1
|
Chen X, Liu S, Teame T, Luo J, Liu Y, Zhou Q, Ding Q, Yao Y, Yang Y, Ran C, Zhang Z, Zhou Z. Effect of Bacillus velezensis T23 solid-state fermentation product on growth, gut and liver health, and gut microbiota of common carp (Cyprinus carpio). AQUACULTURE 2025; 596:741733. [DOI: 10.1016/j.aquaculture.2024.741733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Arulkumar R, Jung HJ, Noh SG, Kim HW, Chung HY. 8-Prenylgenistein Isoflavone in Cheonggukjang Acts as a Novel AMPK Activator Attenuating Hepatic Steatosis by Enhancing the SIRT1-Mediated Pathway. Int J Mol Sci 2024; 25:9730. [PMID: 39273677 PMCID: PMC11395689 DOI: 10.3390/ijms25179730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
8-Prenylgenistein (8PG), a genistein derivative, is present in fermented soybeans (Glycine max), including cheonggukjang (CGJ), and exhibits osteoprotective, osteogenic, and antiadipogenic properties. However, the hepatoprotective effects of 8PG and its underlying molecular mechanisms remain largely unexplored. Here, we identified the high binding affinity of 8PG with AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), which acts as a potent AMPK activator that counteracts hepatic steatosis. Notably, 8PG exhibited better pharmacokinetics with greater absorption and higher plasma binding than the positive controls for the target proteins. Moreover, 8PG exerted non-carcinogenic activity in rats and significantly increased AMPK phosphorylation. Compound C, an AMPK inhibitor, did not antagonize 8PG-activated AMPK in HepG2 cells. 8PG significantly attenuated palmitate-induced lipid accumulation and enhanced phosphorylated AMPK and its downstream target, acetyl-CoA carboxylase. Further, 8PG activated nuclear SIRT1 at the protein level, which promoted fatty acid oxidation in palmitate-treated HepG2 cells. Overall, 8PG acts as a potent AMPK activator, further attenuating hepatic steatosis via the SIRT1-mediated pathway and providing new avenues for dietary interventions to treat metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.)
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Sang Gyun Noh
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.)
| | - Hyun Woo Kim
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.)
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.)
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
3
|
Jin YH, Mah JH. Culture-dependent and -independent analyses of bacterial compositions and its contributions to formation of γ-aminobutyric acid and poly-γ-glutamic acid in Cheonggukjang. Food Res Int 2024; 179:114026. [PMID: 38342543 DOI: 10.1016/j.foodres.2024.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
This study was performed to unveil bacterial compositions and their contributions to the formation of γ-aminobutyric acid (GABA) and poly-γ-glutamic acid (γ-PGA) in Cheonggukjang. To predict possible key factors contributing to the content of the bioactive compounds in Cheonggukjang, commercial products were analyzed for various parameters. The content of GABA and γ-PGA showed a negative (R2 = 0.61 - 0.73) and positive correlation (R2 = 0.53 - 0.96) with antioxidative activity. Consistently, GABA content showed a moderate negative correlation with γ-PGA content (R2 = 0.58). Among the physicochemical and microbial parameters, only salinity showed a moderate negative correlation with γ-PGA content (R2 = 0.75), which might be due to the inhibition of bacterial growth. It was also suggested that multiple factors (including bacterial species) were involved in the formation of GABA and γ-PGA in Cheonggukjang. To reveal dominant bacterial species and further presume their contributions to the bioactive compound formation in Cheonggukjang, both culture-independent (metagenomic) and -dependent (culturomic) methods were used. Culture-independent method showed that Bacillus piscis was dominant (23.37 - 94.89 %), followed by B. hisashii (0.00 - 62.45 %) and B. coagulans (0.00 - 13.82 %). Considering the quantitative speciation data on the bioactive compound content in Cheonggukjang (and bacterial production capability) together, it was further elucidated that B. piscis contributed primarily to the bioactive compound formation. Unlike this, culture-dependent analysis revealed that B. licheniformis and B. subtilis were dominant (30.0 - 47.6 and 17.5 - 39.5 %, respectively). Based on the quantitative speciation data on the bacterial production capability of GABA and γ-PGA, B. subtilis was the primarily contributing bacterial species to the bioactive compound formation. Consequently, it was observed that the bacterial compositions and their contributions to the bioactive compound formation determined by the two methods differed considerably, i.e., B. piscis and B. subtilis were identified to be prominent bacterial contributors, respectively, depending on the method used.
Collapse
Affiliation(s)
- Young Hun Jin
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
4
|
Hashimoto Y, Hamaguchi M, Fukui M. Fermented soybean foods and diabetes. J Diabetes Investig 2023; 14:1329-1340. [PMID: 37799064 PMCID: PMC10688128 DOI: 10.1111/jdi.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
The number of patients with type 2 diabetes mellitus is increasing, and its prevention and management are important. One of the factors contributing to the increased incidence of type 2 diabetes mellitus is the change in dietary habits, including a Westernized diet. Fermented foods are foods that are transformed by the action of microorganisms to produce beneficial effects in humans and have been consumed for thousands of years. The production and consumption of fermented soy foods, including natto, miso, douchi, cheonggukjang, doenjang, tempeh, and fermented soy milk, are widespread in Asian countries. This review focuses on fermented soybean foods and summarizes their effects on diabetes. Fermentation increases the content of ingredients originally contained in soybeans and adds new ingredients that are not present in the original soybeans. Recent studies have revealed that fermented soybean food modifies the gut microbiota-related metabolites by modifying dysbiosis. Furthermore, it has been reported that fermented soybean foods have antioxidant, anti-inflammatory, and anti-diabetic effects. In recent years, fermented foods, including fermented soybeans, have shown various beneficial effects. Therefore, it is necessary to continue focusing on the benefits and mechanisms of action of fermented foods.
