing therapeutic options implicating or utilizing the TME, it has become essential to address the metabolic alterations in B-cell malignancy for therapeutic approaches. In this review, we discuss metabolic alterations of B-cell lymphoma, consequences for currently used therapy regimens, and novel approaches specifically targeting metabolism in the TME.
Collapse
Affiliation(s)
- Anna C Beielstein
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Josef Stelzmann Street 24, 50937 Cologne, Germany
| | - Christian P Pallasch
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Josef Stelzmann Street 24, 50937 Cologne, Germany.
| |
Collapse
|
44
|
Bruton's tyrosine kinase is at the crossroads of metabolic adaptation in primary malignant human lymphocytes. Sci Rep 2019; 9:11069. [PMID: 31363127 PMCID: PMC6667467 DOI: 10.1038/s41598-019-47305-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
In this work we explored metabolic aspects of human primary leukemic lymphocytes that hold a potential impact on the treatment of Bruton tyrosine kinase (BTK)-driven diseases. Our results suggest that there is crosstalk between Bruton tyrosine kinase (BTK) signaling and bioenergetic stress responses. In primary chronic lymphocytic leukemia (CLL) lymphocytes, pharmacological interference with mitochondrial ATP synthesis or glucose metabolism affects BTK activity. Conversely, an inhibitor of BTK used clinically (ibrutinib) induces bioenergetic stress responses that in turn affect ibrutinib resistance. Although the detailed molecular mechanisms are still to be defined, our work shows for the first time that in primary B cells, metabolic stressors enhance BTK signaling and suggest that metabolic rewiring to hyperglycemia affects ibrutinib resistance in TP53 deficient chronic lymphocytic leukemia (CLL) lymphocytes.
Collapse
|
45
|
Samimi A, Ghanavat M, Shahrabi S, Azizidoost S, Saki N. Role of bone marrow adipocytes in leukemia and chemotherapy challenges. Cell Mol Life Sci 2019; 76:2489-2497. [PMID: 30715556 PMCID: PMC11105633 DOI: 10.1007/s00018-019-03031-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/01/2019] [Accepted: 01/28/2019] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is an extramedullary reservoir of normal hematopoietic stem cells (HSCs). Adipocytes prevent the production of normal HSCs via secretion of inflammatory factors, and adipocyte-derived free fatty acids may contribute to the development and progression of leukemia via providing energy for leukemic cells. In addition, adipocytes are able to metabolize and inactivate therapeutic agents, reducing the concentrations of active drugs in adipocyte-rich microenvironments. The aim of this study was to detect the role of adipocytes in the progression and treatment of leukemia. Relevant literature was identified through a PubMed search (2000-2018) of English-language papers using the following terms: leukemia, adipocyte, leukemic stem cell, chemotherapy, and bone marrow. Findings suggest the striking interplay between leukemic cells and adipocytes to create a unique microenvironment supporting the metabolic demands and survival of leukemic cells. Based on these findings, targeting lipid metabolism of leukemic cells and adipocytes in combination with standard therapeutic agents might present novel treatment options.
Collapse
Affiliation(s)
- Azin Samimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Shirin Azizidoost
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
46
|
The Metabolomic Profile of Lymphoma Subtypes: A Pilot Study. Molecules 2019; 24:molecules24132367. [PMID: 31248049 PMCID: PMC6650891 DOI: 10.3390/molecules24132367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Lymphoma defines a group of different diseases. This study examined pre-treatment plasma samples from 66 adult patients (aged 20–74) newly diagnosed with any lymphoma subtype, and 96 frequency matched population controls. We used gas chromatography-mass spectrometry (GC-MS) to compare the metabolic profile by case/control status and across the major lymphoma subtypes. We conducted univariate and multivariate analyses, and partial least square discriminant analysis (PLS-DA). When compared to the controls, statistically validated models were obtained for diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and Hodgkin lymphoma (HL), but not follicular lymphoma (FL). The metabolomic analysis highlighted interesting differences between lymphoma patients and population controls, allowing the discrimination between pathologic and healthy subjects: Important metabolites, such as hypoxanthine and elaidic acid, were more abundant in all lymphoma subtypes. The small sample size of the individual lymphoma subtypes prevented obtaining PLS-DA validated models, although specific peculiar features of each subtype were observed; for instance, fatty acids were most represented in MM and HL patients, while 2-aminoadipic acid, 2-aminoheptanedioic acid, erythritol, and threitol characterized DLBCL and CLL. Metabolomic analysis was able to highlight interesting differences between lymphoma patients and population controls, allowing the discrimination between pathologic and healthy subjects. Further studies are warranted to understand whether the peculiar metabolic patterns observed might serve as early biomarkers of lymphoma.
Collapse
|
47
|
Galicia-Vázquez G, Aloyz R. Metabolic rewiring beyond Warburg in chronic lymphocytic leukemia: How much do we actually know? Crit Rev Oncol Hematol 2018; 134:65-70. [PMID: 30771875 DOI: 10.1016/j.critrevonc.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most common adult leukemia in the western world. CLL consists of the accumulation of malignant B-cells in the blood stream and homing tissues. Although treatable, this disease is not curable, and resistance or relapse is often present. In many cancers, the study of metabolic reprograming has uncovered novel targets that are already being exploited in the clinic. However, CLL metabolism is still poorly understood. The ability of CLL lymphocytes to adapt to diverse microenvironments is accompanied by modifications in cell metabolism, revealing the challenge of targeting the CLL lymphocytes present in all different compartments. Despite this, the study of CLL metabolism led to an ongoing clinical trial using glucose uptake and mitochondrial respiration inhibitors. In contrast, glutamine and fatty acid metabolism remain to be further exploited in CLL. Here, we summarize the present knowledge of CLL metabolism, as well as the metabolic influence of Myc, ATM and p53 on CLL lymphocytes.
