1
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
2
|
Nayak D, Rathnanand M, Tippavajhala VK. Navigating Skin Delivery Horizon: An Innovative Approach in Pioneering Surface Modification of Ultradeformable Vesicles. AAPS PharmSciTech 2024; 25:126. [PMID: 38834910 DOI: 10.1208/s12249-024-02847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
In the dynamic landscape of pharmaceutical advancements, the strategic application of active pharmaceutical ingredients to the skin through topical and transdermal routes has emerged as a compelling avenue for therapeutic interventions. This non-invasive approach has garnered considerable attention in recent decades, with numerous attempts yielding approaches and demonstrating substantial clinical potential. However, the formidable barrier function of the skin, mainly the confinement of drugs on the upper layers of the stratum corneum, poses a substantial hurdle, impeding successful drug delivery via this route. Ultradeformable vesicles/carriers (UDVs), positioned within the expansive realm of nanomedicine, have emerged as a promising tool for developing advanced dermal and transdermal therapies. The current review focuses on improving the passive dermal and transdermal targeting capacity by integrating functionalization groups by strategic surface modification of drug-loaded UDV nanocarriers. The present review discusses the details of case studies of different surface-modified UDVs with their bonding strategies and covers the recent patents and clinical trials. The design of surface modifications holds promise for overcoming existing challenges in drug delivery by marking a significant leap forward in the field of pharmaceutical sciences.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
3
|
Gambirasi M, Safa A, Vruzhaj I, Giacomin A, Sartor F, Toffoli G. Oral Administration of Cancer Vaccines: Challenges and Future Perspectives. Vaccines (Basel) 2023; 12:26. [PMID: 38250839 PMCID: PMC10821404 DOI: 10.3390/vaccines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer vaccines, a burgeoning strategy in cancer treatment, are exploring innovative administration routes to enhance patient and medical staff experiences, as well as immunological outcomes. Among these, oral administration has surfaced as a particularly noteworthy approach, which is attributed to its capacity to ignite both humoral and cellular immune responses at systemic and mucosal tiers, thereby potentially bolstering vaccine efficacy comprehensively and durably. Notwithstanding this, the deployment of vaccines through the oral route in a clinical context is impeded by multifaceted challenges, predominantly stemming from the intricacy of orchestrating effective oral immunogenicity and necessitating strategic navigation through gastrointestinal barriers. Based on the immunogenicity of the gastrointestinal tract, this review critically analyses the challenges and recent advances and provides insights into the future development of oral cancer vaccines.
Collapse
Affiliation(s)
- Marta Gambirasi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Amin Safa
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Idris Vruzhaj
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Aurora Giacomin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Franca Sartor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| |
Collapse
|
4
|
Ou B, Yang Y, Lv H, Lin X, Zhang M. Current Progress and Challenges in the Study of Adjuvants for Oral Vaccines. BioDrugs 2023; 37:143-180. [PMID: 36607488 PMCID: PMC9821375 DOI: 10.1007/s40259-022-00575-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Over the past 20 years, a variety of potential adjuvants have been studied to enhance the effect of oral vaccines in the intestinal mucosal immune system; however, no licensed adjuvant for clinical application in oral vaccines is available. In this review, we systematically updated the research progress of oral vaccine adjuvants over the past 2 decades, including biogenic adjuvants, non-biogenic adjuvants, and their multi-type composite adjuvant materials, and introduced their immune mechanisms of adjuvanticity, aiming at providing theoretical basis for developing feasible and effective adjuvants for oral vaccines. Based on these insights, we briefly discussed the challenges in the development of oral vaccine adjuvants and prospects for their future development.
Collapse
Affiliation(s)
- Bingming Ou
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Ying Yang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Haihui Lv
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xin Lin
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Minyu Zhang
- School of Life Sciences, Zhaoqing University, Zhaoqing, China. .,School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
5
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
7
|
Abstract
Introduction: The oral route of vaccination is pain- and needle-free and can induce systemic and mucosal immunity. However, gastrointestinal barriers and antigen degradation impose significant hurdles in the development of oral vaccines. Live attenuated viruses and bacteria can overcome these barriers but at the risk of introducing safety concerns. As an alternative, particles have been investigated for antigen protection and delivery, yet there are no FDA-approved oral vaccines based on particle-based delivery systems. Our objective was to discover underlying determinants that can explain the current inadequacies and identify paradigms that can be implemented in future for successful development of oral vaccines relying on particle-based delivery systems.Areas covered: We reviewed literature related to the use of particles for oral vaccination and placed special emphasis on formulation characteristics and administration schedules to gain an insight into how these parameters impact production of antigen-specific antibodies in systemic and mucosal compartments.Expert opinion: Despite the long history of vaccines, particle-based oral vaccination is a relative new field with the first study published in 1989. Substantial variability exists between different studies with respect to dosing schedules, number of doses, and the amount of vaccine per dose. Most studies have not used adjuvants in the formulations. Better standardization in vaccination parameters is required to improve comparison between experiments, and adjuvants should be used to enhance the systemic and mucosal immune responses and to reduce the number of doses, which will make oral vaccines more attractive.
Collapse
Affiliation(s)
- Pedro Gonzalez-Cruz
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| | | |
Collapse
|
8
|
Jia Z, Wignall A, Delon L, Guo Z, Prestidge C, Thierry B. An ex Vivo Model Enables Systematic Investigation of the Intestinal Absorption and Transcytosis of Oral Particulate Nanocarriers. ACS Biomater Sci Eng 2021. [PMID: 33908245 DOI: 10.1021/acsbiomaterials.0c01355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoparticulate formulations are being developed toward enhancing the bioavailability of orally administrated biologics. However, the processes mediating particulate carriers' intestinal uptake and transport remains to be fully elucidated. Herein, an optical clearing-based whole tissue mount/imaging strategy was developed to enable high quality microscopic imaging of intestinal specimens. It enabled the distribution of nanoparticles within intestinal villi to be quantitatively analyzed at a cellular level. Two-hundred and fifty nm fluorescent polystyrene nanoparticles were modified with polyethylene glycol (PEG), Concanavalin A (ConA), and pectin to yield mucopenetrating, enterocyte targeting, and mucoadhesive model nanocarriers, respectively. Introducing ConA on the PEGylated nanoparticles significantly increased their uptake in the intestinal epithelium (∼4.16 fold for 200 nm nanoparticle and ∼2.88 fold for 50 nm nanoparticles at 2 h). Moreover, enterocyte targeting mediated the trans-epithelial translocation of 50 nm nanoparticles more efficiently than that of the 200 nm nanoparticles. This new approach provides an efficient methodology to obtain detailed insight into the transcytotic activity of enterocytes as well as the barrier function of the constitutive intestinal mucus. It can be applied to guide the rational design of particulate formulations for more efficient oral biologics delivery.
