1
|
Cao JX, Gao WJ, You J, Wu LH, Wang ZX. Assessment of the efficacy of passive cellular immunotherapy for glioma patients. Rev Neurosci 2020; 31:427-440. [PMID: 31926107 DOI: 10.1515/revneuro-2019-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022]
Abstract
To evaluate the therapeutic efficacy of passive cellular immunotherapy for glioma, a total of 979 patients were assigned to the meta-analysis. PubMed and the Cochrane Central Register of Controlled Trials were searched initially from February 2018 and updated in April 2019. The overall survival (OS) rates and Karnofsky performance status (KPS) values of patients who underwent passive cellular immunotherapy were compared to those of patients who did not undergo immunotherapy. The proportion of survival rates was also evaluated in one group of clinical trials. Pooled analysis was performed with random- or fixed-effects models. Clinical trials of lymphokine-activated killer cells, cytotoxic T lymphocytes, autologous tumor-specific T lymphocytes, chimeric antigen receptor T cells, cytokine-induced killer cells, cytomegalovirus-specific T cells, and natural killer cell therapies were selected. Results showed that treatment of glioma with passive cellular immunotherapy was associated with a significantly improved 0.5-year OS (p = 0.003) as well as improved 1-, 1.5-, and 3-year OS (p ≤ 0.05). A meta-analysis of 206 patients in one group of clinical trials with 12-month follow-up showed that the overall pooled survival rate was 37.9% (p = 0.003). Analysis of KPS values demonstrated favorable results for the immunotherapy arm (p < 0.001). Thus, the present meta-analysis showed that passive cellular immunotherapy prolongs survival and improves quality of life for glioma patients, suggesting that it has some clinical benefits.
Collapse
Affiliation(s)
- Jun-Xia Cao
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Wei-Jian Gao
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Jia You
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Li-Hua Wu
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Zheng-Xu Wang
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China, e-mail:
| |
Collapse
|
2
|
Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M, Magnus T, Planas AM. Dendritic cells in brain diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1862:352-67. [PMID: 26569432 DOI: 10.1016/j.bbadis.2015.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Gallizioli
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah Behr
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa H Brait
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
3
|
Wang X, Zhao HY, Zhang FC, Sun Y, Xiong ZY, Jiang XB. Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Invest 2014; 32:451-7. [PMID: 25259676 DOI: 10.3109/07357907.2014.958234] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Glioblastoma multiforme (GBM) has a poor prognosis. The purpose of this systematic review and meta-analysis was to analyze the outcomes of clinical trials which compared immunotherapy with conventional therapy for the treatment of malignant gliomas. METHODS PubMed, Cochrane and Google Scholar databases were searched for relevant studies. The 2-year survival rate was used to evaluate effectiveness of immunotherapy. RESULTS Of 171 studies identified, six comparative trials were included in the systematic review. Immunotherapy was associated with a significantly longer OS and 2-year survival compared to conventional therapy. CONCLUSION Immunotherapy may improve the survival of patients with GBM.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
Despite dramatic advances in surgical techniques, imaging and adjuvant radiotherapy or chemotherapy, the prognosis for patients with malignant glial tumors remains dismal. Based on the current knowledge regarding immune responses in the healthy CNS and glioma-bearing hosts, this review discusses dendritic cell-based immunotherapeutic approaches for malignant gliomas and the relevance of recent clinical trials and their outcomes. It is now recognized that the CNS is not an immunologically tolerated site and clearance of arising glioma cells is a routine physiologic function of the normal, noncompromised immune system. To escape from immune surveillance, however, clinically apparent gliomas develop complex mechanisms that suppress tumoricidal immune responses. Although the use of dendritic cells for the treatment of glioma patients may be the most appropriate approach, an effective treatment paradigm for these tumors may eventually require the use of several types of treatment. Additionally, given the heterogeneity of this disease process and an immune-refractory tumor cell population, the series use of rational multiple modalities that target disparate tumor characteristics may be the most effective therapeutic strategy to treat malignant gliomas.
Collapse
Affiliation(s)
- Yasuharu Akasaki
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Suite 800 East, 8631 West 3 Street, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
5
|
Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H. Expression of Indoleamine 2,3-Dioxygenase and Correlation With Pathological Malignancy in Gliomas. Neurosurgery 2013; 72:1031-8; discussion 1038-9. [DOI: 10.1227/neu.0b013e31828cf945] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
BACKGROUND:
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan catabolic enzyme involved in immune tolerance and tumor immune escape processes. Recently, IDO expression has been found to correlate with the prognosis of malignant tumors, but the implication of IDO in glioma progression remains unknown.
OBJECTIVE:
To investigate the relationship between IDO expression and histological malignancy in gliomas.
METHODS:
IDO expression was examined in a total of 75 surgical specimens obtained from 68 patients with glioma using immunohistochemical staining. The 75 specimens included 15 diffuse astrocytomas, 21 anaplastic astrocytomas, and 39 glioblastomas. Six of 39 glioblastomas were secondary glioblastomas, transforming from grade II or III gliomas that had been determined at the first surgery. IDO expression rate was compared in each histological grade, and patient survival was analyzed.
RESULTS:
Expression of IDO was found in 72 of 75 gliomas at varying intensities. Stronger expression of IDO was more likely to be observed in malignant gliomas compared with low-grade gliomas. IDO expression in the 6 cases of secondary glioblastoma was stronger than in the initial low-grade glioma. Survival analysis using the Kaplan-Meier method revealed that grade IV patients with strong IDO expression had significantly worse overall survival rates (P = .04) than patients with weak IDO expression.
CONCLUSION:
IDO is expressed more strongly in both primary and secondary glioblastoma tissue than low-grade glioma and may affect clinical outcome. If IDO promotes glioma cells to escape from the immune system, IDO may be a crucial therapeutic target for malignant gliomas.