Collapse
Affiliation(s)
- Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
5
|
Jalili M, Nazari M, Magkos F. Fermented Foods in the Management of Obesity: Mechanisms of Action and Future Challenges. Int J Mol Sci 2023; 24:ijms24032665. [PMID: 36768984 PMCID: PMC9916812 DOI: 10.3390/ijms24032665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Fermented foods are part of the staple diet in many different countries and populations and contain various probiotic microorganisms and non-digestible prebiotics. Fermentation is the process of breaking down sugars by bacteria and yeast species; it not only enhances food preservation but can also increase the number of beneficial gut bacteria. Regular consumption of fermented foods has been associated with a variety of health benefits (although some health risks also exist), including improved digestion, enhanced immunity, and greater weight loss, suggesting that fermented foods have the potential to help in the design of effective nutritional therapeutic approaches for obesity. In this article, we provide a comprehensive overview of the health effects of fermented foods and the corresponding mechanisms of action in obesity and obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Mahsa Jalili
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Maryam Nazari
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan JF62+4W5, Iran
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1165 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
6
|
Fermented Foods of Korea and Their Functionalities. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fermented foods are loved and enjoyed worldwide and are part of a tradition in several regions of the world. Koreans have traditionally had a healthy diet since people in this region have followed a fermented-foods diet for at least 5000 years. Fermented-product footprints are evolving beyond boundaries and taking the lead in the world of food. Fermented foods, such as jang (fermented soybean products), kimchi (fermented vegetables), jeotgal (fermented fish), and vinegar (liquor with grain and fruit fermentation), are prominent fermented foods in the Korean culture. These four major fermented foods have been passed down through the generations and define Korean cuisine. However, scientific advancements in the fermentation process have increased productivity rates and facilitated global exports. Recently, Korean kimchi and jang have garnered significant attention due to their nutritional and health-beneficial properties. The health benefits of various Korean fermented foods have been consistently supported by both preclinical and clinical research. Korean fermented foods effectively reduce the risk of cardiovascular and chronic metabolic diseases, such as immune regulation, memory improvement, obesity, diabetes, and high blood pressure. Additionally, kimchi is known to prevent and improve multiple metabolic diseases, including irritable bowel syndrome (IBS), and improve beneficial intestinal bacteria. These functional health benefits may reflect the synergistic effect between raw materials and various physiologically active substances produced during fermentation. Thus, fermented foods all over the world not only enrich our dining table with taste, aroma, and nutrition, but also the microorganisms involved in fermentation and metabolites of various fermentations have a profound effect on human health. This article describes the production and physiological functions of Korean fermented foods, which are anticipated to play a significant role in the wellness of the world’s population in the coming decades.
Collapse
|
7
|
He D, Wu Q, Lu C, Wu J, Chen P, Wu M, Choi JI, Tong H. Pyropia yezoensis porphyran alleviates metabolic disorders via modulating gut microbiota in high-sucrose-fed Drosophila melanogaster. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4802-4812. [PMID: 35229291 DOI: 10.1002/jsfa.11843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prebiotics, such as algal polysaccharides, can be used to manage metabolic diseases by modulating gut microbiota. However, the effect of Pyropia yezoensis porphyran (PYP), a red algal polysaccharide, on gut microbiota has not been reported. Thus, the objective of this study was to determine effects of PYP on metabolic disorders caused by high sucrose (HS) and underlying mechanisms involved in such effects. RESULTS Biochemical analysis demonstrated that an HS diet increased triglyceride and circulating sugar contents (metabolic abnormalities) in Drosophila larvae. It also increased the relative abundance of harmful microbiota within the larvae as identified by 16S ribosomal DNA analysis. PYP supplementation at 25 and 50 g kg-1 equivalently reduced metabolic abnormalities in the HS group. Therefore, 25 g kg-1 PYP was selected to investigate its effects on the metabolic pathway and gut microbiota of larvae in the HS group. The activity of PYP in ameliorating metabolic abnormalities by reverse transcription quantitative real-time polymerase chain reaction analysis was consistent with the expression trend of key factors involved in metabolism regulation. PYP reduced the relative abundance of bacteria causing metabolic abnormalities, such as Escherichia-Shigella and Fusobacterium, but increased the relative abundance of beneficial bacteria such as Bacillus and Akkermansia. However, PYP had no effect on triglyceride and circulating sugar contents in HS-fed larvae treated with a mixture of antibiotics designed to remove gut microbiota. CONCLUSION PYP exhibits anti-metabolic disorder activity by modulating gut microbiota, thereby supporting the development of PYP as a functional prebiotic derived from red algae food. Copyright © 2022 John Wiley & Sons, Ltd. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan He
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chenying Lu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jinlan Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
8
|
do Prado FG, Pagnoncelli MGB, de Melo Pereira GV, Karp SG, Soccol CR. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms 2022; 10:1606. [PMID: 36014024 PMCID: PMC9416513 DOI: 10.3390/microorganisms10081606] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
In the growing search for therapeutic strategies, there is an interest in foods containing natural antioxidants and other bioactive compounds capable of preventing or reversing pathogenic processes associated with metabolic disease. Fermentation has been used as a potent way of improving the properties of soybean and their components. Microbial metabolism is responsible for producing the β-glucosidase enzyme that converts glycosidic isoflavones into aglycones with higher biological activity in fermented soy products, in addition to several end-metabolites associated with human health development, including peptides, phenolic acids, fatty acids, vitamins, flavonoids, minerals, and organic acids. Thus, several products have emerged from soybean fermentation by fungi, bacteria, or a combination of both. This review covers the key biological characteristics of soy and fermented soy products, including natto, miso, tofu, douchi, sufu, cheonggukjang, doenjang, kanjang, meju, tempeh, thua-nao, kinema, hawaijar, and tungrymbai. The inclusion of these foods in the diet has been associated with the reduction of chronic diseases, with potential anticancer, anti-obesity, antidiabetic, anticholesterol, anti-inflammatory, and neuroprotective effects. These biological activities and the recently studied potential of fermented soybean molecules against SARS-CoV-2 are discussed. Finally, a patent landscape is presented to provide the state-of-the-art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
Affiliation(s)
- Fernanda Guilherme do Prado
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Maria Giovana Binder Pagnoncelli
- Bioprocess Engineering and Biotechnology Department, Federal University of Technology-Paraná (UTFPR), Curitiba 80230-900, PR, Brazil
| | | | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| |
Collapse
|
9
|
Huang CH, Chen CL, Shieh CC, Chang SH, Tsai GJ. Evaluation of Hypoglycemic and Antioxidant Activities of Soybean Meal Products Fermented by Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 in Rats Fed with High-Fat Diet. Metabolites 2022; 12:metabo12050442. [PMID: 35629946 PMCID: PMC9147997 DOI: 10.3390/metabo12050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
The hypoglycemic and antioxidant activities of Lactobacillus plantarum FPS 2520 and/or Bacillus subtilis N1 fermented soybean meal (SBM) in rats fed a high-fat diet (HFD) were investigated by assessing plasma glucose levels, insulin resistance, and oxidative stress-induced organ damage. Supplementation with FPS 2520- and/or N1-fermented SBM (500 and 1000 mg/kg of body weight per day) to HFD-induced obese rats for 6 weeks significantly down-regulated the concentration of plasma glucose during the oral glucose tolerance test (OGTT), as well as the concentration of fasting plasma glucose, insulin, and the value of the homeostasis model assessment of insulin resistance (HOMA-IR). In addition, plasma and hepatic levels of malondialdehyde (MDA) were alleviated in rats fed fermented SBM, especially SBM fermented by mixed strains. Moreover, fermented SBM treatment reduced HFD-exacerbated increases in plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and uric acid levels. Based on these results, we clearly demonstrate the effect of fermented SBM on improving insulin resistance and oxidation-induced organ damage. Therefore, it is suggested that fermented SBM has the potential to be developed as functional foods for the management of obesity-induced hyperglycemia and organ damage.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
| | - Chun-Lung Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
| | - Chen-Che Shieh
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
| | - Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-L.C.); (C.-C.S.)
