1
|
Feng ZT, Fan SY, Pan XY, Kong LY, Luo JG. Development of new genipin derivatives as potential NASH treatments: Design, synthesis and action mechanism. Bioorg Chem 2025; 159:108403. [PMID: 40147227 DOI: 10.1016/j.bioorg.2025.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Nonalcoholic steatohepatitis (NASH) is a multifaceted liver disease. Endoplasmic reticulum stress (ERS), a key driver in NASH pathogenesis, triggers metabolic irregularities, liver steatosis, and inflammation. Genipin, an iridoid from the traditional Chinese medicine Gardenia jasminoides, has demonstrated significant effects against ERS. In the current work, 33 new genipin derivatives were designed and synthesized to evaluate their potential to treat NASH. Notably, G15 emerged as the most potent candidate, significantly attenuating lipid accumulation induced by free fatty acids (FFAs) in L-02 cells. Further investigation revealed that G15's mitigation of ERS was primarily achieved by suppressing the levels of inositol-requiring enzyme 1 (IRE1). Western blot analysis confirmed that G15 effectively down-regulated IRE1 protein expression and decreased the expression levels of its downstream X-box binding protein 1 (XBP1) and signal transducer and activator of transcription 3 (STAT3) proteins, thereby reducing cellular lipid accumulation. In addition, G15 treatment inhibited FFA-induced nitric oxide (NO) production in a concentration-dependent manner and suppressed the secretion of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Collectively, these findings underscore that G15 has the potential to be a leading candidate for the treatment of NASH by down-regulating the IRE1/XBP1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zi-Tong Feng
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shi-Ying Fan
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xing-Yu Pan
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Amatya R, Joseph A, Roh GS, Moon C, Benmokadem Y, Kim D, Min KA, Shin MC. Combined Esculentin-2CHa Fusion Protein-Coated Au Nanoparticles for Effective Against Non-Alcoholic Fatty Liver Disease in Mice Model. Int J Nanomedicine 2025; 20:3407-3421. [PMID: 40125429 PMCID: PMC11928441 DOI: 10.2147/ijn.s497645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Extensive research has focused on identifying effective treatments for NAFLD, with numerous bioactive peptide candidates showing significant promise. In this research, a long-acting esculentin-2CHa(1-30)-coated AuNPs (ESC-ABD-AuNPs) was developed and the applicability was evaluated for their use in the treatment of non-alcoholic fatty liver disease (NAFLD). Methods ESC-ABD-AuNPs were synthesized by adopting a 1-step reduction process and the successful preparation of the nanoparticles (NPs) was assessed by various physical characterizations including transmission electron microscopy (TEM), ultraviolet-visible (UV-VIS) absorption spectra, dynamic light scattering (DLS), and Fourier Transform Infrared Spectroscopy (FT-IR). After the ESC-ABD-AuNPs were prepared, cytotoxicity, pharmacokinetics (PK), and biodistribution profiles were identified. Then, with a high-fat diet (HFD)-fed obese mice model, efficacy studies were carried out focused on their effects for anti-hyperglycemia and anti-NAFLD. Furthermore, the feasibility of loading a small molecule onto the NPs was evaluated for potential combination therapy. Results ESC-ABD-AuNPs were synthesized with an average hydrodynamic size of 120 (±10) nm and demonstrated good stability and an extended plasma half-life of 28.3 h. The NPs exhibited high liver accumulation and were well tolerated in cell viability tests. In PK and biodistribution studies, ESC-ABD-AuNPs showed prolonged retention in major organs, such as the pancreas and the liver. Therapeutic efficacy was demonstrated in the HFD-fed obese mice, where the ESC-ABD-AuNPs significantly reduced blood glucose levels, improved glucose tolerance, and mitigated liver fat accumulation. The ESC-ABD-AuNPs platform also showed potential for combination therapies, demonstrated by its ability to load obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, found effective for the treatment of NAFLD in clinical studies. Conclusion Overall, this study has demonstrated the promising potential of ESC-ABD-AuNPs as a novel treatment for NAFLD. This research suggests that ESC-ABD-AuNPs could be a significant advancement in drug delivery and liver disease treatment, particularly for combination therapies.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Amala Joseph
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Cheol Moon
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Yassmine Benmokadem
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Doyeon Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| |
Collapse
|
3
|
Alotaibi G, Alkhammash A. Pharmacological landscape of endoplasmic reticulum stress: Uncovering therapeutic avenues for metabolic diseases. Eur J Pharmacol 2025; 998:177509. [PMID: 40089262 DOI: 10.1016/j.ejphar.2025.177509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The endoplasmic reticulum (ER) plays a fundamental role in maintaining cellular homeostasis by ensuring proper protein folding, lipid metabolism, and calcium regulation. However, disruptions to ER function, known as ER stress, activate the unfolded protein response (UPR) to restore balance. Chronic or unresolved ER stress contributes to metabolic dysfunctions, including insulin resistance, non-alcoholic fatty liver disease (NAFLD), and neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Recent studies have also highlighted the importance of mitochondria-ER contact sites (MERCs) and ER-associated inflammation in disease progression. This review explores the current pharmacological landscape targeting ER stress, focusing on therapeutic strategies for rare metabolic and neurodegenerative diseases. It examines small molecules such as tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA), repurposed drugs like 17-AAG (17-N-allylamino-17demethoxygeldanamycin (tanespimycin)) and berberine, and phytochemicals such as resveratrol and hesperidin. Additionally, it discusses emerging therapeutic areas, including soluble epoxide hydrolase (sEH) inhibitors for metabolic disorders and MERCs modulation for neurological diseases. The review emphasizes challenges in translating these therapies to clinical applications, such as toxicity, off-target effects, limited bioavailability, and the lack of large-scale randomized controlled trials (RCTs). It also highlights the potential of personalized medicine approaches and pharmacogenomics in optimizing ER stress-targeting therapies.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| |
Collapse
|
4
|
Zhao H, Liu M, Ma Y, Du R, Wang B, Lan T, Zhang H, Xue M, Liang H. Folic acid intervention ameliorates hepatic steatosis after long-term alcohol exposure by alleviating endoplasmic reticulum stress. J Nutr Biochem 2025; 141:109896. [PMID: 40054675 DOI: 10.1016/j.jnutbio.2025.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/21/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
In this study, the protective effect of folic acid on alcoholic fatty liver (AFL) was investigated. Eighty C57BL/6 J mice were assigned randomly to the saline control group, folic acid control group, ethanol model group, and folic acid + ethanol model group. After 10 weeks of intervention, folic acid intervention markedly decreased the liver index, serum ALT, serum TG, and hepatic TG levels. The HE and transmission electron microscopy revealed that folic acid intervention alleviated histopathological changes of hepatic steatosis. Western blot revealed that folic acid downregulated the protein levels of GRP78, p-PERK, p-eIF2α, p-IRE1α, XBP1, ATF6, SREBP-1c, FAS, and ACC. In conclusion, our findings demonstrated that folic acid intervention may relieve ethanol-induced ERs by inhibiting PERK-eIF2α, IRE1α-XBP1, and ATF6 signaling pathways, suggesting that folic acid may be a feasible preventive strategy for AFL.
Collapse
Affiliation(s)
- Huichao Zhao
- Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Man Liu
- Department of Adult and geriatric Care, School of Nursing, Qingdao University, Qingdao, China
| | - Yiqing Ma
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Ronghuan Du
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Bin Wang
- Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Yuan X, Sun W, Xu Y, Xiang M, Gao Y, Feng W, Xiao H, Zhang L, Tang Q, Lu J, Zhang Y. Altered mitochondrial unfolded protein response and FGF21 secretion in MASLD progression and the effect of exercise intervention. Sci Rep 2025; 15:3686. [PMID: 39881157 PMCID: PMC11779893 DOI: 10.1038/s41598-025-87190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
A high-calorie diet and lack of exercise are the most important risk factors contributing to metabolic dysfunction-associated steatotic liver disease (MASLD) initiation and progression. The precise molecular mechanisms of mitochondrial function alteration during MASLD development remain to be fully elucidated. In this study, a total of 60 male C57BL/6J mice were maintained on a normal or amylin liver NASH (AMLN) diet for 6 or 10 weeks. Some of the mice were then subjected to voluntary wheel running, while the other mice were fed a normal or AMLN diet until 14 and 18 weeks. The results showed that hepatic lipid deposition and the PERK-eIF2α-ATF4 pathway were significantly increased with prolonged duration of AMLN diet. However, expression of mitochondrial unfolded protein response (UPRmt) genes and mitokine FGF21 secretion were significantly enhanced in the 14-week AMLN diet mice, but were markedly reduced with the excessive lipid deposition induced by longer AMLN diet. Additionally, the exercise intervention acts as a regulator to optimize UPRmt signal transduction and to enhance mitochondrial homeostasis by improving mitochondrial function, reversing the UPRmt activation pattern, and increasing FGF21 secretion, which plays a pivotal role in delaying the occurrence and development of MASLD.
Collapse
Affiliation(s)
- Xinmeng Yuan
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Wen Sun
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Ye Xu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Mengqi Xiang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yaran Gao
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Wanyu Feng
- Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing, China
| | - Hongjian Xiao
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Liumei Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Qiang Tang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- Sport Science Research Institute, Nanjing Sport Institute, Nanjing, China
| | - Jiao Lu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- Sport Science Research Institute, Nanjing Sport Institute, Nanjing, China
| | - Yuan Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing, China.
- Sport Science Research Institute, Nanjing Sport Institute, Nanjing, China.
| |
Collapse
|
6
|
El-Sayed SM, El-Sayed GA, Mansour M A, Haridy Ahmed E, Kamar SA. A comparative study on the effect of melatonin and orlistat combination versus orlistat alone on high fat diet-induced hepatic changes in the adult male albino rats (a histological and morphometric study). Ultrastruct Pathol 2025; 49:20-38. [PMID: 39679624 DOI: 10.1080/01913123.2024.2438380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the extremely usual reason of chronic liver disease, extending from simple hepatic steatosis (HS), nonalcoholic steatohepatitis (NASH) to advanced hepatic fibrosis and cirrhosis. Though orlistat is a Food and Drug Administration (FDA) approved drug for long-duration management of obesity, few cases of severe hepatic insult were declared. Melatonin is an efficient antioxidant; it also regulates metabolic processes that lead to fat accumulation and obesity. AIM OF THE WORK The current research aimed to compare the impact of orlistat, melatonin, and their combination on the structural changes of the hepatic tissue of adult male albino rats supplied with high fat diet (HFD). MATERIAL AND METHODS Thirty adult male albino rats divided into five groups. Liver specimens were divided into two parts. One-half was processed to obtain paraffin blocks, and the other half was processed to obtain semithin sections. Morphometric study and statistical analysis were done. RESULTS Hepatic tissue from the HFD group showed steatosis, ballooning, and inflammation and all these parameters were moderately improved - except for inflammation which worsened with therapy. Combined orlistat and melatonin-treated groups showed marked improvement of all parameters as well as marked improvement in the hepatic fibrosis.Orlistat/Melatonin combination therapy is both safe and effective in comparison to orlistat and melatonin monotherapy.