Collapse
Affiliation(s)
- Zhengyang Jia
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| | - Anthony Wignall
- UniSA Clinical and Health Science and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Ludivine Delon
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| | - Zhaobin Guo
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| | - Clive Prestidge
- UniSA Clinical and Health Science and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| |
Collapse
|
9
|
Abstract
Mucosal surfaces are the interface between the host’s internal milieu and the external environment, and they have dual functions, serving as physical barriers to foreign antigens and as accepting sites for vital materials. Mucosal vaccines are more favored to prevent mucosal infections from the portal of entry. Although mucosal vaccination has many advantages, licensed mucosal vaccines are scarce. The most widely studied mucosal routes are oral and intranasal. Licensed oral and intranasal vaccines are composed mostly of whole cell killed or live attenuated microorganisms serving as both delivery systems and built-in adjuvants. Future mucosal vaccines should be made with more purified antigen components, which will be relatively less immunogenic. To induce robust protective immune responses against well-purified vaccine antigens, an effective mucosal delivery system is an essential requisite. Recent developments in biomaterials and nanotechnology have enabled many innovative mucosal vaccine trials. For oral vaccination, the vaccine delivery system should be able to stably carry antigens and adjuvants and resist harsh physicochemical conditions in the stomach and intestinal tract. Besides many nano/microcarrier tools generated by using natural and chemical materials, the development of oral vaccine delivery systems using food materials should be more robustly researched to expand vaccine coverage of gastrointestinal infections in developing countries. For intranasal vaccination, the vaccine delivery system should survive the very active mucociliary clearance mechanisms and prove safety because of the anatomical location of nasal cavity separated by a thin barrier. Future mucosal vaccine carriers, regardless of administration routes, should have certain common characteristics. They should maintain stability in given environments, be mucoadhesive, and have the ability to target specific tissues and cells.
Collapse
|
10
|
Lu H, Yang G, Ran F, Gao T, Sun C, Zhao Q, Wang S. Polymer-functionalized mesoporous carbon nanoparticles on overcoming multiple barriers and improving oral bioavailability of Probucol. Carbohydr Polym 2019; 229:115508. [PMID: 31826471 DOI: 10.1016/j.carbpol.2019.115508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
Abstract
Oral administration of nanoparticles is extremely limited due to the two processes of mucus permeation and epithelial absorption, which requires completely opposite surface properties of the nanocarriers. To tackle the contradiction, we developed a rational strategy to modify the surface of mesoporous carbon nanoparticles with chitosan concealed by a hydrophilic N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) layer. Probucol (PB) with the low poor permeability and solubility was loaded in optimal nanocarriers to realize the high loading efficacy and controlled release. The pHPMA polymer is a hydrophilic "mucus-inert" material, which could be dissociable from the surface of nanoparticles in the mucus, thus promoting their mucus permeation and causing exposure of chitosan in transepithelial transport. The swelling effect of chitosan under acidic conditions allowed regulation of PB release behavior. In conclusion, the mucus-permeable nanocarrier could effectively overcome multiple gastrointestinal absorption barriers and the oral bioavailability of PB-loaded HCMCN was 2.76-fold that of commercial preparation.
Collapse
Affiliation(s)
- Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Guangzhao Yang
- General Hospital of Northern Theater Command, Wenhua Road, Shenyang 110016, PR China.
| | - Fu Ran
- Shandong Luye Pharmaceutical Co.,Ltd., Baoyuan Road, Yantai 264003, PR China
| | - Tianbin Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Changshan Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
11
|
Akl M, Kartal-Hodzic A, Suutari T, Oksanen T, Montagner IM, Rosato A, Ismael HR, Afouna MI, Caliceti P, Yliperttula M, Samy AM, Mastrotto F, Salmaso S, Viitala T. Real-Time Label-Free Targeting Assessment and in Vitro Characterization of Curcumin-Loaded Poly-lactic- co-glycolic Acid Nanoparticles for Oral Colon Targeting. ACS OMEGA 2019; 4:16878-16890. [PMID: 31646234 PMCID: PMC6796886 DOI: 10.1021/acsomega.9b02086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/12/2019] [Indexed: 05/17/2023]
Abstract
The exploitation of curcumin for oral disease treatment is limited by its low solubility, poor bioavailability, and low stability. Surface-functionalized poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) have shown promising results to ameliorate selective delivery of drugs to the gastro-intestinal tract. In this study, curcumin-loaded PLGA NPs (C-PLGA NPs) of about 200 nm were surface-coated with chitosan (CS) for gastro-intestinal mucosa adhesion, wheat germ agglutinin (WGA) for colon targeting or GE11 peptide for tumor colon targeting. Spectrometric and zeta potential analyses confirmed the successful functionalization of the C-PLGA NPs. Real-time label-free assessment of the cell membrane-NP interactions and NP cell uptake were performed by quartz crystal microbalance coupled with supported lipid bilayers and by surface plasmon resonance coupled with living cells. The study showed that CS-coated C-PLGA NPs interact with cells by the electrostatic mechanism, while both WGA- and GE11-coated C-PLGA NPs interact and are taken up by cells by specific active mechanisms. In vitro cell uptake studies corroborated the real-time label-free assessment by yielding a curcumin cell uptake of 7.3 ± 0.3, 13.5 ± 1.0, 27.3 ± 4.9, and 26.0 ± 1.3 μg per 104 HT-29 cells for noncoated, CS-, WGA-, and GE11-coated C-PLGA NPs, respectively. Finally, preliminary in vivo studies showed that the WGA-coated C-PLGA NPs efficiently accumulate in the colon after oral administration to healthy Balb/c mice. In summary, the WGA- and GE11-coated C-PLGA NPs displayed high potential for application as active targeted carriers for anticancer drug delivery to the colon.
Collapse
Affiliation(s)
- Mohamed
A. Akl
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department
of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Alma Kartal-Hodzic
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Teemu Suutari
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Timo Oksanen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | | | - Antonio Rosato
- Veneto
Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Hatem R. Ismael
- Department
of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Mohsen I. Afouna
- Department
of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Paolo Caliceti
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Marjo Yliperttula
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Ahmed M. Samy
- Department
of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Francesca Mastrotto
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Stefano Salmaso
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Tapani Viitala
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- E-mail: . Phone: +358504154529
| |
Collapse
|
12
|
Comparison and process optimization of PLGA, chitosan and silica nanoparticles for potential oral vaccine delivery. Ther Deliv 2019; 10:493-514. [PMID: 31496377 DOI: 10.4155/tde-2019-0038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The study compared performance of nanoparticles prepared from synthetic organic, natural organic and inorganic materials as vaccine delivery platforms. Materials & methods: Various formulation (concentration, polymer/silica:surfactant ratio, solvent) and process parameters (homogenization speed and time, ultrasonication) affecting functional performance characteristics of poly(lactic-co-glycolic acid) (PLGA), chitosan and silica-based nanoparticles containing bovine serum albumin were investigated. Nanoparticles were characterized using dynamic light scattering, x-ray diffraction, scanning/transmission electron microscopy, Fourier transform infrared spectroscopy and in vitro protein release. Results: Critical formulation parameters were surfactant concentration (PLGA, silica) and polymer concentration (chitosan). Optimized nanoparticles were spherical in shape with narrow size distribution and size ranges of 100-300 nm (blank) and 150-400 nm (protein loaded). Protein encapsulation efficiency was 26-75% and released within 48 h in a sustained manner. Conclusion: Critical formulation and process parameters affected size of PLGA, chitosan and silica nanoparticles and protein encapsulation, while silica produced the smallest and most stable nanoparticles.