Collapse
Affiliation(s)
- Kentaro Mitsuka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tomoyuki Kawataki
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Eiji Satoh
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takayuki Asahara
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Toru Horikoshi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
6
|
|
7
|
Han SJ, Kaur G, Yang I, Lim M. Biologic Principles of Immunotherapy for Malignant Gliomas. Neurosurg Clin N Am 2010; 21:1-16. [DOI: 10.1016/j.nec.2009.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Miyazaki T, Moritake K, Yamada K, Hara N, Osago H, Shibata T, Akiyama Y, Tsuchiya M. Indoleamine 2,3-dioxygenase as a new target for malignant glioma therapy. Laboratory investigation. J Neurosurg 2009; 111:230-7. [PMID: 19199463 DOI: 10.3171/2008.10.jns081141] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Indoleamine 2,3-dioxygenase (IDO), a kynurenine pathway (KP) enzyme catalyzing oxidation of the essential amino acid tryptophan (Trp), is thought to be involved in the immune resistance of malignant tumors through T-cell inactivation caused by Trp depletion and metabolite accumulation. Human malignant gliomas may use this strategy to escape immune attack. The object of this study was to investigate the possibility of IDO-dependent Trp depletion by malignant gliomas and the practicability of using an IDO inhibitor together with anticancer drugs to reserve Trp without decreasing the cytotoxicity of the drugs. METHODS The authors studied expression of IDO and other KP enzymes and the effects of an IDO inhibitor, 1-methyl L-tryptophan (1MT), on Trp metabolism and cytotoxicity of anticancer drugs, together with direct measurement of KP metabolites, in cultured human malignant glioma cells. RESULTS Upon interferon-gamma (IFN-gamma) stimulation, the glioma cells greatly increased their IDO mRNA expression concomitant with depletion of Trp. The IDO inhibitor 1MT successfully prevented Trp consumption by the stimulated glioma cells. Combining 1MT with anticancer drugs (temozolomide, bischloroethylnitrosourea [BCNU], etoposide and cisplatin) did not interfere with the drugs' suppression of growth of LN229 glioma cells but rather increased their inhibitory effects on IDO activity. CONCLUSIONS These findings suggest that the robust IDO expression with rapid consumption of Trp in human glioma cells induced by IFN-gamma could lead to immune resistance in glioma cells. Indoleamine 2,3-dioxygenase inhibitors that prevent Trp depletion could be used with anticancer drugs to improve therapeutic effects.
Collapse
Affiliation(s)
- Takeshi Miyazaki
- Department of Neurosurgery, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Thomas DL, Kim M, Bowerman NA, Narayanan S, Kranz DM, Schreiber H, Roy EJ. Recurrence of Intracranial Tumors following Adoptive T Cell Therapy Can Be Prevented by Direct and Indirect Killing Aided by High Levels of Tumor Antigen Cross-Presented on Stromal Cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:1828-37. [PMID: 19592642 DOI: 10.4049/jimmunol.0802322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Elimination of peripheral tumors by adoptively transferred tumor-specific T cells may require killing of cancer cells and tumor stromal cells. Tumor Ags are cross-presented on stromal cells, resulting in direct cytotoxic T cell (CTL) killing of both Ag-expressing cancer cells and stromal cells. Indirect killing of Ag loss variant cells also occurs. We show here that similar processes occur in a brain tumor stromal environment. We used murine cancer cell lines that express high or low levels of a peptide Ag, SIYRYYGL (SIY), recognized by transgenic 2C CD8(+) T cells. The two cell lines are killed with equivalent efficiency by 2C T cells in vitro. Following adoptive transfer of 2C T cells into mice with established SIY-Hi or SIY-Lo brain tumors, tumors of both types regressed, but low-Ag-expressing tumors recurred. High-Ag-expressing tumors contained CD11b(+) cells cross-presenting SIY peptide and were completely eliminated by 2C T cells. To further test the role of cross-presentation, RAG1(-/-) H-2(b) mice were infused with H-2(k) tumor cells expressing high levels of SIY peptide. Adoptively transferred 2C T cells are able to kill cross-presenting H-2(b) stromal cells but not H-2(k) tumor cells. In peripheral models, this paradigm led to a small static tumor. In the brain, activated 2C T cells were able to kill cross-presenting CD11b(+) cells and completely eliminate the H-2(k) tumors in most mice. Targeting brain tumor stroma or increasing Ag shedding from tumor cells to enhance cross-presentation may improve the clinical success of T cell adoptive therapies.
Collapse
Affiliation(s)
- Diana L Thomas
- University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Kim HM, Kang JS, Lim J, Kim JY, Kim YJ, Lee SJ, Song S, Hong JT, Kim Y, Han SB. Antitumor activity of cytokine-induced killer cells in nude mouse xenograft model. Arch Pharm Res 2009; 32:781-7. [PMID: 19471894 DOI: 10.1007/s12272-009-1518-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/11/2009] [Accepted: 05/11/2009] [Indexed: 12/31/2022]
Abstract
Malignant glioma is the most common primary brain tumor in adults and the median survival for patients is less than a year. Despite aggressive treatments including surgical resection, radiotherapy, and chemotherapy, only modest improvement has been achieved in the survival of patients with glioma. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against human glioma cancer was evaluated in vitro and in vivo. Human peripheral blood mononuclear cells were cultured with IL-2-containing medium in anti-CD3 antibody-coated flasks for 5 days, followed by incubation in IL-2-containing medium for 9 days. The number of cells increased more than 200-fold and the viability was >90%. The resulting populations were consisted of 96% CD3(+), 2% CD3(-)CD56(+), 68% CD3(+)CD56(+), 2% CD4(+), <1% CD4(+)CD56(+), 80% CD8(+), and 49% CD8(+)CD56(+). This heterogeneous cell population was called as CIK cells. At an effector-target cell ratio of 30:1, CIK cells destroyed 43% of U-87 MG human glioma cells, as measured by the (51)Cr-release assay. In addition, CIK cells at doses of 0.3, 1, and 3 million cells per mouse inhibited 23%, 40%, and 50% of U-87 MG tumor growth in nude mouse xenograft assays, respectively. This study suggests that CIK cells may be used as an adoptive immunotherapy for glioma cancer patients.
Collapse
Affiliation(s)
- Hwan Mook Kim
- Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk, 363-883, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The development of effective immunotherapy strategies for glioma requires adequate understanding of the unique immunological microenvironment in the central nervous system (CNS) and CNS tumors. Although the CNS is often considered to be an immunologically privileged site and poses unique challenges for the delivery of effector cells and molecules, recent advances in technology and discoveries in CNS immunology suggest novel mechanisms that may significantly improve the efficacy of immunotherapy against gliomas. In this review, we first summarize recent advances in the CNS and CNS tumor immunology. We address factors that may promote immune escape of gliomas. We also review advances in passive and active immunotherapy strategies for glioma, with an emphasis on lessons learned from recent early-phase clinical trials. We also discuss novel immunotherapy strategies that have been recently tested in non-CNS tumors and show great potential for application to gliomas. Finally, we discuss how each of these promising strategies can be combined to achieve clinical benefit for patients with gliomas.