Collapse
Affiliation(s)
- Sayed M El-Sayed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Gehan A El-Sayed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Mansour M A
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Enas Haridy Ahmed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
- Faculty of Medicine, Hail University, Hail, Kingdom of Saudi Arabia
| | - Sherif A Kamar
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
- Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
7
|
Zhang H, Tang M, Liu Q, Wu D, Sun B, Dong J, Guan L, Luo J, Zeng M. PAT exposure caused human hepatocytes apoptosis and induced mice subacute liver injury by activating oxidative stress and the ERS-associated PERK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177003. [PMID: 39433224 DOI: 10.1016/j.scitotenv.2024.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
With the widespread use of antimony compounds in synthetic materials and processing, the occupational exposure and environmental pollution caused by antimony have attracted the attention of researchers. Studies have shown that antimony compounds can cause liver damage, but the mechanism has not yet been elucidated. In this study, we used the trivalent potassium antimony tartrate (PAT) to infect L02 hepatocytes and Kunming (KM) mice to establish an antimony-induced apoptosis model of L02 cells and a subacute liver injury model of KM mice. We found that PAT exposure caused hepatocyte apoptosis and was accompanied by oxidative stress and endoplasmic reticulum stress (ERS), and the ERS-associated PERK pathway was activated. Further experimental results showed that N-acetyl-l-cysteine (NAC) pretreatment or silencing of the PERK gene in L02 cells reduced PAT-induced apoptosis. The activity of SOD and CAT in treated L02 cells was increased, the malondialdehyde content in L02 cells and liver tissues was decreased, and the content of ERS-related proteins GRP78 and CHOP, as well as the content of PERK-pathway-related proteins p-PERK/PERK, p-eif2α/eif2α and ATF4 protein were significantly reduced. Overall, PAT exposure triggered hepatocyte apoptosis and liver injury by inducing oxidative stress and activating the ERS-associated PERK pathway; however, this effect could be alleviated by NAC intervention or silencing of PERK in hepatocytes.
Collapse
Affiliation(s)
- Hualing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Meng Tang
- Center for Disease Control and Prevention, Jiulongpo District, Chongqing 400050, PR China
| | - Qin Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Die Wu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Bing Sun
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jingbang Dong
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jianlan Luo
- Institute of Geophysical & Geochemical Exploration of Hunan, Changsha 411100, PR China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
8
|
Shamapari R, Nagaraj K. Upregulation of ACSL, ND75, Vha26 and sesB genes by antiepileptic drugs resulted in genotoxicity in drosophila. Toxicol Res (Camb) 2024; 13:tfae180. [PMID: 39507589 PMCID: PMC11535366 DOI: 10.1093/toxres/tfae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/13/2024] [Indexed: 11/08/2024] Open
Abstract
Clobazam (CLB) and Vigabatrin (VGB) are commonly used antiepileptic drugs (AEDs) in the treatment of epilepsy. Here, we have examined the genotoxic effect of these AEDs in Drosophila melanogaster. The Drosophila larvae were exposed to different concentrations of CLB and VGB containing food media. The assessment encompassed oxidative stress, DNA damage, protein levels, and gene expression profiles. In the CLB-treated group, a reduction in reactive oxygen species (ROS) and lipid peroxidation (LPO) levels was observed, alongside increased levels of superoxide dismutase (SOD), catalase (CAT), and nitric oxide (NO). Conversely, the VGB-treated group displayed contrasting results, with increased ROS and LPO and decreased SOD, CAT, and NO levels. However, both CLB and VGB induced DNA damage in Drosophila. Proteomic analysis (SDS-PAGE and OHRLCMS) in the CLB and VGB groups identified numerous proteins, including Acyl-CoA synthetase long-chain, NADH-ubiquinone oxidoreductase 75 kDa subunit, V-type proton ATPase subunit E, ADP/ATP carrier protein, malic enzyme, and DNA-binding protein modulo. These proteins were found to be associated with pathways like growth promotion, notch signaling, Wnt signaling, neuromuscular junction (NMJ) signaling, bone morphogenetic protein (BMP) signaling, and other GABAergic mechanisms. Furthermore, mRNA levels of ACSL, ND75, Vha26, sesB, and Men genes were upregulated in both CLB and VGB-treated groups. These findings suggest that CLB and VGB could have the potential to induce genotoxicity and post-transcriptional modifications in humans, highlighting the importance of monitoring their effects when used as AEDs.
Collapse
Affiliation(s)
- R Shamapari
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India
| | - K Nagaraj
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India
| |
Collapse
|
9
|
Lv X, Nie C, Shi Y, Qiao Q, Gao J, Zou Y, Yang J, Chen L, Hou X. Ergothioneine ameliorates metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) by enhancing autophagy, inhibiting oxidative damage and inflammation. Lipids Health Dis 2024; 23:395. [PMID: 39609792 PMCID: PMC11604011 DOI: 10.1186/s12944-024-02382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatosis liver disease (MASLD) is one of the most common metabolic liver diseases around the world, whose prevalence continues to increase. Currently, there are few medications to treat MASLD. Ergothioneine is a natural compound derived from mushrooms whose sulfhydryl groups confer unique antioxidant, anti-inflammatory and detoxifying effects. Currently, research on the therapeutic effects of ergothioneine in MASLD is unknown. Therefore, this study explored the effect and mechanism of EGT in MASLD. METHODS The ameliorative effects and mechanisms of ergothioneine on MASLD were evaluated using HFD mice and PA-treated AML12 cells. Mouse body weight, body fat, IPGTT, IPITT, immunohistochemistry, serum biochemical indices, and staining of liver sections were assayed to verify the protective role of ergothioneine in MASLD. RNA-seq was applied to explore the mechanism of action of ergothioneine. The role of ergothioneine in AML12 was confirmed by western blotting, qPCR, ELISA, Oil Red O staining, flow cytometry, and ROS assays. Subsequently, the 3-methyladenine (3-MA, an autophagy inhibitor) was subsequently used to confirm that ergothioneine alleviated MASLD by promoting autophagy. RESULTS Ergothioneine reduced body weight, body fat and blood lipids, and improved insulin resistance and lipid and glycogen deposition in MASLD mice. Furthermore, ergothioneine was found to increase autophagy levels and attenuate oxidative damage, inflammation, and apoptosis. In contrast, intervention with 3-MA abrogated these effects, suggesting that ergothioneine ameliorated effects by promoting autophagy. CONCLUSION Ergothioneine may be a drug with great therapeutic potential for MASLD. Furthermore, this protective effect was mediated through the activation of autophagy.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Chenyu Nie
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Yihan Shi
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Qincheng Qiao
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Jing Gao
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Ying Zou
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Jingwen Yang
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
| | - Li Chen
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong, 250012, China
| | - Xinguo Hou
- Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Li Xia district, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong, 250012, China.
| |
Collapse
|
10
|
Bodenstab ML, Varghese RT, Iacobellis G. Cardio-Lipotoxicity of Epicardial Adipose Tissue. Biomolecules 2024; 14:1465. [PMID: 39595641 PMCID: PMC11591820 DOI: 10.3390/biom14111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Epicardial adipose tissue is a unique visceral adipose tissue depot that plays a crucial role in myocardial metabolism. Epicardial adipose tissue is a major source of energy and free fatty acids for the adjacent myocardium. However, under pathological conditions, epicardial fat can affect the heart through the excessive and abnormal influx of lipids. The cardio-lipotoxicity of the epicardial adipose tissue is complex and involves different pathways, such as increased inflammation, the infiltration of lipid intermediates such as diacylglycerol and ceramides, mitochondrial dysfunction, and oxidative stress, ultimately leading to cardiomyocyte dysfunction and coronary artery ischemia. These changes can contribute to the pathogenesis of various cardio-metabolic diseases including atrial fibrillation, coronary artery disease, heart failure, and obstructive sleep apnea. Hence, the role of the cardio-lipotoxicity of epicardial fat and its clinical implications are discussed in this review.
Collapse
Affiliation(s)
- Monica L. Bodenstab
- Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Ron T. Varghese
- Sleep—Endocrinology Integrated Clinic, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
11
|
de Almeida Chuffa LG, Seiva FRF, Silveira HS, Cesário RC, da Silva Tonon K, Simão VA, Zuccari DAPC, Reiter RJ. Melatonin regulates endoplasmic reticulum stress in diverse pathophysiological contexts: A comprehensive mechanistic review. J Cell Physiol 2024; 239:e31383. [PMID: 39039752 DOI: 10.1002/jcp.31383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The endoplasmic reticulum (ER) is crucial for protein quality control, and disruptions in its function can lead to various diseases. ER stress triggers an adaptive response called the unfolded protein response (UPR), which can either restore cellular homeostasis or induce cell death. Melatonin, a safe and multifunctional compound, shows promise in controlling ER stress and could be a valuable therapeutic agent for managing the UPR. By regulating ER and mitochondrial functions, melatonin helps maintain cellular homeostasis via reduction of oxidative stress, inflammation, and apoptosis. Melatonin can directly or indirectly interfere with ER-associated sensors and downstream targets of the UPR, impacting cell death, autophagy, inflammation, molecular repair, among others. Crucially, this review explores the mechanistic role of melatonin on ER stress in various diseases including liver damage, neurodegeneration, reproductive disorders, pulmonary disease, cardiomyopathy, insulin resistance, renal dysfunction, and cancer. Interestingly, while it alleviates the burden of ER stress in most pathological contexts, it can paradoxically stimulate ER stress in cancer cells, highlighting its intricate involvement in cellular homeostasis. With numerous successful studies using in vivo and in vitro models, the continuation of clinical trials is imperative to fully explore melatonin's therapeutic potential in these conditions.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Henrique S Silveira
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Roberta Carvalho Cesário
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Karolina da Silva Tonon
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinicius Augusto Simão
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Debora Aparecida P C Zuccari
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, Texas, USA
| |
Collapse
|
12
|
Mai P, Li Q, Li S, Wang C, Xu S, Zhang K, Luo N. The Association between Fatty Liver Index and Lower Limb Arterial Calcification in Patients with Type 2 Diabetes Mellitus. Rev Cardiovasc Med 2024; 25:362. [PMID: 39484141 PMCID: PMC11522770 DOI: 10.31083/j.rcm2510362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 11/03/2024] Open
Abstract
Background Peripheral arterial calcification is a prevalent condition in patients with type 2 diabetes mellitus (T2DM), resulting in lower-limb amputation and reduced life quality. Non-alcoholic fatty liver disease (NAFLD), which can be simply evaluated using the fatty liver index (FLI), is closely associated with T2DM development. In this study, we aimed to explore the relationship between FLI and lower limb arterial calcification (LLAC) in T2DM patients and to reveal the value of T2DM patients with NAFLD in predicting the occurrence of LLAC. Methods A total of 77 T2DM patients with LLAC who underwent comprehensive physical and health examinations, serological examinations, as well as lower limb computed tomography imaging at Sun Yat-sen Memorial Hospital of Sun Yat-sen University between January 2018 and January 2019 were enrolled in this study. The FLI was calculated using body mass index, waist circumference, triglycerides, and γ-glutamyl transferase. Additionally, LLAC was evaluated using computed tomography with the Agatston scoring algorithm. The patients were divided into three groups based on their FLI values: Non-liver disease group (FLI <30, n = 29), borderline-liver disease group (30 ≤ FLI < 60, n = 32), and NAFLD group (FLI ≥60, n = 16). Univariate and multivariate binary logistic regression analyses were employed to investigate the association between FLI and LLAC in T2DM patients. Furthermore, differences in LLAC among groups were analyzed using post-hoc multiple comparisons and ordinal logistic regression model analysis. Results Univariate and multivariate analyses showed that age and FLI influenced LLAC severity in T2DM patients. Moreover, T2DM patients in the NAFLD group had significantly lower LLAC scores than those in the Non-liver disease group. The correlation analysis showed that FLI was negatively associated with LLAC scores (R = -0.31, p = 0.006), while age was positively associated (R = 0.361, p = 0.001). Conclusions Our study revealed an inverse relationship between FLI and the degree of LLAC. This indicates that, based on evidence in the current research, NAFLD may not be reliable as a predictor of LLAC in T2DM patients.