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Lee KD, Ilavenil S, Karnan M, Yang CJ, Kim D, Choi KC. Novel Bacillus ginsengihumi CMRO6 Inhibits Adipogenesis via p38MAPK/Erk44/42 and Stimulates Glucose Uptake in 3T3-L1 Pre-Adipocytes through Akt/AS160 Signaling. Int J Mol Sci 2022; 23:4727. [PMID: 35563118 PMCID: PMC9104516 DOI: 10.3390/ijms23094727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
The health benefits of probiotics have been known for decades, but there has only been limited use of probiotics in the treatment of obesity. In this study, we describe, for the first time, the role of cell-free metabolites (CM) from Bacillus ginsengihumi-RO6 (CMRO6) in adipogenesis and lipogenesis in 3T3-L1 pre-adipocytes. The experimental results show that CMRO6 treatment effectively reduced lipid droplet accumulation and the expression of CCAAT/enhancer-binding protein α and β (C/EBPα and C/EBPβ), peroxisome proliferator-activated receptor γ (PPAR-γ), serum regulatory binding protein 1c (SREBP-1c), fatty acid-binding protein 4 (FABP4), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), phosphorylated p38MAPK, and Erk44/42. Additionally, CMRO6 treatment significantly increased glucose uptake and phosphorylated Akt (S473), AS160, and TBC1D1 protein expressions. Considering the results of this study, B. ginsengihumi may be a novel probiotic used for the treatment of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Kyung Dong Lee
- Department of Companion Animals, Dongsin University, Naju 58245, Korea;
| | - Soundharrajan Ilavenil
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| | - Muthusamy Karnan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| | - Chul-Ju Yang
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju 55365, Korea;
| | - Ki Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| |
Collapse
|
11
|
Kim HR, Park IS, Park SB, Yang HJ, Jeong DY, Kim SY. Comparison of laxative effects of fermented soybeans ( Cheonggukjang) containing toxins and biogenic amines against loperamide-induced constipation mouse model. Nutr Res Pract 2022; 16:435-449. [PMID: 35919294 PMCID: PMC9314190 DOI: 10.4162/nrp.2022.16.4.435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Jeonju 54810, Korea
| | - In-Sun Park
- Jeonju AgroBio-Materials Institute, Jeonju 54810, Korea
| | - Su-Bin Park
- Jeonju AgroBio-Materials Institute, Jeonju 54810, Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang 56048, Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang 56048, Korea
| | | |
Collapse
|
12
|
Abstract
The growing interest in the consumption and study of traditionally fermented food worldwide has led to the development of numerous scientific investigations that have focused on analyzing the microbial and nutritional composition and the health effects derived from the consumption of these foods. Traditionally fermented foods and beverages are a significant source of nutrients, including proteins, essential fatty acids, soluble fiber, minerals, vitamins, and some essential amino acids. Additionally, fermented foods have been considered functional due to their prebiotic content, and the presence of specific lactic acid bacterial strains (LAB), which have shown positive effects on the balance of the intestinal microbiota, providing a beneficial impact in the treatment of diseases. This review presents a bibliographic compilation of scientific studies assessing the effect of the nutritional content and LAB profile of traditional fermented foods on different conditions such as obesity, diabetes, and gastrointestinal disorders.
Collapse
|
13
|
Todorov SD, Ivanova IV, Popov I, Weeks R, Chikindas ML. Bacillus spore-forming probiotics: benefits with concerns? Crit Rev Microbiol 2021; 48:513-530. [PMID: 34620036 DOI: 10.1080/1040841x.2021.1983517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Representatives of the genus Bacillus are multifunctional microorganisms with a broad range of applications in both traditional fermentation and modern biotechnological processes. Bacillus spp. has several beneficial properties. They serve as starter cultures for various traditional fermented foods and are important biotechnological producers of enzymes, antibiotics, and bioactive peptides. They are also used as probiotics for humans, in veterinary medicine, and as feed additives for animals of agricultural importance. The beneficial effects of bacilli are well-reported and broadly acknowledged. However, with a better understanding of their positive role, many questions have been raised regarding their safety and the relevance of spore formation in the practical application of this group of microorganisms. What is the role of Bacillus spp. in the human microbial consortium? When and why did they start colonizing the gastrointestinal tract (GIT) of humans and other animals? Can spore-forming probiotics be considered as truly beneficial organisms, or should they still be approached with caution and regarded as "benefits with concerns"? In this review, we not only hope to answer the above questions but to expand the scope of the conversation surrounding bacilli probiotics.
Collapse
Affiliation(s)
| | - Iskra Vitanova Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
14
|
Gopikrishna T, Suresh Kumar HK, Perumal K, Elangovan E. Impact of Bacillus in fermented soybean foods on human health. ANN MICROBIOL 2021; 71:30. [PMID: 34305497 PMCID: PMC8285709 DOI: 10.1186/s13213-021-01641-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Fermented soybean foods (FSF) is popularly consumed in the South-East Asian countries. Bacillus species, a predominant microorganism present in these foods, have demonstrated beneficial and deleterious impacts on human health. These microorganisms produce bioactive compounds during fermentation that have beneficial impacts in improving human health. However, the health risks associated with FSF, food pathogens, biogenic amines (BAs) production, and late-onset anaphylaxis, remain a concern. The purpose of this review is to present an in-depth analysis of positive and negative impacts as a result of consumption of FSF along with the measures to alleviate health risks for human consumption. METHODS This review was composed by scrutinizing contemporary literature of peer-reviewed publications related to Bacillus and FSF. Based on the results from academic journals, this review paper was categorized into FSF, role of Bacillus species in these foods, process of fermentation, beneficial, and adverse influence of these foods along with methods to improve food safety. Special emphasis was given to the potential benefits of bioactive compounds released during fermentation of soybean by Bacillus species. RESULTS The nutritional and functional properties of FSF are well-appreciated, due to the release of peptides and mucilage, which have shown health benefits: in managing cardiac disease, gastric disease, cancer, allergies, hepatic disease, obesity, immune disorders, and especially microbial infections due to the presence of probiotic property, which is a potential alternative to antibiotics. Efficient interventions were established to mitigate pitfalls like the techniques to reduce BAs and food pathogens and by using a defined starter culture to improve the safety and quality of these foods. CONCLUSION Despite some of the detrimental effects produced by these foods, potential health benefits have been observed. Therefore, soybean foods fermented by Bacillus can be a promising food by integrating effective measures for maintaining safety and quality for human consumption. Further, in vivo analysis on the activity and dietary interventions of bioactive compounds among animal models and human volunteers are yet to be achieved which is essential to commercialize them for safe consumption by humans, especially immunocompromised patients.