Collapse
Affiliation(s)
- Hideho Okada
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Experimental study on the treatment of intracerebral glioma xenograft with human cytokine-induced killer cells. Cell Immunol 2008; 253:59-65. [PMID: 18522858 DOI: 10.1016/j.cellimm.2008.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 04/16/2008] [Accepted: 04/23/2008] [Indexed: 11/24/2022]
Abstract
Objective. To investigate the phenotype changes and proliferation activities of cytokine-induced killer cells (CIKs) and lymphokine-activated killer cells (LAKs) from healthy donor, and the cytotoxicities of CIKs and LAKs to human in vitro glioma cell lines U251 and U87. Therapy of CIK intratumoral injection was evaluated in nude mouse models. Methods. CIK cells were induced from peripheral blood mononuclear cells (PBMC) of healthy donors with multiple cytokines. Phenotype analysis of CIKs and LAKs was performed with flow cytometer (FCM). The specific cytotoxicities of CIKs and LAKs against cell line U251 and U87 were determined by LDH method. After intracerebral injection of CIKs, the distribution of CIKs and the inflammatory reaction of their surrounding brain tissue were observed through continuous pathological sections. In vivo anti-tumor activity of CIKs was evaluated in athymic nude mice with intracerebral xenotransplanted U251 glioma by MRI. Results. Amount of CIKs was increased (49.83+/-2.04) times and double positive cells, CD3(+)/CD56(+) cells, were increased from (3.36+/-1.85%) to (44.07+/-14.14%) with elevated absolute amount over 1000 times after 2 week culture. In vitro experiments demonstrated that compared with LAK, CIKs possessed more obvious cytotoxic activity to U251 and U87. In vivo experiments showed that there was no severe inflammatory reaction in brain tissue. CIKs can markedly inhibit intracranial xenotransplanted glioma growth by intracranial injection (P<0.01). Conclusion. CIKs are a kind of highly effective immune cells which have a strong suppressive effect on growth for in vitro and in vivo glioma. Local injection of CIKs does not produce severe damage to normal brain tissue and is likely to be used in clinical adoptive immunotherapy of intracerebral glioma.
Collapse
|
13
|
Kushen MC, Sonabend AM, Lesniak MS. Current immunotherapeutic strategies for central nervous system tumors. Surg Oncol Clin N Am 2007; 16:987-1004, xii. [PMID: 18022555 PMCID: PMC2173874 DOI: 10.1016/j.soc.2007.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunotherapy has emerged as a promising tool in the management of malignant central nervous system tumors. Despite improvement in patient survival, traditional approaches, which consist mostly of surgery, radiotherapy, and chemotherapy, have been largely unsuccessful in permanently controlling these aggressive tumors. Immunotherapeutic strategies offer not only a novel approach but also an advantage in a way other modalities have been failing. Specifically, the capabilities of the immune system to recognize altered cells while leaving normal cells intact offer tremendous advantage over the conventional therapeutic approaches. This article summarizes our current understanding of immunotherapeutic treatment modalities used in clinical trials for management of malignant central nervous system tumors.
Collapse
Affiliation(s)
- Medina C. Kushen
- Neurosurgery Resident, Section of Neurosurgery, The University of Chicago, Chicago, IL, USA
| | - Adam M. Sonabend
- Research Associate, Section of Neurosurgery, The University of Chicago, Chicago, IL, USA
| | - Maciej S. Lesniak
- Director, Neurosurgical Oncology and The University of Chicago Brain Tumor Center, The University of Chicago Section of Neurosurgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Ehtesham M, Black KL, Yu JS. Recent progress in immunotherapy for malignant glioma: treatment strategies and results from clinical trials. Cancer Control 2007; 11:192-207. [PMID: 15153843 DOI: 10.1177/107327480401100307] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite advances in surgical and adjuvant radiation therapy and chemotherapy strategies, malignant gliomas continue to be associated with poor prognoses. METHODS We review immune-mediated treatment approaches for malignant glioma and the relevance of recent clinical trials and their outcomes. We specifically address the increasing evidence implicating the role of cytotoxic T cells in ensuring adequate immune-mediated clearance of neoplastic cells and the need for the optimization of therapies that can elicit and support such antitumor T-cell activity. RESULTS The poor outcome of this disease has spurred the search for novel experimental therapies that can address and overcome the root biological phenomena associated with the lethality of this disease. The use of immunotherapy to bolster the otherwise impaired antitumor immune responses in glioma patients has received increasing attention. CONCLUSIONS An effective treatment paradigm for malignant gliomas may eventually require a multifaceted approach combining two or more different immunotherapeutic strategies. Such scenarios may involve the use of local cytokine gene therapy to enhance glioma-cell immunogenicity in conjunction with dendritic cell-based active vaccination to stimulate systemic tumoricidal T-cell immunity. Given the heterogeneity of this disease process and the potential risk of immunoediting out a selected, treatment-refractory tumor cell population, the concurrent use of multiple modalities that target disparate tumor characteristics may be of greatest therapeutic relevance.
Collapse
Affiliation(s)
- Moneeb Ehtesham
- Maxine Dunitz Neurosurgical, Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
15
|
Sheeja K, Kuttan G. Activation of cytotoxic T lymphocyte responses and attenuation of tumor growth in vivo by Andrographis paniculata extract and andrographolide. Immunopharmacol Immunotoxicol 2007; 29:81-93. [PMID: 17464769 DOI: 10.1080/08923970701282726] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The stimulatory effect of Andrographis paniculata extract and andrographolide on cytotoxic T lymphocyte (CTL) production was determined in BALB/c mice by Winn's neutralization assay using CTL sensitive EL4 thymoma cells as target cell. Extract and andrographolide showed a significant increase in CTL production in both the in vivo and in vitro models. The survival time of EL4 cells alone in animals was only 27.1 days and it was increased to 51.1 and 44.5 days in extract- and andrographolide treated animals with percentage increase in life span (%ILS) of 88.5 and 64.2, respectively. The survival rate of animals administered EL4 cells incubated with alloimmunized spleen cells (effector cells) from normal BALB/c mice was 35.8 (%ILS 32.1). When this group was treated with 10 doses of extract and andrographolide the life span was further increased to 52.1 days (%ILS 92.2 ) and 48.1 days (%ILS 77.4). Survival days of animal carrying EL4 cells incubated with alloimmunized spleen cells (effector cells) from extract and andrographolide treated animals were 55.5 and 50.3 days respectively. When these animals continued with extract and andrographolide treatment for 10 days their life spans were significantly increased to 62 and 53.8 days, respectively. The level of cytokines such as Interlevkin (IL)-2 and Interferon (IFN)-gamma also was enhanced in these animals when they were treated with extract and andrographolide. This study demonstrated that A. paniculata extract and andrographolide stimulate the CTL production through enhanced secretion of IL-2 and IFN-gamma by T cells and thereby inhibit the tumor growth.
Collapse
Affiliation(s)
- K Sheeja
- Department of Immunology, Amala Cancer Research Centre, Amala Nagar, Thrissur, India
| | | |
Collapse
|
16
|
Abstract
GVAX is a granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transfected tumor cell vaccine. Original work with GM-CSF as a recombinant DNA protein (Leukine) involved proliferative stimulation of macrophages and neutrophils for the purpose of reducing hematopoietic toxicity related to dose-intensive chemotherapy. Following US Food and Drug Administration approval of Leukine several years ago, extensive preclinical results have demonstrated an immunostimulatory effect related to GM-CSF gene when transfected into tumor cells and used as a vaccine (GVAX). Tumor regression and prolonged survival was demonstrated in animal models. Toxicology with GVAX indicated no adverse effects, which enabled further testing in cancer patients. A small number of responses were demonstrated in Phase I trials in immunosensitive cancer patients (renal cell carcinoma and melanoma). However, a series of dramatic complete and durable responses in advanced non-small cell lung cancer patients, demonstrated in recent clinical trials, have generated interest in further development of this vaccine in nontraditional cancer disease types. The rationale of GVAX development and a summary of clinical results are reviewed.