Collapse
Affiliation(s)
- Peibiao Mai
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 518000 Shenzhen, Guangdong, China
| | - Qilong Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, 510000 Guangzhou, Guangdong, China
| | - Sijin Li
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 518000 Shenzhen, Guangdong, China
| | - Chunhong Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, 510000 Guangzhou, Guangdong, China
| | - Shuwan Xu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 518000 Shenzhen, Guangdong, China
| | - Kun Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, 510000 Guangzhou, Guangdong, China
- Department of Cardiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107 Shenzhen, Guangdong, China
| | - Niansang Luo
- Department of Cardiology, Sun Yat-sen Memorial Hospital, 510000 Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Chang MC, Wang SR, Lin DPC, Chang HH. Hepatic inflammation, ballooning, and pyknosis caused by LED light exposure in a mouse model, with differential effects by age and gender. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116984. [PMID: 39265263 DOI: 10.1016/j.ecoenv.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Light-emitting diode (LED) is commonly used in lighting and digital devices in modern life, which delivers higher levels of blue light than other light sources. Previous work indicated that exposure to blue lights increases serum oxidative stress and affects hepatic functions in animals. However, the detailed hepatic pathogenesis caused by blue lights remains largely elusive. This study investigated the characteristics of hepatic injuries caused by LED light exposure in a mouse model. C57BL/6 mice were exposed the LED lights at 1000 lux, 12 h per day for 45 days or at 4500 lux, 1 h per day for 7 days. The mice were aged 8 weeks or 36 weeks in both genders and maintained under a 12 h light/dark cycle without alteration of diet pattern. Liver tissue sections were obtained for hematoxylin and eosin (H&E) and immunohistochemical staining. The mice with 1000 lux exposure displayed severe liver injuries, including inflammation, ballooning, and pyknosis, which were found to a lesser extent in the 4500 lux mice, and aging aggravated the hepatic injuries. The hepatocellular ballooning was found more severe in the males than the females. In contrast, the females expressed the F4/80 and TNF-α inflammatory markers more evidently. Taken together, LED light exposure may have detrimental effects on liver health, particularly in vulnerable groups such as the elderly and the females with excessive exposure to LED lights, even if they maintain a normal diet and regular light/dark cycles. The potential risk should be considered by both the clinicians and the public.
Collapse
Affiliation(s)
- Min-Chun Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Rong Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taiwan; Department of Ophthalmology, Chung Shan Medical University Hospital, Taiwan.
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Ophthalmology, Chung Shan Medical University Hospital, Taiwan.
| |
Collapse
|
14
|
Kossiva L, Kakleas K, Christodouli F, Soldatou A, Karanasios S, Karavanaki K. Chronic Use of Artificial Sweeteners: Pros and Cons. Nutrients 2024; 16:3162. [PMID: 39339762 PMCID: PMC11435027 DOI: 10.3390/nu16183162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past few decades, the scientific community has been highly concerned about the obesity epidemic. Artificial sweeteners are compounds that mimic the sweet taste of sugar but have no calories or carbohydrates; hence, they are very popular among patients suffering from diabetes or obesity, aiming to achieve glycemic and/or weight control. There are four different types of sweeteners: artificial, natural, rare sugars, and polyols. Artificial and natural sweeteners are characterized as non-nutritional sweeteners (NNSs) since they do not contain calories. The extended use of sweeteners has been reported to have a favorable impact on body weight and glycemic control in patients with type 2 diabetes (T2DM) and on tooth decay prevention. However, there is concern regarding their side effects. Several studies have associated artificial sweeteners' consumption with the development of insulin resistance, nonalcoholic fatty liver disease (NAFLD), gastrointestinal symptoms, and certain types of cancer. The present review focuses on the description of different types of sweeteners and the benefits and possible deleterious effects of the chronic consumption of NNSs on children's health. Additionally, possible underlying mechanisms of the unfavorable effects of NNSs on human health are described.
Collapse
Affiliation(s)
- Lydia Kossiva
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Kostas Kakleas
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Foteini Christodouli
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Alexandra Soldatou
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Spyridon Karanasios
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Kyriaki Karavanaki
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Children's Hospital, 11527 Athens, Greece
| |
Collapse
|
15
|
Sun Z, Wei Y, Xu Y, Jiao J, Duan X. The use of traditional Chinese medicine in the treatment of non-alcoholic fatty liver disease: A review. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 12:100475. [DOI: 10.1016/j.prmcm.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Yan H, Zhao Z, Li W. Nitrite exposure leads to glycolipid metabolic disorder via the heme-HO pathway in teleost. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116653. [PMID: 38964066 DOI: 10.1016/j.ecoenv.2024.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Nitrite is the most common nitrogen-containing compound in nature. It is widely used in food processing like in pickled foods so it has caused widespread public concern about the safety of nitrites due to the formation of nitrosamine, a carcinogen, during the food process. Recent research has shown nitrite has therapeutic potential for cardiovascular disease due to its similar function to NO, yet the safety of oral nitrite and the physiological and biochemical responses induced after oral administration still require further validation. In addition, the relationship between nitrite and glycolipid metabolism still needs to be elucidated. As aquatic animals, fish are more susceptible to nitrite compared to mammals. Herein, we utilized tilapia (Oreochromis niloticus) as an animal model to explore the relationship between nitrite and glycolipid metabolism in organisms. In the present study, we found that nitrite elicited a hypoxic metabolic response in tilapia and deepened this metabolic response under the co-stress of the pathogenic bacterium S.ag (Streptococcus agalactiae). In addition, nitrite-induced elevation of MetHb (Methemoglobin) and its by-product heme was involved in the metabolic response to nitrite-induced hypoxia through the HO/CO pathway, which has not yet been mentioned in previous studies. Moreover, heme affected hepatic metabolic responses through the ROS-ER stress-VLDL pathway. These findings, for the first time, reveal that nitrite exposure leads to glycolipid metabolic disorder via the heme-HO pathway in teleost. It not only provides new insights into the results of nitrite on the body but also is beneficial for developing healthy strategies for fish farming.
Collapse
Affiliation(s)
- Haijun Yan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zaoya Zhao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
17
|
Choudhury A, Singh SP, Desmukh A, Sahoo B, Eslam M. Post-Liver Transplant Metabolic Syndrome. J Clin Exp Hepatol 2024; 14:101368. [PMID: 38523736 PMCID: PMC10960134 DOI: 10.1016/j.jceh.2024.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the second most frequent cause of liver transplantation following alcoholic liver disease. With longer follow-up and increased survival rates, the occurrence rate of the metabolic syndrome is increasing with time among liver transplant recipients. Reappearances of non-alcoholic fatty liver disease after transplantation, both as recurring cases and new instances, are prevalent; nonetheless, the recurrence of fibrosis is minimal. Recognizing populations at elevated risk and enhancing the management of metabolic-related conditions are crucial for maintaining a healthy transplanted organ, particularly considering the prolonged utilization of immunosuppressive treatments. Furthermore, NASH-related cirrhosis patients who had transplant are at a greater risk of cardiovascular, renal events and increased incidence of cancer, necessitating a unique care strategy. This review discusses post-transplant metabolic syndrome, risk factors, pathogenesis, diagnosis, prevention strategy, recurrent and de novo NAFLD and customized immunosuppression.
Collapse
Affiliation(s)
- Ashok Choudhury
- Dept of Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Satender P. Singh
- Dept of Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Akhil Desmukh
- Dept of Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bishnupriya Sahoo
- Associate Professor of Pediatrics, Consultant Pediatric Gastroenterology, Hepatology and Liver Transplant, SGT University, Gurugram, Haryana, India
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| |
Collapse
|
18
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
19
|
Huang X, Jiang F, Ma Y, Zhu K, Wang Z, Hua Z, Yu J, Zhang L. A bibliometric analysis of endoplasmic reticulum stress and atherosclerosis. Front Physiol 2024; 15:1392454. [PMID: 38938744 PMCID: PMC11210825 DOI: 10.3389/fphys.2024.1392454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The mechanisms underlying the occurrence and development of atherosclerosis (AS) are diverse, among which endoplasmic reticulum stress (ERS) is an important mechanism that should not be overlooked. However, up to now, there has been no bibliometric study on the relationship between ERS and AS. To understand the research progress in ERS and AS, this paper conducted a statistical analysis of publications in this field using bibliometrics. A total of 1,035 records were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and the R package "bibliometric" were used to analyze the spatiotemporal distribution, countries, authors, institutions, journals, references, and keywords of the literature, and to present the basic information of this field through visualized maps, as well as determine the collaboration relationships among researchers in this field. This field has gradually developed and stabilized over the past 20 years. The current research hotspots in this field mainly include the relationship between ERS and AS-related cells, the mechanisms by which ERS promotes AS, related diseases, and associated cytokines, etc. Vascular calcification, endothelial dysfunction, NLRP3 inflammasome, and heart failure represent the frontier research in this field and are becoming new research hotspots. It is hoped that this study will provide new insights for research and clinical work in the field of ERS and AS.