Collapse
|
13
|
Islam MA, Firdous J, Badruddoza AZM, Reesor E, Azad M, Hasan A, Lim M, Cao W, Guillemette S, Cho CS. M cell targeting engineered biomaterials for effective vaccination. Biomaterials 2018; 192:75-94. [PMID: 30439573 DOI: 10.1016/j.biomaterials.2018.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/28/2018] [Indexed: 02/08/2023]
Abstract
Vaccines are one of the greatest medical interventions of all time and have been successful in controlling and eliminating a myriad of diseases over the past two centuries. Among several vaccination strategies, mucosal vaccines have wide clinical applications and attract considerable interest in research, showing potential as innovative and novel therapeutics. In mucosal vaccination, targeting (microfold) M cells is a frontline prerequisite for inducing effective antigen-specific immunostimulatory effects. In this review, we primarily focus on materials engineered for use as vaccine delivery platforms to target M cells. We also describe potential M cell targeting areas, methods to overcome current challenges and limitations of the field. Furthermore, we present the potential of biomaterials engineering as well as various natural and synthetic delivery technologies to overcome the challenges of M cell targeting, all of which are absent in current literature. Finally, we briefly discuss manufacturing and regulatory processes to bring a robust perspective on the feasibility and potential of this next-generation vaccine technology.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jannatul Firdous
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abu Zayed Md Badruddoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emma Reesor
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Mohammad Azad
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Michael Lim
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Wuji Cao
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Simon Guillemette
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Chong Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
14
|
Padhi S, Kapoor R, Verma D, Panda AK, Iqbal Z. Formulation and optimization of topotecan nanoparticles: In vitro characterization, cytotoxicity, cellular uptake and pharmacokinetic outcomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:222-232. [PMID: 29729631 DOI: 10.1016/j.jphotobiol.2018.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/19/2018] [Accepted: 04/14/2018] [Indexed: 01/29/2023]
Abstract
The study focuses on widening up the therapeutic perspective of anti-cancer therapy by entrapping a hydrophilic anticancer drug, topotecan hydrochloride (TOPO) in biodegradable poly (lactide-co-glycolide) (PLGA) matrix to form topotecan nanoparticles (TOPO NPs) by a double emulsion solvent evaporation technique. Statistical optimization using Box-Behnken design showed that sonication time of primary emulsion for 120 s, drug: polymer ratio of 1:12.65, organic phase: external aqueous phase ratio of 1:2.82 and 0.5% w/v of polyvinyl alcohol in the drug containing phase produced TOPO NPs with a size of 243.2 ± 4 nm and an entrapment efficiency of 60.9 ± 2.2%. TOPO NPs illustrated sustained release of TOPO for a week in phosphate buffer saline (PBS) at simulating physiological (pH 7.4) and acidic tumor microenvironmental (pH 6.5) conditions. A dramatic increase in cellular uptake with a corresponding enhanced cytotoxic potency was also displayed by TOPO NPs against human ovarian cancer cells (SKOV3) over time as compared to native drug, TOPO. These findings were further supported by the enhancement of bioavailability (13.05 fold) conferred by TOPO NPs from the in vivo pharmacokinetic study. The study represents a logistic approach for formulating TOPO NPs which can be used as an effective drug delivery system for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Santwana Padhi
- Department of Pharmaceutics, Faculty of Pharmacy Jamia Hamdard, New Delhi 110062, India; Product Development Cell-II, National Institute of Immunology, New Delhi 110067, India
| | - Rohit Kapoor
- Department of Pharmaceutics, Faculty of Pharmacy Jamia Hamdard, New Delhi 110062, India
| | - Devina Verma
- Department of Pharmaceutics, Faculty of Pharmacy Jamia Hamdard, New Delhi 110062, India
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, New Delhi 110067, India
| | - Zeenat Iqbal
- Department of Pharmaceutics, Faculty of Pharmacy Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
15
|
Qi J, Zhuang J, Lv Y, Lu Y, Wu W. Exploiting or overcoming the dome trap for enhanced oral immunization and drug delivery. J Control Release 2018; 275:92-106. [DOI: 10.1016/j.jconrel.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023]
|
16
|
Diesner SC, Bergmayr C, Wang XY, Heiden D, Exenberger S, Roth-Walter F, Starkl P, Ret D, Pali-Schöll I, Gabor F, Untersmayr E. Characterization of Vibrio cholerae neuraminidase as an immunomodulator for novel formulation of oral allergy immunotherapy. Clin Immunol 2018; 192:30-39. [PMID: 29608970 DOI: 10.1016/j.clim.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/05/2017] [Accepted: 03/28/2018] [Indexed: 01/22/2023]
Abstract
To improve current mucosal allergen immunotherapy Vibrio cholerae neuraminidase (NA) was evaluated as a novel epithelial targeting molecule for functionalization of allergen-loaded, poly(D,L-lactide-co-glycolide) (PLGA) microparticles (MPs) and compared to the previously described epithelial targeting lectins wheat germ agglutinin (WGA) and Aleuria aurantia lectin (AAL). All targeters revealed binding to Caco-2 cells, but only NA had high binding specificity to α-L fucose and monosialoganglioside-1. An increased transepithelial uptake was found for NA-MPs in a M-cell co-culture model. NA and NA-MPs induced high levels of IFN-γ and IL10 in naive mouse splenocytes and CCL20 expression in Caco-2. Repeated oral gavage of NA-MPs resulted in a modulated, allergen-specific immune response. In conclusion, NA has enhanced M-cell specificity compared to the other targeters. NA functionalized MPs induce a Th1 and T-regulatory driven immune response and avoid allergy effector cell activation. Therefore, it is a promising novel, orally applied formula for allergy therapy.