Collapse
|
17
|
Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M, Campoli M, Ferrone S. Human Leukocyte Antigen and Antigen Processing Machinery Component Defects in Astrocytic Tumors. Clin Cancer Res 2005; 11:8304-11. [PMID: 16322289 DOI: 10.1158/1078-0432.ccr-04-2588] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the frequency of abnormalities in human leukocyte antigen (HLA) and antigen processing machinery (APM) component expression in malignant brain tumors. This information may contribute to our understanding of the immune escape mechanisms used by malignant brain tumors because HLA antigens mediate interactions of tumor cells with the host's immune system. EXPERIMENTAL DESIGN Eighty-eight surgically removed malignant astrocytic tumors, classified according to the WHO criteria, were stained in immunoperoxidase reactions with monoclonal antibody recognizing monomorphic, locus-specific, and allospecific determinants of HLA class I antigens, beta2-microglobulin, APM components (LMP2, LMP7, TAP1, TAP2, calnexin, calreticulin, and tapasin), and HLA class II antigens. RESULTS HLA class I antigens were lost in approximately 50% of the 47 glioblastoma multiforme (GBM) lesions and in approximately 20% of the 18 grade 2 astrocytoma lesions stained. Selective HLA-A2 antigen loss was observed in approximately 80% of the 24 GBM lesions and in approximately 50% of the 12 grade 2 astrocytoma lesions stained. HLA class I antigen loss was significantly (P < 0.025) correlated with tumor grade. Among the APM components investigated, tapasin expression was down-regulated in approximately 20% of the GBM lesions analyzed; it was associated, although not significantly, with HLA class I antigen down-regulation and tumor grade. HLA class II antigen expression was detected in approximately 30% of the 44 lesions analyzed. CONCLUSION The presence of HLA antigen defects in malignant brain tumors may provide an explanation for the relatively poor clinical response rates observed in the majority of the T cell-based immunotherapy clinical trials conducted to date in patients with malignant brain tumors.
Collapse
Affiliation(s)
- Angelica Facoetti
- Department of Animal Biology, University of Pavia and Center of Study for Histochemistry, Consiglio Nazionale delle Ricerche, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tsurushima H, Yoshii Y, Leong KW, Ohno T. Targeted tumor cell death induced by autologous tumor-specific T lymphocyte recognition of wild-type p53-derived peptides. J Neurooncol 2005; 76:99-104. [PMID: 16132498 DOI: 10.1007/s11060-005-4172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Autologous tumor-specific T lymphocyte (ATTL) lines were derived from the peripheral blood mononuclear cells (PBMC) of a healthy volunteer with human leukocyte antigen (HLA) -A*0201. These lines were achieved using interleukins -1beta, -2, -4, and -6 and the p53-based peptide from the 264-272 sequence of the wild-type p53 protein with a strong affinity against HLA-A*0201.;The frequencies of CD3+, CD4+, and CD8+ lymphocytes were 94-96%, 30-34%, and 69-74%, respectively. ATTLs killed most of the T2 cells pulsed with p53-derived peptide, but not against the T2 cells non-pulsed or pulsed with an irrelevant peptide. ATTLs also killed TKB-14 cells, which have been derived from human glioblastoma multiforme, and exhibited HLA-A*0201 molecule and immunohistochemical accumulation of p53 protein. These cytotoxic activities were inhibited by anti-CD3, anti-CD8, and anti-class I antibodies. These findings suggested that these ATTL lines might include CTL populations, which could recognize p53-derived peptide on HLA-A*0201 and the p53-based peptide may play as an antigen on HLA-A*0201. When tumor antigens would be more analyzed in the future, ATTL could be induced without the primary-cultured cells from tumor tissue and could be applied for cancer therapy.
Collapse
Affiliation(s)
- Hideo Tsurushima
- Faculty of Medicine, Department of Neuro Surgery, University of the Ryukyus, Okinawa, Japan.
| | | | | | | |
Collapse
|
19
|
Kahlon KS, Brown C, Cooper LJN, Raubitschek A, Forman SJ, Jensen MC. Specific Recognition and Killing of Glioblastoma Multiforme by Interleukin 13-Zetakine Redirected Cytolytic T Cells. Cancer Res 2004; 64:9160-6. [PMID: 15604287 DOI: 10.1158/0008-5472.can-04-0454] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interleukin (IL) 13 receptor alpha2 (IL13Ralpha2) is a glioma-restricted cell-surface epitope not otherwise detected within the central nervous system. Here, we describe a novel approach for targeting glioblastoma multiforme (GBM) with IL13Ralpha2-specific cytolytic T cells (CTLs) by their genetic modification to express a membrane-tethered IL13 cytokine chimeric T-cell antigen receptor, or zetakine. Our prototype zetakine incorporates an IL13 E13Y mutein for selective binding to IL13Ralpha2. Human IL13-zetakine(+)CD8(+) CTL transfectants display IL13Ralpha2-specific antitumor effector function including tumor cell cytolysis, T(C)1 cytokine production, and zetakine-regulated autocrine proliferation. The E13Y amino acid substitution of the IL13 mutein of the zetakine endows CTL transfectants with the capacity to discriminate between IL13Ralpha2(+) GBM targets from targets expressing IL13Ralpha1. In vivo, the adoptive transfer of IL13-zetakine(+)CD8(+) CTL clones results in the regression of established human glioblastoma orthotopic xenografts. Pilot clinical trials have been initiated to evaluate the feasibility and safety of local-regional delivery of autologous IL13-zetakine redirected CTL clones in patients with recurrent GBM. Our IL13-zetakine is a prototype of a new class of chimeric immunoreceptors that signal through an engineered immune synapse composed of membrane-tethered cytokine muteins bound to cell-surface cytokine receptors on tumors.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/immunology
- Brain Neoplasms/therapy
- Cell Line, Tumor
- DNA, Complementary/genetics
- Epitopes, T-Lymphocyte/immunology
- Glioblastoma/immunology
- Glioblastoma/therapy
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin-13/genetics
- Interleukin-13/immunology
- Interleukin-13/metabolism
- Interleukin-13 Receptor alpha1 Subunit
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/immunology
- Receptors, Interleukin-13
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/physiology
- Transfection
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kanwarpal S Kahlon
- Division of Molecular Medicine, Beckman Research Institute, Departments of Pediatric Hematology-Oncology, City of Hope National Medical Center, Duarte, California, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
A novel cancer vaccine consisting of fixed autologous cancer tissue-fragments, microparticles encapsulating cytokines, and an adjuvant was developed. In a Phase I/IIa clinical trial, vaccination to patients after resection of hepatocellular carcinoma induced significantly longer time before the first recurrence than that in historical control patients operated in the same department (P < 0.05). This formulation will be promising against recurrence of many types of human cancers.