Collapse
Affiliation(s)
- Xinyu Huang
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Feng Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Yongbo Ma
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Kunpeng Zhu
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhenyuan Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhen Hua
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| |
Collapse
|
20
|
Fan Y, Li S, Yang X, Bai S, Tang M, Zhang X, Lu C, Ji C, Du G, Qin Y. Multi-omics approach characterizes the role of Bisphenol F in disrupting hepatic lipid metabolism. ENVIRONMENT INTERNATIONAL 2024; 187:108690. [PMID: 38685157 DOI: 10.1016/j.envint.2024.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Bisphenol F (BPF), a substitute for bisphenol A (BPA), is ubiquitous existed in various environmental media. Exposure to BPF may promote non-alcoholic fatty liver disease (NAFLD), while the potential mechanism is still unknown. In current study, we used in vitro and in vivo model to evaluate its hepatotoxicity and molecular mechanism. Using multi-omics approach, we found that BPF exposure led to changes in hepatic transcriptome, metabolome and chromatin accessible regions that were enriched for binding sites of transcription factors in bZIP family. These alterations were enriched with pathways integral to the endoplasmic reticulum stress and NAFLD. These findings suggested that BPF exposure might reprogram the chromatin accessibility and enhancer landscape in the liver, with downstream effects on genes associated with endoplasmic reticulum stress and lipid metabolism, which relied on bZIP family transcription factors. Overall, our study describes comprehensive molecular alterations in hepatocytes after BPF exposure and provides new insights into the understanding of the hepatoxicity of BPF.
Collapse
Affiliation(s)
- Yun Fan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shiqi Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiancheng Yang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Tang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueer Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yufeng Qin
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Lin H, Guo X, Liu J, Tang Y, Chen L, Chen H, Zhao Y, Wang L, Li H, Yu J, Yao P. Ethanol-Induced Hepatic Ferroptosis Is Mediated by PERK-Dependent MAMs Formation: Preventive Role of Quercetin. Mol Nutr Food Res 2024; 68:e2300343. [PMID: 38501770 DOI: 10.1002/mnfr.202300343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/05/2023] [Indexed: 03/20/2024]
Abstract
SCOPE Iron deposition is frequently observed in alcoholic liver disease (ALD), which indicates a potential role of ferroptosis in its development. This study aims to explore the effects of quercetin on ferroptosis in ALD and elucidates the underlying mechanism involving the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs) mediated by protein kinase RNA-like endoplasmic reticulum kinase (PERK). METHODS AND RESULTS C57BL/6J mice are fed either a regular or an ethanol-containing liquid diet (with 28% energy form ethanol) with or without quercetin supplementation (100 mg kg-1 BW) for 12 weeks. Ethanol feeding or treatment induced ferroptosis in mice and AML12 cells, which is associated with increased MAMs formation and PERK expression within MAMs. Quercetin attenuates these changes and protects against ethanol-induced liver injury. The antiferroptotic effect of quercetin is abolished by ferroptosis inducers, but mimicked by ferroptosis inhibitors and PERK knockdown. The study demonstrates that PERK structure, rather than its kinase activity (transfected with the K618A site mutation that inhibits kinase activity-ΔK plasmid or protein C terminal knockout-ΔC plasmid of PERK), mediates the enhanced MAMs formation and ferroptosis during the ethanol exposure. CONCLUSION Quercetin ameliorates ethanol-induced liver injury by inhibiting ferroptosis via modulating PERK-dependent MAMs formation.
Collapse
Affiliation(s)
- Hongkun Lin
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
- Department of Nutrition, School of Public Health, Wuhan University, Wuhan, 430071, P. R. China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Jingjing Liu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, 450016, P. R. China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Li Chen
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Ying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Jiasheng Yu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
- Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| |
Collapse
|
22
|
de Oliveira E Silva AM, Pereira RO, Oliveira AKDS, Harris FS, de Melo ILP, Almeida-Souza TH, Yoshime LT, Dos Santos Melo C, Lopes Dos Santos J, de Andrade-Wartha ERS, Cogliati B, Granato D, Mancini-Filho J. Ameliorative effects of aqueous extract from rosemary on oxidative stress and inflammation pathways caused by a high-fat diet in C57BL/6 mice. Appl Physiol Nutr Metab 2024; 49:459-472. [PMID: 38048548 DOI: 10.1139/apnm-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Rosemary is an herb exhibits biological properties, attenuates inflammation, oxidative stress, and improves lipid profile. Here, we evaluated the effects of rosemary aqueous extract (RE) on mice fed with a high-fat diet (HFD). Male C57BL/6 mice were administered a control diet or HFD for 10 weeks. The treated groups received RE in the diet at different concentrations: 25, 250, and 500 mg/100 g. After 10 weeks, serum concentrations of glucose, lipid, insulin, leptin, adiponectin, and cytokines were evaluated and the oxygen radical absorbance capacity was determined. Histological analysis was performed to determine the concentrations of triacylglycerides (TG), total cholesterol, cytokines, and antioxidant enzymes as well as the expression of genes involved in lipid metabolism, oxidative stress, and inflammation. The dietary RE ameliorated HFD-induced weight gain, adipose tissue weight, glucose intolerance, and insulin, leptin, and free fatty acid levels. Reduction in hepatic TG deposition was observed. The levels of inflammatory cytokines decreased, and the expression of genes involved in lipid metabolism increased. RE mitigated oxidative stress and reduced the production of reactive oxygen species in HepG2 and 3T3-L1 cells. Therefore, RE is a potential therapeutic agent for the prevention of inflammation and oxidative stress outcomes associated with obesity.
Collapse
Affiliation(s)
- Ana Mara de Oliveira E Silva
- Nutrition Sciences Graduate Program, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | - Raquel Oliveira Pereira
- Health Sciences Graduate Program, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | | | - Fernanda Santana Harris
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Illana Louise Pereira de Melo
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | | | - Luciana Tedesco Yoshime
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Caroline Dos Santos Melo
- Nutrition Sciences Graduate Program, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Jymmys Lopes Dos Santos
- Department of Morphology, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | | | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jorge Mancini-Filho
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Zhang R, Zhang Q, Cui Z, Huang B, Ma H. Dimethyl fumarate restores Ca 2+ dyshomeostasis through activation of the SIRT1 signal to treat nonalcoholic fatty liver disease. Life Sci 2024; 341:122505. [PMID: 38364937 DOI: 10.1016/j.lfs.2024.122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by an excessive lipid accumulation in the liver, with a global prevalence of approximately 25 %. While early-stage steatosis is reversible and can be intervened upon, it has the potential to progress to some serious complications, including cirrhosis and even liver cancer. Dimethyl fumarate (DMF), a derivative of fumaric acid shows promise in intervening in certain diseases. However, the precise effect and underlying mechanism of DMF on hepatic steatosis remain unclear. In this study, we demonstrated that DMF mitigates hepatic steatosis in mice subjected to high-fat/high-cholesterol (HFHC) diets. Meanwhile, our in vivo and in vitro results showed that DMF relieves lipid accumulation, oxidative stress, and endoplasmic reticulum (ER) stress. Mechanically, our findings revealed that the effect of DMF on reducing lipid accumulation is linked to the restoration of Ca2+ homeostasis. Furthermore, we found that activation of the SIRT1 signal by DMF plays an important role in correcting the mishandling of the Ca2+ signal, and knockdown of SIRT1 expression reverses the beneficial role of DMF PA-incubated AML12 cells. In conclusion, our results suggested DMF's amelioration of hepatic steatosis is related to the activation of SIRT1-mediated Ca2+ signaling.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - ZiYi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - BenZeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Mohammadpour-Asl S, Roshan-Milani B, Roshan-Milani S, Saboory E, Ghobadian B, Chodari L. Endoplasmic reticulum stress PERK-ATF4-CHOP pathway is involved in non-alcoholic fatty liver disease in type 1 diabetic rats: The rescue effect of treatment exercise and insulin-like growth factor I. Heliyon 2024; 10:e27225. [PMID: 38468961 PMCID: PMC10926145 DOI: 10.1016/j.heliyon.2024.e27225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Endoplasmic Reticulum Stress (ERS) is a key factor in the development of Non-Alcoholic Fatty Liver Disease (NAFLD) in diabetes. The current study aimed to examine the effects of exercise and IGF-I on ERS markers in liver tissue. Rats were divided into five groups (n = 8 per group), including control (CON), diabetes (DIA), diabetes + exercise (DIA + EX), diabetes + IGF-I (DIA + IGF-I), and diabetes + exercise + IGF-I (DIA + EX + IGF-I). Type 1 diabetes was induced by an I.P. injection of streptozotocin (60 mg/kg). After 30 days of treatment with exercise or IGF-I alone or in combination, liver tissue was assessed for caspase 12, 8, and CHOP protein levels, and expression of ERS markers (ATF-6, PERK, IRE-1A) and lipid metabolism-involved genes (FAS, FXR, SREBP-1c) by western immunoblotting. In addition, for the evaluation of histopathological changes in the liver, Hematoxylin - Eosin and Masson's Trichrome staining were done. Compared to the control group, diabetes significantly caused liver fibrosis, induced ERS, increased caspase 12 and 8 levels in the liver, and changed expression levels of genes associated with lipid metabolism, including FAS, FXR, and SREBP-1c. Treatment with either exercise or IGF-I reduced fibrosis levels suppressed ER stress markers and apoptosis, and improved expression of genes associated with lipid metabolism. In addition, simultaneous treatment with exercise and IGF-I showed a synergistic effect compared to DIA + E and DIA + IGF-I. The results suggest that IGF-1 and exercise reduced liver fibrosis possibly by reducing ERS, creating adaptive ER stress status, and improving protein folding.
Collapse
Affiliation(s)
- Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shiva Roshan-Milani
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Department of Addiction Studies, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bijan Ghobadian
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
25
|
Tarantino G, Citro V. Could Adverse Effects of Antibiotics Due to Their Use/Misuse Be Linked to Some Mechanisms Related to Nonalcoholic Fatty Liver Disease? Int J Mol Sci 2024; 25:1993. [PMID: 38396671 PMCID: PMC10888279 DOI: 10.3390/ijms25041993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Nonalcoholic fatty liver disease, recently re-named metabolic dysfunction-associated steatotic fatty liver disease, is considered the most prevalent liver disease worldwide. Its molecular initiation events are multiple and not always well-defined, comprising insulin resistance, chronic low-grade inflammation, gut dysbiosis, and mitochondrial dysfunction, all of them acting on genetic and epigenetic grounds. Nowadays, there is a growing public health threat, which is antibiotic excessive use and misuse. This widespread use of antibiotics not only in humans, but also in animals has led to the presence of residues in derived foods, such as milk and dairy products. Furthermore, antibiotics have been used for many decades to control certain bacterial diseases in high-value fruit and vegetables. Recently, it has been emphasised that antibiotic-induced changes in microbial composition reduce microbial diversity and alter the functional attributes of the microbiota. These antibiotic residues impact human gut flora, setting in motion a chain of events that leads straight to various metabolic alterations that can ultimately contribute to the onset and progression of NAFLD.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Medical School of Naples, Federico II University, 80131 Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, Umberto I Hospital, Nocera Inferiore (SA), 84014 Nocera Inferiore, Italy;
| |
Collapse
|
26
|
Wang W, Zhang Y, Geng X, Li H, Wang X, Zhang Y, Zhao H. Zinc attenuates arsenic overdose-induced brain damage via PERK/ATF6 and TLR/MyD88/NF-κB pathways. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109806. [PMID: 38042229 DOI: 10.1016/j.cbpc.2023.109806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Exposure to arsenic (As), a widespread non-metallic toxicant in nature, often results in neurotoxicity, although the exact mechanism is unknown. Zinc (Zn) is a powerful nutrient often thought to be beneficial for growth, development and immunity. Whether Zn can rescue brain damage caused by As contamination remains to be demonstrated. Therefore, in this study, a 30-day model of As poisoning (2.83 mg/L) in carp was established and treated with Zn (1 mg/L) to investigate the detoxification mechanism involved. Histological observations showed that As induced the loosening of the molecular layer structure of the cerebellum and the dissolution or even disappearance of nuclei, accompanied by the occurrence of microthrombi in the granular layer, and the addition of Zn attenuated such As-induced damage. Further mechanistic studies indicated that Zn ameliorated As exposure-induced abnormalities in antioxidant capacity (decreased CAT and Cu/Zn-SOD), activation of the Nrf2/keap1 pathway and endoplasmic reticulum stress (ERs), which is a key factor in As-induced brain damage. ERs (high expression of PERK, ATF6, CHOP, eiF2α and GRP78) and inflammation (overexpression of TLR2, TLR4, MyD88, IKK, NF-κB, IL-1β and IL-6 and low expression of IκBα and IL-10). We suggest that Zn can alleviate excessive As-induced brain damage by attenuating As-induced oxidative stress, PERK/ATF6 and TLR/MyD88/NF-κB pathways. The present study fills in the preventive mechanism of As injury in fish and provides the possibility of prevention and control of As pollution-induced brain tissue injury by Zn rescue.