Collapse
Affiliation(s)
- Susanne C Diesner
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Cornelia Bergmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Xue-Yan Wang
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Denise Heiden
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Sarah Exenberger
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Franziska Roth-Walter
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Philipp Starkl
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Davide Ret
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Isabella Pali-Schöll
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
17
|
Oral hepatitis B vaccine: chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. Int J Pharm 2018; 535:261-271. [PMID: 29133207 DOI: 10.1016/j.ijpharm.2017.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022]
|
18
|
Biodegradable Polymeric Nanocarrier-Based Immunotherapy in Hepatitis Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:303-320. [DOI: 10.1007/978-981-13-0950-2_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Kammona O, Bourganis V, Karamanidou T, Kiparissides C. Recent developments in nanocarrier-aided mucosal vaccination. Nanomedicine (Lond) 2017; 12:1057-1074. [PMID: 28440707 DOI: 10.2217/nnm-2017-0015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To date, most of the licensed vaccines for mucosal delivery are based on live-attenuated viruses which carry the risk of regaining their pathogenicity. Therefore, the development of efficient nonviral vectors allowing the induction of potent humoral and cell-mediated immunity is regarded as an imperative scientific challenge as well as a commercial breakthrough for the pharma industries. For a successful translation to the clinic, such nanocarriers should protect the antigens from mucosal enzymes, facilitate antigen uptake by microfold cells and allow the copresentation of robust, safe for human use, mucosal adjuvants to antigen-presenting cells. Finally, the developed formulations should exhibit accuracy regarding the administered dose, a major drawback of mucosal vaccines in comparison with parenteral ones.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| | - Vassilis Bourganis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Theodora Karamanidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Costas Kiparissides
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece.,Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
20
|
Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O'Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev 2016; 106:367-380. [PMID: 27320644 DOI: 10.1016/j.addr.2016.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
The influence of nanoparticle (NP) formulations on the pharmacokinetic, pharmacodynamic and biodistribution profiles of peptide- and protein-like drugs following oral administration is critically reviewed. The possible mechanisms of absorption enhancement and the effects of the physicochemical properties of the NP are examined. The potential advantages and challenges of physiologically-based pharmacokinetic (PBPK) modelling to help predict efficacy in man are discussed. The importance of developing and expanding the regulatory framework to help translate the technology into the clinic and accelerate the availability of oral nanoparticulate formulations is emphasized. In conclusion, opportunities for future work to improve the state of the art of oral nanomedicines are identified.
Collapse
|
21
|
Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug Discov Today 2016; 21:888-99. [DOI: 10.1016/j.drudis.2016.03.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/06/2016] [Accepted: 03/23/2016] [Indexed: 11/12/2022]
|
22
|
Advances in the transepithelial transport of nanoparticles. Drug Discov Today 2016; 21:1155-61. [PMID: 27196527 DOI: 10.1016/j.drudis.2016.05.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/01/2016] [Accepted: 05/10/2016] [Indexed: 01/06/2023]
Abstract
The intestinal epithelium represents a barrier to the delivery of nanoparticles (NPs). It prevents intact NPs from efficiently crossing the mucosa to access the circulation, thus limiting the successful application of NP-based oral drug delivery. Recent advances in nanotechnology have provided promising solutions to this challenge. This review describes the potential intestinal absorption pathways of NPs, including the transenterocytic pathway, paracellular pathway and M-cell-mediated pathway. NP properties that influence transcytosis are summarized; and the biodistribution of NPs after oral absorption is described and the future prospects of novel NPs are explored.
Collapse
|
23
|
Dinda AK, Bhat M, Srivastava S, Kottarath SK, Prashant CK. Novel nanocarrier for oral Hepatitis B vaccine. Vaccine 2016; 34:3076-3081. [PMID: 27156634 DOI: 10.1016/j.vaccine.2016.04.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 11/18/2022]
Abstract
Oral vaccination is a safe, cost effective and non-invasive method suitable for mass immunization. We fabricated nanoparticle (NP) with 14kd polycaprolactone (PCL) entrapping hepatitis B surface antigen (HBsAg) stabilized with Pluronics® F127 and used it as oral delivery vehicle. We evaluated its efficacy for specific antibody production and compared with parenteral routes of immunization in mice. We found a superior antibody response with a higher titer of anti-HBsAg antibody till 2 months following single oral administration compared to other routes of immunization and conventional alum-based HBsAg vaccine. The NPs with the antigen were found in the macrophages in small intestinal villi, peripheral lymph nodes and other reticulo-endothelial organs 2 months after oral administration. This study suggests the efficacy of the current nanocarrier system for efficient antigen presentation disseminated in peripheral lymphoid tissues following oral administration with a prolonged antibody response, which can minimize the requirement of booster dose.
Collapse
Affiliation(s)
- Amit K Dinda
- Department of pathology, All India Institute of medical sciences,Ansari nagar, New Delhi 110029, India.
| | - Madhusudan Bhat
- Department of pathology, All India Institute of medical sciences,Ansari nagar, New Delhi 110029, India
| | - Sandeep Srivastava
- Department of pathology, All India Institute of medical sciences,Ansari nagar, New Delhi 110029, India
| | - Sarat K Kottarath
- Department of pathology, All India Institute of medical sciences,Ansari nagar, New Delhi 110029, India
| | - Chandravilas K Prashant
- Department of pathology, All India Institute of medical sciences,Ansari nagar, New Delhi 110029, India
| |
Collapse
|
24
|
Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother 2016; 12:806-28. [PMID: 26513024 PMCID: PMC4964737 DOI: 10.1080/21645515.2015.1102804] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022] Open
Abstract
Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Department of Recombinant Protein Production, Research & Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Padhi S, Mirza MA, Verma D, Khuroo T, Panda AK, Talegaonkar S, Khar RK, Iqbal Z. Revisiting the nanoformulation design approach for effective delivery of topotecan in its stable form: an appraisal of its in vitro Behavior and tumor amelioration potential. Drug Deliv 2015; 23:2827-2837. [PMID: 26548664 DOI: 10.3109/10717544.2015.1105323] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Topotecan (TPT) is indicated against a variety of solid tumors, but has restricted clinical use owing to associated pharmaceutical caveats. This study is focused at formulating a successful TPT PLGA nanosystem which ameliorates the rapid conversion of active lactone form of drug to its inactive carboxylate form and consequently improvises its efficacy. TPT PLGA nanoparticles were formulated by a double emulsion-solvent evaporation technique with sequential optimization to obtain desired particle size, PDI, zeta potential, and entrapment efficiency. Stability of TPT was ensured by maintaining an acidic pH in the drug-containing phase and the system was evaluated for in vitro-in vivo performance including cytotoxic potency. The optimized nanosystem had a particle size of 187.33 ± 7.50 nm, a PDI of 0.179 ± 0.05, and an entrapment efficiency of 56 ± 1.2%. Low pH in the interior of nanoparticles stabilized the drug to remain in its active lactone form and revealed a biphasic release pattern till 15 d. Additionally, an in vitro cytotoxicity testing as well as in vivo antitumor efficacy demonstrated a significant potential of higher proliferation inhibition as compared with neat drug (TPT). Thus, the investigation summarized an innovative simple tool for developing stable TPT NPs for effective delivery for treating solid tumors.