Collapse
Affiliation(s)
- Tadao Ohno
- RIKEN Cell Bank, RIKEN (The Institute of Physical and Chemical Research), Koyadai 3-1-1, Tsukuba Science City, Ibaraki 305-0074, Japan.
| |
Collapse
|
21
|
Yang L, Ng KY, Lillehei KO. Cell-mediated immunotherapy: a new approach to the treatment of malignant glioma. Cancer Control 2003; 10:138-47. [PMID: 12712008 DOI: 10.1177/107327480301000205] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The dismal prognosis for patients harboring intracranial gliomas has prompted an intensive search for effective treatment alternatives such as immunotherapy. Our increased knowledge in basic immunology, glioma immunobiology, and molecular biology may lead to the development of effective, rational immunotherapy approaches. METHODS The authors reviewed the literature on glioma immunology, the status of tumor vaccine therapy and on novel techniques to monitor the tumor-specific immune response. RESULTS Experimental conditions currently exist whereby potent antitumor cell-mediated immune responses can be generated. However, clinically, no therapeutic regimen has proven effective. Obstacles to establishing an effective immunotherapy regimen are the lack of a well-defined glioma-specific antigen, the heterogeneity of tumor cells in gliomas, and the modulating effect of the glioma itself on the immune system. Unique strategies to overcome these barriers are being developed. CONCLUSIONS Novel strategies to generate an anti-glioma immune response through use of dendritic cell vaccination, directed cytokine delivery, gene-based immunotherapy, and reversal of tumor-induced immunosuppression are promising. These strategies carry the potential of overcoming the resistance of gliomas to immunotherapeutic manipulation and, undoubtedly, will become a part of our future therapeutic armamentarium.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurosurgery, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
22
|
Hayes RL, Arbit E, Odaimi M, Pannullo S, Scheff R, Kravchinskiy D, Zaroulis C. Adoptive cellular immunotherapy for the treatment of malignant gliomas. Crit Rev Oncol Hematol 2001; 39:31-42. [PMID: 11418300 DOI: 10.1016/s1040-8428(01)00122-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
UNLABELLED The median survival for adults with recurrent primary malignant gliomas is 56 weeks following surgery, radiation, and chemotherapy. Generally, reoperation can extend the median survival an additional 26-32 weeks. We have developed an aggressive treatment program that utilizes low doses of interleukin-2 (IL-2) combined with ex vivo activated killer cells (LAK) infused via an indwelling catheter placed into the surgical resection cavity. Autologous leukocytes were collected during a standard 3-4 h, outpatient leukapheresis procedure, then activated ex vivo for 4-5 days with high doses of IL-2. The treatment protocol consisted of two 2-week cycles of therapy over a 6-week period. Patients with stable disease or objective response on follow-up MRI scans were retreated at 3-month intervals. Acute and cumulative IL-2-related toxicities were observed, but limited, and included fever, headache and transient neurologic irritation. Corticosteroid levels and usage were strictly controlled during immunotherapy, although higher doses were used intermittently to mitigate toxicity. Biologic changes included lymphocytic infiltration, regional eosinophilia, tumor necrosis, and the localized production of IL-2, IFN-gamma and IL-12, demonstrated by in situ hybridization and immunohistochemistry. SUMMARY IL-2 plus autogeneic LAK cells can be safely administered intracavitary to treat high grade primary brain tumors with limited toxicity within the central nervous system. Six out of 28 patients had long-term survival of greater than 2 years post-reoperation plus immunotherapy with 2 patients alive over 8 years. The presence of a marked regional eosinophilia appeared to correlate with increased survival and may be predictive of a biologic and therapeutic response. Regional adoptive immune therapy was well tolerated and should be considered an option for patients with high-grade tumors refractive to standard therapeutic approaches.
Collapse
Affiliation(s)
- R L Hayes
- Department of Medicine, Immunotherapy Program, Sanford R. Nalitt Institute for Cancer and Blood-Related Diseases, Staten Island University Hospital, 256 Mason Avenue, Staten Island, NY 10305, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Smilowitz HM, Micca PL, Nawrocky MM, Slatkin DN, Tu W, Coderre JA. The combination of boron neutron-capture therapy and immunoprophylaxis for advanced intracerebral gliosarcomas in rats. J Neurooncol 2001; 46:231-40. [PMID: 10902854 DOI: 10.1023/a:1006409721365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary human brain tumor. About 7000 new cases are diagnosed yearly in the USA and GBM is almost invariably fatal within a few years after it is diagnosed. Despite current neurosurgical and radiotherapeutic tumor cytoreduction methods, in most cases occult foci of tumor cells infiltrate surrounding brain tissues and cause recurrent disease. Therefore the combination of neurosurgical and radiotherapeutic debulking methods with therapies to inhibit occult GBM cells should improve prognosis. In this study we have combined boron neutron-capture therapy (BNCT), a novel binary radiotherapeutic treatment modality that selectively irradiates tumor tissue and largely spares normal brain tissue, with immunoprophylaxis, a form of active immunization initiated soon after BNCT treatment, to treat advanced, clinically relevantly-sized brain tumors in rats. Using a malignant rat glioma model of high immunogenicity, the 9L gliosarcoma, we have shown that about half of the rats that would have died after receiving BNCT debulking alone, survived after receiving BNCT plus immunoprophylaxis. Further, most of the surviving rats display immunological-based resistance to recurrent 9LGS growth six months or more after treatment. To our knowledge this study represents the first time BNCT and immunoprophylaxis have been combined to treat advanced brain tumors in rats.
Collapse
Affiliation(s)
- H M Smilowitz
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030-6125, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Sloan AE, Dansey R, Zamorano L, Barger G, Hamm C, Diaz F, Baynes R, Wood G. Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony–stimulating factor and adoptive transfer of anti-CD3–activated lymphocytes. Neurosurg Focus 2000; 9:e9. [PMID: 16817692 DOI: 10.3171/foc.2000.9.6.10] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
This trial was designed to determine the ability of autologous whole–tumor cell vaccines to induce cell-mediated immune responses in patients with recurrent malignant glioma, as well as to determine whether combining such vaccination with adoptive transfer of in vitro activated T lymphocytes prolongs patient survival.