Collapse
Affiliation(s)
- Gabriela Galicia-Vázquez
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, 3755 Cote Ste. Catherine Road, Montreal, Quebec, Canada, H3T 1E2
| | - Raquel Aloyz
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, 3755 Cote Ste. Catherine Road, Montreal, Quebec, Canada, H3T 1E2; Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
48
|
Saravanakumar K, Jeevithan E, Chelliah R, Kathiresan K, Wen-Hui W, Oh DH, Wang MH. Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int J Biol Macromol 2018; 119:1144-1153. [DOI: 10.1016/j.ijbiomac.2018.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022]
|
49
|
Galicia-Vázquez G, Aloyz R. Ibrutinib Resistance Is Reduced by an Inhibitor of Fatty Acid Oxidation in Primary CLL Lymphocytes. Front Oncol 2018; 8:411. [PMID: 30319974 PMCID: PMC6168640 DOI: 10.3389/fonc.2018.00411] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 01/10/2023] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is an incurable disease, characterized by the accumulation of malignant B-lymphocytes in the blood stream (quiescent state) and homing tissues (where they can proliferate). In CLL, the targeting of B-cell receptor signaling through a Burton's tyrosine kinase inhibitor (ibrutinib) has rendered outstanding clinical results. However, complete remission is not guaranteed due to drug resistance or relapse, revealing the need for novel approaches for CLL treatment. The characterization of metabolic rewiring in proliferative cancer cells is already being applied for diagnostic and therapeutic purposes, but our knowledge of quiescent cell metabolism—relevant for CLL cells—is still fragmentary. Recently, we reported that glutamine metabolism in primary CLL cells bearing the del11q deletion is different from their del11q negative counterparts, making del11q cells especially sensitive to glutaminase and glycolysis inhibitors. In this work, we used our primary CLL lymphocyte bank and compounds interfering with central carbon metabolism to define metabolic traits associated with ibrutinib resistance. We observe a differential basal metabolite uptake linked to ibrutinib resistance, favoring glutamine uptake and catabolism. Upon ibrutinib treatment, the redox balance in ibrutinib resistant cells is shifted toward NADPH accumulation, without an increase in glutamine uptake, suggesting alternative metabolic rewiring such as the activation of fatty acid oxidation. In accordance to this idea, the curtailing of fatty acid oxidation by CPT1 inhibition (etomoxir) re-sensitized resistant cells to ibrutinib. Our results suggest that fatty acid oxidation could be explored as a target to overcome ibrutinib resistance.
Collapse
Affiliation(s)
- Gabriela Galicia-Vázquez
- Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Raquel Aloyz
- Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
50
|
D'Arena G, Seneca E, Migliaccio I, De Feo V, Giudice A, La Rocca F, Capunzo M, Calapai G, Festa A, Caraglia M, Musto P, Iorio EL, Ruggieri V. Oxidative stress in chronic lymphocytic leukemia: still a matter of debate. Leuk Lymphoma 2018; 60:867-875. [PMID: 30234409 DOI: 10.1080/10428194.2018.1509317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a large body of evidence showing a strong correlation between carcinogenesis of several types of human tumors, including chronic lymphocytic leukemia (CLL), and oxidative stress (OS). The mechanisms by which OS may promote cancer pathogenesis have not been completely deciphered yet and, in CLL, as in other neoplasms, whether OS is a primary cause or simply a downstream effect of the disease is still an open question. It has been demonstrated that, in CLL, OS concomitantly results from increased reactive oxygen species (ROS) production, mainly ascribable to CLL cells mitochondrial activity, and impaired antioxidant defenses. Interestingly, OS evaluation in CLL patients, at diagnosis, seems to have a prognostic significance, thus getting new insights in the biological comprehension of the disease with potential therapeutic implications.
Collapse
Affiliation(s)
- Giovanni D'Arena
- a Hematology and Stem Cell Transplantation Unit , IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture , Italy
| | - Elisa Seneca
- a Hematology and Stem Cell Transplantation Unit , IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture , Italy
| | - Ilaria Migliaccio
- a Hematology and Stem Cell Transplantation Unit , IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture , Italy
| | - Vincenzo De Feo
- b Pharmacology Department , University of Salerno , Salerno , Italy
| | - Aldo Giudice
- c Istituto Nazionale Tumori IRCCS Fondazione Pascale , Napoli , Italy
| | - Francesco La Rocca
- d Laboratory of Preclinical and Translational Research , IRCCS-CROB, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Mario Capunzo
- e Department of Medicine and Surgery , University of Salerno , Salerno , Italy
| | - Gioacchino Calapai
- f Department of Biomedical and Dental Sciences and Morphological and Functional Sciences , University of Messina , Messina , Italy
| | - Agostino Festa
- g Department of Biochimics, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Michele Caraglia
- g Department of Biochimics, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Pellegrino Musto
- h Scientific Direction, IRCCS-CROB , Referral Cancer Center of Basilicata, Rionero in Vulture , Italy
| | | | - Vitalba Ruggieri
- d Laboratory of Preclinical and Translational Research , IRCCS-CROB, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| |
Collapse
|