Collapse
Affiliation(s)
- Trishala Gopikrishna
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| | - Harini Keerthana Suresh Kumar
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| | - Kumar Perumal
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| | - Elavarashi Elangovan
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| |
Collapse
|
15
|
Kim IS, Hwang CW, Yang WS, Kim CH. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang. Int J Mol Sci 2021; 22:5746. [PMID: 34072216 PMCID: PMC8198423 DOI: 10.3390/ijms22115746] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation process of CGJ results in the production of enzymes and various physiologically active substances that are not found in raw soybeans, including dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, trypsin inhibitors, and phytic acids. These components prevent atherosclerosis, oxidative stress-mediated heart disease and inflammation, obesity, diabetes, senile dementia, cancer (e.g., breast and lung), and osteoporosis. They have also been shown to have thrombolytic, blood pressure-lowering, lipid-lowering, antimutagenic, immunostimulatory, anti-allergic, antibacterial, anti-atopic dermatitis, anti-androgenetic alopecia, and anti-asthmatic activities, as well as skin improvement properties. In this review, we examined the physiological activities of CGJ and confirmed its potential as a functional food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cher-Won Hwang
- Global Leadership School, Handong Global University, Pohang 37554, Korea
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
16
|
Yue X, Li M, Liu Y, Zhang X, Zheng Y. Microbial diversity and function of soybean paste in East Asia: what we know and what we don’t. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut-Microbiome-Brain Axis. Foods 2021; 10:foods10020221. [PMID: 33494481 PMCID: PMC7911192 DOI: 10.3390/foods10020221] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Fermented soybean paste is an indigenous food for use in cooking in East and Southeast Asia. Korea developed and used its traditional fermented foods two thousand years ago. Chungkookjang has unique characteristics such as short-term fermentation (24–72 h) without salt, and fermentation mostly with Bacilli. Traditionally fermented chungkookjang (TFC) is whole cooked soybeans that are fermented predominantly by Bacillus species. However, Bacillus species are different in the environment according to the regions and seasons due to the specific bacteria. Bacillus species differently contribute to the bioactive components of chungkookjang, resulting in different functionalities. In this review, we evaluated the production process of poly-γ-glutamic acid (γ-PGA)-rich chungkookjang fermented with specific Bacillus species and their effects on memory function through the modulation of brain insulin resistance, neuroinflammation, and the gut–microbiome–brain axis. Bacillus species were isolated from the TFC made in Sunchang, Korea, and they included Bacillus (B.) subtilis, B. licheniformis, and B. amyloliquefaciens. Chungkookjang contains isoflavone aglycans, peptides, dietary fiber, γ-PGA, and Bacillus species. Chungkookjangs made with B. licheniformis and B. amyloliquefaciens have higher contents of γ-PGA, and they are more effective for improving glucose metabolism and memory function. Chungkookjang has better efficacy for reducing inflammation and oxidative stress than other fermented soy foods. Insulin sensitivity is improved, not only in systemic organs such as the liver and adipose tissues, but also in the brain. Chungkookjang intake prevents and alleviates memory impairment induced by Alzheimer’s disease and cerebral ischemia. This review suggests that the intake of chungkookjang (20–30 g/day) rich in γ-PGA acts as a synbiotic in humans and promotes memory function by suppressing brain insulin resistance and neuroinflammation and by modulating the gut–microbiome–brain axis.
Collapse
|
18
|
Protective Role of Probiotic Supplements in Hepatic Steatosis: A Rat Model Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5487659. [PMID: 33299871 PMCID: PMC7704153 DOI: 10.1155/2020/5487659] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Background Treating nonalcoholic fatty liver disease (NAFLD) is considered one of the public health priorities in the past decade. So far, probiotics have represented promising results in controlling the signs and symptoms of NAFLD. However, attempts to find the ideal probiotic strain are still ongoing. The present study is designed to find the best strain amongst suitable probiotic strains according to their ability to ameliorate histopathological and oxidative stress biomarkers in hepatic steatosis-induced rats. Methods Initially, four probiotics species, including Lactobacillus (L.) acidophilus, L. casei, L. reuteri, and Bacillus coagulans, were cultured and prepared as a lyophilized powder for animals. The experiment lasted for fifty days. Initially, hepatic steatosis was induced by excessive ingestion of D-fructose in rats for eight weeks, followed by eight weeks of administering probiotics and D-fructose concurrently. Forty-two six-week-old male rats were alienated to different groups and were supplemented with different probiotics (1∗109 CFU in 500 mL drinking water). After eight weeks, blood and liver samples were taken for further evaluation, and plasma and oxidative stress markers corresponding to liver injuries were examined. Results Administration of probiotics over eight weeks reversed hepatic and blood triglyceride concentration and blood glucose levels. Also, probiotics significantly suppressed markers of oxidative stress in the liver tissue. Conclusions Although some of the single probiotic formulations were able to mitigate oxidative stress markers, mixtures of probiotics significantly ameliorated more symptoms in the NAFLD animals. This enhanced effect might be due to probiotics' cumulative potential to maintain oxidative stress and deliver improved lipid profiles, liver function markers, and inflammatory markers.