Collapse
Affiliation(s)
- Weijun Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiren Geng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hong Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xuehuan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yingzi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
27
|
Habibullah M, Jemmieh K, Ouda A, Haider MZ, Malki MI, Elzouki AN. Metabolic-associated fatty liver disease: a selective review of pathogenesis, diagnostic approaches, and therapeutic strategies. Front Med (Lausanne) 2024; 11:1291501. [PMID: 38323033 PMCID: PMC10845138 DOI: 10.3389/fmed.2024.1291501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Background Metabolic associated fatty liver disease (MAFLD) is a novel terminology introduced in 2020 to provide a more accurate description of fatty liver disease associated with metabolic dysfunction. It replaces the outdated term nonalcoholic fatty liver disease (NAFLD) and aims to improve diagnostic criteria and tailored treatment strategies for the disease. NAFLD, the most prevalent liver disease in western industrialized nations, has been steadily increasing in prevalence and is associated with serious complications such as cirrhosis and hepatocellular carcinoma. It is also linked to insulin resistance syndrome and cardiovascular diseases. However, current studies on NAFLD have limitations in meeting necessary histological endpoints. Objective This literature review aims to consolidate recent knowledge and discoveries concerning MAFLD, integrating the diverse aspects of the disease. Specifically, it focuses on analyzing the diagnostic criteria for MAFLD, differentiating it from NAFLD and alcoholic fatty liver disease (AFLD), and exploring the epidemiology, clinical manifestations, pathogenesis, and management approaches associated with MAFLD. The review also explores the associations between MAFLD and other conditions. It discusses the heightened mortality risk associated with MAFLD and its link to chronic kidney disease (CKD), showing that MAFLD exhibits enhanced diagnostic accuracy for identifying patients with CKD compared to NAFLD. The association between MAFLD and incident/prevalent CKD is supported by cohort studies and meta-analyses. Conclusion This literature review highlights the importance of MAFLD as a distinct terminology for fatty liver disease associated with metabolic dysfunction. The review provides insights into the diagnostic criteria, associations with CKD, and management approaches for MAFLD. Further research is needed to develop more accurate diagnostic tools for advanced fibrosis in MAFLD and to explore the underlying mechanisms linking MAFLD with other conditions. This review serves as a valuable resource for researchers and healthcare professionals seeking a comprehensive understanding of MAFLD.
Collapse
Affiliation(s)
| | - Khaleed Jemmieh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amr Ouda
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | - Abdel-Naser Elzouki
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Internal Medicine Department, Hamad General Hospital, Doha, Qatar
- Weill Cornell Medical Qatar, Doha, Qatar
| |
Collapse
|
28
|
Yang M, Yao X, Xia F, Xiang S, Tang W, Zhou B. Hugan Qingzhi tablets attenuates endoplasmic reticulum stress in nonalcoholic fatty liver disease rats by regulating PERK and ATF6 pathways. BMC Complement Med Ther 2024; 24:36. [PMID: 38216941 PMCID: PMC10785447 DOI: 10.1186/s12906-024-04336-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, promoting lipid metabolism disorders and steatohepatitis, contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablets (HQT) has a definite effect in the clinical treatment of NAFLD patients, but its mechanism is still unclear. This study aims to investigate the effects of HQT on ER stress in the liver tissues of NAFLD rats and explore the underlying mechanism. METHODS The NAFLD rat model was managed with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily basis to the HFD groups. Biochemical markers, pro-inflammatory cytokines, liver histology were assayed to evaluate HQT effects in HFD-induced NAFLD rats. Furthermore, the expression of ER stress-related signal molecules including glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), p-PERK, eukaryotic translation initiation factor 2α (EIF2α), p-EIF2α, activating transcription factor 4 (ATF4), acetyl-coenzyme A-carboxylase (ACC), activating transcription factor (ATF6), and nuclear factor-kappa B-p65 (NF-κB-p65) were detected by western blot and/or qRT-PCR. RESULTS The histopathological characteristics and biochemical data indicated that HQT exhibited protective effects on HFD-induced NAFLD rats. Furthermore, it caused significant reduction in the expression of ERS markers, such as GRP78, PERK, p-PERK, and ATF6, and subsequently downregulated the expression of EIF2α, p-EIF2α ATF4, ACC, and NF-κB-p65. CONCLUSIONS The results suggested that HQT has protective effect against hepatic steatosis and inflammation in NAFLD rats by attenuating ER stress, and the potential mechanism is through inhibition of PERK and ATF6 pathways.
Collapse
Affiliation(s)
- Miaoting Yang
- Department of Pharmacy, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Xiaorui Yao
- Department of Pharmacy, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Fan Xia
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Shijian Xiang
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Waijiao Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Benjie Zhou
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
29
|
Adams VR, Collins LB, Williams TI, Holmes J, Hess P, Atkins HM, Scheidemantle G, Liu X, Lodge M, Johnson AJ, Kennedy A. Myeloid cell MHC I expression drives CD8 + T cell activation in nonalcoholic steatohepatitis. Front Immunol 2024; 14:1302006. [PMID: 38274832 PMCID: PMC10808415 DOI: 10.3389/fimmu.2023.1302006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Background & aims Activated CD8+ T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8+ T cell activation in NASH are largely limited. Specific CD8+ T cell subsets may become activated through metabolic signals or cytokines. However, studies in NASH have not evaluated the impact of antigen presentation or the involvement of specific antigens. Therefore, we determined if activated CD8+ T cells are dependent on MHC class I expression in NASH to regulate fibrosis and inflammation. Methods We used H2Kb and H2Db deficient (MHC I KO), Kb transgenic mice, and myeloid cell Kb deficient mice (LysM Kb KO) to investigate how MHC class I impacts CD8+ T cell function and NASH. Flow cytometry, gene expression, and histology were used to examine hepatic inflammation and fibrosis. The hepatic class I immunopeptidome was evaluated by mass spectrometry. Results In NASH, MHC class I isoform H2Kb was upregulated in myeloid cells. MHC I KO demonstrated protective effects against NASH-induced inflammation and fibrosis. Kb mice exhibited increased fibrosis in the absence of H2Db while LysM Kb KO mice showed protection against fibrosis but not inflammation. H2Kb restricted peptides identified a unique NASH peptide Ncf2 capable of CD8+ T cell activation in vitro. The Ncf2 peptide was not detected during fibrosis resolution. Conclusion These results suggest that activated hepatic CD8+ T cells are dependent on myeloid cell MHC class I expression in diet induced NASH to promote inflammation and fibrosis. Additionally, our studies suggest a role of NADPH oxidase in the production of Ncf2 peptide generation.
Collapse
Affiliation(s)
- Victoria R. Adams
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Leonard B. Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
| | - Taufika Islam Williams
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
- Department of Chemistry, NC State University, Raleigh, NC, United States
| | - Jennifer Holmes
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Paul Hess
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Hannah M. Atkins
- Center for Human Health and Environment, NC State University, Raleigh, NC, United States
- Division of Comparative Medicine, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Mareca Lodge
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| |
Collapse
|
30
|
Rao Y, Su R, Wu C, Chai X, Li J, Yang G, Wu J, Fu T, Jiang Z, Guo Z, Xu C, Huang L. Identification of a natural PLA2 inhibitor from the marine fungus Aspergillus sp. c1 for MAFLD treatment that suppressed lipotoxicity by inhibiting the IRE-1 α/XBP-1s axis and JNK signaling. Acta Pharm Sin B 2024; 14:304-318. [PMID: 38261820 PMCID: PMC10792964 DOI: 10.1016/j.apsb.2023.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 01/25/2024] Open
Abstract
Lipotoxicity is a pivotal factor that initiates and exacerbates liver injury and is involved in the development of metabolic-associated fatty liver disease (MAFLD). However, there are few reported lipotoxicity inhibitors. Here, we identified a natural anti-lipotoxicity candidate, HN-001, from the marine fungus Aspergillus sp. C1. HN-001 dose- and time- dependently reversed palmitic acid (PA)-induced hepatocyte death. This protection was associated with IRE-1α-mediated XBP-1 splicing inhibition, which resulted in suppression of XBP-1s nuclear translocation and transcriptional regulation. Knockdown of XBP-1s attenuated lipotoxicity, but no additional ameliorative effect of HN-001 on lipotoxicity was observed in XBP-1s knockdown hepatocytes. Notably, the ER stress and lipotoxicity amelioration was associated with PLA2. Both HN-001 and the PLA2 inhibitor MAFP inhibited PLA2 activity, reduced lysophosphatidylcholine (LPC) level, subsequently ameliorated lipotoxicity. In contrast, overexpression of PLA2 caused exacerbation of lipotoxicity and weakened the anti-lipotoxic effects of HN-001. Additionally, HN-001 treatment suppressed the downstream pro-apoptotic JNK pathway. In vivo, chronic administration of HN-001 (i.p.) in mice alleviated all manifestations of MAFLD, including hepatic steatosis, liver injury, inflammation, and fibrogenesis. These effects were correlated with PLA2/IRE-1α/XBP-1s axis and JNK signaling suppression. These data indicate that HN-001 has therapeutic potential for MAFLD because it suppresses lipotoxicity, and provide a natural structural basis for developing anti-MAFLD candidates.