Methods
Nineteen patients with recurrent malignant glioma, in whom previous external beam radiotherapy and at least one course of chemotherapy had failed were vaccinated twice with irradiated autologous whole tumor cells by using granulocyte-marcrophage colony–stimulating factor as an adjuvant. Patients then underwent leukapheresis followed by adoptive transfer of peripheral blood lymphocytes activated in vitro with anti-CD3 and interleukin-2. In vivo immune response, radiological response, clinical outcome, and survival were monitored.
Seventeen patients developed a delayed-type hypersensitivity (DTH) response to vaccination that appeared to be directed against the autologous tumor. In eight patients there was radiological evidence of a response and in five there was evidence of clinical improvement. Median survival was 12 months (range 6–28 months), and both the presence of a DTH response and the radiological response correlated with survival (p < 0.02 and p < 0.04, respectively).
Conclusions
These preliminary results suggest that autologous whole–tumor cell vaccines induce a cell-mediated immune response, which appears to be tumor specific in most patients. Furthermore, vaccination combined with adoptive immunotherapy with in vitro activated cells may induce a radiologically demonstrated tumor response and improved survival despite a condition of advanced disease and immunosuppression resulting from previous treatment or tumor burden. Further studies of immunotherapy are warranted.
Collapse
Affiliation(s)
- A E Sloan
- Department of Neurosurgery, Karmanos Cancer Institute, Detroit, Michigan, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pollack IF, Okada H, Chambers WH. Exploitation of immune mechanisms in the treatment of central nervous system cancer. Semin Pediatr Neurol 2000; 7:131-43. [PMID: 10914414 DOI: 10.1053/pb.2000.6691] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Malignant gliomas are among the most common intrinsic brain tumors of both children and adults, and, because of unique aspects of their biology and anatomic site, they are the most refractory to conventional therapeutic strategies involving surgery, radiotherapy, or chemotherapy. Given the failure of standard therapies to improve the outlook of affected patients, significant attention has been focused on development of alternative treatments, particularly immunotherapy. Attempts have been made to treat gliomas using a variety of immunologically based strategies, including passive immunization, adoptive cellular immunotherapy, local and systemic delivery of biological response modifiers, and vaccination with tumor cells. Although preclinical modeling of these therapies provided an impetus for translation of their results into clinical protocols, these therapies have failed to yield consistently promising results in initial trials. However, significant insights into the immunobiology of the central nervous system (CNS) and gliomas have been gained from these studies, and have established that a number of immunobiological features of the brain and of gliomas themselves may be critical determinants in regulating efficacious treatment of these tumors. These include the following: (1) the presence of a blood-brain barrier that, although partially disrupted by the tumor, functions to exclude elements of the immune system from the tumor or brain parenchyma; (2) a lack of organized secondary lymphatic tissues supporting efficient immune responses locally in the CNS; (3) low levels of expression of major histocompatibility complex proteins in the CNS; (4) an apparent paucity of the most efficient antigen-presenting cells; and (5) glioma-derived immunosuppressive factors, such as transforming growth factor-beta, that interfere with the induction of local as well as systemic immune responses to the tumor. Recognition of these factors, and an appreciation of the underlying need for and validity of developing immunologically based therapies for gliomas, supports continued development of novel immunotherapeutic approaches, particularly those attempting to enhance the immunogenicity of glioma cells. This review addresses the current state of knowledge regarding the immunobiology of gliomas, recent developments in immunotherapy of gliomas, and promising future directions for development and implementation of cellular immunotherapy of gliomas.
Collapse
Affiliation(s)
- I F Pollack
- Department of Neurosurgery, University of Pittsburgh Cancer Institute Brain Tumor Center, Children's Hospital of Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
26
|
Paul DB, Barth RF, Yang W, Shen GH, Kim J, Triozzi PL. B7.1 expression by the weakly immunogenic F98 rat glioma does not enhance immunogenicity. Gene Ther 2000; 7:993-9. [PMID: 10871746 DOI: 10.1038/sj.gt.3301209] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enhanced immunogenicity has been reported following transfection of a variety of immunogenic tumors with the B7.1 co-stimulatory molecule. The purpose of the present study was to determine if transfection of a weakly immunogenic rat brain tumor, the F98 glioma, with the gene encoding B7.1 could enhance its immunogenicity. F98 cells were transfected with a plasmid containing the B7.1 gene, and stable transfectants (F98/B7.1) were obtained. Flow cytometric analysis confirmed the expression of B7.1 and MHC class I antigens on the cell surface. To investigate the effects of B7.1 expression on the tumorigenicity of the F98 glioma, Fischer rats were implanted intracerebrally with either F98 (wild-type) or F98/B7.1 transfected cells. No significant differences in survival times were noted. Mean survival times of 21.8 and 24.0 days were observed for the respective groups at a challenge dose of 103 cells. These differences in survival time were not significant. To determine if expression of B7.1 enhanced the immunogenicity of the F98 glioma, rats were vaccinated weekly for 3 weeks with 107 mitomycin C-treated F98 or F98/B7.1 cells injected subcutaneously and then challenged intracerebrally with F98 cells 1 week later. Unvaccinated animals or those that received wild-type F98 cells as a vaccine had a survival time (mean +/- s.d.) of 22.3 +/- 1.5 days following tumor challenge versus 20.0 +/- 1.7 days for rats that had been vaccinated with F98/B7.1. Although we recognize that it might be possible to design more effective vaccination regimes, nevertheless, our data indicate that transfection of the B7.1 gene into the F98 rat glioma did not enhance its immunogenicity, and that other approaches will be required.
Collapse
Affiliation(s)
- D B Paul
- Department of Pathology, The Ohio State University, Columbus 43210, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wood GW, Holladay FP, Turner T, Wang YY, Chiga M. A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma. J Neurooncol 2000; 48:113-20. [PMID: 11083074 DOI: 10.1023/a:1006456421177] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The study objectives were to determine; (1) whether activated T cells could be generated from peripheral blood of patients immunized with their own cancer cells, (2) whether adoptive transfer of the activated T cells to patients had toxic effects and (3) whether the infused cells produced clinical responses. Study patients had recurrent, surgically accessible grade III/IV astrocytomas. The patients were tapered off steroids after total surgical resection and immunized with autologous cancer cells plus Bacillus, Calmette and Guerin (BCG). Peripheral blood mononuclear cells were activated with anti-CD3, expanded with interleukin-2 (IL-2) and reinfused to patients. The number of activated T cells that was given back to patients varied between 10(10) and 10(11). Side effects that were observed following immunization and adoptive cell transfer included mainly transient flu-like symptoms. One patient's tumor partially regressed, but there was no effect on survival. Two other patients' tumors regressed, and the patients are apparently disease-free more than 5 and 4 years later. The other six patients' tumors were apparently unaffected by the treatment. Patient age, tumor grade and CD4/CD8 composition of infused cells were positively correlated with clinical responses. Cellular immunotherapy is feasible and is associated with minimal toxicity. Additional appropriately controlled studies will be required to determine whether cellular immunotherapy could be used as a treatment for central nervous system malignancy. Additional studies also will be required to determine the underlying immunological mechanisms.