Collapse
|
19
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
20
|
Huang CH, Chen CL, Chang SH, Tsai GJ. Evaluation of Antiobesity Activity of Soybean Meal Products Fermented by Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 in Rats Fed with High-Fat Diet. J Med Food 2020; 23:667-675. [PMID: 32286891 DOI: 10.1089/jmf.2019.4643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Single strain or mixed strains of Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 were used to ferment soybean meal (SBM), and the antiobesity activity of the fermented SBM product was investigated in rats fed with high-fat diet (HFD). After fermentation, free amino nitrogen, total peptide, and isoflavone contents were markedly raised, and genistein and daidzein were the major isoflavones in the fermented SBM. After fed with HFD for 10 weeks, obese Sprague-Dawley rats were orally treated with various fermented products for 6 weeks. The body weight gains, as well as weights of abdominal fat and epididymis fat, of rats fed with fermented SBM products were significantly downregulated. The treatment with the mixed-strains fermented SBM product significantly decreased plasma levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol, but increased the level of high-density lipoprotein-cholesterol. Moreover, the levels of TG, TC, fatty acid synthase, and acetyl-CoA carboxylase (ACC) in liver were diminished, and the activities of hormone-sensitive lipase and lipoprotein lipase in adipose tissue were augmented. Taken together, these data demonstrated the antiobesity activity of fermented SBM products, among which the product fermented by the mixed strains being the most effective one. Therefore, these fermented SBM products are potential to be developed as functional foods or additives for treatment of obesity and prevention against obesity-induced complications.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Chun-Lung Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
21
|
Li Y, Liu M, Liu H, Wei X, Su X, Li M, Yuan J. Oral Supplements of Combined Bacillus licheniformis Zhengchangsheng® and Xylooligosaccharides Improve High-Fat Diet-Induced Obesity and Modulate the Gut Microbiota in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9067821. [PMID: 32509874 PMCID: PMC7251432 DOI: 10.1155/2020/9067821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Gut dysbiosis induced by high-fat diet (HFD) may result in low-grade inflammation leading to diverse inflammatory diseases. The beneficial effects of probiotics and prebiotics on obesity have been reported previously. However, their benefits in promoting human health and the underlying mechanisms still need to be further characterized. This study is aimed at understanding how probiotic Bacillus licheniformis Zhengchangsheng® (BL) and prebiotic xylooligosaccharides (XOS) influence the health of a rat model with HF (60 kcal %) diet-induced obesity. Five groups of male Sprague Dawley (SD) rats were fed a normal fat diet (CON) or an HFD with or without BL and XOS supplementation for 3 weeks. Lipid profiles, inflammatory biomarkers, and microbiota composition were analyzed at the end of the experiment. Rats fed an HFD exhibited increased body weight and disordered lipid metabolism. In contrast, combined BL and XOS supplementation inhibited body weight gain and returned lipid metabolism to normal. Furthermore, BL and XOS administration changed the gut microbiota composition and modulated specific bacteria such as Prevotellaceae, Desulfovibrionaceae, and Ruminococcaceae. In addition, supplements of combined BL and XOS obviously reduced the serum LPS level, which was significantly related to microbial variations. Our findings suggest that modulation of the gut microbiota as a result of probiotic BL and prebiotic XOS supplementation has a positive effect on HFD-induced obesity in rats.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Man Liu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - He Liu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- The Core Laboratory of Medical Molecular Biology of Liaoning Province, Dalian Medical University, Dalian, China
| | - Xianying Su
- Research Institute of Northeastern Pharmaceutical Group (NEPG), Shenyang, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jieli Yuan
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Kim MJ, Lee DH, Ahn J, Jang YJ, Ha TY, Do E, Jung CH. Nutrikinetic study of fermented soybean paste ( Cheonggukjang) isoflavones according to the Sasang typology. Nutr Res Pract 2019; 14:102-108. [PMID: 32256984 PMCID: PMC7075739 DOI: 10.4162/nrp.2020.14.2.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/23/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/OBJECTIVES In Oriental medicine, certain foods may be beneficial or detrimental based on an individual's constitution; however, the scientific basis for this theory is insufficient. The purpose of this study was to investigate the effect of body constitution, based on the Sasang type of Korean traditional medical classification system, on the bioavailability of soy isoflavones of Cheonggukjang, a quick-fermented soybean paste. SUBJECTS/METHODS A pilot study was conducted on 48 healthy Korean men to evaluate the bioavailability of isoflavone after ingestion of food based on constitution types classified by the Sasang typology. The participants were classified into the Taeeumin (TE; n = 15), Soyangin (SY; n = 15), and Soeumin (SE; n = 18) groups. Each participant ingested 50 g of Cheonggukjang per 60 kg body weight. Thereafter, blood was collected, and the soy isoflavone metabolites were analyzed by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Ntrikinetic analysis of individual isoflavone-derived metabolites was performed. RESULTS Our nutrikinetic analysis identified 21 metabolites derived from isoflavones in the blood samples from 48 healthy Korean men (age range, 21-29 years). Significant differences were observed in the time to maximum concentration (T max) and elimination half-life (t 1/2) for nine metabolites among the three groups. The T max and t 1/2 of the nine metabolites were higher in the SE group than in the other groups. Moreover, the absorption rates, as determined by the area under the plasma-level curve (AUC) values of intact isoflavone, were 5.3 and 9.4 times higher in the TE group than in the SY and SE groups, respectively. Additionally, the highest AUC values for phase I and II metabolites were observed in the TE group. CONCLUSIONS These findings indicate that isoflavone bioavailability, following Cheonggukjang insgestion, is high in individuals with the TE constitution, and relatively lower in those with the SE and SY constitutions.