Collapse
Affiliation(s)
- Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Rui Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Chenyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Xingxing Chai
- Laboratory Animal Center of Guangdong Medical University, Dongguan 523808, China
| | - Jinjian Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510275, China
| | - Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Junjie Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Tingting Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Zhongping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Zhikai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Congjun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| |
Collapse
|
31
|
Jiang H, Zang L. GLP-1/GLP-1RAs: New Options for the Drug Treatment of NAFLD. Curr Pharm Des 2024; 30:100-114. [PMID: 38532322 DOI: 10.2174/0113816128283153231226103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/14/2023] [Indexed: 03/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a global public health concern. Currently, the cornerstone of NAFLD treatment is lifestyle modification and, if necessary, weight loss. However, compliance is a challenge, and this approach alone may not be sufficient to halt and treat the more serious disease development, so medication is urgently needed. Nevertheless, no medicines are approved to treat NAFLD. Glucagon-like peptide-1 (GLP-1) is an enteropeptide hormone that inhibits glucagon synthesis, promotes insulin secretion, and delays gastric emptying. GLP-1 has been found in recent studies to be beneficial for the management of NAFLD, and the marketed GLP-1 agonist drugs have different degrees of effectiveness for NAFLD while lowering blood glucose. In this article, we review GLP-1 and its physiological roles, the pathogenesis of NAFLD, the correlation between NAFLD and GLP-1 signaling, and potential strategies for GLP-1 treatment of NAFLD.
Collapse
Affiliation(s)
- Haoran Jiang
- Laboratory of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linquan Zang
- Laboratory of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
32
|
Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, Li S, Long D, Feng L. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci 2023; 24:17514. [PMID: 38139341 PMCID: PMC10743953 DOI: 10.3390/ijms242417514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become an increasingly common disease in Western countries and has become the major cause of liver cirrhosis or hepatocellular carcinoma (HCC) in addition to viral hepatitis in recent decades. Furthermore, studies have shown that NAFLD is inextricably linked to the development of extrahepatic diseases. However, there is currently no effective treatment to cure NAFLD. In addition, in 2020, NAFLD was renamed metabolic dysfunction fatty liver disease (MAFLD) to show that its pathogenesis is closely related to metabolic disorders. Recent studies have reported that the development of MAFLD is inextricably associated with mitochondrial dysfunction in hepatocytes and hepatic stellate cells (HSCs). Simultaneously, mitochondrial stress caused by structural and functional disorders stimulates the occurrence and accumulation of fat and lipo-toxicity in hepatocytes and HSCs. In addition, the interaction between mitochondrial dysfunction and the liver-gut axis has also become a new point during the development of MAFLD. In this review, we summarize the effects of several potential treatment strategies for MAFLD, including antioxidants, reagents, and intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanni Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zheng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Choi RY, Lee MK. Effects of Mealworm Fermentation Extract and Soy Protein Mix Ratio on Hepatic Glucose and Lipid Metabolism in Obese-Induced Mice. Prev Nutr Food Sci 2023; 28:255-262. [PMID: 37842251 PMCID: PMC10567600 DOI: 10.3746/pnf.2023.28.3.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 10/17/2023] Open
Abstract
Previous studies found that mealworm fermentation extract (TMP) reduced alcoholic hepatic steatogenesis. This study examined how the ratio of TMP and soy protein (SP) mix affected glucose and lipid metabolism in obese mice given a high-fat diet (HFD). Mice were given HFD supplemented with 100% SP or the following three ratios of TMP and SP mix for 12 weeks: 20% (S4T1), 40% (S3T2), and 60% (S2T3) TMP. When compared to the SP group, the S2T3 group had considerably lower body weight gain and food consumption. When compared to the SP group, the S2T3 group had slightly lower blood insulin and leptin levels, as well as a lower homeostasis model assessment of insulin resistance score. The use of TMP instead of SP reduced the size of epididymal adipose tissue cells. An increase in the extent of substitution of SP with TMP inhibited the gene expression of hepatic fructolysis/gluconeogenesis (KHK, ALDOB, DLD, and FBP1), lipogenesis (FAS, SCD1, CD36, and DGAT2), and its transcriptional factors (PPARγ and ChREBP). Furthermore, the S2T3 group dramatically reduced the expression of hepatic genes implicated in endoplasmic reticulum stress (PDI) and antioxidant defense (SOD1). The 60% TMP mix, in particular, reduced the expression of hepatic glucose and lipid metabolismrelated genes in HFD-fed mice. The manufacturing of functional processed goods may be accomplished by combining SP and TMP in a 2:3 ratio.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Agricultural Biology, National Institution of Agricultural Sciences, Rural Development Administration, Jeonbuk 55365, Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922, Korea
| |
Collapse
|
34
|
Blas-García A, Apostolova N. Novel Therapeutic Approaches to Liver Fibrosis Based on Targeting Oxidative Stress. Antioxidants (Basel) 2023; 12:1567. [PMID: 37627562 PMCID: PMC10451738 DOI: 10.3390/antiox12081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic liver disease (CLD) constitutes a growing global health issue, with no effective treatments currently available. Oxidative stress closely interacts with other cellular and molecular processes to trigger stress pathways in different hepatic cells and fuel the development of liver fibrosis. Therefore, inhibition of reactive oxygen species (ROS)-mediated effects and modulation of major antioxidant responses to counteract oxidative stress-induced damage have emerged as interesting targets to prevent or ameliorate liver injury. Although many preclinical studies have shown that dietary supplements with antioxidant properties can significantly prevent CLD progression in animal models, this strategy has not proved effective to significantly reduce fibrosis when translated into clinical trials. Novel and more specific therapeutic approaches are thus required to alleviate oxidative stress and reduce liver fibrosis. We have reviewed the relevant literature concerning the crucial role of alterations in redox homeostasis in different hepatic cell types during the progression of CLD and discussed current pharmacological approaches to ameliorate fibrosis by reducing oxidative stress focusing on selective modulation of enzymatic oxidant sources, antioxidant systems and ROS-mediated pathogenic processes.
Collapse
Affiliation(s)
- Ana Blas-García
- Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Nadezda Apostolova
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Departamento de Farmacología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
| |
Collapse
|
35
|
Memaj P, Ouzerara Z, Jornayvaz FR. Role of Oxidative Stress and Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:11271. [PMID: 37511031 PMCID: PMC10379080 DOI: 10.3390/ijms241411271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a widely studied subject due to its increasing prevalence and links to diseases such as type 2 diabetes and obesity. It has severe complications, including nonalcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, and portal hypertension that can lead to liver transplantation in some cases. To better prevent and treat this pathology, it is important to understand its underlying physiology. Here, we identify two main factors that play a crucial role in the pathophysiology of NAFLD: oxidative stress and the key role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). We discuss the pathophysiology linking these factors to NAFLD pathophysiology.
Collapse
Affiliation(s)
- Plator Memaj
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Zayd Ouzerara
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - François R Jornayvaz
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
| |
Collapse
|
36
|
Ye H, Liu S, Chen Z, Cheng L, Yi L. A highly selective and sensitive endoplasmic reticulum-targeted probe reveals HOCl- and cisplatin-induced H 2S biogenesis in live cells. J Mater Chem B 2023. [PMID: 37254586 DOI: 10.1039/d3tb00863k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reactive oxygen species (ROS) and reactive sulfur species (RSS) are involved in many physiological processes and act as collaborators with crosstalk. As an important member of gasotransmitters and RSS, hydrogen sulfide (H2S) carries out signaling functions at submicromolar levels because of its high reactivity. Mechanisms of dynamic regulation of ROS and H2S production are poorly understood, and the development of a highly selective and organelle-targeted chemical tool will advance the further understanding of H2S chemical biology and ROS/RSS crosstalk. Herein, we report a highly selective and sensitive, endoplasmic reticulum (ER)-targeted fluorescent probe (ER-BODIPY-NBD) for revealing cisplatin-induced H2S biogenesis for the first time. The probe demonstrates a 152-fold fluorescence enhancement at 520 nm after reaction with H2S to release a bright BODIPY product (quantum yield 0.36). The probe is highly selective toward H2S over biothiols, ER-targeted, and biocompatible. In addition, the probe was successfully employed to track H2S biogenesis in live cells via stimulation from exogenous hypochlorous acid and the drug cisplatin.
Collapse
Affiliation(s)
- Haishun Ye
- Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Shanshan Liu
- Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Ziyi Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Long Yi
- Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| |
Collapse
|
37
|
Platko K, Lebeau PF, Nederveen JP, Byun JH, MacDonald ME, Bourgeois JM, Tarnopolsky MA, Austin RC. A Metabolic Enhancer Protects against Diet-Induced Obesity and Liver Steatosis and Corrects a Pro-Atherogenic Serum Profile in Mice. Nutrients 2023; 15:nu15102410. [PMID: 37242292 DOI: 10.3390/nu15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVE Metabolic Syndrome (MetS) affects hundreds of millions of individuals and constitutes a major cause of morbidity and mortality worldwide. Obesity is believed to be at the core of metabolic abnormalities associated with MetS, including dyslipidemia, insulin resistance, fatty liver disease and vascular dysfunction. Although previous studies demonstrate a diverse array of naturally occurring antioxidants that attenuate several manifestations of MetS, little is known about the (i) combined effect of these compounds on hepatic health and (ii) molecular mechanisms responsible for their effect. METHODS We explored the impact of a metabolic enhancer (ME), consisting of 7 naturally occurring antioxidants and mitochondrial enhancing agents, on diet-induced obesity, hepatic steatosis and atherogenic serum profile in mice. RESULTS Here we show that a diet-based ME supplementation and exercise have similar beneficial effects on adiposity and hepatic steatosis in mice. Mechanistically, ME reduced hepatic ER stress, fibrosis, apoptosis, and inflammation, thereby improving overall liver health. Furthermore, we demonstrated that ME improved HFD-induced pro-atherogenic serum profile in mice, similar to exercise. The protective effects of ME were reduced in proprotein convertase subtilisin/kexin 9 (PCSK9) knock out mice, suggesting that ME exerts it protective effect partly in a PCSK9-dependent manner. CONCLUSIONS Our findings suggest that components of the ME have a positive, protective effect on obesity, hepatic steatosis and cardiovascular risk and that they show similar effects as exercise training.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Jacqueline M Bourgeois
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 5Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
- Exerkine Corporation, MUMC, Hamilton, ON L8N 3Z5, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
38
|
Paoli A, Cerullo G. Investigating the Link between Ketogenic Diet, NAFLD, Mitochondria, and Oxidative Stress: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051065. [PMID: 37237931 DOI: 10.3390/antiox12051065] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Together with the global rise in obesity and metabolic syndrome, the prevalence of individuals who suffer from nonalcoholic fatty liver disease (NAFLD) has risen dramatically. NAFLD is currently the most common chronic liver disease and includes a continuum of liver disorders from initial fat accumulation to nonalcoholic steatohepatitis (NASH), considered the more severe forms, which can evolve in, cirrhosis, and hepatocellular carcinoma. Common features of NAFLD includes altered lipid metabolism mainly linked to mitochondrial dysfunction, which, as a vicious cycle, aggravates oxidative stress and promotes inflammation and, as a consequence, the progressive death of hepatocytes and the severe form of NAFLD. A ketogenic diet (KD), i.e., a diet very low in carbohydrates (<30 g/die) that induces "physiological ketosis", has been demonstrated to alleviate oxidative stress and restore mitochondrial function. Based on this, the aim of the present review is to analyze the body of evidence regarding the potential therapeutic role of KD in NAFLD, focusing on the interplay between mitochondria and the liver, the effects of ketosis on oxidative stress pathways, and the impact of KD on liver and mitochondrial function.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
39
|
Ren Q, Chen Y, Zhou Z, Cai Z, Jiao S, Huang W, Wang B, Chen S, Wang W, Cao Z, Yang Z, Deng L, Hu L, Zhang L, Li Z. Discovery of the First-in-Class Intestinal Restricted FXR and FABP1 Dual Modulator ZLY28 for the Treatment of Nonalcoholic Fatty Liver Disease. J Med Chem 2023; 66:6082-6104. [PMID: 37079895 DOI: 10.1021/acs.jmedchem.2c01918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) is increasing rapidly worldwide, and NASH has become a serious problem for human health. Recently, the selective activation of the intestinal farnesoid X receptor (FXR) was considered as a more promising strategy for the treatment of NASH with lesser side effects due to reduced systemic exposure. Moreover, the inhibition of intestinal fatty acid binding protein 1 (FABP1) alleviated obesity and NASH by reducing dietary fatty acid uptake. In this study, the first-in-class intestinal restricted FXR and FABP1 dual-target modulator ZLY28 was discovered by comprehensive multiparameter optimization studies. The reduced systemic exposure of ZLY28 might provide better safety by decreasing the on- and off-target side effects in vivo. In NASH mice, ZLY28 exerted robust anti-NASH effects by inhibiting FABP1 and activating the FXR-FGF15 signaling pathway in the ileum. With the above attractive efficacy and preliminary safety profiles, ZLY28 is worthy of further evaluation as a novel anti-NASH agent.