Collapse
Affiliation(s)
- G W Wood
- Department of Pathology, University of Kansas Medical Center, Kansas City, USA.
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
OBJECTIVE Despite advances in conventional therapy, the prognosis for most glioma patients remains dismal. This has prompted an intensive search for effective treatment alternatives. Immunotherapy, one such alternative, has long been recognized as a potentially potent cancer treatment but has been limited by an inadequate understanding of the immune system. Now, increased insight into immunology is suggesting more rational approaches to immunotherapy. In this article, we explore key aspects of modern immunology and discuss their implications for glioma therapy. METHODS A thorough literature review of glioma immunology and immunotherapy was undertaken to inquire into the basic immunology, central nervous system immunology, glioma immunobiology, standard glioma immunotherapy, and recent immunotherapeutic advances in glioma treatment. RESULTS Although gliomas express tumor-associated antigens and appear potentially sensitive to immune responses, many factors work together to inhibit antiglioma immunity. Not surprisingly, most clinical attempts at glioma immunotherapy have met with little success to date. However, novel immunostimulatory strategies, such as immunogene therapy, directed cytokine delivery, and dendritic cell manipulation, have recently yielded dramatic preclinical results in glioma models. This suggests that glioma-derived immunosuppression can be overcome. CONCLUSION Modern molecular biology and immunology techniques have yielded a wealth of new data about glioma immunobiology. Armed with this information, many investigators have proposed novel means to stimulate antiglioma immune responses. Although definitive clinical results remain to be seen, the current renaissance in glioma immunology and immunotherapy shows great promise for the future.
Collapse
Affiliation(s)
- I F Parney
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
30
|
Tsurushima H, Liu SQ, Tuboi K, Matsumura A, Yoshii Y, Nose T, Saijo K, Ohno T. Reduction of end-stage malignant glioma by injection with autologous cytotoxic T lymphocytes. Jpn J Cancer Res 1999; 90:536-45. [PMID: 10391094 PMCID: PMC5926095 DOI: 10.1111/j.1349-7006.1999.tb00781.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Autologous cytotoxic T lymphocytes (CTL) against primary-cultured malignant gliomas were generated from peripheral blood mononuclear cells in vitro in 4 patients. Activities of the CTL were highly specific to the corresponding autologous glioma and were inhibited, in one patient, with antibodies against CD3, CD8 and MHC-class I molecules. When the CTL were injected 3 times into the primary-tumor-resected cavity via an Ommaya tube, reduction of the recurrent tumors with magnetic resonance imaging (MRI)-measured volumes exceeding 45 cm3 was observed in 3 patients. In a patient with glioblastoma multiforme (GBM), the tumor volume (estimated, 130 cm3) was rapidly reduced to 1/3, although re-recurrence of the tumor followed 40 days later. A slight but distinct rapid reduction of the tumor volume was observed in another GBM patient and in an anaplastic astrocytoma patient; essentially no change was observed in a further GBM patient. These results suggest that adoptive immunotherapy with autologous CTL will be clinically effective against end-stage malignant gliomas.
Collapse
Affiliation(s)
- H Tsurushima
- Department of Neurosurgery, Institute of Clinical Medicine, University of Tsukuba, Tsukuba Science City, Ibaraki
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Immunotherapeutic approaches to leptomeningeal metastasis (LM) include the intrathecal application of cytokines such as interleukin-2 (IL-2) and interferon-alpha (IFN-alpha), and lymphokine-activated killer cells (LAK cells). Results in a rodent model of leptomeningeal gliomatosis with intrathecal IL-2 application are discouraging, but some clinical improvement and clearance of neoplastic cells from CSF have been seen in patients with LM from melanoma treated with intrathecal IL-2 alone, and in patients with LM from primary brain tumors and squamous cell carcinoma of the tongue treated with intrathecal LAK cells and IL-2. The neurotoxicity of this therapy, mainly increased intracranial pressure, has been considerable but generally manageable. However, IFN-alpha caused severe neurotoxicity in form of an only partly reversible progressive vegetative state in the majority of patients. Considering the small number of patients treated with IL-2 and LAK cells, its value for the treatment of LM could only be stated by further investigation. In future, the application of recently discovered cytokines such as Fas-ligand, the continuous paracrine cytokine release by genetically modified cells, or vaccination strategies using genetically modified tumor cells might offer new immunotherapeutic approaches in LM.
Collapse
Affiliation(s)
- U Herrlinger
- Department of Neurology, University of Tuebingen, Germany
| | | | | |
Collapse
|
32
|
Plautz GE, Touhalisky JE, Shu S. Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell Immunol 1997; 178:101-7. [PMID: 9225000 DOI: 10.1006/cimm.1997.1140] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The adoptive transfer of tumor-reactive T lymphocytes has recently been demonstrated to be an effective means for mediating the regression of experimental intracranial fibrosarcomas. In this study, mice bearing syngeneic intracranial GL261 gliomas were cured by the combination of sublethal whole body irradiation followed by the intravenous transfer of tumor-draining lymph node (LN) T cells activated with anti-CD3 or staphylococcal enterotoxin C2 (SEC2). To further identify the functional effector T cel population in the adoptive immunotherapy, LN T cells were separated into two subsets, based on the level of expression of the cell adhesion molecule CD62L (L-selectin). As few as 5 x 10(5) CD62Llow cells could cure the majority of animals, whereas 2 x 10(6) CD62Lhigh cells were completely ineffective. Moreover, T cells isolated from advanced intracranial tumors were identified to be predominantly CD62Llow. In contrast, spleens contained a mixture of CD62L low and high cells similar to the transferred cell population. T cells in the glioma site were more actively proliferating than those isolated from the spleen. Mice cured of GL261 tumors demonstrated long-term immunologic memory by rejecting intracranial challenges of the original tumor but not an immunologically distinct tumor. Furthermore, despite infiltration of transferred cells into the intracranial tumors, cured mice did not exhibit any apparent neurologic abnormalities during treatment, prolonged follow-up, or after intracranial tumor rechallenge. This study demonstrates the effective treatment of an intracranial murine glioma by the systemic adoptive transfer of activated tumor-draining LN T cells and selective tumor infiltration by the therapeutically active CD62Llow T cells.