Collapse
Affiliation(s)
- Santwana Padhi
- a Department of Pharmaceutics , Faculty of pharmacy Jamia Hamdard , New Delhi , India.,b Product Development Cell-II, National Institute of Immunology , New Delhi , India
| | | | - Devina Verma
- a Department of Pharmaceutics , Faculty of pharmacy Jamia Hamdard , New Delhi , India
| | - Tahir Khuroo
- a Department of Pharmaceutics , Faculty of pharmacy Jamia Hamdard , New Delhi , India
| | - Amulya K Panda
- b Product Development Cell-II, National Institute of Immunology , New Delhi , India
| | - Sushama Talegaonkar
- a Department of Pharmaceutics , Faculty of pharmacy Jamia Hamdard , New Delhi , India
| | | | - Zeenat Iqbal
- a Department of Pharmaceutics , Faculty of pharmacy Jamia Hamdard , New Delhi , India
| |
Collapse
|
26
|
Gamazo C, Martín-Arbella N, Brotons A, Camacho AI, Irache JM. Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral immunization. Eur J Pharm Biopharm 2015; 96:454-63. [PMID: 25615880 PMCID: PMC7126451 DOI: 10.1016/j.ejpb.2015.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Dealing with mucosal delivery systems means dealing with mucus. The name mucosa comes from mucus, a dense fluid enriched in glycoproteins, such as mucin, which main function is to protect the delicate mucosal epithelium. Mucus provides a barrier against physiological chemical and physical aggressors (i.e., host secreted digestive products such as bile acids and enzymes, food particles) but also against the potentially noxious microbiota and their products. Intestinal mucosa covers 400m(2) in the human host, and, as a consequence, is the major portal of entry of the majority of known pathogens. But, in turn, some microorganisms have evolved many different approaches to circumvent this barrier, a direct consequence of natural co-evolution. The understanding of these mechanisms (known as virulence factors) used to interact and/or disrupt mucosal barriers should instruct us to a rational design of nanoparticulate delivery systems intended for oral vaccination and immunotherapy. This review deals with this mimetic approach to obtain nanocarriers capable to reach the epithelial cells after oral delivery and, in parallel, induce strong and long-lasting immune and protective responses.
Collapse
Affiliation(s)
- Carlos Gamazo
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Nekane Martín-Arbella
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana Brotons
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana I Camacho
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - J M Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
27
|
Pavot V, Berthet M, Rességuier J, Legaz S, Handké N, Gilbert SC, Paul S, Verrier B. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine (Lond) 2015; 9:2703-18. [PMID: 25529572 DOI: 10.2217/nnm.14.156] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of safe and effective vaccines for cancer and infectious diseases remains a major goal in public health. Over the last two decades, controlled release of vaccine antigens and immunostimulant molecules has been achieved using nanometer or micron-sized delivery vehicles synthesized using biodegradable polymers. In addition to achieving a depot effect, enhanced vaccine efficacy using such delivery vehicles has been attributed to efficient targeting of antigen presenting cells such as dendritic cells. Biodegradable and biocompatible poly(lactic acid) and poly(lactic-co-glycolic acid) polymers belong to one such family of polymers that have been a popular choice of material used in the design of these delivery vehicles. This review summarizes research findings from ourselves and others highlighting the promise of poly(lactic acid)- and poly(lactic-co-glycolic acid)-based vaccine carriers in enhancing immune responses.
Collapse
Affiliation(s)
- Vincent Pavot
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Harde H, Siddhapura K, Agrawal AK, Jain S. Divalent toxoids loaded stable chitosan–glucomannan nanoassemblies for efficient systemic, mucosal and cellular immunostimulatory response following oral administration. Int J Pharm 2015; 487:292-304. [DOI: 10.1016/j.ijpharm.2015.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
|
29
|
Vaidya B, Gupta V. Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery. J Control Release 2015; 211:118-33. [PMID: 26036906 DOI: 10.1016/j.jconrel.2015.05.287] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disorder characterized by increased blood pressure in the small arterioles supplying blood to lungs for oxygenation. Advances in understanding of molecular and cellular biology techniques have led to the findings that PAH is indeed a cascade of diseases exploiting multi-faceted complex pathophysiology, with cellular proliferation and vascular remodeling being the key pathogenic events along with several cellular pathways involved. While current therapies for PAH do provide for amelioration of disease symptoms and acute survival benefits, their full therapeutic potential is hindered by patient incompliance and off-target side effects. To overcome the issues related with current therapy and to devise a more selective therapy, various novel pathways are being investigated for PAH treatment. In addition, inability to deliver anti-PAH drugs to the disease site i.e., distal pulmonary arterioles has been one of the major challenges in achieving improved patient outcomes and improved therapeutic efficacy. Several novel carriers have been explored to increase the selectivity of currently approved anti-PAH drugs and to act as suitable carriers for the delivery of investigational drugs. In the present review, we have discussed potential of various novel molecular pathways/targets including RhoA/Rho kinase, tyrosine kinase, endothelial progenitor cells, vasoactive intestinal peptide, and miRNA in PAH therapeutics. We have also discussed various techniques for site-specific drug delivery of anti-PAH therapeutics so as to improve the efficacy of approved and investigational drugs. This review will provide gainful insights into current advances in PAH therapeutics with an emphasis on site-specific drug payload delivery.
Collapse
Affiliation(s)
- Bhuvaneshwar Vaidya
- School of Pharmacy, Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States.
| |
Collapse
|
30
|
|
31
|
Wang T, Zhen Y, Ma X, Wei B, Li S, Wang N. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloids Surf B Biointerfaces 2015; 126:520-30. [PMID: 25612819 DOI: 10.1016/j.colsurfb.2015.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/11/2014] [Accepted: 01/04/2015] [Indexed: 10/24/2022]
Abstract
To develop an effective, convenient and stable mucosal vaccine against hepatitis B virus (HBV), the mannose-PEG-cholesterol/lipid A-liposomes (MLLs) loaded with HBsAg were prepared by the procedure of emulsification-lyophilization and, subsequently, filled into the microholes of microneedle array reverse molds and dried to form the proHBsAg-MLLs microneedle arrays (proHMAs). The proHMAs were stable even at 40 °C for up to 3 days and hard enough to pierce porcine skin but, upon rehydration, rapidly dissolved recovering the HBsAg-MLLs without obvious changes in size and antigen association efficiency. Notably, immunization of mice only once with the proHMAs at oral mucosa induced robust systemic and widespread mucosal immunoresponses, as evidenced by the high levels of HBsAg-specific IgG in the sera and IgA in the salivary, intestinal and vaginal secretions. In addition, a strong cellular immunity against HBV had been established through a mixed Th1/Th2 response, as confirmed by a significant increase in CD8(+) T cells as well as the enhanced levels of IgG2a and IFN-γ in the treated mice. Thus, the proHMAs can be conveniently vaccinated via oral mucosal route to set up a multiple immune defense against HBV invasion and, in addition, may be a stable HBV vaccine applicable in the controlled temperature chain for wide distribution.
Collapse
Affiliation(s)
- Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Xiaoyu Ma
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Biao Wei
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Shuqin Li
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ning Wang
- School of Medical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province 230009, China.
| |
Collapse
|
32
|
Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discov Today 2014; 20:95-104. [PMID: 25277320 DOI: 10.1016/j.drudis.2014.09.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/02/2014] [Accepted: 09/24/2014] [Indexed: 11/20/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA), a US Food and Drug Administration (FDA)-approved copolymer, has been exploited widely in the design of nanoparticles because it is biodegradable, biocompatible, protects the drug molecules from degradation, and aids in producing sustained and targeted delivery. However, certain constraints associated with PLGA nanoparticles, such as poor drug encapsulation, polymer degradation, and scale-up issues, have led to the development of emerging hybrid PLGA delivery systems. These hybrid nanoparticles are core-shell nanostructures comprising either a PLGA core or a PLGA shell combining multiple functionalities within one system and, thus, exhibiting the complementary characteristics of two different platforms used for the delivery of a wide range of therapeutics and imaging.