Collapse
Affiliation(s)
- Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
40
|
Sohouli MH, Rohani P, Hosseinzadeh M, Hekmatdoost A. Adherence to oxidative balance scores and lower odds of non-alcoholic fatty liver disease: a case-control study. Sci Rep 2023; 13:6140. [PMID: 37061551 PMCID: PMC10105695 DOI: 10.1038/s41598-023-33407-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Evidence has also shown that oxidative stress and systemic inflammation, or in other words, disruption of the oxidant and antioxidant balance, can play an important role in the initiation or progression of NAFLD. The purpose of this study was to investigate the associations between the oxidative balance scores (OBS) and the risk of NAFLD. 552 healthy and 340 patients adult over the age of 18 with NAFLD participated in this case-control research. A validated 168-item quantitative food frequency questionnaire (FFQ) and indicators of physical activity, obesity, and smoking status were used to assess OBS score. The connection between OBS and NAFLD was discovered using binary logistic regression. The mean (± SD) age and (body mass index) BMI of the study population was 40.22 ± 9.79 years and 29.06 ± 3.92 kg/m2, respectively. The mean ± SD of OBS was 41.48 ± 5.23. After adjustment for potential confounders, higher scores of adherence to the OBS conferred a protection for the presence of NAFLD (odds ratio [OR]: 0.29; 95% confidence interval [CI]: 0.15-0.49; P for trend < 0.001). The findings of the present study indicate an approximately 80% reduction in the odds of developing NAFLD with higher OBS adherence in the overall population. However, prospective studies are needed to further investigate this association.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hosseinzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences, No 7, West Arghavan St, Farahzadi Blvd, PO Box 19395-4741, Tehran, 1981619573, Iran.
| |
Collapse
|
41
|
Yan C, Peng T, Zhang T, Wang Y, Li N, Wang K, Jiang X. Molecular mechanisms of hepatotoxicity induced by compounds occurring in Evodiae Fructus. Drug Metab Rev 2023; 55:75-93. [PMID: 36803497 DOI: 10.1080/03602532.2023.2180027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Evodiae Fructus (EF) is a common herbal medicine with thousands of years of medicinal history in China, which has been demonstrated with many promising pharmacological effects on cancer, cardiovascular diseases and Alzheimer's disease. However, there have been increasing reports of hepatotoxicity associated with EF consumption. Unfortunately, in a long term, many implicit constituents of EF as well as their toxic mechanisms remain poorly understood. Recently, metabolic activation of hepatotoxic compounds of EF to generate reactive metabolites (RMs) has been implicated. Herein, we capture metabolic reactions relevant to hepatotoxicity of these compounds. Initially, catalyzed by the hepatic cytochrome P450 enzymes (CYP450s), the hepatotoxic compounds of EF are oxidized to generate RMs. Subsequently, the highly electrophilic RMs could react with nucleophilic groups contained in biomolecules, such as hepatic proteins, enzymes, and nucleic acids to form conjugates and/or adducts, leading to a sequence of toxicological consequences. In addition, currently proposed biological pathogenesis, including oxidative stress, mitochondrial damage and dysfunction, endoplasmic reticulum (ER) stress, hepatic metabolism disorder, and cell apoptosis are represented. In short, this review updates the knowledge on the pathways of metabolic activation of seven hepatotoxic compounds of EF and provides considerable insights into the relevance of proposed molecular hepatotoxicity mechanisms from a biochemical standpoint, for the purpose of providing a theoretical guideline for the rational application of EF in clinics.
Collapse
Affiliation(s)
- Caiqin Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Ting Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
42
|
Unraveling the Potential Role of Tecomella undulata in Experimental NASH. Int J Mol Sci 2023; 24:ijms24043244. [PMID: 36834657 PMCID: PMC9962064 DOI: 10.3390/ijms24043244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The pathophysiology of nonalcoholic steatohepatitis (NASH) is complex, owing to its diverse pathological drivers and, until recently, there were no approved drugs for this disease. Tecomella is a popular herbal medicine used to treat hepatosplenomegaly, hepatitis, and obesity. However, the potential role of Tecomella undulata in NASH has not yet been scientifically investigated. The administration of Tecomella undulata via oral gavage lowered body weight, insulin resistance, alanine transaminase (ALT), aspartate transaminase (AST), triglycerides, and total cholesterol in western diet sugar water (WDSW) fed mice but had no effect on chow diet normal water (CDNW) fed mice. Tecomella undulata improved steatosis, lobular inflammation, and hepatocyte ballooning and resolved NASH in WDSW mice. Furthermore, Tecomella undulata also alleviated the WDSW-induced Endoplasmic Reticulum stress and oxidative stress, enhanced antioxidant status, and thus reduced inflammation in the treated mice. Of note, these effects were comparable to saroglitazar, the approved drug used to treat human NASH and the positive control used in the study. Thus, our findings indicate the potential of Tecomella undulata to ameliorate WDSW-induced steatohepatitis, and these preclinical data provide a strong rationale for assessing Tecomella undulata for the treatment of NASH.
Collapse
|
43
|
Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: Pathophysiological Mechanisms and New Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11020468. [PMID: 36831004 PMCID: PMC9953066 DOI: 10.3390/biomedicines11020468] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the incidence of non-viral hepatocellular carcinoma (HCC) has increased dramatically, which is probably related to the increased prevalence of metabolic syndrome, together with obesity and type 2 diabetes mellitus (T2DM). Several epidemiological studies have established the association between T2DM and the incidence of HCC and have demonstrated the role of diabetes mellitus as an independent risk factor for the development of HCC. The pathophysiological mechanisms underlying the development of Non-alcoholic fatty liver disease (NAFLD) and its progression to Non-alcoholic steatohepatitis (NASH) and cirrhosis are various and involve pro-inflammatory agents, oxidative stress, apoptosis, adipokines, JNK-1 activation, increased IGF-1 activity, immunomodulation, and alteration of the gut microbiota. Moreover, these mechanisms are thought to play a significant role in the development of NAFLD-related hepatocellular carcinoma. Early diagnosis and the timely correction of risk factors are essential to prevent the onset of liver fibrosis and HCC. The purpose of this review is to summarize the current evidence on the association among obesity, NASH/NAFLD, T2DM, and HCC, with an emphasis on clinical impact. In addition, we will examine the main mechanisms underlying this complex relationship, and the promising strategies that have recently emerged for these diseases' treatments.
Collapse
|
44
|
Kumar P, Liu C, Suliburk J, Hsu JW, Muthupillai R, Jahoor F, Minard CG, Taffet GE, Sekhar RV. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci 2023; 78:75-89. [PMID: 35975308 PMCID: PMC9879756 DOI: 10.1093/gerona/glac135] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Elevated oxidative stress (OxS), mitochondrial dysfunction, and hallmarks of aging are identified as key contributors to aging, but improving/reversing these defects in older adults (OA) is challenging. In prior studies, we identified that deficiency of the intracellular antioxidant glutathione (GSH) could play a role and reported that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improved GSH deficiency, OxS, mitochondrial fatty-acid oxidation (MFO), and insulin resistance (IR). To test whether GlyNAC supplementation in OA could improve GSH deficiency, OxS, mitochondrial dysfunction, IR, physical function, and aging hallmarks, we conducted a placebo-controlled randomized clinical trial. METHODS Twenty-four OA and 12 young adults (YA) were studied. OA was randomized to receive either GlyNAC (N = 12) or isonitrogenous alanine placebo (N = 12) for 16-weeks; YA (N = 12) received GlyNAC for 2-weeks. Participants were studied before, after 2-weeks, and after 16-weeks of supplementation to assess GSH concentrations, OxS, MFO, molecular regulators of energy metabolism, inflammation, endothelial function, IR, aging hallmarks, gait speed, muscle strength, 6-minute walk test, body composition, and blood pressure. RESULTS Compared to YA, OA had GSH deficiency, OxS, mitochondrial dysfunction (with defective molecular regulation), inflammation, endothelial dysfunction, IR, multiple aging hallmarks, impaired physical function, increased waist circumference, and systolic blood pressure. GlyNAC (and not placebo) supplementation in OA improved/corrected these defects. CONCLUSION GlyNAC supplementation in OA for 16-weeks was safe and well-tolerated. By combining the benefits of glycine, NAC and GSH, GlyNAC is an effective nutritional supplement that improves and reverses multiple age-associated abnormalities to promote health in aging humans. Clinical Trials Registration Number: NCT01870193.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - Chun Liu
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - James Suliburk
- Department of Surgery
- Baylor College of Medicine, Houston, TX, USA
| | - Jean W Hsu
- Baylor College of Medicine, Houston, TX, USA
- Baylor-St. Luke’s Medical Center
| | - Raja Muthupillai
- Baylor-St. Luke’s Medical Center
- Baylor College of Medicine, Houston, TX, USA
| | - Farook Jahoor
- USDA/ARS Children’s Nutrition Research Center
- Baylor College of Medicine, Houston, TX, USA
| | - Charles G Minard
- Institute of Clinical and Translational Research
- Baylor College of Medicine, Houston, TX, USA
| | - George E Taffet
- Section of Geriatrics, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
45
|
Oxidative Stress Modulation by ncRNAs and Their Emerging Role as Therapeutic Targets in Atherosclerosis and Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12020262. [PMID: 36829822 PMCID: PMC9952114 DOI: 10.3390/antiox12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are pathologies related to ectopic fat accumulation, both of which are continuously increasing in prevalence. These threats are prompting researchers to develop effective therapies for their clinical management. One of the common pathophysiological alterations that underlies both diseases is oxidative stress (OxS), which appears as a result of lipid deposition in affected tissues. However, the molecular mechanisms that lead to OxS generation are different in each disease. Non-coding RNAs (ncRNAs) are RNA transcripts that do not encode proteins and function by regulating gene expression. In recent years, the involvement of ncRNAs in OxS modulation has become more recognized. This review summarizes the most recent advances regarding ncRNA-mediated regulation of OxS in atherosclerosis and NAFLD. In both diseases, ncRNAs can exert pro-oxidant or antioxidant functions by regulating gene targets and even other ncRNAs, positioning them as potential therapeutic targets. Interestingly, both diseases have common altered ncRNAs, suggesting that the same molecule can be targeted simultaneously when both diseases coexist. Finally, since some ncRNAs have already been used as therapeutic agents, their roles as potential drugs for the clinical management of atherosclerosis and NAFLD are analyzed.