Collapse
Affiliation(s)
- G E Plautz
- Center for Surgery Research, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | |
Collapse
|
33
|
Herrlinger U, Buchholz R, Jachimczak P, Schabet M. Intrathecal treatment of C6 glioma leptomeningeal metastasis in Wistar rats with interleukin-2. J Neurooncol 1996; 27:193-203. [PMID: 8847552 DOI: 10.1007/bf00165475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The efficacy of intrathecal treatment of leptomeningeal metastasis (LM) with interleukin-2 (IL-2) was evaluated in an animal model using Wistar rats inoculated intracisternally with 10(7) C6 glioma cells. Prior to the in vivo experiments the antiproliferative effects of human IL-2, and of murine IFN-gamma and TNF-alpha which are cytokines induced by IL-2 were tested in a colony forming assay. Only IFN-gamma caused a dose-dependent inhibition of colony formation. Twelve animals were treated intracisternally with either 10(5) IU IL-2 or control medium on day 0, 2, and 5 after tumor cell inoculation. Both IL-2 treated and sham-treated animals developed LM with a symptom-free survival of 7 to 9 days. There was no significant difference between treated and untreated animals regarding time to onset of symptoms and pattern of tumor growth. Infiltration of the tumor tissue with ED-1+ monocytes and macrophages, and CD8+ lymphocytes, however, was slightly increased in IL-2 treated animals. In a second experiment 4 non tumor-bearing Wistar rats were intracisternally injected with a single dose of 10(5) IU IL-2. These animals also showed slightly enhanced leptomeningeal infiltration with CD8+ lymphocytes compared to controls. We conclude that intrathecal application of high-dose IL-2 although eliciting a slight immune reaction within the leptomeninges does not inhibit leptomeningeal tumor growth or prolong symptom-free survival in our animal model of LM. These results raise doubt about the clinical efficacy of intrathecal IL-2 treatment in patients with LM.
Collapse
Affiliation(s)
- U Herrlinger
- Department of Neurology, University of Tuebingen, Germany
| | | | | | | |
Collapse
|
34
|
Gjerset RA, Fakhrai H, Shawler DL, Turla S, Dorigo O, Grover-Bardwick A, Mercola D, Wen SF, Collins H, Lin H. Characterization of a new human glioblastoma cell line that expresses mutant p53 and lacks activation of the PDGF pathway. In Vitro Cell Dev Biol Anim 1995; 31:207-14. [PMID: 7757303 DOI: 10.1007/bf02639435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have established and characterized a new glioblastoma cell line, termed GT9, from a biopsy sample of a female adult patient with glioblastoma multiforme. The line has now undergone over 60 passages and has been successfully cultured after cryopreservation. Immunofluorescence analyses with a panel of monoclonal antibodies were positive for glial fibrillary acidic protein and vimentin, and negative for neurofilament, galactocerebroside, and fibronectin, a pattern typical of glial cells. Based on a tetraploid, the composite karyotype of GT9 cells included the loss of chromosome 10, gain of chromosome 7, and the presence of double minute chromosomes, three of the most common karyotypic abnormalities in glioblastoma. Sequence analysis of p53 cDNA revealed a homozygous double mutation at codon 249 (commonly mutated in aflatoxin-associated hepatocellular carcinoma) and codon 250. Moreover, there was a complete absence of wild-type p53. However, unlike the majority of human glioblastomas previously described, the expression of platelet-derived growth factor-B (PDGF-B), a potent mitogenic autocrine factor, was low in GT9 cells. The expression and phosphorylation of c-Jun and Jun-B, downstream mediators of the PDGF pathway, were also low. Thus, deregulation of the PDGF pathway does not appear to be involved in the pathogenesis of the GT9 glioblastoma. Conversely, Jun-D, a negative regulator of cell growth, was also low. In addition, Phosphorylated Egr-1, a recently reported suppressor of PDGF-B/v-sis-transformed cells, was also low, suggesting that the lack of activation of the PDGF pathway was not due to these suppressive mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R A Gjerset
- San Diego Regional Cancer Center, California 92121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Holladay FP, Choudhuri R, Heitz T, Wood GW. Generation of cytotoxic immune responses during the progression of a rat glioma. J Neurosurg 1994; 80:90-6. [PMID: 8271027 DOI: 10.3171/jns.1994.80.1.0090] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytotoxic T lymphocytes specific for tumor-associated antigens are produced by exposing animals to tumor cells and stimulating lymphocytes from animals immunized in vitro with tumor cells and small amounts of interleukin-2 (IL-2). This study was designed to determine whether a fast-growing immunogenic avian sarcoma virus-induced glioma produces primed cytotoxic T lymphocyte precursors during its progression. Lymphocytes from intracerebral glioma-bearing rats generally failed to proliferate in vitro in response to immunization with tumor cells and IL-2 and, when proliferative responses were observed, the lymphocytes were not cytotoxic for glioma cells. However, when the same tumor was growing subcutaneously, lymphocytes proliferated and exhibited glioma-specific cytotoxicity when stimulated in vitro with autologous tumor cells and IL-2. Subcutaneous immunization of intracerebral glioma-bearing rats with tumor cells and adjuvant induced strong cytotoxic T lymphocyte responses. The results demonstrated that, while intracerebral tumor progression itself does not induce an anti-glioma immune response, immune responses to tumor-associated antigens may be induced by systemic immunization of tumor-bearing animals. The results suggest that the immunogenicity of brain tumors is masked by the immunologically privileged status of the brain, not by the induction of generalized immune suppression during tumor progression.
Collapse
Affiliation(s)
- F P Holladay
- Department of Surgery (Section of Neurosurgery), University of Kansas Medical Center, Kansas City
| | | | | | | |
Collapse
|
36
|
Wood PL. Differential regulation of IL-1 alpha and TNF alpha release from immortalized murine microglia (BV-2). Life Sci 1994; 55:661-8. [PMID: 8065228 DOI: 10.1016/0024-3205(94)00672-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microglia, the resident macrophages of the brain, secrete a number of mediators involved in neural-immune function. The cytokines, IL-1 alpha and TNF alpha, are two such factors which are stored as inactive precursor molecules requiring post-translational proteolytic processing prior to release. From investigations of second messenger pathways involved in regulating the secretion of these cytokines, we have demonstrated that the PKC inhibitor, H-7, blocks the induction of TNF alpha secretion induced by LPS. In contrast, H-89 and HA-1077, inhibitors of cyclic nucleotide-dependent protein kinases (PKA and PKG), did not alter LPS-stimulation of TNF alpha release. Consistent with these observations, the weak PKC activator, mezerein, induced TNF alpha secretion in an H-7-reversible manner. In marked contrast, PKC activation did not induce IL-1 alpha secretion and H-7 potentiated IL-1 alpha release. In the case of the protein phosphatase inhibitor, okadaic acid, secretion of both cytokines was induced, indicating that protein phosphorylation is important for the induction of cytokine secretion but only in the case of TNF alpha is PKC involved. In the case of IL-1 alpha, a tonic inhibitory regulation involving PKC activation may be present. We therefore conclude that alterations in phosphorylation-dephosphorylation cycles may be important triggers in the switching of microglial cellular function from a resting to an activated state.
Collapse
Affiliation(s)
- P L Wood
- Department of Pharmacology, CoCensys, Inc., Irvine, CA 92718
| |
Collapse
|