Collapse
Affiliation(s)
- Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Da-Hye Lee
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Jiyun Ahn
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Young-Jin Jang
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Tae-Youl Ha
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Eunju Do
- Clinical Trial Convergence Commercialization Team, Korea Medicine Industry Support Center, Daegu Technopark, Susung-gu, Daegu 42158, Republic of Korea
| | - Chang Hwa Jung
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeonbuk 55365, Republic of Korea
| |
Collapse
|
23
|
Kim JS, Lee H, Nirmala FS, Jung CH, Jang YJ, Ha TY, Ahn J. Dry-Fermented Soybean Food (Cheonggukjang) Ameliorates Senile Osteoporosis in the Senescence-Accelerated Mouse Prone 6 Model. J Med Food 2019; 22:1047-1057. [PMID: 31566516 DOI: 10.1089/jmf.2018.4335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Senile osteoporosis increases the risk of skeletal fractures with age. Cheonggukjang (CGJ), a traditional Korean dry fermented soybean product, has numerous therapeutic effects; however, its effects on bone mineral density (BMD) and bone metabolism in senile osteoporosis are unclear. In this study, we treated the senescence-accelerated mouse prone 6 (SAMP6) model of senile osteoporosis with CGJ to determine its potential for ameliorating and preventing osteoporosis progression. High-performance liquid chromatography analysis for isoflavone profiles revealed that short-term fermentation significantly increased the isoflavone aglycone content in soybeans. Thereafter, we fed 6-week-old SAMP6 mice with experimental diets containing 5% or 10% CGJ for 15 weeks. Microcomputed tomography revealed that CGJ supplementation effectively increased the BMD and relative bone length. In vitro, CGJ increased the osteopontin reactivity and upregulated the expression of Alp, Col1a1, Fak, Bmp2/4, Smad1/5/8, and Runx2 in osteoblasts, and decreased Cathepsin K reactivity and downregulated Rankl and Nfatc1 expression in osteoclasts. In addition, CGJ increased the osteoprotegerin/Rankl ratio. Collectively, these results demonstrate that CGJ can ameliorate the detrimental effects of senile osteoporosis by improving osteogenesis and decreasing osteoclast activity.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyunjung Lee
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Farida Sukma Nirmala
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeollabuk-do, Korea
| | - Chang Hwa Jung
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeollabuk-do, Korea
| | - Young-Jin Jang
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Tae-Youl Ha
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeollabuk-do, Korea
| | - Jiyun Ahn
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeollabuk-do, Korea
| |
Collapse
|
24
|
Behavior of different Bacillus strains with claimed probiotic properties throughout processed cheese ("requeijão cremoso") manufacturing and storage. Int J Food Microbiol 2019; 307:108288. [PMID: 31421399 DOI: 10.1016/j.ijfoodmicro.2019.108288] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/23/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023]
Abstract
Even though spore-forming bacteria have been mainly linked to spoilage or foodborne pathogens vehiculated through foods, some strains of Bacillus can potentially present probiotic properties. The advantage of incorporating probiotic Bacillus strains in foods relies mainly on the fact that these microorganisms present high resistance to harsh processing conditions. "Requeijão cremoso" is a type of processed cheese highly appreciated in Brazil. During processing, this product is submitted to several harsh conditions (heating at 90 °C, for instance), leading to the inactivation of probiotic bacteria belonging to Lactobacillus and Bifidobacterium genera. That fact has precluded the development of probiotic "requeijão cremoso" products; however, probiotic Bacillus strains may comprise a promising alternative to overcome the low resistance of traditional probiotics to food processing. The objective of this study was to evaluate the behavior of different Bacillus strains with claimed probiotic properties throughout processed cheese ("requeijão cremoso") manufacturing. A total of five different Bacillus strains with claimed probiotic properties (B. coagulans MTCC 5856, B. coagulans GBI-30 6086, B. subtilis PXN 21, B. subtilis PB6, and B. flexus HK1) were individually inoculated at different stages of manufacture - curd pasteurization, coagulation, and fusion - of "requeijão cremoso" and their survival in each of these stages was determined. The survival of B. coagulans GBI-30 6086 was further assessed throughout "requeijão cremoso" production and shelf life (45 days at 6 °C). Besides, the chemical composition, level of proteolysis, and fatty acid profile of the treatments during shelf life were evaluated. The fusion stage was found as the most appropriate for the addition of B. coagulans GBI-30 6086, which allows the production of probiotic "requeijão cremoso" and facilitates the technological process while preventing the occurrence of final product recontamination.
Collapse
|
25
|
Cao GT, Dai B, Wang KL, Yan Y, Xu YL, Wang YX, Yang CM. Bacillus licheniformis, a potential probiotic, inhibits obesity by modulating colonic microflora in C57BL/6J mice model. J Appl Microbiol 2019; 127:880-888. [PMID: 31211897 DOI: 10.1111/jam.14352] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 12/19/2022]
Abstract
AIMS This study evaluated the effects of a potential probiotic, Bacillus sp., on the growth, serum and hepatic triglyceride, histological features of liver tissues and colonic microflora in high-fat diet-induced obese mice. METHODS AND RESULTS Sixty male C57BL/6J mice were randomly divided into five groups: mice fed a low-fat diet (Cont), mice fed a high-fat diet (Hf), Hf and orally challenged with Bacillus subtilis (Bs), B. licheniformis (Bl) and a mixture of B. subtilis and B. licheniformis (Bls). Gavage feeding was provided at week 9 and the experiment was continued for 8 weeks. Treatment with B. licheniformis and a mixture of Bacillus sp. attenuated body weight gain at the end of study and enhanced glucose tolerance by sensitizing insulin action in the Hf-fed mice. Lower serum and hepatic triglyceride and epididymal fat weight were observed in Bl and Bls groups than that of Hf group. Lesser hepatic fat deposition was observed in the Bl and Bls groups than in the Hf group. High-throughput sequencing showed that Bacillus sp. supplementation dramatically changed the colonic bacterial community in obese mice. CONCLUSIONS Bacillus licheniformis reduced body weight and improved glucose tolerance, obesity and insulin resistance in Hf-fed mice by changing colonic microbiota composition. SIGNIFICANCE AND IMPACT OF THE STUDY Orally administration of Bacillus licheniformis may reduce body weight and decrease fat deposition by modulating colonic bacterial community in Hf model.
Collapse
Affiliation(s)
- G T Cao
- College of Standardization, China Jiliang University, Hangzhou, China
| | - B Dai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - K L Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Y Yan
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Y L Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Y X Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - C M Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
26
|
Kim JS, Lee H, Nirmala FS, Jung CH, Kim MJ, Jang YJ, Ha TY, Ahn J. Dihydrodaidzein and 6-hydroxydaidzein mediate the fermentation-induced increase of antiosteoporotic effect of soybeans in ovariectomized mice. FASEB J 2019; 33:3252-3263. [PMID: 30376359 DOI: 10.1096/fj.201800953r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The consumption of soybeans is known to have beneficial effects on osteoporosis in postmenopausal women. However, the effects of soybean fermentation on the bioavailability and the antiosteoporotic effect have not yet been elucidated. To address this question, we fed ovariectomized C57BL/6J mice with a 5% nonfermented raw soybean (RS)- or fermented soybean (FS)-supplemented diet. After 18 wk of treatment, microcomputed tomography showed that FSs significantly increased bone mineral density compared with RSs. This was because of the up-regulation of bone morphogenic protein 2 (Bmp2) and its downstream target osteopontin in bone tissues. We analyzed isoflavone metabolite profiles in the sera of RS- or FS-fed mice and observed that the levels of 19 isoflavone metabolites were significantly increased in the sera of FS-fed mice. Among these metabolites, we observed that both dihydrodaidzein (DHD) and 6-hydroxydaidzein (6-HD) increased osteogenesis via Bmp2 signaling pathway in MC3T3-E1 cells and reduced receptor activator of nuclear factor κ-B ligand-induced osteoclastogenesis in RAW264.7 cells through the inhibition of NF-κB activation and MAPK phosphorylation. These data suggest that improved bioavailability of FSs resulted from the production of active metabolites such as DHD and 6-HD after consumption. DHD and 6-HD can be used as potential therapeutics for the amelioration of osteoporotic bone loss.-Kim, J.-S., Lee, H., Nirmala, F. S., Jung, C. H., Kim, M. J., Jang, Y.-J., Ha, T. Y., Ahn, J. Dihydrodaidzein and 6-hydroxydaidzein mediate the fermentation-induced increase of anti-osteoporotic effect of soybeans in ovariectomized mice.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hyunjung Lee