Collapse
|
46
|
Shen B, Wang Y, Cheng J, Peng Y, Zhang Q, Li Z, Zhao L, Deng X, Feng H. Pterostilbene alleviated NAFLD via AMPK/mTOR signaling pathways and autophagy by promoting Nrf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154561. [PMID: 36610156 DOI: 10.1016/j.phymed.2022.154561] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND NAFLD is a liver disease that is caused by liver damage or extreme lipid deposition but not alcohol. Nrf2 could mediate resistance to oxidative stress injury. Autophagy can degrade metabolic waste and accumulated toxic endogenous substances. Pterostilbene (PTE) is an active compound extracted from blueberry, and grape, that exhibits many biological effects, such as antiinflammation and antitumor. PURPOSE This study provides a mechanism of PTE affecting on oxidative stress and autophagy in NAFLD mice. Tyloxapol, oil acid (OA) and palmitic acid (PA) were used to induce lipid accumulation in mice and HepG2 cells. METHODS Western blotting, CRISPR/Cas 9 and other molecular biological approaches were applied to explore the mechanisms of PTE effected on NAFLD. RESULTS PTE pretreatment effectively reduced the lipid accumulation in OA and PA induced HepG2 cells and tyloxapol induced mice, and significantly promoted the expression of nNrf2, PPAR-α and HO-1, and AMPK activity, but inhibited the expression of mTORC 1 and SREBP-1c. PTE activated phosphatidylinositide 3-kinase (PI3K) and proteins in the autophagy-related gene (ATG) family, and promoted the transformation of LC3Ⅰ to LC3Ⅱ which indicated the activation of autophagy, however, these effects were abolished after Nrf2 knockout. CONCLUSION PTE effectively alleviated oxidative stress damage induced by excessive lipid accumulation in hepatocytes, thus promoting the metabolism and decomposition of fatty acids to improve NAFLD.
Collapse
Affiliation(s)
- Bingyu Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yeling Wang
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun, Jilin 130062, PR China
| | - Jiaqi Cheng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Yi Peng
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130062, PR China
| | - Qiaoling Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Zheng Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lilei Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China.
| |
Collapse
|
47
|
Rapamycin suppresses inflammation and increases the interaction between p65 and IκBα in rapamycin-induced fatty livers. PLoS One 2023; 18:e0281888. [PMID: 36867603 PMCID: PMC9983852 DOI: 10.1371/journal.pone.0281888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
Rapamycin treatment significantly increases lifespan and ameliorates several aging-related diseases in mice, making it a potential anti-aging drug. However, there are several obvious side effects of rapamycin, which may limit the broad applications of this drug. Lipid metabolism disorders such as fatty liver and hyperlipidemia are some of those unwanted side effects. Fatty liver is characterized as ectopic lipid accumulation in livers, which is usually accompanied by increased inflammation levels. Rapamycin is also a well-known anti-inflammation chemical. How rapamycin affects the inflammation level in rapamycin-induced fatty liver remains poorly understood. Here, we show that eight-day rapamycin treatment induced fatty liver and increased liver free fatty acid levels in mice, while the expression levels of inflammatory markers are even lower than those in the control mice. Mechanistically, the upstream of the pro-inflammatory pathway was activated in rapamycin-induced fatty livers, however, there is no increased NFκB nuclear translocation probably because the interaction between p65 and IκBα was enhanced by rapamycin treatment. The lipolysis pathway in the liver is also suppressed by rapamycin. Liver cirrhosis is an adverse consequence of fatty liver, while prolonged rapamycin treatment did not increase liver cirrhosis markers. Our results indicate that although fatty livers are induced by rapamycin, the fatty livers are not accompanied by increased inflammation levels, implying that rapamycin-induced fatty livers might not be as harmful as other types of fatty livers, such as high-fat diet and alcohol-induced fatty livers.
Collapse
|
48
|
Tavakoli T, Zarban A, Hooshyar R, Salmani F, Tajik H. Improvement of thiol groups and total antioxidant capacity in patients with non-alcoholic fatty liver after treatment with pioglitazone. Arch Physiol Biochem 2022; 128:1591-1595. [PMID: 32608271 DOI: 10.1080/13813455.2020.1784953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate oxidative stress state in non-alcoholic fatty liver (NAFLD) patients at the time of diagnosis and by passing three months from the treatment. METHODS 37 patients with NAFLD in summer 2019 were enrolled in this study. Also, 37 healthy controls that were matched for sex and age were included as a control group. Oxidative stress parameters such as lipid peroxidation (MDA), total antioxidant capacity (TAC), and Thiols were measured by standard methods and were then compared with before treatment. RESULTS At the time of diagnosis, MDA levels were significantly increased and FRAP and Thiol levels were significantly decreased. After 3 months of treatment with pioglitazone, MDA levels decreased and FRAP and Thiol group increased. CONCLUSIONS Non-alcoholic fatty liver disease is associated with the higher levels of MDA and lower serum levels of total antioxidant capacity and Thiol group levels.
Collapse
Affiliation(s)
- Tahmine Tavakoli
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhaneh Hooshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, Social Determinants of Health Research Center, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamidreza Tajik
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
49
|
Yang W, Yang M, Tian Y, Jiang Q, Loor JJ, Cao J, Wang S, Gao C, Fan W, Zhang B, Xu C. Effect of Myricetin on Lipid Metabolism in Primary Calf Hepatocytes Challenged with Long-Chain Fatty Acids. Metabolites 2022; 12:metabo12111071. [PMID: 36355155 PMCID: PMC9698477 DOI: 10.3390/metabo12111071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Triacylglycerol (TAG) accumulation and oxidative damage in hepatocytes induced by high circulating concentrations of fatty acids (FA) are common after calving. In order to clarify the role of myricetin on lipid metabolism in hepatocytes when FA metabolism increases markedly, we performed in vitro analyses using isolated primary calf hepatocytes from three healthy female calves (1 d old, 42 to 48 kg). Two hours prior to an FA challenge (1.2 mM mix), the hepatocytes were treated with 100 μM (M1), 50 μM (M2), or 25 μM (M3) of myricetin. Subsequently, hepatocytes from each donor were challenged with or without FA for 12 h in an attempt to induce metabolic stress. Data from calf hepatocyte treatment comparisons were assessed using two-way repeated-measures (RM) ANOVA with subsequent Bonferroni correction. The data revealed that hepatocytes challenged with FA had greater concentrations of TAG and nonesterified fatty acids (NEFA), oxidative stress-related MDA and H2O2, and mRNA and protein abundance of lipid synthesis-related SREBF1 and inflammatory-related NF-κB. In addition, the mRNA abundance of the lipid synthesis-related genes FASN, DGAT1, DGAT2, and ACC1; endoplasmic reticulum stress-related GRP79 and PERK; and inflammatory-related TNF-α also were upregulated. In contrast, the activity of antioxidant SOD (p < 0.01) and concentrations of GSH (p < 0.05), and the protein abundance of mitochondrial FA oxidation-related CPT1A, were markedly lower. Compared with FA challenge, 50 and 100 μM myricetin led to lower concentrations of TAG, NEFA, MDA, and H2O2, as well as mRNA and protein abundance of SREBF1, DGAT1, GRP78, and NF-κB. In contrast, the activity of SOD (p < 0.01) and mRNA and protein abundance of CPT1A were markedly greater. Overall, the results suggest that myricetin could enhance the antioxidant capacity and reduce lipotoxicity, endoplasmic reticulum stress, and inflammation. All of these effects can help reduce TAG accumulation in hepatocytes.
Collapse
Affiliation(s)
- Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingmao Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China
| | - Yan Tian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qianming Jiang
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shuang Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Changhong Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wenwen Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
50
|
Guo J, Nie J, Chen Z, Wang X, Hu H, Xu J, Lu J, Ma L, Ji H, Yuan J, Xu B. Cold exposure-induced endoplasmic reticulum stress regulates autophagy through the SIRT2/FoxO1 signaling pathway. J Cell Physiol 2022; 237:3960-3970. [PMID: 35938526 DOI: 10.1002/jcp.30856] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/14/2023]
Abstract
Cold is a factor affecting health in humans and animals. The liver, a major metabolic center, is highly susceptible to ambient air temperature. Recent studies have shown that endoplasmic reticulum (ER) stress is associated with the liver, and regulates the occurrence and development of liver injury and autophagy. However, the mechanism underlying the relationship between cold exposure and ER stress in the liver is not well understood. In this study, we investigated the effect of ER stress on liver autophagy and its mechanism under cold exposure. AML12 cells were treated with Tg to construct an ER stress model, and the level of autophagy increased. To further explore the mechanism through which ER stress regulates autophagy, we knocked down SIRT2 with shRNA in Tg-treated AML12 cells. Knockdown of SIRT2 significantly increased ER stress and autophagy, increased FoxO1 acetylation, and promoted its entry into the nucleus. To further verify the results of in vitro experiments, we exposed mice to 4°C for 3 h per day for 3 weeks to exacerbate the burden on the liver after cold exposure. Cold exposure damaged the structure and function of the liver and promoted the inflammatory response. It also activated ER stress and promoted autophagy. In addition, cold exposure inhibited the expression of SIRT2, promoted FoxO1 acetylation, and enhanced the interaction with autophagy. Our findings indicated that cold exposure induces liver damage, ER stress, and autophagy through the SIRT2/FoxO1 pathway. These findings suggest that SIRT2 may be a potential target for regulating health under cold exposure.
Collapse
Affiliation(s)
- Jingru Guo
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junshu Nie
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhuo Chen
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian Wang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huijie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jing Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Ma
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianbin Yuan
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|