Collapse
|
33
|
Sun LX, Lin ZB, Duan XS, Qi HH, Yang N, Li M, Xing EH, Sun Y, Yu M, Li WD, Lu J. Suppression of the Production of Transforming Growth Factor β1, Interleukin-10, and Vascular Endothelial Growth Factor in the B16F10 Cells byGanoderma lucidumPolysaccharides. J Interferon Cytokine Res 2014; 34:667-75. [PMID: 24673200 DOI: 10.1089/jir.2012.0101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Li-Xin Sun
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Zhi-Bin Lin
- Department of Pharmacology, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin-Suo Duan
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Hai-Hua Qi
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Ning Yang
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Min Li
- Department of Pharmacology, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - En-Hong Xing
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Yu Sun
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Min Yu
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Wei-Dong Li
- Department of Pharmacology, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Lu
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| |
Collapse
|
34
|
Agrawal U, Sharma R, Gupta M, Vyas SP. Is nanotechnology a boon for oral drug delivery? Drug Discov Today 2014; 19:1530-46. [PMID: 24786464 DOI: 10.1016/j.drudis.2014.04.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/12/2014] [Accepted: 04/22/2014] [Indexed: 12/14/2022]
Abstract
The oral route for drug delivery is regarded as the optimal route for achieving therapeutic benefits owing to increased patient compliance. Despite phenomenal advances in injectable, transdermal, nasal and other routes of administration, the reality is that oral drug delivery remains well ahead of the pack as the preferred delivery route. Nanocarriers can overcome the major challenges associated with this route of administration: mainly poor solubility, stability and biocompatibility of drugs. This review focuses on the potential of various polymeric drug delivery systems in oral administration, their pharmacokinetics, in vitro and in vivo models, toxicity and regulatory aspects.
Collapse
Affiliation(s)
- Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Madhu Gupta
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India.
| |
Collapse
|
35
|
Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy. J Control Release 2014; 176:94-103. [DOI: 10.1016/j.jconrel.2013.12.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/31/2022]
|
36
|
Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in PLGA nanoparticles. PLoS One 2013; 8:e82648. [PMID: 24386106 PMCID: PMC3873271 DOI: 10.1371/journal.pone.0082648] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/05/2013] [Indexed: 11/28/2022] Open
Abstract
Background Although the Newcastle disease virus (NDV) inactivated vaccines and attenuated live vaccines have been used to prevent and control Newcastle disease (ND) for years, there are some disadvantages. Recently, newly developed DNA vaccines have the potential to overcome these disadvantages. The low delivery efficiency, however, hindered the application of DNA vaccines for ND in practice. Methodology/Principal Findings The eukaryotic expression plasmid pVAX1-F (o) DNA that expressed the F gene of NDV encapsulated in PLGA nanoparticles (pFNDV-PLGA-NPs) were prepared by a double emulsion-solvent evaporation method and optimal preparation conditions of the pFNDV-PLGA-NPs were determined. Under the optimal conditions, the pFNDV-PLGA-NPs were produced in good morphology and had high stability with a mean diameter of 433.5±7.5 nm, with encapsulation efficiency of 91.8±0.3% and a Zeta potential of +2.7 mV. Release assay in vitro showed that the fusion gene plasmid DNA could be sustainably released from the pFNDV-PLGA-NPs up to 93.14% of the total amount. Cell transfection test indicated that the vaccine expressed and maintained its bioactivity. Immunization results showed that better immune responses of SPF chickens immunized with the pFNDV-PLGA-NPs were induced compared to the chickens immunized with the DNA vaccine alone. In addition, the safety of mucosal immunity delivery system of the pFNDV-PLGA-NPs was also tested in an in vitro cytotoxicity assay. Conclusions/Significance The pFNDV-PLGA-NPs could induce stronger cellular, humoral, and mucosal immune responses and reached the sustained release effect. These results laid a foundation for further development of vaccines and drugs in PLGA nanoparticles.
Collapse
|
37
|
Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: Challenges and opportunities. J Control Release 2013; 170:15-40. [DOI: 10.1016/j.jconrel.2013.04.020] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/12/2022]
|
38
|
Mishra N, Khatri K, Gupta M, Vyas SP. Development and characterization of LTA-appended chitosan nanoparticles for mucosal immunization against hepatitis B. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:245-55. [PMID: 23815286 DOI: 10.3109/21691401.2013.809726] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study was aimed at exploring the targeting potential of LTA-anchored chitosan nanoparticles (CH-NP) specifically to M cell following oral immunization. The lectinized CH-NP exhibited 7-29% coupling capacity depending upon the amount of glutaraldehyde added. Induction of the mucosal immunity was assessed by estimating secretory IgA level in the salivary, intestinal and vaginal secretions, and cytokine (IL-2 and IFN-γ) levels in the spleen homogenates. The results demonstrated that LTA-anchored CH-NP elicited strong humoral and cellular responses and hence could be a competent carrier-adjuvant delivery system for oral mucosal immunization against Hepatitis B.
Collapse
Affiliation(s)
- Neeraj Mishra
- Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University , Sagar, MP , India
| | | | | | | |
Collapse
|
39
|
des Rieux A, Pourcelle V, Cani PD, Marchand-Brynaert J, Préat V. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliv Rev 2013; 65:833-44. [PMID: 23454185 DOI: 10.1016/j.addr.2013.01.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/12/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
Abstract
Orally administered targeted nanoparticles have a large number of potential biomedical applications and display several putative advantages for oral drug delivery, such as the protection of fragile drugs or modification of drug pharmacokinetics. These advantages notwithstanding, oral drug delivery by nanoparticles remains challenging. The optimization of particle size and surface properties and targeting by ligand grafting have been shown to enhance nanoparticle transport across the intestinal epithelium. Here, different grafting strategies for non-peptidic ligands, e.g., peptidomimetics, lectin mimetics, sugars and vitamins, that are stable in the gastrointestinal tract are discussed. We demonstrate that the grafting of these non-peptidic ligands allows nanoparticles to be targeted to M cells, enterocytes, immune cells or L cells. We show that these grafted nanoparticles could be promising vehicles for oral vaccination by targeting M cells or for the delivery of therapeutic proteins. We suggest that targeting L cells could be useful for the treatment of type 2 diabetes or obesity.