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, South Korea
| | - Farida Sukma Nirmala
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, South Korea
| | - Chang Hwa Jung
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, South Korea
| | - Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, South Korea
| | - Young-Jin Jang
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, South Korea
| | - Tae Youl Ha
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, South Korea
| | - Jiyun Ahn
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, South Korea
| |
Collapse
|
27
|
Kim B, Kwon J, Kim MS, Park H, Ji Y, Holzapfel W, Hyun CK. Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice. PLoS One 2018; 13:e0210120. [PMID: 30596786 PMCID: PMC6312313 DOI: 10.1371/journal.pone.0210120] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Recently, modulation of gut microbiota by probiotics treatment has been emerged as a promising strategy for treatment of metabolic disorders. Apart from lactic acid bacteria, Bacillus species (Bacillus spp.) have also been paid attention as potential probiotics, but nevertheless, the molecular mechanisms for their protective effect against metabolic dysfunction remain to be elucidated. In this study, we demonstrate that a probiotic mixture composed of 5 different Bacillus spp. protects mice from high-fat diet (HFD)-induced obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD). Probiotic Bacillus treatment substantially attenuated body weight gain and enhanced glucose tolerance by sensitizing insulin action in skeletal muscle and epididymal adipose tissue (EAT) of HFD-fed mice. Bacillus-treated HFD-fed mice also exhibited significantly suppressed chronic inflammation in the liver, EAT and skeletal muscle, which was observed to be associated with reduced HFD-induced intestinal permeability and enhanced adiponectin production. Additionally, Bacillus treatment significantly reversed HFD-induced hepatic steatosis. In Bacillus-treated mice, hepatic expression of lipid oxidative genes was significantly increased, and lipid accumulation in subcutaneous and mesenteric adipose tissues were significantly decreased, commensurate with down-regulated expression of genes involved in lipid uptake and lipogenesis. Although, in Bacillus-treated mice, significant alterations in gut microbiota composition was not observed, the enhanced expression of tight junction-associated proteins showed a possibility of improving gut barrier function by Bacillus treatment. Our findings provide possible explanations how Bacillus probiotics protect diet-induced obese mice against metabolic disorders, identifying the treatment of probiotic Bacillus as a potential therapeutic approach.
Collapse
Affiliation(s)
- Bobae Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Jeonghyeon Kwon
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Min-Seok Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Haryung Park
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Yosep Ji
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Holzapfel Effective Microbes (HEM), Pohang, Gyungbuk, Republic of Korea
| | - Wilhelm Holzapfel
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Holzapfel Effective Microbes (HEM), Pohang, Gyungbuk, Republic of Korea
| | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Jeong SY, Jeong DY, Kim DS, Park S. Chungkookjang with High Contents of Poly-γ-Glutamic Acid Improves Insulin Sensitizing Activity in Adipocytes and Neuronal Cells. Nutrients 2018; 10:E1588. [PMID: 30380669 PMCID: PMC6266770 DOI: 10.3390/nu10111588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/20/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
We hypothesized that soybeans fermented with Bacillus spp. for 48 h (chungkookjang) would be rich in poly-γ-glutamate (γ-PGA) and would have greater efficacy for improving insulin sensitivity and insulin secretion in 3T3-L1 adipocytes, min6 cells, and PC12 neuronal cells. We screened 20 different strains of B. subtillus and B. amyloliquefaciens spp. for γ-polyglutamate (PGA) production and their anti-diabetic and anti-dementia activities in cell-based studies. Chungkookjang made with two B. amyloliquefaciens spp. (BA730 and BA731) were selected to increase the isoflavonoid and γ-PGA. Insulin-stimulated glucose uptake was higher in 3T3-L1 adipocytes given both chungkookjang extracts than in the cells given vehicle (control). The ethanol extract of BA731 (BA731-E) increased the uptake the most. Triglyceride accumulation decreased in BA731-E and BA731-W and the accumulation increased in BA730-W and BA730-E. The mRNA expression of fatty acid synthetase and acetyl CoA carboxylase was much lower in BA731-E and BA731-W and it was higher in BA730-W than the control. BA730-E and BA730-W also increased peroxisome proliferator-activated receptor (PPAR)-γ activity. Glucose-stimulated insulin secretion increased with the high dosage of BA730-W and BA730-E in insulinoma cells, compared to the control. Insulin contents and cell survival in high glucose media were higher in cells with both BA731-E and BA730-E. Triglyceride deposition and TNF-α mRNA expression were lower in BA731 than the control. The high-dosage treatment of BA730-E and BA731-E increased differentiated neuronal cell survival after treating amyloid-β(25-35) compared to the control. Brain-derived neurotrophic factor and ciliary neurotrophic factor, indices of neuronal cell proliferation, were higher in BA730 and BA731 than in the control. Tau expression was also reduced in BA731 more than the control and it was a similar level of the normal-control. In conclusion, BA730 increased PPAR-γ activity and BA731 enhanced insulin sensitivity in the brain and periphery. BA730 and BA731 prevented and alleviated the symptoms of type 2 diabetes and Alzheimer's disease with different pathways.
Collapse
Affiliation(s)
- Seong-Yeop Jeong
- Department of R & D, Sunchang Research Center for Fermentation Microbes, Sunchang-Gun, Sunchang-yup 56048, Korea.
| | - Do Yeon Jeong
- Department of R & D, Sunchang Research Center for Fermentation Microbes, Sunchang-Gun, Sunchang-yup 56048, Korea.
| | - Da Sol Kim
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea.
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea.
| |
Collapse
|
29
|
Thomas SS, Kim M, Lee SJ, Cha YS. Antiobesity Effects of Purple Perilla (Perilla frutescens var. acuta) on Adipocyte Differentiation and Mice Fed a High-fat Diet. J Food Sci 2018; 83:2384-2393. [PMID: 30070698 DOI: 10.1111/1750-3841.14288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/31/2018] [Accepted: 06/24/2018] [Indexed: 02/06/2023]
Abstract
Purple perilla (PE) is a medicinal plant that has several health benefits. In this study, the antiobesity effect of PE was studied in 3T3-L1 preadipocytes and C57BL/6J mice fed high-fat diets. Triglyceride quantification and Oil Red O staining in matured adipocytes revealed that PE reduced lipid accumulation in differentiated adipocytes by downregulating adipogenic gene and upregulating lipolytic gene expressions. Mice were fed normal diet, high-fat diet and high-fat diet supplemented with different concentrations of PE. Treatment with PE significantly prevented body weight gain, improved serum lipids, hepatic lipids and reduced the epididymal fat. Furthermore, in the adipose tissue and liver, expression of genes related to lipolysis and fatty acid β-oxidation were upregulated in PE- treated mice. Thus, our results suggested that PE has antiobesity effects in rodents and can be effective in obesity management. PRACTICAL APPLICATION Purple perilla, rich in polyphenols such as rosmarinic acid, showed lipid lowering in adipocyte cells and prevented body weight gain in mice. Therefore we conclude that purple perilla may be a potential candidate for the development of functional foods or nutraceuticals in managing obesity in humans.