Collapse
|
40
|
Kai H, Motomura Y, Saito S, Hashimoto K, Tatefuji T, Takamune N, Misumi S. Royal jelly enhances antigen-specific mucosal IgA response. Food Sci Nutr 2013; 1:222-227. [PMID: 29387350 PMCID: PMC5779328 DOI: 10.1002/fsn3.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 11/25/2022] Open
Abstract
The effective uptake of antigens (Ags) by specialized M cells of gut‐associated lymphoid tissues is an important step in inducing an efficient intestinal mucosal immune response. In this study, royal jelly (RJ) was found to stimulate the differentiation of M‐like cells from human Caco‐2 cells in an in vitro M cell model. Furthermore, RJ and protease‐treated royal jelly (pRJ) efficiently enhanced transcytosis of FluoSpheres® carboxylate‐modified microspheres from the apical side to the basolateral side in the model. Therefore, we evaluated the ability of pRJ to induce efficient mucosal immune responses in an in vivo nonhuman primate. Continuous oral administration of commercially available pRJ resulted in a significant enhacement of the antigen‐specific IgA response in stool sample. Interestingly, Caco‐2 monolayer assay demonstrated that ether extracts from pRJ efficiently increased the expression level of a universal M cell marker, glycoprotein 2 (gp2). These findings suggest that pRJ exhibits mucosal immunomodulatory properties via stimulation of effective uptake of Ags through M cells.
Collapse
Affiliation(s)
- Hikaru Kai
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences Kumamoto University Kumamoto Japan
| | - Yuji Motomura
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences Kumamoto University Kumamoto Japan
| | - Shiro Saito
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences Kumamoto University Kumamoto Japan
| | - Ken Hashimoto
- Institute for Bee Products and Health Science Yamada Apiculture Center, Inc. Okayama Japan
| | - Tomoki Tatefuji
- Institute for Bee Products and Health Science Yamada Apiculture Center, Inc. Okayama Japan
| | - Nobutoki Takamune
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences Kumamoto University Kumamoto Japan
| | - Shogo Misumi
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences Kumamoto University Kumamoto Japan
| |
Collapse
|
41
|
Gonzalez-Aramundiz JV, Cordeiro AS, Csaba N, de la Fuente M, Alonso MJ. Nanovaccines : nanocarriers for antigen delivery. Biol Aujourdhui 2013; 206:249-61. [PMID: 23419252 DOI: 10.1051/jbio/2012027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Indexed: 11/14/2022]
Abstract
Vaccination has become one of the most important health interventions of our times, revolutionizing health care, and improving the quality of life and life expectancy of millions all over the world. In spite of this, vaccine research remains a vast field for innovation and improvement. Indeed, the shift towards the use of sub-unit antigens, much safer but less immunogenic, and the recognized need to facilitate the access to vaccines in the global framework is currently stimulating the search for safe and efficient adjuvants and delivery technologies. Within this context, nanocarriers have gained particular attention over the last years and appear as one of the most promising strategies for antigen delivery. A number of biomaterials and technologies can be used to design nanovaccines that fulfill the requirements of new vaccination approaches, such as single-dose and transmucosal immunization, critical for achieving a widespread coverage while reducing the overall costs in relation to traditional forms of vaccination. Here we present an overview of the current state of nanocarriers for antigen delivery, developed with the perspective of contributing to the global vaccination goal.
Collapse
Affiliation(s)
- Jose Vicente Gonzalez-Aramundiz
- NanoBioFar Group, Center for Research in Molecular Medicine and Chronic Diseases, Campus Vida, University of Santiago de Compostela USC, Avenida 15782 Barcelona s/n, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
42
|
Sun LX, Lin ZB, Duan XS, Lu J, Ge ZH, Li M, Xing EH, Lan TF, Jiang MM, Yang N, Li WD. Ganoderma lucidum polysaccharides counteract inhibition on CD71 and FasL expression by culture supernatant of B16F10 cells upon lymphocyte activation. Exp Ther Med 2013; 5:1117-1122. [PMID: 23596479 PMCID: PMC3628224 DOI: 10.3892/etm.2013.931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 01/23/2013] [Indexed: 12/19/2022] Open
Abstract
Immune responses to tumor-associated antigens are often detectable in tumor-bearing hosts, but they fail to eliminate malignant cells or prevent development of metastases. Tumor cells produce factors such as interleukin-10, transforming growth factor-β1 and vascular endothelial growth factor (VEGF) that suppress the function of immune cells or induce apoptosis of immune cells. Culture supernatant of tumor cells may contain these immunosuppressive factors which suppress lymphocyte activation. CD71 and FasL are two important molecules that are expressed upon lymphocyte activation. Counteraction against suppression CD71 and FasL expression upon lymphocyte activation may benefit tumor control. A potential component with this effect is Ganoderma lucidum polysaccharides (Gl-PS). In this study, Gl-PS was used on lymphocytes incubating with culture supernatant of B16F10 melanoma cells (B16F10-CS) in the presence of phytohemagglutinin. Following induction with phytohemagglutinin, B16F10-CS suppressed CD71 expression in lymphocytes (as detected by immunofluorescence and flow cytometry), proliferation in lymphocytes (as detected by MTT assay), and FasL expression in lymphocytes (as detected by immunocytochemistry and western blot analysis), while Gl-PS fully or partially counteracted these suppressions. Gl-PS showed counteractive effects against suppression induced by B16F10-CS on CD71 and FasL expression upon lymphocyte activation, suggesting the potential of Gl-PS to facilitate cancer immunotherapy.
Collapse
Affiliation(s)
- Li-Xin Sun
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Barhate G, Gautam M, Gairola S, Jadhav S, Pokharkar V. Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: stability and immunoefficiency studies. Int J Pharm 2012; 441:636-42. [PMID: 23117021 DOI: 10.1016/j.ijpharm.2012.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/20/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
Carrier mediated delivery of vaccines along with adjuvants can possibly address the issue related to oral vaccines like inadequate immune potentiation. In this study, chitosan functionalized gold nanoparticles (CsAuNPs) were used as a carrier for the model antigen tetanus toxoid (TT) along with immunostimulant Quillaja saponaria extract (QS). Physicochemical properties (size, zeta potential, pH value) of formulation were investigated as stability indicating parameters. The synthesized CsAuNPs were spherical in shape, around 40 nm in size, positively charged (around +35 mV) and had TT and QS payload of 65% and 0.01%, respectively. Formulation parameters did not alter the secondary structure of TT, as determined by FTIR, fluorescence and CD spectroscopy. Antigen specificity, determined by an ELISA, was also not compromised. The CsAuNPs conferred protection to TT against gastric hydrolysis as studied in vitro. TT-QS-CsAuNPs induced up to 28-fold immune responses compared to control formulations (TT, TT-QS) after oral administration of formulations in BALB/c mice. The immune responses were quantified by measuring the TT-specific IgG and IgA titers using ELISA. Findings herein demonstrate that co-delivery of TT and QS with functionalized CsAuNPs promotes better systemic and local immune responses and hence can be considered as a sound approach for oral vaccine delivery.