Collapse
Affiliation(s)
- Shalom Sara Thomas
- Dept. of Food Science and Human Nutrition, Chonbuk National Univ., Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Mina Kim
- Div. of Functional Food and Nutrition, Dept. of Agrofood Resources, National Inst. of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Seung Je Lee
- Research and Development Office, Jeonbuk Inst. for Food-Bioindustry, Jeonju, 54810, Republic of Korea
| | - Youn-Soo Cha
- Dept. of Food Science and Human Nutrition, Chonbuk Natl. Univ., Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
30
|
Lee D, Kim MJ, Ahn J, Lee SH, Lee H, Kim JH, Park S, Jang Y, Ha T, Jung CH. Nutrikinetics of Isoflavone Metabolites After Fermented Soybean Product (Cheonggukjang) Ingestion in Ovariectomized Mice. Mol Nutr Food Res 2017; 61:1700322. [PMID: 28981201 PMCID: PMC6139428 DOI: 10.1002/mnfr.201700322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/28/2017] [Indexed: 12/31/2022]
Abstract
SCOPE Cheonggukjang (CGJ) is a soybean-based quick-fermented food popular in Korea that contains a variety of biologically active compounds including isoflavones and saponins. Isoflavone bioavailability may be important for the bone health of postmenopausal women; therefore, the aim of this study is to evaluate the influence of fermentation on the isoflavone metabolite nutrikinetic profile after single dose CGJ or unfermented soybean administration in ovariectomized (OVX) and sham mice. METHODS AND RESULTS We identify 34 isoflavone metabolites using UPLC-QTOF-MS and analyze their nutrikinetics at different time points (0.25, 0.5, 1, 2, 4, 8, 16, and 24 h) to understand their fermentation- and OVX-mediated time-dependent concentration changes. Nutrikinetics analysis shows that genistein, daidzein, genistein 4'-sulfate, dihydrodaidzein sulfate, equol 4'-sulfate, and equol-7-glucuronide are present at high concentrations in all groups based on area-under-the-curve analysis. OVX mice appear to show lower isoflavone bioavailability than mice in the sham group. CGJ enhances various isoflavone metabolite bioavailability including genistein, 3-hydroxygenistein, and equol 7-glucuronide, compared to the unfermented soybean-treated group. Among these metabolites, intact isoflavones, 3-hydroxygenistein, genistein 4'-sulfate, and equol 7-glucuronide promote osteoblastogenesis and inhibit osteoclast formation. CONCLUSIONS CGJ has good isoflavone bioavailability and may be beneficial for the bone health of postmenopausal women.
Collapse
Affiliation(s)
- Da‐Hye Lee
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Min Jung Kim
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Jiyun Ahn
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Sang Hee Lee
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Hyunjung Lee
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Jin Hee Kim
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - So‐Hyun Park
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Young‐Jin Jang
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Tae‐Youl Ha
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Chang Hwa Jung
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| |
Collapse
|
31
|
Affiliation(s)
- Nevin Şanlier
- Biruni University, Faculty of Health Sciences, Nutrition and Dietetics Department, İstanbul, Turkey
| | - Büşra Başar Gökcen
- Gazi University, Faculty of Health Sciences, Nutrition and Dietetics Department, Ankara, Turkey
| | - Aybüke Ceyhun Sezgin
- Gazi University, Faculty of Tourism, Department of Gastronomy and Culinary Art, Gölbaşı/Ankara, Turkey
| |
Collapse
|
32
|
Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol 2017; 8:1490. [PMID: 28848511 PMCID: PMC5554123 DOI: 10.3389/fmicb.2017.01490] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration.
Collapse
Affiliation(s)
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Rohini D Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| |
Collapse
|
33
|
Al-Gareeb AI, Aljubory KD, Alkuraishy HM. Niclosamide as an anti-obesity drug: an experimental study. Eat Weight Disord 2017; 22:339-344. [PMID: 28271456 DOI: 10.1007/s40519-017-0373-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Niclosamide is a well-known anthelminthic drug that exert its effects at least in part through induction of mitochondrial uncoupling. The cycling of mitochondrial proton plays an essential role in regulation of basal metabolic rate, so modulation of mitochondrial uncoupling may be helpful approach to fight obesity. OBJECTIVE To assess the anti-obesity effects of niclosamide on mice with induced obesity. MATERIALS AND METHODS Thirty male Albino mice, 8-10 weeks old, were divided randomly and equally in to three groups; Group 1 fed with standard diet, whereas both Groups 2 and 3 were fed with high fat diet (HFD). At 10 weeks, the studied groups continue in the same type of diet as before for another 4 weeks, but additionally both of Group1 and 2 received placebo treatment as normal control and high fat diet control respectively, whereas Group 3 received oral niclosamide (140 mg/kg/day) as treatment group. The anti-obesity effects of niclosamide were evaluated by testing its effects on food intake, bodyweight, glycemic indices, and lipid profile. RESULT It was found that administration of niclosamide 140 mg/kg/day to HFD fed mice (Group3) for 4 weeks resulted in significant (P < 0.05) decline in the food intake and bodyweight of this group as compared with HFD control. Furthermore, niclosamide also resulted in significant (P < 0.05) lowering of the fasting blood glucose, fasting plasma insulin and improve insulin resistance. Likewise, niclosamide ameliorates the harmful effects of HFD on lipid profile by significant lowering of cholesterol, triglycerides, and LDL (P < 0.05). CONCLUSION Niclosamide has promising effects as an anti-obesity drug. It not just lowers bodyweight in mice, but, at the same time, it reverses metabolic disturbance induced by obesity.
Collapse
Affiliation(s)
- Ali I Al-Gareeb
- Clinical Pharmacology and Therapeutics, Department of Clinical Pharmacology and Therapeutics, College of Medicine, Al-Mustansiriya University, P.O. Box 14132, Baghdad, Iraq.
| | | | - Hayder M Alkuraishy
- Clinical Pharmacology and Therapeutics, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| |
Collapse
|