Collapse
Affiliation(s)
- Ganesh Barhate
- Bharati Vidyapeeth University, Poona College of Pharmacy, Department of Pharmaceutics, Erandwane, Pune 411038, India
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Intestinal receptor targeting for peptide delivery: an expert's personal perspective on reasons for failure and new opportunities. Ther Deliv 2012; 2:1575-93. [PMID: 22833983 DOI: 10.4155/tde.11.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The technology has been available more than 25 years that would enable the oral delivery of vaccines, proteins and peptides, thus avoiding the need for injection. To this day, injection is still the mode of delivery, yet not the main mode of choice. This review focuses on several of the potential modes for oral delivery of peptides, proteins and vaccines. Additionally, the review will provide the reader with an insight into the problems and potential solutions for several of these modes of oral delivery of peptides and proteins.
Collapse
|
46
|
Abstract
Immunotherapy, in recent times, has found its application in a variety of immunologically mediated diseases. Oral immunotherapy may not only increase patient compliance but may, in particular, also induce both systemic as well as mucosal immune responses, due to mucosal application of active agents. To improve the bioavailability and to trigger strong immunological responses, recent research projects focused on the encapsulation of drugs and antigens into polymer particles. These particles protect the loaded antigen from the harsh conditions in the GI tract. Furthermore, modification of the surface of particles by the use of lectins, such as Aleuria aurantia lectin, wheatgerm agglutinin or Ulex europaeus-I, enhances the binding to epithelial cells, in particular to membranous cells, of the mucosa-associated lymphoid tissue. Membranous cell-specific targeting leads to an improved transepithelial transport of the particle carriers. Thus, enhanced uptake and presentation of the encapsulated antigen by antigen-presenting cells favor strong systemic, but also local, mucosal immune responses.
Collapse
|
47
|
Maher S, Ryan KB, Ahmad T, O'driscoll CM, Brayden* DJ. Nanostructures Overcoming the Intestinal Barrier: Physiological Considerations and Mechanistic Issues. NANOSTRUCTURED BIOMATERIALS FOR OVERCOMING BIOLOGICAL BARRIERS 2012. [DOI: 10.1039/9781849735292-00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Ghaffarian R, Bhowmick T, Muro S. Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1. J Control Release 2012; 163:25-33. [PMID: 22698938 DOI: 10.1016/j.jconrel.2012.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/21/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Bioavailability of oral drugs, particularly large hydrophilic agents, is often limited by poor adhesion and transport across gastrointestinal (GI) epithelial cells. Drug delivery systems, such as sub-micrometer polymer carriers (nanocarriers, NCs) coupled to affinity moieties that target GI surface markers involved in transport, may improve this aspect. To explore this strategy, we coated 100-nm polymer particles with an antibody to ICAM-1 (a protein expressed on the GI epithelium and other tissues) and evaluated targeting, uptake, and transport in human GI epithelial cells. Fluorescence and electron microscopy, and radioisotope tracing revealed that anti-ICAM NCs specifically bound to cells in culture, were internalized via CAM-mediated endocytosis, trafficked by transcytosis across cell monolayers without disrupting the permeability barrier or cell viability, and enabled transepithelial transport of a model therapeutic enzyme (α-galactosidase, deficient in lysosomal Fabry disease). These results indicate that ICAM-1 targeting may provide delivery of therapeutics, such as enzymes, to and across the GI epithelium.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, 2330 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
49
|
Lin KH, Hsu AP, Shien JH, Chang TJ, Liao JW, Chen JR, Lin CF, Hsu WL. Avian reovirus sigma C enhances the mucosal and systemic immune responses elicited by antigen-conjugated lactic acid bacteria. Vaccine 2012; 30:5019-29. [PMID: 22531554 PMCID: PMC7115360 DOI: 10.1016/j.vaccine.2012.04.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 11/16/2022]
Abstract
Mucosal surfaces are common sites of pathogen colonization/entry. Effective mucosal immunity by vaccination should provide protection at this primary infection site. Our aim was to develop a new vaccination strategy that elicits a mucosal immune response. A new strain of Enterococcus faecium, a non pathogenic lactic acid bacteria (LAB) with strong cell adhesion ability, was identified and used as a vaccine vector to deliver two model antigens. Specifically, sigma (σ) C protein of avian reovirus (ARV), a functional homolog of mammalian reovirus σ1 protein and responsible for M-cell targeting, was administered together with a subfragment of the spike protein of infectious bronchitis virus (IBV). Next, the effect of immunization route on the immune response was assessed by delivering the antigens via the LAB strain. Intranasal (IN) immunization induced stronger humoral responses than intragastic (IG) immunization. IN immunization produced antigen specific IgA both systemically and in the lungs. A higher IgA titer was induced by the LAB with ARV σC protein attached. Moreover, the serum of mice immunized with LAB displaying divalent antigens had much stronger immune reactivity against ARV σC protein compared to IBV-S1. Our results indicate that ARV σC protein delivered by LAB via the IN route elicits strong mucosal immunity. A needle-free delivery approach is a convenient and cost effective method of vaccine administration, especially for respiratory infections in economic animals. Furthermore, ARV σC, a strong immunogen of ARV, may be able to serve as an immunoenhancer for other vaccines, especially avian vaccines.
Collapse
Affiliation(s)
- Kuan-Hsun Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Awaad A, Nakamura M, Ishimura K. Histochemical and biochemical analysis of the size-dependent nanoimmunoresponse in mouse Peyer's patches using fluorescent organosilica particles. Int J Nanomedicine 2012; 7:1423-39. [PMID: 22619503 PMCID: PMC3356209 DOI: 10.2147/ijn.s28675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background/objective The size-dependent mucosal immunoresponse against nanomaterials (nanoimmunoresponse) is an important approach for mucosal vaccination. In the present work, the size-dependent nanoimmunoresponse of mouse Peyer’s patches (PPs) and immunoglobulin A (IgA) level was investigated using fluorescent thiol-organosilica particles. Methods Various sizes of fluorescent thiol-organosilica particles (100, 180, 365, 745, and 925 nm in diameter) were administered orally. PPs were analyzed histochemically, and IgA levels in PP homogenates, intestinal secretions around PPs, and bile were analyzed biochemically. Results When compared with the larger particles (745 and 925 nm), oral administration of smaller thiol-organosilica particles (100, 180, and 365 nm) increased the number of CD11b+ macrophages and IgA+ cells in the subepithelial domes of the PPs. Additionally, administration of larger particles induced the expression of alpha-L-fucose and mucosal IgA on the surface of M cells in the follicle-associated epithelia of PPs and increased the number of 33D1+ dendritic cells in the subepithelial domes of the PPs. IgA contents in the bile and PP homogenates were high after the administration of the 100 nm particles, but IgA levels in the intestinal secretions were high after the administration of the 925 nm particles. Two size-dependent routes of IgA secretions into the intestinal lumen, the enterohepatic route for smaller particles and the mucosal route for larger particles were proposed. Conclusion Thiol-organosilica particles demonstrated size-dependent nanoimmunoresponse after oral administration. The size of the particles may control the mucosal immunity in PPs and were useful in mucosal vaccination approaches.
Collapse
Affiliation(s)
- Aziz Awaad
- Department of Anatomy and Cell Biology, the University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
| | | | | |
Collapse
|